git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@1676 6f19259b-4bc3-4df7-8a09-765794883524
		
			
				
	
	
		
			354 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			354 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Automata conversion functions for DLG
 | |
|  *
 | |
|  * SOFTWARE RIGHTS
 | |
|  *
 | |
|  * We reserve no LEGAL rights to the Purdue Compiler Construction Tool
 | |
|  * Set (PCCTS) -- PCCTS is in the public domain.  An individual or
 | |
|  * company may do whatever they wish with source code distributed with
 | |
|  * PCCTS or the code generated by PCCTS, including the incorporation of
 | |
|  * PCCTS, or its output, into commerical software.
 | |
|  *
 | |
|  * We encourage users to develop software with PCCTS.  However, we do ask
 | |
|  * that credit is given to us for developing PCCTS.  By "credit",
 | |
|  * we mean that if you incorporate our source code into one of your
 | |
|  * programs (commercial product, research project, or otherwise) that you
 | |
|  * acknowledge this fact somewhere in the documentation, research report,
 | |
|  * etc...  If you like PCCTS and have developed a nice tool with the
 | |
|  * output, please mention that you developed it using PCCTS.  In
 | |
|  * addition, we ask that this header remain intact in our source code.
 | |
|  * As long as these guidelines are kept, we expect to continue enhancing
 | |
|  * this system and expect to make other tools available as they are
 | |
|  * completed.
 | |
|  *
 | |
|  * DLG 1.33
 | |
|  * Will Cohen
 | |
|  * With mods by Terence Parr; AHPCRC, University of Minnesota
 | |
|  * 1989-2001
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include "pcctscfg.h"
 | |
| #include "dlg.h"
 | |
| #ifdef MEMCHK
 | |
| #include "trax.h"
 | |
| #else
 | |
| #ifdef __STDC__
 | |
| #include <stdlib.h>
 | |
| #else
 | |
| #include <malloc.h>
 | |
| #endif /* __STDC__ */
 | |
| #endif
 | |
| 
 | |
| #define hash_list struct _hash_list_
 | |
| hash_list{
 | |
| 	hash_list *next;	/* next thing in list */
 | |
| 	dfa_node *node;
 | |
|  };
 | |
| 
 | |
| int	dfa_allocated = 0;	/* keeps track of number of dfa nodes */
 | |
| dfa_node	**dfa_array;	/* root of binary tree that stores dfa array */
 | |
| dfa_node	*dfa_model_node;
 | |
| hash_list 	*dfa_hash[HASH_SIZE];	/* used to quickly find */
 | |
| 					/* desired dfa node */
 | |
| 
 | |
| void 
 | |
| #ifdef __USE_PROTOS
 | |
| make_dfa_model_node(int width)
 | |
| #else
 | |
| make_dfa_model_node(width)
 | |
| int width;
 | |
| #endif
 | |
| {
 | |
| 	register int i;
 | |
| 	dfa_model_node = (dfa_node*) malloc(sizeof(dfa_node)
 | |
| 			 + sizeof(int)*width);
 | |
| 	dfa_model_node->node_no = -1; /* impossible value for real dfa node */
 | |
| 	dfa_model_node->dfa_set = 0;
 | |
| 	dfa_model_node->alternatives = FALSE;
 | |
| 	dfa_model_node->done = FALSE;
 | |
| 	dfa_model_node->nfa_states = empty;
 | |
| 	for(i = 0; i<width; i++){
 | |
| 		dfa_model_node->trans[i] = NIL_INDEX;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* adds a new nfa to the binary tree and returns a pointer to it */
 | |
| dfa_node *
 | |
| #ifdef __USE_PROTOS
 | |
| new_dfa_node(set nfa_states)
 | |
| #else
 | |
| new_dfa_node(nfa_states)
 | |
| set nfa_states;
 | |
| #endif
 | |
| {
 | |
| 	register int j;
 | |
| 	register dfa_node *t;
 | |
| 	static int dfa_size=0;	/* elements dfa_array[] can hold */
 | |
| 
 | |
| 	++dfa_allocated;
 | |
| 	if (dfa_size<=dfa_allocated){
 | |
| 		/* need to redo array */
 | |
| 		if (!dfa_array){
 | |
| 			/* need some to do inital allocation */
 | |
| 			dfa_size=dfa_allocated+DFA_MIN;
 | |
| 			dfa_array=(dfa_node **) malloc(sizeof(dfa_node*)*
 | |
| 				dfa_size);
 | |
| 		}else{
 | |
| 			/* need more space */
 | |
| 			dfa_size=2*(dfa_allocated+1);
 | |
| 			dfa_array=(dfa_node **) realloc(dfa_array,
 | |
| 				sizeof(dfa_node*)*dfa_size);
 | |
| 		}
 | |
| 	}
 | |
| 	/* fill out entry in array */
 | |
| 	t = (dfa_node*) malloc(sizeof(nfa_node)+sizeof(int)*class_no);
 | |
| 	*t = *dfa_model_node;
 | |
| 	for (j=0; j<class_no; ++j)
 | |
| 		t->trans[j] = NIL_INDEX;
 | |
| 	t->node_no = dfa_allocated;
 | |
| 	t->nfa_states = set_dup(nfa_states);
 | |
| 	dfa_array[dfa_allocated] = t;
 | |
| 	return t;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* past a pointer to the start start of the nfa graph
 | |
|  * nfa_to_dfa convers this graph to dfa.  The function returns
 | |
|  * a pointer to the first dfa state.
