Files
system76-edk2/ArmPkg/Library/ArmMmuLib/Arm/ArmMmuLibUpdate.c
Ard Biesheuvel ae2c904c3d ArmPkg/ArmMmuLib: Avoid splitting block entries if possible
Currently, the ARM MMU page table logic will break down any block entry
that overlaps with the region being mapped, even if the block entry in
question is using the same attributes as the new region.

This means that creating a non-executable mapping inside a region that
is already mapped non-executable at a coarser granularity may trigger a
call to AllocatePages (), which may recurse back into the page table
code to update the attributes on the newly allocated page tables.

Let's avoid this, by preserving the block entry if it already covers the
region being mapped with the correct attributes.

Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Leif Lindholm <quic_llindhol@quicinc.com>
2023-03-16 21:14:49 +00:00

585 lines
19 KiB
C

/** @file
* File managing the MMU for ARMv7 architecture
*
* Copyright (c) 2011-2021, Arm Limited. All rights reserved.<BR>
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Uefi.h>
#include <Library/ArmLib.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Chipset/ArmV7.h>
#define __EFI_MEMORY_RWX 0 // no restrictions
#define CACHE_ATTRIBUTE_MASK (EFI_MEMORY_UC | \
EFI_MEMORY_WC | \
EFI_MEMORY_WT | \
EFI_MEMORY_WB | \
EFI_MEMORY_UCE | \
EFI_MEMORY_WP)
STATIC
EFI_STATUS
ConvertSectionToPages (
IN EFI_PHYSICAL_ADDRESS BaseAddress
)
{
UINT32 FirstLevelIdx;
UINT32 SectionDescriptor;
UINT32 PageTableDescriptor;
UINT32 PageDescriptor;
UINT32 Index;
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
volatile ARM_PAGE_TABLE_ENTRY *PageTable;
DEBUG ((DEBUG_PAGE, "Converting section at 0x%x to pages\n", (UINTN)BaseAddress));
// Obtain page table base
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
// Calculate index into first level translation table for start of modification
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
// Get section attributes and convert to page attributes
SectionDescriptor = FirstLevelTable[FirstLevelIdx];
PageDescriptor = TT_DESCRIPTOR_PAGE_TYPE_PAGE | ConvertSectionAttributesToPageAttributes (SectionDescriptor);
// Allocate a page table for the 4KB entries (we use up a full page even though we only need 1KB)
PageTable = (volatile ARM_PAGE_TABLE_ENTRY *)AllocatePages (1);
if (PageTable == NULL) {
return EFI_OUT_OF_RESOURCES;
}
// Write the page table entries out
for (Index = 0; Index < TRANSLATION_TABLE_PAGE_COUNT; Index++) {
PageTable[Index] = TT_DESCRIPTOR_PAGE_BASE_ADDRESS (BaseAddress + (Index << 12)) | PageDescriptor;
}
// Formulate page table entry, Domain=0, NS=0
PageTableDescriptor = (((UINTN)PageTable) & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK) | TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE;
// Write the page table entry out, replacing section entry
FirstLevelTable[FirstLevelIdx] = PageTableDescriptor;
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
UpdatePageEntries (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes,
IN UINT32 EntryMask,
OUT BOOLEAN *FlushTlbs OPTIONAL
)
{
EFI_STATUS Status;
UINT32 EntryValue;
UINT32 FirstLevelIdx;
UINT32 Offset;
UINT32 NumPageEntries;
UINT32 Descriptor;
UINT32 p;
UINT32 PageTableIndex;
UINT32 PageTableEntry;
UINT32 CurrentPageTableEntry;
VOID *Mva;
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
volatile ARM_PAGE_TABLE_ENTRY *PageTable;
Status = EFI_SUCCESS;
// EntryMask: bitmask of values to change (1 = change this value, 0 = leave alone)
// EntryValue: values at bit positions specified by EntryMask
EntryValue = TT_DESCRIPTOR_PAGE_TYPE_PAGE;
// Although the PI spec is unclear on this, the GCD guarantees that only
// one Attribute bit is set at a time, so the order of the conditionals below
// is irrelevant. If no memory attribute is specified, we preserve whatever
// memory type is set in the page tables, and update the permission attributes
// only.
