- Copy Brotli algorithm 3rd party source code for tool Cc: Liming Gao <liming.gao@intel.com> Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Bell Song <binx.song@intel.com> Reviewed-by: Liming Gao <liming.gao@intel.com>
		
			
				
	
	
		
			1335 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1335 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright 2014 Google Inc. All Rights Reserved.
 | |
| 
 | |
|    Distributed under MIT license.
 | |
|    See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
 | |
| */
 | |
| 
 | |
| /* Brotli bit stream functions to support the low level format. There are no
 | |
|    compression algorithms here, just the right ordering of bits to match the
 | |
|    specs. */
 | |
| 
 | |
| #include "./brotli_bit_stream.h"
 | |
| 
 | |
| #include <string.h>  /* memcpy, memset */
 | |
| 
 | |
| #include "../common/constants.h"
 | |
| #include "../common/types.h"
 | |
| #include "./context.h"
 | |
| #include "./entropy_encode.h"
 | |
| #include "./entropy_encode_static.h"
 | |
| #include "./fast_log.h"
 | |
| #include "./memory.h"
 | |
| #include "./port.h"
 | |
| #include "./write_bits.h"
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #define MAX_HUFFMAN_TREE_SIZE (2 * BROTLI_NUM_COMMAND_SYMBOLS + 1)
 | |
| 
 | |
| /* Represents the range of values belonging to a prefix code:
 | |
|    [offset, offset + 2^nbits) */
 | |
| typedef struct PrefixCodeRange {
 | |
|   uint32_t offset;
 | |
|   uint32_t nbits;
 | |
| } PrefixCodeRange;
 | |
| 
 | |
| static const PrefixCodeRange
 | |
|     kBlockLengthPrefixCode[BROTLI_NUM_BLOCK_LEN_SYMBOLS] = {
 | |
|   { 1, 2}, { 5, 2}, { 9, 2}, {13, 2}, {17, 3}, { 25, 3}, { 33, 3},
 | |
|   {41, 3}, {49, 4}, {65, 4}, {81, 4}, {97, 4}, {113, 5}, {145, 5},
 | |
|   {177, 5}, { 209,  5}, { 241,  6}, { 305,  6}, { 369,  7}, {  497,  8},
 | |
|   {753, 9}, {1265, 10}, {2289, 11}, {4337, 12}, {8433, 13}, {16625, 24}
 | |
| };
 | |
| 
 | |
| static BROTLI_INLINE uint32_t BlockLengthPrefixCode(uint32_t len) {
 | |
|   uint32_t code = (len >= 177) ? (len >= 753 ? 20 : 14) : (len >= 41 ? 7 : 0);
 | |
|   while (code < (BROTLI_NUM_BLOCK_LEN_SYMBOLS - 1) &&
 | |
|       len >= kBlockLengthPrefixCode[code + 1].offset) ++code;
 | |
|   return code;
 | |
| }
 | |
| 
 | |
| static BROTLI_INLINE void GetBlockLengthPrefixCode(uint32_t len, size_t* code,
 | |
|     uint32_t* n_extra, uint32_t* extra) {
 | |
|   *code = BlockLengthPrefixCode(len);
 | |
|   *n_extra = kBlockLengthPrefixCode[*code].nbits;
 | |
|   *extra = len - kBlockLengthPrefixCode[*code].offset;
 | |
| }
 | |
| 
 | |
| typedef struct BlockTypeCodeCalculator {
 | |
|   size_t last_type;
 | |
|   size_t second_last_type;
 | |
| } BlockTypeCodeCalculator;
 | |
| 
 | |
| static void InitBlockTypeCodeCalculator(BlockTypeCodeCalculator* self) {
 | |
|   self->last_type = 1;
 | |
|   self->second_last_type = 0;
 | |
| }
 | |
| 
 | |
| static BROTLI_INLINE size_t NextBlockTypeCode(
 | |
|     BlockTypeCodeCalculator* calculator, uint8_t type) {
 | |
|   size_t type_code = (type == calculator->last_type + 1) ? 1u :
 | |
|       (type == calculator->second_last_type) ? 0u : type + 2u;
 | |
|   calculator->second_last_type = calculator->last_type;
 | |
|   calculator->last_type = type;
 | |
|   return type_code;
 | |
| }
 | |
| 
 | |
| /* nibblesbits represents the 2 bits to encode MNIBBLES (0-3)
 | |
|    REQUIRES: length > 0
 | |
|    REQUIRES: length <= (1 << 24) */
 | |
| static void BrotliEncodeMlen(size_t length, uint64_t* bits,
 | |
|                              size_t* numbits, uint64_t* nibblesbits) {
 | |
|   size_t lg = (length == 1) ? 1 : Log2FloorNonZero((uint32_t)(length - 1)) + 1;
 | |
|   size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4;
 | |
|   assert(length > 0);
 | |
|   assert(length <= (1 << 24));
 | |
|   assert(lg <= 24);
 | |
|   *nibblesbits = mnibbles - 4;
 | |
|   *numbits = mnibbles * 4;
 | |
|   *bits = length - 1;
 | |
| }
 | |
| 
 | |
| static BROTLI_INLINE void StoreCommandExtra(
 | |
|     const Command* cmd, size_t* storage_ix, uint8_t* storage) {
 | |
|   uint32_t copylen_code = CommandCopyLenCode(cmd);
 | |
|   uint16_t inscode = GetInsertLengthCode(cmd->insert_len_);
 | |
|   uint16_t copycode = GetCopyLengthCode(copylen_code);
 | |
|   uint32_t insnumextra = GetInsertExtra(inscode);
 | |
|   uint64_t insextraval = cmd->insert_len_ - GetInsertBase(inscode);
 | |
|   uint64_t copyextraval = copylen_code - GetCopyBase(copycode);
 | |
|   uint64_t bits = (copyextraval << insnumextra) | insextraval;
 | |
|   BrotliWriteBits(
 | |
|       insnumextra + GetCopyExtra(copycode), bits, storage_ix, storage);
 | |
| }
 | |
| 
 | |
| /* Data structure that stores almost everything that is needed to encode each
 | |
|    block switch command. */
 | |
| typedef struct BlockSplitCode {
 | |
|   BlockTypeCodeCalculator type_code_calculator;
 | |
|   uint8_t type_depths[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
 | |
|   uint16_t type_bits[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
 | |
|   uint8_t length_depths[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
 | |
|   uint16_t length_bits[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
 | |
| } BlockSplitCode;
 | |
| 
 | |
| /* Stores a number between 0 and 255. */
 | |
| static void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) {
 | |
|   if (n == 0) {
 | |
|     BrotliWriteBits(1, 0, storage_ix, storage);
 | |
|   } else {
 | |
|     size_t nbits = Log2FloorNonZero(n);
 | |
|     BrotliWriteBits(1, 1, storage_ix, storage);
 | |
|     BrotliWriteBits(3, nbits, storage_ix, storage);
 | |
|     BrotliWriteBits(nbits, n - ((size_t)1 << nbits), storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Stores the compressed meta-block header.
 | |
|    REQUIRES: length > 0
 | |
|    REQUIRES: length <= (1 << 24) */
 | |
| static void StoreCompressedMetaBlockHeader(BROTLI_BOOL is_final_block,
 | |
|                                            size_t length,
 | |
|                                            size_t* storage_ix,
 | |
|                                            uint8_t* storage) {
 | |
|   uint64_t lenbits;
 | |
|   size_t nlenbits;
 | |
|   uint64_t nibblesbits;
 | |
| 
 | |
|   /* Write ISLAST bit. */
 | |
|   BrotliWriteBits(1, (uint64_t)is_final_block, storage_ix, storage);
 | |
|   /* Write ISEMPTY bit. */
 | |
|   if (is_final_block) {
 | |
|     BrotliWriteBits(1, 0, storage_ix, storage);
 | |
|   }
 | |
| 
 | |
|   BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
 | |
|   BrotliWriteBits(2, nibblesbits, storage_ix, storage);
 | |
|   BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
 | |
| 
 | |
|   if (!is_final_block) {
 | |
|     /* Write ISUNCOMPRESSED bit. */
 | |
|     BrotliWriteBits(1, 0, storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Stores the uncompressed meta-block header.
