Files
system76-edk2/MdePkg/Include/Arm/ProcessorBind.h
Sean Brogan d7a09cb86a MdePkg/BaseSafeIntLib: Add SafeIntLib class and instance
https://bugzilla.tianocore.org/show_bug.cgi?id=798

SafeIntLib provides helper functions to prevent integer overflow
during type conversion, addition, subtraction, and multiplication.

Conversion Functions
====================
* Converting from a signed type to an unsigned type of the same
  size, or vice-versa.
* Converting to a smaller type that could possibly overflow.
* Converting from a signed type to a larger unsigned type.

Unsigned Addition, Subtraction, Multiplication
===============================================
* Unsigned integer math functions protect from overflow and
  underflow (in case of subtraction).

Signed Addition, Subtraction, Multiplication
============================================
* Strongly consider using unsigned numbers.
* Signed numbers are often used where unsigned numbers should
  be used. For example file sizes and array indices should always
  be unsigned. Subtracting a larger positive signed number from a
  smaller positive signed number with SafeInt32Sub() will succeed,
  producing a negative number, that then must not be used as an
  array index (but can occasionally be used as a pointer index.)
  Similarly for adding a larger magnitude negative number to a
  smaller magnitude positive number.
* SafeIntLib does not protect you from such errors. It tells you
  if your integer operations overflowed, not if you are doing the
  right thing with your non-overflowed integers.
* Likewise you can overflow a buffer with a non-overflowed
  unsigned index.

Based on content from the following branch/commits:
https://github.com/Microsoft/MS_UEFI/tree/share/MsCapsuleSupport
21ef3a321c
ca516b1a61
33bab4031a

Cc: Sean Brogan <sean.brogan@microsoft.com>
Cc: Jiewen Yao <jiewen.yao@intel.com>
Cc: Liming Gao <liming.gao@intel.com>
Contributed-under: TianoCore Contribution Agreement 1.1
Signed-off-by: Michael D Kinney <michael.d.kinney@intel.com>
Reviewed-by: Sean Brogan <sean.brogan@microsoft.com>
Reviewed-by: Liming Gao <liming.gao@intel.com>
2018-01-25 09:42:20 -08:00

188 lines
5.4 KiB
C

/** @file
Processor or Compiler specific defines and types for ARM.
Copyright (c) 2006 - 2017, Intel Corporation. All rights reserved.<BR>
Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#ifndef __PROCESSOR_BIND_H__
#define __PROCESSOR_BIND_H__
///
/// Define the processor type so other code can make processor based choices
///
#define MDE_CPU_ARM
//
// Make sure we are using the correct packing rules per EFI specification
//
#if !defined(__GNUC__) && !defined(__ASSEMBLER__)
#pragma pack()
#endif
//
// RVCT does not support the __builtin_unreachable() macro
//
#ifdef __ARMCC_VERSION
#define UNREACHABLE()
#endif
#if _MSC_EXTENSIONS
//
// use Microsoft* C compiler dependent integer width types
//
typedef unsigned __int64 UINT64;
typedef __int64 INT64;
typedef unsigned __int32 UINT32;
typedef __int32 INT32;
typedef unsigned short UINT16;
typedef unsigned short CHAR16;
typedef short INT16;
typedef unsigned char BOOLEAN;
typedef unsigned char UINT8;
typedef char CHAR8;
typedef signed char INT8;
#else
//
// Assume standard ARM alignment.
// Need to check portability of long long
//
typedef unsigned long long UINT64;
typedef long long INT64;
typedef unsigned int UINT32;
typedef int INT32;
typedef unsigned short UINT16;
typedef unsigned short CHAR16;
typedef short INT16;
typedef unsigned char BOOLEAN;
typedef unsigned char UINT8;
typedef char CHAR8;
typedef signed char INT8;
#endif
///
/// Unsigned value of native width. (4 bytes on supported 32-bit processor instructions,
/// 8 bytes on supported 64-bit processor instructions)
///
typedef UINT32 UINTN;
///
/// Signed value of native width. (4 bytes on supported 32-bit processor instructions,
/// 8 bytes on supported 64-bit processor instructions)
///
typedef INT32 INTN;
//
// Processor specific defines
//
///
/// A value of native width with the highest bit set.
///
#define MAX_BIT 0x80000000
///
/// A value of native width with the two highest bits set.
///
#define MAX_2_BITS 0xC0000000
///
/// Maximum legal ARM address
///
#define MAX_ADDRESS 0xFFFFFFFF
///
/// Maximum legal ARM INTN and UINTN values.
///
#define MAX_INTN ((INTN)0x7FFFFFFF)
#define MAX_UINTN ((UINTN)0xFFFFFFFF)
///
/// Minimum legal ARM INTN value.
///
#define MIN_INTN (((INTN)-2147483647) - 1)
///
/// The stack alignment required for ARM
///
#define CPU_STACK_ALIGNMENT sizeof(UINT64)
///
/// Page allocation granularity for ARM
///
#define DEFAULT_PAGE_ALLOCATION_GRANULARITY (0x1000)
#define RUNTIME_PAGE_ALLOCATION_GRANULARITY (0x1000)
//
// Modifier to ensure that all protocol member functions and EFI intrinsics
// use the correct C calling convention. All protocol member functions and
// EFI intrinsics are required to modify their member functions with EFIAPI.
//
#define EFIAPI
// When compiling with Clang, we still use GNU as for the assembler, so we still
// need to define the GCC_ASM* macros.
#if defined(__GNUC__) || defined(__clang__)
///
/// For GNU assembly code, .global or .globl can declare global symbols.
/// Define this macro to unify the usage.
///
#define ASM_GLOBAL .globl
#if !defined(__APPLE__)
///
/// ARM EABI defines that the linker should not manipulate call relocations
/// (do bl/blx conversion) unless the target symbol has function type.
/// CodeSourcery 2010.09 started requiring the .type to function properly
///
#define INTERWORK_FUNC(func__) .type ASM_PFX(func__), %function
#define GCC_ASM_EXPORT(func__) \
.global _CONCATENATE (__USER_LABEL_PREFIX__, func__) ;\
.type ASM_PFX(func__), %function
#define GCC_ASM_IMPORT(func__) \
.extern _CONCATENATE (__USER_LABEL_PREFIX__, func__)
#else
//
// .type not supported by Apple Xcode tools
//
#define INTERWORK_FUNC(func__)
#define GCC_ASM_EXPORT(func__) \
.globl _CONCATENATE (__USER_LABEL_PREFIX__, func__) \
#define GCC_ASM_IMPORT(name)
#endif
#endif
/**
Return the pointer to the first instruction of a function given a function pointer.
On ARM CPU architectures, these two pointer values are the same,
so the implementation of this macro is very simple.
@param FunctionPointer A pointer to a function.
@return The pointer to the first instruction of a function given a function pointer.
**/
#define FUNCTION_ENTRY_POINT(FunctionPointer) (VOID *)(UINTN)(FunctionPointer)
#ifndef __USER_LABEL_PREFIX__
#define __USER_LABEL_PREFIX__
#endif
#endif