Peicong Li 829633e3a8 ArmPkg/ArmMmuLib: Add new attribute WRITE_BACK_NONSHAREABLE
Flash region needs to be set as cacheable (write back) to increase
performance, if PEI is still XIP on flash or DXE FV is decompressed
from flash FV. However some ARM platforms do not support to set flash
as inner shareable since flash is not normal DDR memory and it will
not respond to cache snoop request, which will causes system hang
after MMU is enabled.

So we need a new ARM memory region attribute WRITE_BACK_NONSHAREABLE
for flash region on these platforms specifically. This attribute will
set the region as write back but not inner shared.

Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Peicong Li <lipeicong@huawei.com>
Signed-off-by: Heyi Guo <heyi.guo@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org>
2017-11-07 13:29:46 +00:00

769 lines
24 KiB
C

/** @file
* File managing the MMU for ARMv8 architecture
*
* Copyright (c) 2011-2014, ARM Limited. All rights reserved.
* Copyright (c) 2016, Linaro Limited. All rights reserved.
* Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
*
* This program and the accompanying materials
* are licensed and made available under the terms and conditions of the BSD License
* which accompanies this distribution. The full text of the license may be found at
* http://opensource.org/licenses/bsd-license.php
*
* THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
* WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
*
**/
#include <Uefi.h>
#include <Chipset/AArch64.h>
#include <Library/BaseMemoryLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/ArmLib.h>
#include <Library/ArmMmuLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
// We use this index definition to define an invalid block entry
#define TT_ATTR_INDX_INVALID ((UINT32)~0)
STATIC
UINT64
ArmMemoryAttributeToPageAttribute (
IN ARM_MEMORY_REGION_ATTRIBUTES Attributes
)
{
switch (Attributes) {
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_NONSHAREABLE:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK_NONSHAREABLE:
return TT_ATTR_INDX_MEMORY_WRITE_BACK;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
return TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
return TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
// Uncached and device mappings are treated as outer shareable by default,
case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
default:
ASSERT(0);
case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
if (ArmReadCurrentEL () == AARCH64_EL2)
return TT_ATTR_INDX_DEVICE_MEMORY | TT_XN_MASK;
else
return TT_ATTR_INDX_DEVICE_MEMORY | TT_UXN_MASK | TT_PXN_MASK;
}
}
UINT64
PageAttributeToGcdAttribute (
IN UINT64 PageAttributes
)
{
UINT64 GcdAttributes;
switch (PageAttributes & TT_ATTR_INDX_MASK) {
case TT_ATTR_INDX_DEVICE_MEMORY:
GcdAttributes = EFI_MEMORY_UC;
break;
case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:
GcdAttributes = EFI_MEMORY_WC;
break;
case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:
GcdAttributes = EFI_MEMORY_WT;
break;
case TT_ATTR_INDX_MEMORY_WRITE_BACK:
GcdAttributes = EFI_MEMORY_WB;
break;
default:
DEBUG ((EFI_D_ERROR, "PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n", PageAttributes));
ASSERT (0);
// The Global Coherency Domain (GCD) value is defined as a bit set.
// Returning 0 means no attribute has been set.