if ((Attributes & EFI_MEMORY_UC) != 0) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
// map to strongly ordered
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
} else if ((Attributes & EFI_MEMORY_WC) != 0) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
// map to normal non-cacheable
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
} else if ((Attributes & EFI_MEMORY_WT) != 0) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
// write through with no-allocate
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
} else if ((Attributes & EFI_MEMORY_WB) != 0) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK;
// write back (with allocate)
EntryValue |= TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
} else if ((Attributes & CACHE_ATTRIBUTE_MASK) != 0) {
// catch unsupported memory type attributes
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
if ((Attributes & EFI_MEMORY_RP) == 0) {
EntryValue |= TT_DESCRIPTOR_PAGE_AF;
}
if ((Attributes & EFI_MEMORY_RO) != 0) {
EntryValue |= TT_DESCRIPTOR_PAGE_AP_RO_RO;
} else {
EntryValue |= TT_DESCRIPTOR_PAGE_AP_RW_RW;
}
if ((Attributes & EFI_MEMORY_XP) != 0) {
EntryValue |= TT_DESCRIPTOR_PAGE_XN_MASK;
}
// Obtain page table base
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
// Calculate number of 4KB page table entries to change
NumPageEntries = (UINT32)(Length / TT_DESCRIPTOR_PAGE_SIZE);
// Iterate for the number of 4KB pages to change
Offset = 0;
for (p = 0; p < NumPageEntries; p++) {
// Calculate index into first level translation table for page table value
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (BaseAddress + Offset) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
// Read the descriptor from the first level page table
Descriptor = FirstLevelTable[FirstLevelIdx];
// Does this descriptor need to be converted from section entry to 4K pages?
if (!TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE (Descriptor)) {
//
// If the section mapping covers the requested region with the expected
// attributes, splitting it is unnecessary, and should be avoided as it
// may result in unbounded recursion when using a strict NX policy.
//
if ((EntryValue & ~TT_DESCRIPTOR_PAGE_TYPE_MASK & EntryMask) ==
(ConvertSectionAttributesToPageAttributes (Descriptor) & EntryMask))
{
continue;
}
Status = ConvertSectionToPages (FirstLevelIdx << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
if (EFI_ERROR (Status)) {
// Exit for loop
break;
}
// Re-read descriptor
Descriptor = FirstLevelTable[FirstLevelIdx];
if (FlushTlbs != NULL) {
*FlushTlbs = TRUE;
}
}
// Obtain page table base address
PageTable = (ARM_PAGE_TABLE_ENTRY *)TT_DESCRIPTOR_PAGE_BASE_ADDRESS (Descriptor);
// Calculate index into the page table
PageTableIndex = ((BaseAddress + Offset) & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
ASSERT (PageTableIndex < TRANSLATION_TABLE_PAGE_COUNT);
// Get the entry
CurrentPageTableEntry = PageTable[PageTableIndex];
// Mask off appropriate fields
PageTableEntry = CurrentPageTableEntry & ~EntryMask;
// Mask in new attributes and/or permissions
PageTableEntry |= EntryValue;
if (CurrentPageTableEntry != PageTableEntry) {
Mva = (VOID *)(UINTN)((((UINTN)FirstLevelIdx) << TT_DESCRIPTOR_SECTION_BASE_SHIFT) + (PageTableIndex << TT_DESCRIPTOR_PAGE_BASE_SHIFT));
// Only need to update if we are changing the entry
PageTable[PageTableIndex] = PageTableEntry;
ArmUpdateTranslationTableEntry ((VOID *)&PageTable[PageTableIndex], Mva);
}
Status = EFI_SUCCESS;
Offset += TT_DESCRIPTOR_PAGE_SIZE;
} // End first level translation table loop
return Status;
}
STATIC
EFI_STATUS
UpdateSectionEntries (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes,
IN UINT32 EntryMask
)
{
EFI_STATUS Status;
UINT32 EntryValue;
UINT32 FirstLevelIdx;
UINT32 NumSections;
UINT32 i;
UINT32 CurrentDescriptor;
UINT32 Descriptor;
VOID *Mva;
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
Status = EFI_SUCCESS;
// EntryMask: bitmask of values to change (1 = change this value, 0 = leave alone)
// EntryValue: values at bit positions specified by EntryMask
// Make sure we handle a section range that is unmapped
EntryValue = TT_DESCRIPTOR_SECTION_TYPE_SECTION;
// Although the PI spec is unclear on this, the GCD guarantees that only
// one Attribute bit is set at a time, so the order of the conditionals below
// is irrelevant. If no memory attribute is specified, we preserve whatever
// memory type is set in the page tables, and update the permission attributes
// only.