 | |
|    REQUIRES: length > 0
 | |
|    REQUIRES: length <= (1 << 24) */
 | |
| static void BrotliStoreUncompressedMetaBlockHeader(size_t length,
 | |
|                                                    size_t* storage_ix,
 | |
|                                                    uint8_t* storage) {
 | |
|   uint64_t lenbits;
 | |
|   size_t nlenbits;
 | |
|   uint64_t nibblesbits;
 | |
| 
 | |
|   /* Write ISLAST bit.
 | |
|      Uncompressed block cannot be the last one, so set to 0. */
 | |
|   BrotliWriteBits(1, 0, storage_ix, storage);
 | |
|   BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
 | |
|   BrotliWriteBits(2, nibblesbits, storage_ix, storage);
 | |
|   BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
 | |
|   /* Write ISUNCOMPRESSED bit. */
 | |
|   BrotliWriteBits(1, 1, storage_ix, storage);
 | |
| }
 | |
| 
 | |
| static void BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(
 | |
|     const int num_codes, const uint8_t* code_length_bitdepth,
 | |
|     size_t* storage_ix, uint8_t* storage) {
 | |
|   static const uint8_t kStorageOrder[BROTLI_CODE_LENGTH_CODES] = {
 | |
|     1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15
 | |
|   };
 | |
|   /* The bit lengths of the Huffman code over the code length alphabet
 | |
|      are compressed with the following static Huffman code:
 | |
|        Symbol   Code
 | |
|        ------   ----
 | |
|        0          00
 | |
|        1        1110
 | |
|        2         110
 | |
|        3          01
 | |
|        4          10
 | |
|        5        1111 */
 | |
|   static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = {
 | |
|      0, 7, 3, 2, 1, 15
 | |
|   };
 | |
|   static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = {
 | |
|     2, 4, 3, 2, 2, 4
 | |
|   };
 | |
| 
 | |
|   size_t skip_some = 0;  /* skips none. */
 | |
| 
 | |
|   /* Throw away trailing zeros: */
 | |
|   size_t codes_to_store = BROTLI_CODE_LENGTH_CODES;
 | |
|   if (num_codes > 1) {
 | |
|     for (; codes_to_store > 0; --codes_to_store) {
 | |
|       if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   if (code_length_bitdepth[kStorageOrder[0]] == 0 &&
 | |
|       code_length_bitdepth[kStorageOrder[1]] == 0) {
 | |
|     skip_some = 2;  /* skips two. */
 | |
|     if (code_length_bitdepth[kStorageOrder[2]] == 0) {
 | |
|       skip_some = 3;  /* skips three. */
 | |
|     }
 | |
|   }
 | |
|   BrotliWriteBits(2, skip_some, storage_ix, storage);
 | |
|   {
 | |
|     size_t i;
 | |
|     for (i = skip_some; i < codes_to_store; ++i) {
 | |
|       size_t l = code_length_bitdepth[kStorageOrder[i]];
 | |
|       BrotliWriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l],
 | |
|           kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void BrotliStoreHuffmanTreeToBitMask(
 | |
|     const size_t huffman_tree_size, const uint8_t* huffman_tree,
 | |
|     const uint8_t* huffman_tree_extra_bits, const uint8_t* code_length_bitdepth,
 | |
|     const uint16_t* code_length_bitdepth_symbols,
 | |
|     size_t* BROTLI_RESTRICT storage_ix, uint8_t* BROTLI_RESTRICT storage) {
 | |
|   size_t i;
 | |
|   for (i = 0; i < huffman_tree_size; ++i) {
 | |
|     size_t ix = huffman_tree[i];
 | |
|     BrotliWriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix],
 | |
|                     storage_ix, storage);
 | |
|     /* Extra bits */
 | |
|     switch (ix) {
 | |
|       case BROTLI_REPEAT_PREVIOUS_CODE_LENGTH:
 | |
|         BrotliWriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage);
 | |
|         break;
 | |
|       case BROTLI_REPEAT_ZERO_CODE_LENGTH:
 | |
|         BrotliWriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage);
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void StoreSimpleHuffmanTree(const uint8_t* depths,
 | |
|                                    size_t symbols[4],
 | |
|                                    size_t num_symbols,
 | |
|                                    size_t max_bits,
 | |
|                                    size_t *storage_ix, uint8_t *storage) {
 | |
|   /* value of 1 indicates a simple Huffman code */
 | |
|   BrotliWriteBits(2, 1, storage_ix, storage);
 | |
|   BrotliWriteBits(2, num_symbols - 1, storage_ix, storage);  /* NSYM - 1 */
 | |
| 
 | |
|   {
 | |
|     /* Sort */
 | |
|     size_t i;
 | |
|     for (i = 0; i < num_symbols; i++) {
 | |
|       size_t j;
 | |
|       for (j = i + 1; j < num_symbols; j++) {
 | |
|         if (depths[symbols[j]] < depths[symbols[i]]) {
 | |
|           BROTLI_SWAP(size_t, symbols, j, i);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (num_symbols == 2) {
 | |
|     BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
 | |
|     BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
 | |
|   } else if (num_symbols == 3) {
 | |
|     BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
 | |
|     BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
 | |
|     BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
 | |
|   } else {
 | |
|     BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
 | |
|     BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
 | |
|     BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
 | |
|     BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
 | |
|     /* tree-select */
 | |
|     BrotliWriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* num = alphabet size
 | |
|    depths = symbol depths */
 | |
| void BrotliStoreHuffmanTree(const uint8_t* depths, size_t num,
 | |
|                             HuffmanTree* tree,
 | |
|                             size_t *storage_ix, uint8_t *storage) {
 | |
|   /* Write the Huffman tree into the brotli-representation.