GcdAttributes = 0;
}
// Determine protection attributes
if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) || ((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO)) {
// Read only cases map to write-protect
GcdAttributes |= EFI_MEMORY_RO;
}
// Process eXecute Never attribute
if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0 ) {
GcdAttributes |= EFI_MEMORY_XP;
}
return GcdAttributes;
}
#define MIN_T0SZ 16
#define BITS_PER_LEVEL 9
VOID
GetRootTranslationTableInfo (
IN UINTN T0SZ,
OUT UINTN *TableLevel,
OUT UINTN *TableEntryCount
)
{
// Get the level of the root table
if (TableLevel) {
*TableLevel = (T0SZ - MIN_T0SZ) / BITS_PER_LEVEL;
}
if (TableEntryCount) {
*TableEntryCount = 1UL << (BITS_PER_LEVEL - (T0SZ - MIN_T0SZ) % BITS_PER_LEVEL);
}
}
STATIC
VOID
ReplaceLiveEntry (
IN UINT64 *Entry,
IN UINT64 Value
)
{
if (!ArmMmuEnabled ()) {
*Entry = Value;
} else {
ArmReplaceLiveTranslationEntry (Entry, Value);
}
}
STATIC
VOID
LookupAddresstoRootTable (
IN UINT64 MaxAddress,
OUT UINTN *T0SZ,
OUT UINTN *TableEntryCount
)
{
UINTN TopBit;
// Check the parameters are not NULL
ASSERT ((T0SZ != NULL) && (TableEntryCount != NULL));
// Look for the highest bit set in MaxAddress
for (TopBit = 63; TopBit != 0; TopBit--) {
if ((1ULL << TopBit) & MaxAddress) {
// MaxAddress top bit is found
TopBit = TopBit + 1;
break;
}
}
ASSERT (TopBit != 0);
// Calculate T0SZ from the top bit of the MaxAddress
*T0SZ = 64 - TopBit;
// Get the Table info from T0SZ
GetRootTranslationTableInfo (*T0SZ, NULL, TableEntryCount);
}
STATIC
UINT64*
GetBlockEntryListFromAddress (
IN UINT64 *RootTable,
IN UINT64 RegionStart,
OUT UINTN *TableLevel,
IN OUT UINT64 *BlockEntrySize,
OUT UINT64 **LastBlockEntry
)
{
UINTN RootTableLevel;
UINTN RootTableEntryCount;
UINT64 *TranslationTable;
UINT64 *BlockEntry;
UINT64 *SubTableBlockEntry;
UINT64 BlockEntryAddress;
UINTN BaseAddressAlignment;
UINTN PageLevel;
UINTN Index;
UINTN IndexLevel;
UINTN T0SZ;
UINT64 Attributes;
UINT64 TableAttributes;
// Initialize variable
BlockEntry = NULL;
// Ensure the parameters are valid
if (!(TableLevel && BlockEntrySize && LastBlockEntry)) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
return NULL;
}
// Ensure the Region is aligned on 4KB boundary
if ((RegionStart & (SIZE_4KB - 1)) != 0) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
return NULL;
}
// Ensure the required size is aligned on 4KB boundary and not 0
if ((*BlockEntrySize & (SIZE_4KB - 1)) != 0 || *BlockEntrySize == 0) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
return NULL;
}
T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
// Get the Table info from T0SZ
GetRootTranslationTableInfo (T0SZ, &RootTableLevel, &RootTableEntryCount);
// If the start address is 0x0 then we use the size of the region to identify the alignment
if (RegionStart == 0) {
// Identify the highest possible alignment for the Region Size
BaseAddressAlignment = LowBitSet64 (*BlockEntrySize);
} else {
// Identify the highest possible alignment for the Base Address
BaseAddressAlignment = LowBitSet64 (RegionStart);
}
// Identify the Page Level the RegionStart must belong to. Note that PageLevel
// should be at least 1 since block translations are not supported at level 0
PageLevel = MAX (3 - ((BaseAddressAlignment - 12) / 9), 1);
// If the required size is smaller than the current block size then we need to go to the page below.