if ((Attributes & EFI_MEMORY_UC) != 0) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
// map to strongly ordered
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
} else if ((Attributes & EFI_MEMORY_WC) != 0) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
// map to normal non-cacheable
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
} else if ((Attributes & EFI_MEMORY_WT) != 0) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
// write through with no-allocate
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
} else if ((Attributes & EFI_MEMORY_WB) != 0) {
// modify cacheability attributes
EntryMask |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK;
// write back (with allocate)
EntryValue |= TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
} else if ((Attributes & CACHE_ATTRIBUTE_MASK) != 0) {
// catch unsupported memory type attributes
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
if ((Attributes & EFI_MEMORY_RO) != 0) {
EntryValue |= TT_DESCRIPTOR_SECTION_AP_RO_RO;
} else {
EntryValue |= TT_DESCRIPTOR_SECTION_AP_RW_RW;
}
if ((Attributes & EFI_MEMORY_XP) != 0) {
EntryValue |= TT_DESCRIPTOR_SECTION_XN_MASK;
}
if ((Attributes & EFI_MEMORY_RP) == 0) {
EntryValue |= TT_DESCRIPTOR_SECTION_AF;
}
// obtain page table base
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
// calculate index into first level translation table for start of modification
FirstLevelIdx = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
ASSERT (FirstLevelIdx < TRANSLATION_TABLE_SECTION_COUNT);
// calculate number of 1MB first level entries this applies to
NumSections = (UINT32)(Length / TT_DESCRIPTOR_SECTION_SIZE);
// iterate through each descriptor
for (i = 0; i < NumSections; i++) {
CurrentDescriptor = FirstLevelTable[FirstLevelIdx + i];
// has this descriptor already been converted to pages?
if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE (CurrentDescriptor)) {
// forward this 1MB range to page table function instead
Status = UpdatePageEntries (
(FirstLevelIdx + i) << TT_DESCRIPTOR_SECTION_BASE_SHIFT,
TT_DESCRIPTOR_SECTION_SIZE,
Attributes,
ConvertSectionAttributesToPageAttributes (EntryMask),
NULL
);
} else {
// still a section entry
if (CurrentDescriptor != 0) {
// mask off appropriate fields
Descriptor = CurrentDescriptor & ~EntryMask;
} else {
Descriptor = ((UINTN)FirstLevelIdx + i) << TT_DESCRIPTOR_SECTION_BASE_SHIFT;
}
// mask in new attributes and/or permissions
Descriptor |= EntryValue;
if (CurrentDescriptor != Descriptor) {
Mva = (VOID *)(UINTN)(((UINTN)FirstLevelIdx + i) << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
// Only need to update if we are changing the descriptor
FirstLevelTable[FirstLevelIdx + i] = Descriptor;
ArmUpdateTranslationTableEntry ((VOID *)&FirstLevelTable[FirstLevelIdx + i], Mva);
}
Status = EFI_SUCCESS;
}
}
return Status;
}
/**
Update the permission or memory type attributes on a range of memory.
@param BaseAddress The start of the region.
@param Length The size of the region.
@param Attributes A mask of EFI_MEMORY_xx constants.
@param SectionMask A mask of short descriptor section attributes
describing which descriptor bits to update.
@retval EFI_SUCCESS The attributes were set successfully.
@retval EFI_OUT_OF_RESOURCES The operation failed due to insufficient memory.