 | |
|      The command alphabet is the largest, so this allocation will fit all
 | |
|      alphabets. */
 | |
|   uint8_t huffman_tree[BROTLI_NUM_COMMAND_SYMBOLS];
 | |
|   uint8_t huffman_tree_extra_bits[BROTLI_NUM_COMMAND_SYMBOLS];
 | |
|   size_t huffman_tree_size = 0;
 | |
|   uint8_t code_length_bitdepth[BROTLI_CODE_LENGTH_CODES] = { 0 };
 | |
|   uint16_t code_length_bitdepth_symbols[BROTLI_CODE_LENGTH_CODES];
 | |
|   uint32_t huffman_tree_histogram[BROTLI_CODE_LENGTH_CODES] = { 0 };
 | |
|   size_t i;
 | |
|   int num_codes = 0;
 | |
|   size_t code = 0;
 | |
| 
 | |
|   assert(num <= BROTLI_NUM_COMMAND_SYMBOLS);
 | |
| 
 | |
|   BrotliWriteHuffmanTree(depths, num, &huffman_tree_size, huffman_tree,
 | |
|                          huffman_tree_extra_bits);
 | |
| 
 | |
|   /* Calculate the statistics of the Huffman tree in brotli-representation. */
 | |
|   for (i = 0; i < huffman_tree_size; ++i) {
 | |
|     ++huffman_tree_histogram[huffman_tree[i]];
 | |
|   }
 | |
| 
 | |
|   for (i = 0; i < BROTLI_CODE_LENGTH_CODES; ++i) {
 | |
|     if (huffman_tree_histogram[i]) {
 | |
|       if (num_codes == 0) {
 | |
|         code = i;
 | |
|         num_codes = 1;
 | |
|       } else if (num_codes == 1) {
 | |
|         num_codes = 2;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Calculate another Huffman tree to use for compressing both the
 | |
|      earlier Huffman tree with. */
 | |
|   BrotliCreateHuffmanTree(huffman_tree_histogram, BROTLI_CODE_LENGTH_CODES,
 | |
|                           5, tree, code_length_bitdepth);
 | |
|   BrotliConvertBitDepthsToSymbols(code_length_bitdepth,
 | |
|                                   BROTLI_CODE_LENGTH_CODES,
 | |
|                                   code_length_bitdepth_symbols);
 | |
| 
 | |
|   /* Now, we have all the data, let's start storing it */
 | |
|   BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth,
 | |
|                                                storage_ix, storage);
 | |
| 
 | |
|   if (num_codes == 1) {
 | |
|     code_length_bitdepth[code] = 0;
 | |
|   }
 | |
| 
 | |
|   /* Store the real huffman tree now. */
 | |
|   BrotliStoreHuffmanTreeToBitMask(huffman_tree_size,
 | |
|                                   huffman_tree,
 | |
|                                   huffman_tree_extra_bits,
 | |
|                                   code_length_bitdepth,
 | |
|                                   code_length_bitdepth_symbols,
 | |
|                                   storage_ix, storage);
 | |
| }
 | |
| 
 | |
| /* Builds a Huffman tree from histogram[0:length] into depth[0:length] and
 | |
|    bits[0:length] and stores the encoded tree to the bit stream. */
 | |
| static void BuildAndStoreHuffmanTree(const uint32_t *histogram,
 | |
|                                      const size_t length,
 | |
|                                      HuffmanTree* tree,
 | |
|                                      uint8_t* depth,
 | |
|                                      uint16_t* bits,
 | |
|                                      size_t* storage_ix,
 | |
|                                      uint8_t* storage) {
 | |
|   size_t count = 0;
 | |
|   size_t s4[4] = { 0 };
 | |
|   size_t i;
 | |
|   size_t max_bits = 0;
 | |
|   for (i = 0; i < length; i++) {
 | |
|     if (histogram[i]) {
 | |
|       if (count < 4) {
 | |
|         s4[count] = i;
 | |
|       } else if (count > 4) {
 | |
|         break;
 | |
|       }
 | |
|       count++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     size_t max_bits_counter = length - 1;
 | |
|     while (max_bits_counter) {
 | |
|       max_bits_counter >>= 1;
 | |
|       ++max_bits;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (count <= 1) {
 | |
|     BrotliWriteBits(4, 1, storage_ix, storage);
 | |
|     BrotliWriteBits(max_bits, s4[0], storage_ix, storage);
 | |
|     depth[s4[0]] = 0;
 | |
|     bits[s4[0]] = 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   memset(depth, 0, length * sizeof(depth[0]));
 | |
|   BrotliCreateHuffmanTree(histogram, length, 15, tree, depth);
 | |
|   BrotliConvertBitDepthsToSymbols(depth, length, bits);
 | |
| 
 | |
|   if (count <= 4) {
 | |
|     StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage);
 | |
|   } else {
 | |
|     BrotliStoreHuffmanTree(depth, length, tree, storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree(
 | |
|     const HuffmanTree* v0, const HuffmanTree* v1) {
 | |
|   return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_);
 | |
| }
 | |
| 
 | |
| void BrotliBuildAndStoreHuffmanTreeFast(MemoryManager* m,
 | |
|                                         const uint32_t* histogram,
 | |
|                                         const size_t histogram_total,
 | |
|                                         const size_t max_bits,
 | |
|                                         uint8_t* depth, uint16_t* bits,
 | |
|                                         size_t* storage_ix,
 | |
|                                         uint8_t* storage) {
 | |
|   size_t count = 0;
 | |
|   size_t symbols[4] = { 0 };
 | |
|   size_t length = 0;
 | |
|   size_t total = histogram_total;
 | |
|   while (total != 0) {
 | |
|     if (histogram[length]) {
 | |
|       if (count < 4) {
 | |
|         symbols[count] = length;
 | |
|       }
 | |
|       ++count;
 | |
|       total -= histogram[length];
 | |
|     }
 | |
|     ++length;
 | |
|   }
 | |
| 
 | |
|   if (count <= 1) {
 | |
|     BrotliWriteBits(4, 1, storage_ix, storage);
 | |
|     BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
 | |
|     depth[symbols[0]] = 0;
 | |
|     bits[symbols[0]] = 0;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   memset(depth, 0, length * sizeof(depth[0]));
 | |
|   {
 | |
|     const size_t max_tree_size = 2 * length + 1;
 | |
|     HuffmanTree* tree = BROTLI_ALLOC(m, HuffmanTree, max_tree_size);
 | |
|     uint32_t count_limit;
 | |
|     if (BROTLI_IS_OOM(m)) return;
 | |
|     for (count_limit = 1; ; count_limit *= 2) {
 | |
|       HuffmanTree* node = tree;
 | |
|       size_t l;
 | |
|       for (l = length; l != 0;) {
 | |
|         --l;
 | |
|         if (histogram[l]) {
 | |
|           if (PREDICT_TRUE(histogram[l] >= count_limit)) {
 | |
|             InitHuffmanTree(node, histogram[l], -1, (int16_t)l);
 | |
|           } else {
 | |
|             InitHuffmanTree(node, count_limit, -1, (int16_t)l);
 | |
|           }
 | |
|           ++node;
 | |
|         }
 | |
|       }
 | |
|       {
 | |
|         const int n = (int)(node - tree);
 | |
|         HuffmanTree sentinel;
 | |
|         int i = 0;      /* Points to the next leaf node. */
 | |
|         int j = n + 1;  /* Points to the next non-leaf node. */
 | |
|         int k;
 | |
| 
 | |
|         SortHuffmanTreeItems(tree, (size_t)n, SortHuffmanTree);
 | |
|         /* The nodes are:
 | |
|            [0, n): the sorted leaf nodes that we start with.
 | |
|            [n]: we add a sentinel here.
 | |
|            [n + 1, 2n): new parent nodes are added here, starting from
 | |
|                         (n+1). These are naturally in ascending order.
 | |
|            [2n]: we add a sentinel at the end as well.
