These files are a subset of the python-2.7.2.tgz distribution from python.org. Changed files from PyMod-2.7.2 have been copied into the corresponding directories of this tree, replacing the original files in the distribution. Signed-off-by: daryl.mcdaniel@intel.com git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@13197 6f19259b-4bc3-4df7-8a09-765794883524
		
			
				
	
	
		
			233 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			233 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Definitions of some C99 math library functions, for those platforms
 | |
|    that don't implement these functions already. */
 | |
| 
 | |
| #include "Python.h"
 | |
| #include <float.h>
 | |
| #include "_math.h"
 | |
| 
 | |
| /* The following copyright notice applies to the original
 | |
|    implementations of acosh, asinh and atanh. */
 | |
| 
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| static const double ln2 = 6.93147180559945286227E-01;
 | |
| static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
 | |
| static const double two_pow_p28 = 268435456.0; /* 2**28 */
 | |
| static const double zero = 0.0;
 | |
| 
 | |
| /* acosh(x)
 | |
|  * Method :
 | |
|  *      Based on
 | |
|  *            acosh(x) = log [ x + sqrt(x*x-1) ]
 | |
|  *      we have
 | |
|  *            acosh(x) := log(x)+ln2, if x is large; else
 | |
|  *            acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
 | |
|  *            acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
 | |
|  *
 | |
|  * Special cases:
 | |
|  *      acosh(x) is NaN with signal if x<1.
 | |
|  *      acosh(NaN) is NaN without signal.
 | |
|  */
 | |
| 
 | |
| double
 | |
| _Py_acosh(double x)
 | |
| {
 | |
|     if (Py_IS_NAN(x)) {
 | |
|         return x+x;
 | |
|     }
 | |
|     if (x < 1.) {                       /* x < 1;  return a signaling NaN */
 | |
|         errno = EDOM;
 | |
| #ifdef Py_NAN
 | |
|         return Py_NAN;
 | |
| #else
 | |
|         return (x-x)/(x-x);
 | |
| #endif
 | |
|     }
 | |
|     else if (x >= two_pow_p28) {        /* x > 2**28 */
 | |
|         if (Py_IS_INFINITY(x)) {
 | |
|             return x+x;
 | |
|         }
 | |
|         else {
 | |
|             return log(x)+ln2;          /* acosh(huge)=log(2x) */
 | |
|         }
 | |
|     }
 | |
|     else if (x == 1.) {
 | |
|         return 0.0;                     /* acosh(1) = 0 */
 | |
|     }
 | |
|     else if (x > 2.) {                  /* 2 < x < 2**28 */
 | |
|         double t = x*x;
 | |
|         return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
 | |
|     }
 | |
|     else {                              /* 1 < x <= 2 */
 | |
|         double t = x - 1.0;
 | |
|         return m_log1p(t + sqrt(2.0*t + t*t));
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* asinh(x)
 | |
|  * Method :
 | |
|  *      Based on
 | |
|  *              asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
 | |
|  *      we have
 | |
|  *      asinh(x) := x  if  1+x*x=1,
 | |
|  *               := sign(x)*(log(x)+ln2)) for large |x|, else
 | |
|  *               := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
 | |
|  *               := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
 | |
|  */
 | |
| 
 | |
| double
 | |
| _Py_asinh(double x)
 | |
| {
 | |
|     double w;
 | |
|     double absx = fabs(x);
 | |
| 
 | |
|     if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
 | |
|         return x+x;
 | |
|     }
 | |
|     if (absx < two_pow_m28) {           /* |x| < 2**-28 */
 | |
|         return x;                       /* return x inexact except 0 */
 | |
|     }
 | |
|     if (absx > two_pow_p28) {           /* |x| > 2**28 */
 | |
|         w = log(absx)+ln2;
 | |
|     }
 | |
|     else if (absx > 2.0) {              /* 2 < |x| < 2**28 */
 | |
|         w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
 | |
|     }
 | |
|     else {                              /* 2**-28 <= |x| < 2= */
 | |
|         double t = x*x;
 | |
|         w = m_log1p(absx + t / (1.0 + sqrt(1.0 + t)));
 | |
|     }
 | |
|     return copysign(w, x);
 | |
| 
 | |
| }
 | |
| 
 | |
| /* atanh(x)
 | |
|  * Method :
 | |
|  *    1.Reduced x to positive by atanh(-x) = -atanh(x)