**/
STATIC
EFI_STATUS
SetMemoryAttributes (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes,
IN UINT32 SectionMask
)
{
EFI_STATUS Status;
UINT64 ChunkLength;
BOOLEAN FlushTlbs;
if (BaseAddress > (UINT64)MAX_ADDRESS) {
return EFI_UNSUPPORTED;
}
Length = MIN (Length, (UINT64)MAX_ADDRESS - BaseAddress + 1);
if (Length == 0) {
return EFI_SUCCESS;
}
FlushTlbs = FALSE;
while (Length > 0) {
if ((BaseAddress % TT_DESCRIPTOR_SECTION_SIZE == 0) &&
(Length >= TT_DESCRIPTOR_SECTION_SIZE))
{
ChunkLength = Length - Length % TT_DESCRIPTOR_SECTION_SIZE;
DEBUG ((
DEBUG_PAGE,
"SetMemoryAttributes(): MMU section 0x%lx length 0x%lx to %lx\n",
BaseAddress,
ChunkLength,
Attributes
));
Status = UpdateSectionEntries (
BaseAddress,
ChunkLength,
Attributes,
SectionMask
);
FlushTlbs = TRUE;
} else {
//
// Process page by page until the next section boundary, but only if
// we have more than a section's worth of area to deal with after that.
//
ChunkLength = TT_DESCRIPTOR_SECTION_SIZE -
(BaseAddress % TT_DESCRIPTOR_SECTION_SIZE);
if (ChunkLength + TT_DESCRIPTOR_SECTION_SIZE > Length) {
ChunkLength = Length;
}
DEBUG ((
DEBUG_PAGE,
"SetMemoryAttributes(): MMU page 0x%lx length 0x%lx to %lx\n",
BaseAddress,
ChunkLength,
Attributes
));
Status = UpdatePageEntries (
BaseAddress,
ChunkLength,
Attributes,
ConvertSectionAttributesToPageAttributes (SectionMask),
&FlushTlbs
);
}
if (EFI_ERROR (Status)) {
break;
}
BaseAddress += ChunkLength;
Length -= ChunkLength;
}
if (FlushTlbs) {
ArmInvalidateTlb ();
}
return Status;
}
/**
Update the permission or memory type attributes on a range of memory.
@param BaseAddress The start of the region.
@param Length The size of the region.
@param Attributes A mask of EFI_MEMORY_xx constants.
@retval EFI_SUCCESS The attributes were set successfully.
@retval EFI_OUT_OF_RESOURCES The operation failed due to insufficient memory.
**/
EFI_STATUS
ArmSetMemoryAttributes (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)
{
return SetMemoryAttributes (
BaseAddress,
Length,
Attributes,
TT_DESCRIPTOR_SECTION_TYPE_MASK |
TT_DESCRIPTOR_SECTION_XN_MASK |
TT_DESCRIPTOR_SECTION_AP_MASK |
TT_DESCRIPTOR_SECTION_AF
);
}
EFI_STATUS
ArmSetMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryAttributes (
BaseAddress,
Length,
EFI_MEMORY_XP,
TT_DESCRIPTOR_SECTION_XN_MASK
);
}
EFI_STATUS
ArmClearMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryAttributes (
BaseAddress,
Length,
0,
TT_DESCRIPTOR_SECTION_XN_MASK
);
}
EFI_STATUS
ArmSetMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryAttributes (
BaseAddress,
Length,
EFI_MEMORY_RO,
TT_DESCRIPTOR_SECTION_AP_MASK
);
}
EFI_STATUS
ArmClearMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryAttributes (
BaseAddress,
Length,
0,
TT_DESCRIPTOR_SECTION_AP_MASK
);
}
/**
Convert a region of memory to read-protected, by clearing the access flag.
@param BaseAddress The start of the region.
@param Length The size of the region.
@retval EFI_SUCCESS The attributes were set successfully.
@retval EFI_OUT_OF_RESOURCES The operation failed due to insufficient memory.
**/
EFI_STATUS
ArmSetMemoryRegionNoAccess (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryAttributes (
BaseAddress,
Length,
EFI_MEMORY_RP,
TT_DESCRIPTOR_SECTION_AF
);
}
/**
Convert a region of memory to read-enabled, by setting the access flag.
@param BaseAddress The start of the region.
@param Length The size of the region.
@retval EFI_SUCCESS The attributes were set successfully.
@retval EFI_OUT_OF_RESOURCES The operation failed due to insufficient memory.
**/
EFI_STATUS
ArmClearMemoryRegionNoAccess (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryAttributes (
BaseAddress,
Length,
0,
TT_DESCRIPTOR_SECTION_AF
);
}