 | |
|            There will be (2n+1) elements at the end. */
 | |
|         InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1);
 | |
|         *node++ = sentinel;
 | |
|         *node++ = sentinel;
 | |
| 
 | |
|         for (k = n - 1; k > 0; --k) {
 | |
|           int left, right;
 | |
|           if (tree[i].total_count_ <= tree[j].total_count_) {
 | |
|             left = i;
 | |
|             ++i;
 | |
|           } else {
 | |
|             left = j;
 | |
|             ++j;
 | |
|           }
 | |
|           if (tree[i].total_count_ <= tree[j].total_count_) {
 | |
|             right = i;
 | |
|             ++i;
 | |
|           } else {
 | |
|             right = j;
 | |
|             ++j;
 | |
|           }
 | |
|           /* The sentinel node becomes the parent node. */
 | |
|           node[-1].total_count_ =
 | |
|               tree[left].total_count_ + tree[right].total_count_;
 | |
|           node[-1].index_left_ = (int16_t)left;
 | |
|           node[-1].index_right_or_value_ = (int16_t)right;
 | |
|           /* Add back the last sentinel node. */
 | |
|           *node++ = sentinel;
 | |
|         }
 | |
|         if (BrotliSetDepth(2 * n - 1, tree, depth, 14)) {
 | |
|           /* We need to pack the Huffman tree in 14 bits. If this was not
 | |
|              successful, add fake entities to the lowest values and retry. */
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     BROTLI_FREE(m, tree);
 | |
|   }
 | |
|   BrotliConvertBitDepthsToSymbols(depth, length, bits);
 | |
|   if (count <= 4) {
 | |
|     size_t i;
 | |
|     /* value of 1 indicates a simple Huffman code */
 | |
|     BrotliWriteBits(2, 1, storage_ix, storage);
 | |
|     BrotliWriteBits(2, count - 1, storage_ix, storage);  /* NSYM - 1 */
 | |
| 
 | |
|     /* Sort */
 | |
|     for (i = 0; i < count; i++) {
 | |
|       size_t j;
 | |
|       for (j = i + 1; j < count; j++) {
 | |
|         if (depth[symbols[j]] < depth[symbols[i]]) {
 | |
|           BROTLI_SWAP(size_t, symbols, j, i);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (count == 2) {
 | |
|       BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
 | |
|       BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
 | |
|     } else if (count == 3) {
 | |
|       BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
 | |
|       BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
 | |
|       BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
 | |
|     } else {
 | |
|       BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
 | |
|       BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
 | |
|       BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
 | |
|       BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
 | |
|       /* tree-select */
 | |
|       BrotliWriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
 | |
|     }
 | |
|   } else {
 | |
|     uint8_t previous_value = 8;
 | |
|     size_t i;
 | |
|     /* Complex Huffman Tree */
 | |
|     StoreStaticCodeLengthCode(storage_ix, storage);
 | |
| 
 | |
|     /* Actual rle coding. */
 | |
|     for (i = 0; i < length;) {
 | |
|       const uint8_t value = depth[i];
 | |
|       size_t reps = 1;
 | |
|       size_t k;
 | |
|       for (k = i + 1; k < length && depth[k] == value; ++k) {
 | |
|         ++reps;
 | |
|       }
 | |
|       i += reps;
 | |
|       if (value == 0) {
 | |
|         BrotliWriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps],
 | |
|                         storage_ix, storage);
 | |
|       } else {
 | |
|         if (previous_value != value) {
 | |
|           BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
 | |
|                           storage_ix, storage);
 | |
|           --reps;
 | |
|         }
 | |
|         if (reps < 3) {
 | |
|           while (reps != 0) {
 | |
|             reps--;
 | |
|             BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
 | |
|                             storage_ix, storage);
 | |
|           }
 | |
|         } else {
 | |
|           reps -= 3;
 | |
|           BrotliWriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps],
 | |
|                           storage_ix, storage);
 | |
|         }
 | |
|         previous_value = value;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static size_t IndexOf(const uint8_t* v, size_t v_size, uint8_t value) {
 | |
|   size_t i = 0;
 | |
|   for (; i < v_size; ++i) {
 | |
|     if (v[i] == value) return i;
 | |
|   }
 | |
|   return i;
 | |
| }
 | |
| 
 | |
| static void MoveToFront(uint8_t* v, size_t index) {
 | |
|   uint8_t value = v[index];
 | |
|   size_t i;
 | |
|   for (i = index; i != 0; --i) {
 | |
|     v[i] = v[i - 1];
 | |
|   }
 | |
|   v[0] = value;
 | |
| }
 | |
| 
 | |
| static void MoveToFrontTransform(const uint32_t* BROTLI_RESTRICT v_in,
 | |
|                                  const size_t v_size,
 | |
|                                  uint32_t* v_out) {
 | |
|   size_t i;
 | |
|   uint8_t mtf[256];
 | |
|   uint32_t max_value;
 | |
|   if (v_size == 0) {
 | |
|     return;
 | |
|   }
 | |
|   max_value = v_in[0];
 | |
|   for (i = 1; i < v_size; ++i) {
 | |
|     if (v_in[i] > max_value) max_value = v_in[i];
 | |
|   }
 | |
|   assert(max_value < 256u);
 | |
|   for (i = 0; i <= max_value; ++i) {
 | |
|     mtf[i] = (uint8_t)i;
 | |
|   }
 | |
|   {
 | |
|     size_t mtf_size = max_value + 1;
 | |
|     for (i = 0; i < v_size; ++i) {
 | |
|       size_t index = IndexOf(mtf, mtf_size, (uint8_t)v_in[i]);
 | |
|       assert(index < mtf_size);
 | |
|       v_out[i] = (uint32_t)index;
 | |
|       MoveToFront(mtf, index);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of
 | |
|    the run length plus extra bits (lower 9 bits is the prefix code and the rest
 | |
|    are the extra bits). Non-zero values in v[] are shifted by
 | |
|    *max_length_prefix. Will not create prefix codes bigger than the initial
 | |
|    value of *max_run_length_prefix. The prefix code of run length L is simply
 | |
|    Log2Floor(L) and the number of extra bits is the same as the prefix code. */
 | |
| static void RunLengthCodeZeros(const size_t in_size,
 | |
|     uint32_t* BROTLI_RESTRICT v, size_t* BROTLI_RESTRICT out_size,
 | |
|     uint32_t* BROTLI_RESTRICT max_run_length_prefix) {
 | |
|   uint32_t max_reps = 0;
 | |
|   size_t i;
 | |
|   uint32_t max_prefix;
 | |
|   for (i = 0; i < in_size;) {
 | |
|     uint32_t reps = 0;
 | |
|     for (; i < in_size && v[i] != 0; ++i) ;
 | |
|     for (; i < in_size && v[i] == 0; ++i) {
 | |
|       ++reps;
 | |
|     }
 | |
|     max_reps = BROTLI_MAX(uint32_t, reps, max_reps);
 | |
|   }
 | |
|   max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0;
 | |
|   max_prefix = BROTLI_MIN(uint32_t, max_prefix, *max_run_length_prefix);
 | |
|   *max_run_length_prefix = max_prefix;
 | |
|   *out_size = 0;
 | |
|   for (i = 0; i < in_size;) {
 | |
|     assert(*out_size <= i);
 | |
|     if (v[i] != 0) {
 | |
|       v[*out_size] = v[i] + *max_run_length_prefix;
 | |
|       ++i;
 | |
|       ++(*out_size);
 | |
|     } else {
 | |
|       uint32_t reps = 1;
 | |
|       size_t k;
 | |
|       for (k = i + 1; k < in_size && v[k] == 0; ++k) {
 | |
|         ++reps;
 | |
|       }
 | |
|       i += reps;
 | |
|       while (reps != 0) {
 | |
|         if (reps < (2u << max_prefix)) {
 | |
|           uint32_t run_length_prefix = Log2FloorNonZero(reps);
 | |
|           const uint32_t extra_bits = reps - (1u << run_length_prefix);
 | |
|           v[*out_size] = run_length_prefix + (extra_bits << 9);
 | |
|           ++(*out_size);
 | |
|           break;
 | |
|         } else {
 | |
|           const uint32_t extra_bits = (1u << max_prefix) - 1u;
 | |
|           v[*out_size] = max_prefix + (extra_bits << 9);
 | |
|           reps -= (2u << max_prefix) - 1u;
 | |
|           ++(*out_size);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #define SYMBOL_BITS 9
 | |
| 
 | |
| static void EncodeContextMap(MemoryManager* m,
 | |
|                              const uint32_t* context_map,
 | |
|                              size_t context_map_size,
 | |
|                              size_t num_clusters,
 | |
|                              HuffmanTree* tree,
 | |
|                              size_t* storage_ix, uint8_t* storage) {
 | |
|   size_t i;
 | |
|   uint32_t* rle_symbols;
 | |
|   uint32_t max_run_length_prefix = 6;
 | |
|   size_t num_rle_symbols = 0;
 | |
|   uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
 | |
|   static const uint32_t kSymbolMask = (1u << SYMBOL_BITS) - 1u;
 | |
|   uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
 | |
|   uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
 | |
| 
 | |
|   StoreVarLenUint8(num_clusters - 1, storage_ix, storage);
 | |
| 
 | |