 | |
|  *    2.For x>=0.5
 | |
|  *                  1              2x                          x
 | |
|  *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * -------)
 | |
|  *                  2             1 - x                      1 - x
 | |
|  *
 | |
|  *      For x<0.5
 | |
|  *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
 | |
|  *
 | |
|  * Special cases:
 | |
|  *      atanh(x) is NaN if |x| >= 1 with signal;
 | |
|  *      atanh(NaN) is that NaN with no signal;
 | |
|  *
 | |
|  */
 | |
| 
 | |
| double
 | |
| _Py_atanh(double x)
 | |
| {
 | |
|     double absx;
 | |
|     double t;
 | |
| 
 | |
|     if (Py_IS_NAN(x)) {
 | |
|         return x+x;
 | |
|     }
 | |
|     absx = fabs(x);
 | |
|     if (absx >= 1.) {                   /* |x| >= 1 */
 | |
|         errno = EDOM;
 | |
| #ifdef Py_NAN
 | |
|         return Py_NAN;
 | |
| #else
 | |
|         return x/zero;
 | |
| #endif
 | |
|     }
 | |
|     if (absx < two_pow_m28) {           /* |x| < 2**-28 */
 | |
|         return x;
 | |
|     }
 | |
|     if (absx < 0.5) {                   /* |x| < 0.5 */
 | |
|         t = absx+absx;
 | |
|         t = 0.5 * m_log1p(t + t*absx / (1.0 - absx));
 | |
|     }
 | |
|     else {                              /* 0.5 <= |x| <= 1.0 */
 | |
|         t = 0.5 * m_log1p((absx + absx) / (1.0 - absx));
 | |
|     }
 | |
|     return copysign(t, x);
 | |
| }
 | |
| 
 | |
| /* Mathematically, expm1(x) = exp(x) - 1.  The expm1 function is designed
 | |
|    to avoid the significant loss of precision that arises from direct
 | |
|    evaluation of the expression exp(x) - 1, for x near 0. */
 | |
| 
 | |
| double
 | |
| _Py_expm1(double x)
 | |
| {
 | |
|     /* For abs(x) >= log(2), it's safe to evaluate exp(x) - 1 directly; this
 | |
|        also works fine for infinities and nans.
 | |
| 
 | |
|        For smaller x, we can use a method due to Kahan that achieves close to
 | |
|        full accuracy.
 | |
|     */
 | |
| 
 | |
|     if (fabs(x) < 0.7) {
 | |
|         double u;
 | |
|         u = exp(x);
 | |
|         if (u == 1.0)
 | |
|             return x;
 | |
|         else
 | |
|             return (u - 1.0) * x / log(u);
 | |
|     }
 | |
|     else
 | |
|         return exp(x) - 1.0;
 | |
| }
 | |
| 
 | |
| /* log1p(x) = log(1+x).  The log1p function is designed to avoid the
 | |
|    significant loss of precision that arises from direct evaluation when x is
 | |
|    small. */
 | |
| 
 | |
| double
 | |
| _Py_log1p(double x)
 | |
| {
 | |
|     /* For x small, we use the following approach.  Let y be the nearest float
 | |
|        to 1+x, then
 | |
| 
 | |
|          1+x = y * (1 - (y-1-x)/y)
 | |
| 
 | |
|        so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny, the
 | |
|        second term is well approximated by (y-1-x)/y.  If abs(x) >=
 | |
|        DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
 | |
|        then y-1-x will be exactly representable, and is computed exactly by
 | |
|        (y-1)-x.
 | |
| 
 | |
|        If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
 | |
|        round-to-nearest then this method is slightly dangerous: 1+x could be
 | |
|        rounded up to 1+DBL_EPSILON instead of down to 1, and in that case
 | |
|        y-1-x will not be exactly representable any more and the result can be
 | |
|        off by many ulps.  But this is easily fixed: for a floating-point
 | |
|        number |x| < DBL_EPSILON/2., the closest floating-point number to
 | |
|        log(1+x) is exactly x.
 | |
|     */
 | |
| 
 | |
|     double y;
 | |
|     if (fabs(x) < DBL_EPSILON/2.) {
 | |
|         return x;
 | |
|     }
 | |
|     else if (-0.5 <= x && x <= 1.) {
 | |
|         /* WARNING: it's possible than an overeager compiler
 | |
|            will incorrectly optimize the following two lines
 | |
|            to the equivalent of "return log(1.+x)". If this
 | |
|            happens, then results from log1p will be inaccurate
 | |
|            for small x. */
 | |
|         y = 1.+x;
 | |
|         return log(y)-((y-1.)-x)/y;
 | |
|     }
 | |
|     else {
 | |
|         /* NaNs and infinities should end up here */
 | |
|         return log(1.+x);
 | |
|     }
 | |
| }
 |