 | |
|  * NOTE:  The function that prints out the table will have to figure out how
 | |
|  * to find the other dfa states given the first dfa_state and the number of dfa
 | |
|  * nodes allocated
 | |
|  */
 | |
| dfa_node **
 | |
| #ifdef __USE_PROTOS
 | |
| nfa_to_dfa(nfa_node *start)
 | |
| #else
 | |
| nfa_to_dfa(start)
 | |
| nfa_node *start;
 | |
| #endif
 | |
| {
 | |
| 	register dfa_node *d_state, *trans_d_state;
 | |
| 	register int a;
 | |
| 	set t;
 | |
| 	int last_done;
 | |
| 	unsigned *nfa_list;
 | |
| 	unsigned *reach_list;
 | |
| 
 | |
| 	reach_list = (unsigned *) malloc((2+nfa_allocated)*sizeof(unsigned));
 | |
| 	if (!start) return NULL;
 | |
| 	t = set_of(NFA_NO(start));
 | |
| 	_set_pdq(t,reach_list);
 | |
| 	closure(&t,reach_list);
 | |
| 	/* Make t a dfa state */
 | |
| 	d_state = dfastate(t);
 | |
| 	last_done = DFA_NO(d_state);
 | |
| 	
 | |
| 	do {
 | |
| 		/* Mark dfa state x as "done" */
 | |
| 		d_state->done = TRUE;
 | |
| 		nfa_list = set_pdq(d_state->nfa_states);
 | |
| 		for (a = 0; a<class_no; ++a) {
 | |
| 			/* Add NFA states reached by a from d_state */
 | |
| 			reach(nfa_list,a,reach_list);
 | |
| 			/* Were any states found? */
 | |
| 			if ((*reach_list)!=nil) {
 | |
| 				/* was t=empty; */
 | |
| 				set_free(t);
 | |
| 				/* yes, compute closure */
 | |
| 				closure(&t,reach_list);
 | |
| 				/* Make DFA state of it ... */
 | |
| 				trans_d_state = dfastate(t);
 | |
| 				/* And make transition x->t, labeled with a */
 | |
| 				d_state->trans[a] = DFA_NO(trans_d_state);
 | |
| 				d_state->alternatives = TRUE;
 | |
| 			}
 | |
| 		}
 | |
| 		free(nfa_list);
 | |
| 		++last_done; /* move forward in queue */
 | |
| 		/* And so forth until nothing isn't done */
 | |
| 		d_state = DFA(last_done);
 | |
| 	} while (last_done<=dfa_allocated);
 | |
| 
 | |
| 	free(reach_list);
 | |
| 	set_free(t);
 | |
| 
 | |
| 	/* returns pointer to the array that holds the automaton */
 | |
| 	return dfa_array;
 | |
| }
 | |
| 
 | |
| void 
 | |
| #ifdef __USE_PROTOS
 | |
| clear_hash(void)
 | |
| #else
 | |
| clear_hash()
 | |
| #endif
 | |
| {
 | |
| 	register int i;
 | |
| 
 | |
| 	for(i=0; i<HASH_SIZE; ++i)
 | |
| 		dfa_hash[i] = 0;
 | |
| }
 | |
| 
 | |
| #if HASH_STAT
 | |
| void
 | |
| #ifdef __USE_PROTOS
 | |
| fprint_hash_stats(FILE *f)
 | |
| #else
 | |
| fprint_hash_stats(f)
 | |
| FILE *f;
 | |
| #endif
 | |
| {
 | |
| 	register hash_list *p;
 | |
| 	register int i,j;
 | |
| 	register total;
 | |
| 
 | |
| 	total=0;
 | |
| 	for(i=0; i<HASH_SIZE; ++i){
 | |
| 		j=0;
 | |
| 		p = dfa_hash[i];
 | |
| 		while(p){
 | |
| 			++j;
 | |
| 			p = p->next;
 | |
| 		}
 | |
| 		total+=j;
 | |
| 		fprintf(f,"bin[%d] has %d\n",i,j);
 | |
| 	}
 | |
| 	fprintf(f,"total = %d\n",total);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Returns a pointer to a dfa node that has the same nfa nodes in it.
 | |
|  * This may or maynot be a newly created node.