|   if (num_clusters == 1) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   rle_symbols = BROTLI_ALLOC(m, uint32_t, context_map_size);
 | |
|   if (BROTLI_IS_OOM(m)) return;
 | |
|   MoveToFrontTransform(context_map, context_map_size, rle_symbols);
 | |
|   RunLengthCodeZeros(context_map_size, rle_symbols,
 | |
|                      &num_rle_symbols, &max_run_length_prefix);
 | |
|   memset(histogram, 0, sizeof(histogram));
 | |
|   for (i = 0; i < num_rle_symbols; ++i) {
 | |
|     ++histogram[rle_symbols[i] & kSymbolMask];
 | |
|   }
 | |
|   {
 | |
|     BROTLI_BOOL use_rle = TO_BROTLI_BOOL(max_run_length_prefix > 0);
 | |
|     BrotliWriteBits(1, (uint64_t)use_rle, storage_ix, storage);
 | |
|     if (use_rle) {
 | |
|       BrotliWriteBits(4, max_run_length_prefix - 1, storage_ix, storage);
 | |
|     }
 | |
|   }
 | |
|   BuildAndStoreHuffmanTree(histogram, num_clusters + max_run_length_prefix,
 | |
|                            tree, depths, bits, storage_ix, storage);
 | |
|   for (i = 0; i < num_rle_symbols; ++i) {
 | |
|     const uint32_t rle_symbol = rle_symbols[i] & kSymbolMask;
 | |
|     const uint32_t extra_bits_val = rle_symbols[i] >> SYMBOL_BITS;
 | |
|     BrotliWriteBits(depths[rle_symbol], bits[rle_symbol], storage_ix, storage);
 | |
|     if (rle_symbol > 0 && rle_symbol <= max_run_length_prefix) {
 | |
|       BrotliWriteBits(rle_symbol, extra_bits_val, storage_ix, storage);
 | |
|     }
 | |
|   }
 | |
|   BrotliWriteBits(1, 1, storage_ix, storage);  /* use move-to-front */
 | |
|   BROTLI_FREE(m, rle_symbols);
 | |
| }
 | |
| 
 | |
| /* Stores the block switch command with index block_ix to the bit stream. */
 | |
| static BROTLI_INLINE void StoreBlockSwitch(BlockSplitCode* code,
 | |
|                                            const uint32_t block_len,
 | |
|                                            const uint8_t block_type,
 | |
|                                            BROTLI_BOOL is_first_block,
 | |
|                                            size_t* storage_ix,
 | |
|                                            uint8_t* storage) {
 | |
|   size_t typecode = NextBlockTypeCode(&code->type_code_calculator, block_type);
 | |
|   size_t lencode;
 | |
|   uint32_t len_nextra;
 | |
|   uint32_t len_extra;
 | |
|   if (!is_first_block) {
 | |
|     BrotliWriteBits(code->type_depths[typecode], code->type_bits[typecode],
 | |
|                     storage_ix, storage);
 | |
|   }
 | |
|   GetBlockLengthPrefixCode(block_len, &lencode, &len_nextra, &len_extra);
 | |
| 
 | |
|   BrotliWriteBits(code->length_depths[lencode], code->length_bits[lencode],
 | |
|                   storage_ix, storage);
 | |
|   BrotliWriteBits(len_nextra, len_extra, storage_ix, storage);
 | |
| }
 | |
| 
 | |
| /* Builds a BlockSplitCode data structure from the block split given by the
 | |
|    vector of block types and block lengths and stores it to the bit stream. */
 | |
| static void BuildAndStoreBlockSplitCode(const uint8_t* types,
 | |
|                                         const uint32_t* lengths,
 | |
|                                         const size_t num_blocks,
 | |
|                                         const size_t num_types,
 | |
|                                         HuffmanTree* tree,
 | |
|                                         BlockSplitCode* code,
 | |
|                                         size_t* storage_ix,
 | |
|                                         uint8_t* storage) {
 | |
|   uint32_t type_histo[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
 | |
|   uint32_t length_histo[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
 | |
|   size_t i;
 | |
|   BlockTypeCodeCalculator type_code_calculator;
 | |
|   memset(type_histo, 0, (num_types + 2) * sizeof(type_histo[0]));
 | |
|   memset(length_histo, 0, sizeof(length_histo));
 | |
|   InitBlockTypeCodeCalculator(&type_code_calculator);
 | |
|   for (i = 0; i < num_blocks; ++i) {
 | |
|     size_t type_code = NextBlockTypeCode(&type_code_calculator, types[i]);
 | |
|     if (i != 0) ++type_histo[type_code];
 | |
|     ++length_histo[BlockLengthPrefixCode(lengths[i])];
 | |
|   }
 | |
|   StoreVarLenUint8(num_types - 1, storage_ix, storage);
 | |
|   if (num_types > 1) {  /* TODO: else? could StoreBlockSwitch occur? */
 | |
|     BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, tree,
 | |
|                              &code->type_depths[0], &code->type_bits[0],
 | |
|                              storage_ix, storage);
 | |
|     BuildAndStoreHuffmanTree(&length_histo[0], BROTLI_NUM_BLOCK_LEN_SYMBOLS,
 | |
|                              tree, &code->length_depths[0],
 | |
|                              &code->length_bits[0], storage_ix, storage);
 | |
|     StoreBlockSwitch(code, lengths[0], types[0], 1, storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Stores a context map where the histogram type is always the block type. */
 | |
| static void StoreTrivialContextMap(size_t num_types,
 | |
|                                    size_t context_bits,
 | |
|                                    HuffmanTree* tree,
 | |
|                                    size_t* storage_ix,
 | |
|                                    uint8_t* storage) {
 | |
|   StoreVarLenUint8(num_types - 1, storage_ix, storage);
 | |
|   if (num_types > 1) {
 | |
|     size_t repeat_code = context_bits - 1u;
 | |
|     size_t repeat_bits = (1u << repeat_code) - 1u;
 | |
|     size_t alphabet_size = num_types + repeat_code;
 | |
|     uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
 | |
|     uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
 | |
|     uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
 | |
|     size_t i;
 | |
|     memset(histogram, 0, alphabet_size * sizeof(histogram[0]));
 | |
|     /* Write RLEMAX. */
 | |
|     BrotliWriteBits(1, 1, storage_ix, storage);
 | |
|     BrotliWriteBits(4, repeat_code - 1, storage_ix, storage);
 | |
|     histogram[repeat_code] = (uint32_t)num_types;
 | |
|     histogram[0] = 1;
 | |
|     for (i = context_bits; i < alphabet_size; ++i) {
 | |
|       histogram[i] = 1;
 | |
|     }
 | |
|     BuildAndStoreHuffmanTree(histogram, alphabet_size, tree,
 | |
|                              depths, bits, storage_ix, storage);
 | |
|     for (i = 0; i < num_types; ++i) {
 | |
|       size_t code = (i == 0 ? 0 : i + context_bits - 1);
 | |
|       BrotliWriteBits(depths[code], bits[code], storage_ix, storage);
 | |
|       BrotliWriteBits(
 | |
|           depths[repeat_code], bits[repeat_code], storage_ix, storage);
 | |
|       BrotliWriteBits(repeat_code, repeat_bits, storage_ix, storage);
 | |
|     }
 | |
|     /* Write IMTF (inverse-move-to-front) bit. */
 | |
|     BrotliWriteBits(1, 1, storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Manages the encoding of one block category (literal, command or distance). */
 | |
| typedef struct BlockEncoder {
 | |
|   size_t alphabet_size_;
 | |
|   size_t num_block_types_;
 | |
|   const uint8_t* block_types_;  /* Not owned. */
 | |
|   const uint32_t* block_lengths_;  /* Not owned. */
 | |
|   size_t num_blocks_;
 | |
|   BlockSplitCode block_split_code_;
 | |
|   size_t block_ix_;
 | |
|   size_t block_len_;
 | |
|   size_t entropy_ix_;
 | |
|   uint8_t* depths_;
 | |
|   uint16_t* bits_;
 | |
| } BlockEncoder;
 | |
| 
 | |
| static void InitBlockEncoder(BlockEncoder* self, size_t alphabet_size,
 | |
|     size_t num_block_types, const uint8_t* block_types,
 | |
|     const uint32_t* block_lengths, const size_t num_blocks) {
 | |
|   self->alphabet_size_ = alphabet_size;
 | |
|   self->num_block_types_ = num_block_types;
 | |
|   self->block_types_ = block_types;
 | |
|   self->block_lengths_ = block_lengths;
 | |
|   self->num_blocks_ = num_blocks;
 | |
|   InitBlockTypeCodeCalculator(&self->block_split_code_.type_code_calculator);
 | |
|   self->block_ix_ = 0;
 | |
|   self->block_len_ = num_blocks == 0 ? 0 : block_lengths[0];
 | |
|   self->entropy_ix_ = 0;
 | |
|   self->depths_ = 0;
 | |
|   self->bits_ = 0;
 | |
| }
 | |
| 
 | |
| static void CleanupBlockEncoder(MemoryManager* m, BlockEncoder* self) {
 | |
|   BROTLI_FREE(m, self->depths_);
 | |
|   BROTLI_FREE(m, self->bits_);
 | |
| }
 | |
| 
 | |
| /* Creates entropy codes of block lengths and block types and stores them
 | |
|    to the bit stream. */
 | |
| static void BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder* self,
 | |
|     HuffmanTree* tree, size_t* storage_ix, uint8_t* storage) {
 | |
|   BuildAndStoreBlockSplitCode(self->block_types_, self->block_lengths_,
 | |
|       self->num_blocks_, self->num_block_types_, tree, &self->block_split_code_,
 | |
|       storage_ix, storage);
 | |
| }
 | |
| 
 | |
| /* Stores the next symbol with the entropy code of the current block type.