// The PageLevel was calculated on the Base Address alignment but did not take in account the alignment
// of the allocation size
while (*BlockEntrySize < TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel)) {
// It does not fit so we need to go a page level above
PageLevel++;
}
//
// Get the Table Descriptor for the corresponding PageLevel. We need to decompose RegionStart to get appropriate entries
//
TranslationTable = RootTable;
for (IndexLevel = RootTableLevel; IndexLevel <= PageLevel; IndexLevel++) {
BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel, RegionStart);
if ((IndexLevel != 3) && ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
// Go to the next table
TranslationTable = (UINT64*)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
// If we are at the last level then update the last level to next level
if (IndexLevel == PageLevel) {
// Enter the next level
PageLevel++;
}
} else if ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) {
// If we are not at the last level then we need to split this BlockEntry
if (IndexLevel != PageLevel) {
// Retrieve the attributes from the block entry
Attributes = *BlockEntry & TT_ATTRIBUTES_MASK;
// Convert the block entry attributes into Table descriptor attributes
TableAttributes = TT_TABLE_AP_NO_PERMISSION;
if (Attributes & TT_NS) {
TableAttributes = TT_TABLE_NS;
}
// Get the address corresponding at this entry
BlockEntryAddress = RegionStart;
BlockEntryAddress = BlockEntryAddress >> TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
// Shift back to right to set zero before the effective address
BlockEntryAddress = BlockEntryAddress << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
// Set the correct entry type for the next page level
if ((IndexLevel + 1) == 3) {
Attributes |= TT_TYPE_BLOCK_ENTRY_LEVEL3;
} else {
Attributes |= TT_TYPE_BLOCK_ENTRY;
}
// Create a new translation table
TranslationTable = AllocatePages (1);
if (TranslationTable == NULL) {
return NULL;
}
// Populate the newly created lower level table
SubTableBlockEntry = TranslationTable;
for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {
*SubTableBlockEntry = Attributes | (BlockEntryAddress + (Index << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel + 1)));
SubTableBlockEntry++;
}
// Fill the BlockEntry with the new TranslationTable
ReplaceLiveEntry (BlockEntry,
((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TableAttributes | TT_TYPE_TABLE_ENTRY);
}
} else {
if (IndexLevel != PageLevel) {
//
// Case when we have an Invalid Entry and we are at a page level above of the one targetted.
//
// Create a new translation table
TranslationTable = AllocatePages (1);
if (TranslationTable == NULL) {
return NULL;
}
ZeroMem (TranslationTable, TT_ENTRY_COUNT * sizeof(UINT64));
// Fill the new BlockEntry with the TranslationTable
*BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TT_TYPE_TABLE_ENTRY;
}
}
}
// Expose the found PageLevel to the caller
*TableLevel = PageLevel;
// Now, we have the Table Level we can get the Block Size associated to this table
*BlockEntrySize = TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel);
// The last block of the root table depends on the number of entry in this table,
// otherwise it is always the (TT_ENTRY_COUNT - 1)th entry in the table.
*LastBlockEntry = TT_LAST_BLOCK_ADDRESS(TranslationTable,