 | |
|  */
 | |
| dfa_node *
 | |
| #ifdef __USE_PROTOS
 | |
| dfastate(set nfa_states)
 | |
| #else
 | |
| dfastate(nfa_states)
 | |
| set nfa_states;
 | |
| #endif
 | |
| {
 | |
| 	register hash_list *p;
 | |
| 	int bin;
 | |
| 
 | |
| 	/* hash using set and see if it exists */
 | |
| 	bin = set_hash(nfa_states,HASH_SIZE);
 | |
| 	p = dfa_hash[bin];
 | |
| 	while(p && !set_equ(nfa_states,(p->node)->nfa_states)){
 | |
| 		p = p->next;
 | |
| 	}
 | |
| 	if(!p){
 | |
| 		/* next state to add to hash table */
 | |
| 		p = (hash_list*)malloc(sizeof(hash_list));
 | |
| 		p->node = new_dfa_node(nfa_states);
 | |
| 		p->next = dfa_hash[bin];
 | |
| 		dfa_hash[bin] = p;
 | |
| 	}
 | |
| 	return (p->node);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* this reach assumes the closure has been done already on set */
 | |
| int 
 | |
| #ifdef __USE_PROTOS
 | |
| reach(unsigned *nfa_list, register int a, unsigned *reach_list)
 | |
| #else
 | |
| reach(nfa_list, a, reach_list)
 | |
| unsigned *nfa_list;
 | |
| register int a;
 | |
| unsigned *reach_list;
 | |
| #endif
 | |
| {
 | |
| 	register unsigned *e;
 | |
| 	register nfa_node *node;
 | |
| 	int t=0;
 | |
| 
 | |
| 	e = nfa_list;
 | |
| 	if (e){
 | |
| 		while (*e != nil){
 | |
| 			node = NFA(*e);
 | |
| 			if (set_el(a,node->label)){
 | |
| 				t=1;
 | |
| 				*reach_list=NFA_NO(node->trans[0]);
 | |
| 				++reach_list;
 | |
| 			}
 | |
| 			++e;
 | |
| 		}
 | |
| 	}
 | |
| 	*reach_list=nil;
 | |
| 	return t;
 | |
| }
 | |
| 
 | |
| /* finds all the nodes that can be reached by epsilon transitions
 | |
|    from the set of a nodes and returns puts them back in set b */
 | |
| set 
 | |
| #ifdef __USE_PROTOS
 | |
| closure(set *b, unsigned *reach_list)
 | |
| #else
 | |
| closure(b, reach_list)
 | |
| set *b;
 | |
| unsigned *reach_list;
 | |
| #endif
 | |
| {
 | |
| 	register nfa_node *node,*n;	/* current node being examined */
 | |
| 	register unsigned *e;
 | |
| 
 | |
| 	++operation_no;
 | |
| #if 0
 | |
| 	t = e = set_pdq(*b);
 | |
| #else
 | |
| 	e=reach_list;
 | |
| #endif
 | |
| 	while (*e != nil){
 | |
| 		node = NFA(*e);
 | |
| 		set_orel(NFA_NO(node),b);
 | |
| 		/* mark it done */
 | |
| 		node->nfa_set = operation_no;
 | |
| 		if ((n=node->trans[0]) != NIL_INDEX && set_nil(node->label) &&
 | |
| 		  (n->nfa_set != operation_no)){
 | |
| 			/* put in b */
 | |
| 			set_orel(NFA_NO(n),b);
 | |
| 			close1(n,operation_no,b);
 | |
| 		}
 | |
| 		if ((n=node->trans[1]) != NIL_INDEX &&
 | |
| 		  (n->nfa_set != operation_no)){
 | |
| 			/* put in b */
 | |
| 			set_orel(NFA_NO(node->trans[1]),b);
 | |
| 			close1(n,operation_no,b);
 | |
| 		}
 | |
| 		++e;
 | |
| 	}
 | |
| #if 0
 | |
| 	free(t);
 | |
| #endif
 | |
| 	return *b;
 | |
| }
 | |
| 
 | |
| #ifdef __USE_PROTOS
 | |
| void close1(nfa_node *node, int o, set *b)
 | |
| #else
 | |
| void close1(node,o,b)
 | |
| nfa_node *node;
 | |
| int o;	/* marker to avoid cycles */
 | |
| set *b;
 | |
| #endif
 | |
| {
 | |
| 	register nfa_node *n;	/* current node being examined */
 | |
| 
 | |
| 	/* mark it done */
 | |
| 	node->nfa_set = o;
 | |
| 	if ((n=node->trans[0]) != NIL_INDEX && set_nil(node->label) &&
 | |
| 	  (n->nfa_set != o)){
 | |
| 		/* put in b */
 | |
| 		set_orel(NFA_NO(n),b);
 | |
| 		close1(n,o,b);
 | |
| 	}
 | |
| 	if ((n=node->trans[1]) != NIL_INDEX &&
 | |
| 	  (n->nfa_set != o)){
 | |
| 		/* put in b */
 | |
| 		set_orel(NFA_NO(node->trans[1]),b);
 | |
| 		close1(n,o,b);
 | |
| 	}
 | |
| }
 |