 | |
|    Updates the block type and block length at block boundaries. */
 | |
| static void StoreSymbol(BlockEncoder* self, size_t symbol, size_t* storage_ix,
 | |
|     uint8_t* storage) {
 | |
|   if (self->block_len_ == 0) {
 | |
|     size_t block_ix = ++self->block_ix_;
 | |
|     uint32_t block_len = self->block_lengths_[block_ix];
 | |
|     uint8_t block_type = self->block_types_[block_ix];
 | |
|     self->block_len_ = block_len;
 | |
|     self->entropy_ix_ = block_type * self->alphabet_size_;
 | |
|     StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
 | |
|         storage_ix, storage);
 | |
|   }
 | |
|   --self->block_len_;
 | |
|   {
 | |
|     size_t ix = self->entropy_ix_ + symbol;
 | |
|     BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Stores the next symbol with the entropy code of the current block type and
 | |
|    context value.
 | |
|    Updates the block type and block length at block boundaries. */
 | |
| static void StoreSymbolWithContext(BlockEncoder* self, size_t symbol,
 | |
|     size_t context, const uint32_t* context_map, size_t* storage_ix,
 | |
|     uint8_t* storage, const size_t context_bits) {
 | |
|   if (self->block_len_ == 0) {
 | |
|     size_t block_ix = ++self->block_ix_;
 | |
|     uint32_t block_len = self->block_lengths_[block_ix];
 | |
|     uint8_t block_type = self->block_types_[block_ix];
 | |
|     self->block_len_ = block_len;
 | |
|     self->entropy_ix_ = (size_t)block_type << context_bits;
 | |
|     StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
 | |
|         storage_ix, storage);
 | |
|   }
 | |
|   --self->block_len_;
 | |
|   {
 | |
|     size_t histo_ix = context_map[self->entropy_ix_ + context];
 | |
|     size_t ix = histo_ix * self->alphabet_size_ + symbol;
 | |
|     BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| #define FN(X) X ## Literal
 | |
| /* NOLINTNEXTLINE(build/include) */
 | |
| #include "./block_encoder_inc.h"
 | |
| #undef FN
 | |
| 
 | |
| #define FN(X) X ## Command
 | |
| /* NOLINTNEXTLINE(build/include) */
 | |
| #include "./block_encoder_inc.h"
 | |
| #undef FN
 | |
| 
 | |
| #define FN(X) X ## Distance
 | |
| /* NOLINTNEXTLINE(build/include) */
 | |
| #include "./block_encoder_inc.h"
 | |
| #undef FN
 | |
| 
 | |
| static void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) {
 | |
|   *storage_ix = (*storage_ix + 7u) & ~7u;
 | |
|   storage[*storage_ix >> 3] = 0;
 | |
| }
 | |
| 
 | |
| void BrotliStoreMetaBlock(MemoryManager* m,
 | |
|                           const uint8_t* input,
 | |
|                           size_t start_pos,
 | |
|                           size_t length,
 | |
|                           size_t mask,
 | |
|                           uint8_t prev_byte,
 | |
|                           uint8_t prev_byte2,
 | |
|                           BROTLI_BOOL is_last,
 | |
|                           uint32_t num_direct_distance_codes,
 | |
|                           uint32_t distance_postfix_bits,
 | |
|                           ContextType literal_context_mode,
 | |
|                           const Command *commands,
 | |
|                           size_t n_commands,
 | |
|                           const MetaBlockSplit* mb,
 | |
|                           size_t *storage_ix,
 | |
|                           uint8_t *storage) {
 | |
|   size_t pos = start_pos;
 | |
|   size_t i;
 | |
|   size_t num_distance_codes =
 | |
|       BROTLI_NUM_DISTANCE_SHORT_CODES + num_direct_distance_codes +
 | |
|       (48u << distance_postfix_bits);
 | |
|   HuffmanTree* tree;
 | |
|   BlockEncoder literal_enc;
 | |
|   BlockEncoder command_enc;
 | |
|   BlockEncoder distance_enc;
 | |
| 
 | |
|   StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
 | |
| 
 | |
|   tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE);
 | |
|   if (BROTLI_IS_OOM(m)) return;
 | |
|   InitBlockEncoder(&literal_enc, 256, mb->literal_split.num_types,
 | |
|       mb->literal_split.types, mb->literal_split.lengths,
 | |
|       mb->literal_split.num_blocks);
 | |
|   InitBlockEncoder(&command_enc, BROTLI_NUM_COMMAND_SYMBOLS,
 | |
|       mb->command_split.num_types, mb->command_split.types,
 | |
|       mb->command_split.lengths, mb->command_split.num_blocks);
 | |
|   InitBlockEncoder(&distance_enc, num_distance_codes,
 | |
|       mb->distance_split.num_types, mb->distance_split.types,
 | |
|       mb->distance_split.lengths, mb->distance_split.num_blocks);
 | |
| 
 | |
|   BuildAndStoreBlockSwitchEntropyCodes(&literal_enc, tree, storage_ix, storage);
 | |
|   BuildAndStoreBlockSwitchEntropyCodes(&command_enc, tree, storage_ix, storage);
 | |
|   BuildAndStoreBlockSwitchEntropyCodes(
 | |
|       &distance_enc, tree, storage_ix, storage);
 | |
| 
 | |
|   BrotliWriteBits(2, distance_postfix_bits, storage_ix, storage);
 | |
|   BrotliWriteBits(4, num_direct_distance_codes >> distance_postfix_bits,
 | |
|                   storage_ix, storage);
 | |
|   for (i = 0; i < mb->literal_split.num_types; ++i) {
 | |
|     BrotliWriteBits(2, literal_context_mode, storage_ix, storage);
 | |
|   }
 | |
| 
 | |
|   if (mb->literal_context_map_size == 0) {
 | |
|     StoreTrivialContextMap(mb->literal_histograms_size,
 | |
|         BROTLI_LITERAL_CONTEXT_BITS, tree, storage_ix, storage);
 | |
|   } else {
 | |
|     EncodeContextMap(m,
 | |
|         mb->literal_context_map, mb->literal_context_map_size,
 | |
|         mb->literal_histograms_size, tree, storage_ix, storage);
 | |
|     if (BROTLI_IS_OOM(m)) return;
 | |
|   }
 | |
| 
 | |
|   if (mb->distance_context_map_size == 0) {
 | |
|     StoreTrivialContextMap(mb->distance_histograms_size,
 | |
|         BROTLI_DISTANCE_CONTEXT_BITS, tree, storage_ix, storage);
 | |
|   } else {
 | |
|     EncodeContextMap(m,
 | |
|         mb->distance_context_map, mb->distance_context_map_size,
 | |
|         mb->distance_histograms_size, tree, storage_ix, storage);
 | |
|     if (BROTLI_IS_OOM(m)) return;
 | |
|   }
 | |
| 
 | |
|   BuildAndStoreEntropyCodesLiteral(m, &literal_enc, mb->literal_histograms,
 | |
|       mb->literal_histograms_size, tree, storage_ix, storage);
 | |
|   if (BROTLI_IS_OOM(m)) return;
 | |
|   BuildAndStoreEntropyCodesCommand(m, &command_enc, mb->command_histograms,
 | |
|       mb->command_histograms_size, tree, storage_ix, storage);
 | |
|   if (BROTLI_IS_OOM(m)) return;
 | |
|   BuildAndStoreEntropyCodesDistance(m, &distance_enc, mb->distance_histograms,
 | |
|       mb->distance_histograms_size, tree, storage_ix, storage);
 | |
|   if (BROTLI_IS_OOM(m)) return;
 | |
|   BROTLI_FREE(m, tree);
 | |
| 
 | |
|   for (i = 0; i < n_commands; ++i) {
 | |
|     const Command cmd = commands[i];
 | |
|     size_t cmd_code = cmd.cmd_prefix_;
 | |
|     StoreSymbol(&command_enc, cmd_code, storage_ix, storage);
 | |
|     StoreCommandExtra(&cmd, storage_ix, storage);
 | |
|     if (mb->literal_context_map_size == 0) {
 | |
|       size_t j;
 | |
|       for (j = cmd.insert_len_; j != 0; --j) {
 | |
|         StoreSymbol(&literal_enc, input[pos & mask], storage_ix, storage);