(PageLevel == RootTableLevel) ? RootTableEntryCount : TT_ENTRY_COUNT);
return BlockEntry;
}
STATIC
EFI_STATUS
UpdateRegionMapping (
IN UINT64 *RootTable,
IN UINT64 RegionStart,
IN UINT64 RegionLength,
IN UINT64 Attributes,
IN UINT64 BlockEntryMask
)
{
UINT32 Type;
UINT64 *BlockEntry;
UINT64 *LastBlockEntry;
UINT64 BlockEntrySize;
UINTN TableLevel;
// Ensure the Length is aligned on 4KB boundary
if ((RegionLength == 0) || ((RegionLength & (SIZE_4KB - 1)) != 0)) {
ASSERT_EFI_ERROR (EFI_INVALID_PARAMETER);
return EFI_INVALID_PARAMETER;
}
do {
// Get the first Block Entry that matches the Virtual Address and also the information on the Table Descriptor
// such as the the size of the Block Entry and the address of the last BlockEntry of the Table Descriptor
BlockEntrySize = RegionLength;
BlockEntry = GetBlockEntryListFromAddress (RootTable, RegionStart, &TableLevel, &BlockEntrySize, &LastBlockEntry);
if (BlockEntry == NULL) {
// GetBlockEntryListFromAddress() return NULL when it fails to allocate new pages from the Translation Tables
return EFI_OUT_OF_RESOURCES;
}
if (TableLevel != 3) {
Type = TT_TYPE_BLOCK_ENTRY;
} else {
Type = TT_TYPE_BLOCK_ENTRY_LEVEL3;
}
do {
// Fill the Block Entry with attribute and output block address
*BlockEntry &= BlockEntryMask;
*BlockEntry |= (RegionStart & TT_ADDRESS_MASK_BLOCK_ENTRY) | Attributes | Type;
// Go to the next BlockEntry
RegionStart += BlockEntrySize;
RegionLength -= BlockEntrySize;
BlockEntry++;
// Break the inner loop when next block is a table
// Rerun GetBlockEntryListFromAddress to avoid page table memory leak
if (TableLevel != 3 &&
(*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY) {
break;
}
} while ((RegionLength >= BlockEntrySize) && (BlockEntry <= LastBlockEntry));
} while (RegionLength != 0);
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
FillTranslationTable (
IN UINT64 *RootTable,
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
)
{
return UpdateRegionMapping (
RootTable,
MemoryRegion->VirtualBase,
MemoryRegion->Length,
ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF,
0
);
}
STATIC
UINT64
GcdAttributeToPageAttribute (
IN UINT64 GcdAttributes
)
{
UINT64 PageAttributes;
switch (GcdAttributes & EFI_MEMORY_CACHETYPE_MASK) {
case EFI_MEMORY_UC:
PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;
break;
case EFI_MEMORY_WC:
PageAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
break;
case EFI_MEMORY_WT:
PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
break;
case EFI_MEMORY_WB:
PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
break;
default:
PageAttributes = TT_ATTR_INDX_MASK;
break;
}
if ((GcdAttributes & EFI_MEMORY_XP) != 0 ||
(GcdAttributes & EFI_MEMORY_CACHETYPE_MASK) == EFI_MEMORY_UC) {
if (ArmReadCurrentEL () == AARCH64_EL2) {
PageAttributes |= TT_XN_MASK;
} else {
PageAttributes |= TT_UXN_MASK | TT_PXN_MASK;
}
}
if ((GcdAttributes & EFI_MEMORY_RO) != 0) {
PageAttributes |= TT_AP_RO_RO;
}
return PageAttributes | TT_AF;
}
EFI_STATUS
ArmSetMemoryAttributes (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)
{
EFI_STATUS Status;
UINT64 *TranslationTable;
UINT64 PageAttributes;
UINT64 PageAttributeMask;
PageAttributes = GcdAttributeToPageAttribute (Attributes);
PageAttributeMask = 0;
if ((Attributes & EFI_MEMORY_CACHETYPE_MASK) == 0) {
//
// No memory type was set in Attributes, so we are going to update the
// permissions only.