 | |
|         ++pos;
 | |
|       }
 | |
|     } else {
 | |
|       size_t j;
 | |
|       for (j = cmd.insert_len_; j != 0; --j) {
 | |
|         size_t context = Context(prev_byte, prev_byte2, literal_context_mode);
 | |
|         uint8_t literal = input[pos & mask];
 | |
|         StoreSymbolWithContext(&literal_enc, literal, context,
 | |
|             mb->literal_context_map, storage_ix, storage,
 | |
|             BROTLI_LITERAL_CONTEXT_BITS);
 | |
|         prev_byte2 = prev_byte;
 | |
|         prev_byte = literal;
 | |
|         ++pos;
 | |
|       }
 | |
|     }
 | |
|     pos += CommandCopyLen(&cmd);
 | |
|     if (CommandCopyLen(&cmd)) {
 | |
|       prev_byte2 = input[(pos - 2) & mask];
 | |
|       prev_byte = input[(pos - 1) & mask];
 | |
|       if (cmd.cmd_prefix_ >= 128) {
 | |
|         size_t dist_code = cmd.dist_prefix_;
 | |
|         uint32_t distnumextra = cmd.dist_extra_ >> 24;
 | |
|         uint64_t distextra = cmd.dist_extra_ & 0xffffff;
 | |
|         if (mb->distance_context_map_size == 0) {
 | |
|           StoreSymbol(&distance_enc, dist_code, storage_ix, storage);
 | |
|         } else {
 | |
|           size_t context = CommandDistanceContext(&cmd);
 | |
|           StoreSymbolWithContext(&distance_enc, dist_code, context,
 | |
|               mb->distance_context_map, storage_ix, storage,
 | |
|               BROTLI_DISTANCE_CONTEXT_BITS);
 | |
|         }
 | |
|         BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   CleanupBlockEncoder(m, &distance_enc);
 | |
|   CleanupBlockEncoder(m, &command_enc);
 | |
|   CleanupBlockEncoder(m, &literal_enc);
 | |
|   if (is_last) {
 | |
|     JumpToByteBoundary(storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void BuildHistograms(const uint8_t* input,
 | |
|                             size_t start_pos,
 | |
|                             size_t mask,
 | |
|                             const Command *commands,
 | |
|                             size_t n_commands,
 | |
|                             HistogramLiteral* lit_histo,
 | |
|                             HistogramCommand* cmd_histo,
 | |
|                             HistogramDistance* dist_histo) {
 | |
|   size_t pos = start_pos;
 | |
|   size_t i;
 | |
|   for (i = 0; i < n_commands; ++i) {
 | |
|     const Command cmd = commands[i];
 | |
|     size_t j;
 | |
|     HistogramAddCommand(cmd_histo, cmd.cmd_prefix_);
 | |
|     for (j = cmd.insert_len_; j != 0; --j) {
 | |
|       HistogramAddLiteral(lit_histo, input[pos & mask]);
 | |
|       ++pos;
 | |
|     }
 | |
|     pos += CommandCopyLen(&cmd);
 | |
|     if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
 | |
|       HistogramAddDistance(dist_histo, cmd.dist_prefix_);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void StoreDataWithHuffmanCodes(const uint8_t* input,
 | |
|                                       size_t start_pos,
 | |
|                                       size_t mask,
 | |
|                                       const Command *commands,
 | |
|                                       size_t n_commands,
 | |
|                                       const uint8_t* lit_depth,
 | |
|                                       const uint16_t* lit_bits,
 | |
|                                       const uint8_t* cmd_depth,
 | |
|                                       const uint16_t* cmd_bits,
 | |
|                                       const uint8_t* dist_depth,
 | |
|                                       const uint16_t* dist_bits,
 | |
|                                       size_t* storage_ix,
 | |
|                                       uint8_t* storage) {
 | |
|   size_t pos = start_pos;
 | |
|   size_t i;
 | |
|   for (i = 0; i < n_commands; ++i) {
 | |
|     const Command cmd = commands[i];
 | |
|     const size_t cmd_code = cmd.cmd_prefix_;
 | |
|     size_t j;
 | |
|     BrotliWriteBits(
 | |
|         cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage);
 | |
|     StoreCommandExtra(&cmd, storage_ix, storage);
 | |
|     for (j = cmd.insert_len_; j != 0; --j) {
 | |
|       const uint8_t literal = input[pos & mask];
 | |
|       BrotliWriteBits(
 | |
|           lit_depth[literal], lit_bits[literal], storage_ix, storage);
 | |
|       ++pos;
 | |
|     }
 | |
|     pos += CommandCopyLen(&cmd);
 | |
|     if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
 | |
|       const size_t dist_code = cmd.dist_prefix_;
 | |
|       const uint32_t distnumextra = cmd.dist_extra_ >> 24;
 | |
|       const uint32_t distextra = cmd.dist_extra_ & 0xffffff;
 | |
|       BrotliWriteBits(dist_depth[dist_code], dist_bits[dist_code],
 | |
|                       storage_ix, storage);
 | |
|       BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BrotliStoreMetaBlockTrivial(MemoryManager* m,
 | |
|                                  const uint8_t* input,
 | |
|                                  size_t start_pos,
 | |
|                                  size_t length,
 | |
|                                  size_t mask,
 | |
|                                  BROTLI_BOOL is_last,
 | |
|                                  const Command *commands,
 | |
|                                  size_t n_commands,
 | |
|                                  size_t *storage_ix,
 | |
|                                  uint8_t *storage) {
 | |
|   HistogramLiteral lit_histo;
 | |
|   HistogramCommand cmd_histo;
 | |
|   HistogramDistance dist_histo;
 | |
|   uint8_t lit_depth[256];
 | |
|   uint16_t lit_bits[256];
 | |
|   uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS];
 | |
|   uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS];
 | |
|   uint8_t dist_depth[64];
 | |
|   uint16_t dist_bits[64];
 | |
|   HuffmanTree* tree;
 | |
| 
 | |
|   StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
 | |
| 
 | |
|   HistogramClearLiteral(&lit_histo);
 | |
|   HistogramClearCommand(&cmd_histo);
 | |
|   HistogramClearDistance(&dist_histo);
 | |
| 
 | |
|   BuildHistograms(input, start_pos, mask, commands, n_commands,
 | |
|                   &lit_histo, &cmd_histo, &dist_histo);
 | |
| 
 | |
|   BrotliWriteBits(13, 0, storage_ix, storage);
 | |
| 
 | |
|   tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE);
 | |
|   if (BROTLI_IS_OOM(m)) return;
 | |
|   BuildAndStoreHuffmanTree(lit_histo.data_, 256, tree,
 | |
|                            lit_depth, lit_bits,
 | |
|                            storage_ix, storage);
 | |
|   BuildAndStoreHuffmanTree(cmd_histo.data_, BROTLI_NUM_COMMAND_SYMBOLS, tree,
 | |
|                            cmd_depth, cmd_bits,
 | |
|                            storage_ix, storage);
 | |
|   BuildAndStoreHuffmanTree(dist_histo.data_, 64, tree,
 | |
|                            dist_depth, dist_bits,
 | |
|                            storage_ix, storage);
 | |
|   BROTLI_FREE(m, tree);
 | |
|   StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
 | |
|                             n_commands, lit_depth, lit_bits,
 | |
|                             cmd_depth, cmd_bits,
 | |
|                             dist_depth, dist_bits,
 | |
|                             storage_ix, storage);
 | |
|   if (is_last) {
 | |
|     JumpToByteBoundary(storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BrotliStoreMetaBlockFast(MemoryManager* m,
 | |
|                               const uint8_t* input,
 | |
|                               size_t start_pos,
 | |
|                               size_t length,
 | |
|                               size_t mask,
 | |
|                               BROTLI_BOOL is_last,
 | |
|                               const Command *commands,
 | |
|                               size_t n_commands,
 | |
|                               size_t *storage_ix,
 | |
|                               uint8_t *storage) {
 | |
|   StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
 | |
| 
 | |
|   BrotliWriteBits(13, 0, storage_ix, storage);
 | |
| 
 | |
|   if (n_commands <= 128) {
 | |
|     uint32_t histogram[BROTLI_NUM_LITERAL_SYMBOLS] = { 0 };
 | |
|     size_t pos = start_pos;
 | |
|     size_t num_literals = 0;
 | |
|     size_t i;
 | |
|     uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
 | |
|     uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
 | |
|     for (i = 0; i < n_commands; ++i) {
 | |
|       const Command cmd = commands[i];
 | |
|       size_t j;
 | |
|       for (j = cmd.insert_len_; j != 0; --j) {
 | |
|         ++histogram[input[pos & mask]];
 | |
|         ++pos;
 | |
|       }
 | |
|       num_literals += cmd.insert_len_;
 | |
|       pos += CommandCopyLen(&cmd);
 | |
|     }
 | |
|     BrotliBuildAndStoreHuffmanTreeFast(m, histogram, num_literals,
 | |
|                                        /* max_bits = */ 8,
 | |
|                                        lit_depth, lit_bits,
 | |
|                                        storage_ix, storage);
 | |
|     if (BROTLI_IS_OOM(m)) return;
 | |
|     StoreStaticCommandHuffmanTree(storage_ix, storage);
 | |
|     StoreStaticDistanceHuffmanTree(storage_ix, storage);
 | |
|     StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
 | |
|                               n_commands, lit_depth, lit_bits,
 | |
|                               kStaticCommandCodeDepth,
 | |
|                               kStaticCommandCodeBits,
 | |
|                               kStaticDistanceCodeDepth,
 | |
|                               kStaticDistanceCodeBits,
 | |
|                               storage_ix, storage);
 | |
|   } else {
 | |
|     HistogramLiteral lit_histo;
 | |
|     HistogramCommand cmd_histo;
 | |
|     HistogramDistance dist_histo;
 | |
|     uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
 | |
|     uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
 | |
|     uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS];
 | |
|     uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS];
 | |
|     uint8_t dist_depth[64];
 | |
|     uint16_t dist_bits[64];
 | |
|     HistogramClearLiteral(&lit_histo);
 | |
|     HistogramClearCommand(&cmd_histo);
 | |
|     HistogramClearDistance(&dist_histo);
 | |
|     BuildHistograms(input, start_pos, mask, commands, n_commands,
 | |
|                     &lit_histo, &cmd_histo, &dist_histo);
 | |
|     BrotliBuildAndStoreHuffmanTreeFast(m, lit_histo.data_,
 | |
|                                        lit_histo.total_count_,
 | |
|                                        /* max_bits = */ 8,
 | |
|                                        lit_depth, lit_bits,
 | |
|                                        storage_ix, storage);
 | |
|     if (BROTLI_IS_OOM(m)) return;
 | |
|     BrotliBuildAndStoreHuffmanTreeFast(m, cmd_histo.data_,
 | |
|                                        cmd_histo.total_count_,
 | |
|                                        /* max_bits = */ 10,
 | |
|                                        cmd_depth, cmd_bits,
 | |
|                                        storage_ix, storage);
 | |
|     if (BROTLI_IS_OOM(m)) return;
 | |
|     BrotliBuildAndStoreHuffmanTreeFast(m, dist_histo.data_,
 | |
|                                        dist_histo.total_count_,
 | |
|                                        /* max_bits = */ 6,
 | |
|                                        dist_depth, dist_bits,
 | |
|                                        storage_ix, storage);
 | |
|     if (BROTLI_IS_OOM(m)) return;
 | |
|     StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
 | |
|                               n_commands, lit_depth, lit_bits,
 | |
|                               cmd_depth, cmd_bits,
 | |
|                               dist_depth, dist_bits,
 | |
|                               storage_ix, storage);
 | |
|   }
 | |
| 
 | |
|   if (is_last) {
 | |
|     JumpToByteBoundary(storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* This is for storing uncompressed blocks (simple raw storage of
 | |
|    bytes-as-bytes). */
 | |
| void BrotliStoreUncompressedMetaBlock(BROTLI_BOOL is_final_block,
 | |
|                                       const uint8_t * BROTLI_RESTRICT input,
 | |
|                                       size_t position, size_t mask,
 | |
|                                       size_t len,
 | |
|                                       size_t * BROTLI_RESTRICT storage_ix,
 | |
|                                       uint8_t * BROTLI_RESTRICT storage) {
 | |
|   size_t masked_pos = position & mask;
 | |
|   BrotliStoreUncompressedMetaBlockHeader(len, storage_ix, storage);
 | |
|   JumpToByteBoundary(storage_ix, storage);
 | |
| 
 | |
|   if (masked_pos + len > mask + 1) {
 | |
|     size_t len1 = mask + 1 - masked_pos;
 | |
|     memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1);
 | |
|     *storage_ix += len1 << 3;
 | |
|     len -= len1;
 | |
|     masked_pos = 0;
 | |
|   }
 | |
|   memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len);
 | |
|   *storage_ix += len << 3;
 | |
| 
 | |
|   /* We need to clear the next 4 bytes to continue to be
 | |
|      compatible with BrotliWriteBits. */
 | |
|   BrotliWriteBitsPrepareStorage(*storage_ix, storage);
 | |
| 
 | |
|   /* Since the uncompressed block itself may not be the final block, add an
 | |
|      empty one after this. */
 | |
|   if (is_final_block) {
 | |
|     BrotliWriteBits(1, 1, storage_ix, storage);  /* islast */
 | |
|     BrotliWriteBits(1, 1, storage_ix, storage);  /* isempty */
 | |
|     JumpToByteBoundary(storage_ix, storage);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BrotliStoreSyncMetaBlock(size_t* BROTLI_RESTRICT storage_ix,
 | |
|                               uint8_t* BROTLI_RESTRICT storage) {
 | |
|   /* Empty metadata meta-block bit pattern:
 | |
|        1 bit:  is_last (0)
 | |
|        2 bits: num nibbles (3)
 | |
|        1 bit:  reserved (0)
 | |
|        2 bits: metadata length bytes (0) */
 | |
|   BrotliWriteBits(6, 6, storage_ix, storage);
 | |
|   JumpToByteBoundary(storage_ix, storage);
 | |
| }
 | |
| 
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| }  /* extern "C" */
 | |
| #endif
 |