//
PageAttributes &= TT_AP_MASK | TT_UXN_MASK | TT_PXN_MASK;
PageAttributeMask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK |
TT_PXN_MASK | TT_XN_MASK);
}
TranslationTable = ArmGetTTBR0BaseAddress ();
Status = UpdateRegionMapping (
TranslationTable,
BaseAddress,
Length,
PageAttributes,
PageAttributeMask);
if (EFI_ERROR (Status)) {
return Status;
}
// Invalidate all TLB entries so changes are synced
ArmInvalidateTlb ();
return EFI_SUCCESS;
}
STATIC
EFI_STATUS
SetMemoryRegionAttribute (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes,
IN UINT64 BlockEntryMask
)
{
EFI_STATUS Status;
UINT64 *RootTable;
RootTable = ArmGetTTBR0BaseAddress ();
Status = UpdateRegionMapping (RootTable, BaseAddress, Length, Attributes, BlockEntryMask);
if (EFI_ERROR (Status)) {
return Status;
}
// Invalidate all TLB entries so changes are synced
ArmInvalidateTlb ();
return EFI_SUCCESS;
}
EFI_STATUS
ArmSetMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
UINT64 Val;
if (ArmReadCurrentEL () == AARCH64_EL1) {
Val = TT_PXN_MASK | TT_UXN_MASK;
} else {
Val = TT_XN_MASK;
}
return SetMemoryRegionAttribute (
BaseAddress,
Length,
Val,
~TT_ADDRESS_MASK_BLOCK_ENTRY);
}
EFI_STATUS
ArmClearMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
UINT64 Mask;
// XN maps to UXN in the EL1&0 translation regime
Mask = ~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_PXN_MASK | TT_XN_MASK);
return SetMemoryRegionAttribute (
BaseAddress,
Length,
0,
Mask);
}
EFI_STATUS
ArmSetMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryRegionAttribute (
BaseAddress,
Length,
TT_AP_RO_RO,
~TT_ADDRESS_MASK_BLOCK_ENTRY);
}
EFI_STATUS
ArmClearMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
return SetMemoryRegionAttribute (
BaseAddress,
Length,
TT_AP_RW_RW,
~(TT_ADDRESS_MASK_BLOCK_ENTRY | TT_AP_MASK));
}
EFI_STATUS
EFIAPI
ArmConfigureMmu (
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
OUT VOID **TranslationTableBase OPTIONAL,
OUT UINTN *TranslationTableSize OPTIONAL
)
{
VOID* TranslationTable;
UINT32 TranslationTableAttribute;
UINT64 MaxAddress;
UINTN T0SZ;
UINTN RootTableEntryCount;
UINT64 TCR;
EFI_STATUS Status;
if(MemoryTable == NULL) {
ASSERT (MemoryTable != NULL);
return EFI_INVALID_PARAMETER;
}
// Cover the entire GCD memory space
MaxAddress = (1UL << PcdGet8 (PcdPrePiCpuMemorySize)) - 1;
// Lookup the Table Level to get the information
LookupAddresstoRootTable (MaxAddress, &T0SZ, &RootTableEntryCount);
//
// Set TCR that allows us to retrieve T0SZ in the subsequent functions
//
// Ideally we will be running at EL2, but should support EL1 as well.
// UEFI should not run at EL3.
if (ArmReadCurrentEL () == AARCH64_EL2) {
//Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;
// Set the Physical Address Size using MaxAddress
if (MaxAddress < SIZE_4GB) {
TCR |= TCR_PS_4GB;
} else if (MaxAddress < SIZE_64GB) {
TCR |= TCR_PS_64GB;
} else if (MaxAddress < SIZE_1TB) {
TCR |= TCR_PS_1TB;
} else if (MaxAddress < SIZE_4TB) {
TCR |= TCR_PS_4TB;
} else if (MaxAddress < SIZE_16TB) {
TCR |= TCR_PS_16TB;
} else if (MaxAddress < SIZE_256TB) {
TCR |= TCR_PS_256TB;
} else {
DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
ASSERT (0); // Bigger than 48-bit memory space are not supported
return EFI_UNSUPPORTED;
}
} else if (ArmReadCurrentEL () == AARCH64_EL1) {
// Due to Cortex-A57 erratum #822227 we must set TG1[1] == 1, regardless of EPD1.
TCR = T0SZ | TCR_TG0_4KB | TCR_TG1_4KB | TCR_EPD1;
// Set the Physical Address Size using MaxAddress
if (MaxAddress < SIZE_4GB) {
TCR |= TCR_IPS_4GB;
} else if (MaxAddress < SIZE_64GB) {
TCR |= TCR_IPS_64GB;
} else if (MaxAddress < SIZE_1TB) {
TCR |= TCR_IPS_1TB;
} else if (MaxAddress < SIZE_4TB) {
TCR |= TCR_IPS_4TB;
} else if (MaxAddress < SIZE_16TB) {
TCR |= TCR_IPS_16TB;
} else if (MaxAddress < SIZE_256TB) {
TCR |= TCR_IPS_256TB;
} else {
DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
ASSERT (0); // Bigger than 48-bit memory space are not supported
return EFI_UNSUPPORTED;
}
} else {
ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.
return EFI_UNSUPPORTED;
}
//
// Translation table walks are always cache coherent on ARMv8-A, so cache
// maintenance on page tables is never needed. Since there is a risk of
// loss of coherency when using mismatched attributes, and given that memory
// is mapped cacheable except for extraordinary cases (such as non-coherent
// DMA), have the page table walker perform cached accesses as well, and
// assert below that that matches the attributes we use for CPU accesses to
// the region.
//
TCR |= TCR_SH_INNER_SHAREABLE |
TCR_RGN_OUTER_WRITE_BACK_ALLOC |
TCR_RGN_INNER_WRITE_BACK_ALLOC;
// Set TCR
ArmSetTCR (TCR);
// Allocate pages for translation table
TranslationTable = AllocatePages (1);
if (TranslationTable == NULL) {
return EFI_OUT_OF_RESOURCES;
}
// We set TTBR0 just after allocating the table to retrieve its location from the subsequent
// functions without needing to pass this value across the functions. The MMU is only enabled
// after the translation tables are populated.
ArmSetTTBR0 (TranslationTable);
if (TranslationTableBase != NULL) {
*TranslationTableBase = TranslationTable;
}
if (TranslationTableSize != NULL) {
*TranslationTableSize = RootTableEntryCount * sizeof(UINT64);
}
ZeroMem (TranslationTable, RootTableEntryCount * sizeof(UINT64));
// Disable MMU and caches. ArmDisableMmu() also invalidates the TLBs
ArmDisableMmu ();
ArmDisableDataCache ();
ArmDisableInstructionCache ();
// Make sure nothing sneaked into the cache
ArmCleanInvalidateDataCache ();
ArmInvalidateInstructionCache ();
TranslationTableAttribute = TT_ATTR_INDX_INVALID;
while (MemoryTable->Length != 0) {
DEBUG_CODE_BEGIN ();
// Find the memory attribute for the Translation Table
if ((UINTN)TranslationTable >= MemoryTable->PhysicalBase &&
(UINTN)TranslationTable + EFI_PAGE_SIZE <= MemoryTable->PhysicalBase +
MemoryTable->Length) {
TranslationTableAttribute = MemoryTable->Attributes;
}
DEBUG_CODE_END ();
Status = FillTranslationTable (TranslationTable, MemoryTable);
if (EFI_ERROR (Status)) {
goto FREE_TRANSLATION_TABLE;
}
MemoryTable++;
}
ASSERT (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK ||
TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK);
ArmSetMAIR (MAIR_ATTR(TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) | // mapped to EFI_MEMORY_UC
MAIR_ATTR(TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) | // mapped to EFI_MEMORY_WC
MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) | // mapped to EFI_MEMORY_WT
MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)); // mapped to EFI_MEMORY_WB
ArmDisableAlignmentCheck ();
ArmEnableStackAlignmentCheck ();
ArmEnableInstructionCache ();
ArmEnableDataCache ();
ArmEnableMmu ();
return EFI_SUCCESS;
FREE_TRANSLATION_TABLE:
FreePages (TranslationTable, 1);
return Status;
}
RETURN_STATUS
EFIAPI
ArmMmuBaseLibConstructor (
VOID
)
{
extern UINT32 ArmReplaceLiveTranslationEntrySize;
//
// The ArmReplaceLiveTranslationEntry () helper function may be invoked
// with the MMU off so we have to ensure that it gets cleaned to the PoC
//
WriteBackDataCacheRange (ArmReplaceLiveTranslationEntry,
ArmReplaceLiveTranslationEntrySize);
return RETURN_SUCCESS;
}