Cc: Dandan Bi <dandan.bi@intel.com> Cc: Star Zeng <star.zeng@intel.com> Cc: Eric Dong <eric.dong@intel.com> Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Jian J Wang <jian.j.wang@intel.com> Reviewed-by: Star Zeng <star.zeng@intel.com>
		
			
				
	
	
		
			765 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			765 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /** @file
 | |
|   x64 Virtual Memory Management Services in the form of an IA-32 driver.  
 | |
|   Used to establish a 1:1 Virtual to Physical Mapping that is required to
 | |
|   enter Long Mode (x64 64-bit mode).
 | |
| 
 | |
|   While we make a 1:1 mapping (identity mapping) for all physical pages 
 | |
|   we still need to use the MTRR's to ensure that the cachability attributes
 | |
|   for all memory regions is correct.
 | |
| 
 | |
|   The basic idea is to use 2MB page table entries where ever possible. If
 | |
|   more granularity of cachability is required then 4K page tables are used.
 | |
| 
 | |
|   References:
 | |
|     1) IA-32 Intel(R) Architecture Software Developer's Manual Volume 1:Basic Architecture, Intel
 | |
|     2) IA-32 Intel(R) Architecture Software Developer's Manual Volume 2:Instruction Set Reference, Intel
 | |
|     3) IA-32 Intel(R) Architecture Software Developer's Manual Volume 3:System Programmer's Guide, Intel
 | |
| 
 | |
| Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
 | |
| Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
 | |
| 
 | |
| This program and the accompanying materials
 | |
| are licensed and made available under the terms and conditions of the BSD License
 | |
| which accompanies this distribution.  The full text of the license may be found at
 | |
| http://opensource.org/licenses/bsd-license.php
 | |
| 
 | |
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
 | |
| 
 | |
| **/  
 | |
| 
 | |
| #include "DxeIpl.h"
 | |
| #include "VirtualMemory.h"
 | |
| 
 | |
| //
 | |
| // Global variable to keep track current available memory used as page table.
 | |
| //
 | |
| PAGE_TABLE_POOL   *mPageTablePool = NULL;
 | |
| 
 | |
| /**
 | |
|   Clear legacy memory located at the first 4K-page, if available.
 | |
| 
 | |
|   This function traverses the whole HOB list to check if memory from 0 to 4095
 | |
|   exists and has not been allocated, and then clear it if so.
 | |
| 
 | |
|   @param HobStart                  The start of HobList passed to DxeCore.
 | |
| 
 | |
| **/
 | |
| VOID
 | |
| ClearFirst4KPage (
 | |
|   IN  VOID *HobStart
 | |
|   )
 | |
| {
 | |
|   EFI_PEI_HOB_POINTERS          RscHob;
 | |
|   EFI_PEI_HOB_POINTERS          MemHob;
 | |
|   BOOLEAN                       DoClear;
 | |
| 
 | |
|   RscHob.Raw = HobStart;
 | |
|   MemHob.Raw = HobStart;
 | |
|   DoClear = FALSE;
 | |
| 
 | |
|   //
 | |
|   // Check if page 0 exists and free
 | |
|   //
 | |
|   while ((RscHob.Raw = GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR,
 | |
|                                    RscHob.Raw)) != NULL) {
 | |
|     if (RscHob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
 | |
|         RscHob.ResourceDescriptor->PhysicalStart == 0) {
 | |
|       DoClear = TRUE;
 | |
|       //
 | |
|       // Make sure memory at 0-4095 has not been allocated.
 | |
|       //
 | |
|       while ((MemHob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION,
 | |
|                                        MemHob.Raw)) != NULL) {
 | |
|         if (MemHob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress
 | |
|             < EFI_PAGE_SIZE) {
 | |
|           DoClear = FALSE;
 | |
|           break;
 | |
|         }
 | |
|         MemHob.Raw = GET_NEXT_HOB (MemHob);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     RscHob.Raw = GET_NEXT_HOB (RscHob);
 | |
|   }
 | |
| 
 | |
|   if (DoClear) {
 | |
|     DEBUG ((DEBUG_INFO, "Clearing first 4K-page!\r\n"));
 | |
|     SetMem (NULL, EFI_PAGE_SIZE, 0);
 | |
|   }
 | |
| 
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Return configure status of NULL pointer detection feature.
 | |
| 
 | |
|   @return TRUE   NULL pointer detection feature is enabled
 | |
|   @return FALSE  NULL pointer detection feature is disabled
 | |
| 
 | |
| **/
 | |
| BOOLEAN
 | |
| IsNullDetectionEnabled (
 | |
|   VOID
 | |
|   )
 | |
| {
 | |
|   return ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT0) != 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Enable Execute Disable Bit.
 | |
| 
 | |
| **/
 | |
| VOID
 | |
| EnableExecuteDisableBit (
 | |
|   VOID
 | |
|   )
 | |
| {
 | |
|   UINT64           MsrRegisters;
 | |
| 
 | |
|   MsrRegisters = AsmReadMsr64 (0xC0000080);
 | |
|   MsrRegisters |= BIT11;
 | |
|   AsmWriteMsr64 (0xC0000080, MsrRegisters);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   The function will check if page table entry should be splitted to smaller
 | |
|   granularity.
 | |
| 
 | |
|   @param Address      Physical memory address.
 | |
|   @param Size         Size of the given physical memory.
 | |
|   @param StackBase    Base address of stack.
 | |
|   @param StackSize    Size of stack.
 | |
| 
 | |
|   @retval TRUE      Page table should be split.
 | |
|   @retval FALSE     Page table should not be split.
 | |
| **/
 | |
| BOOLEAN
 | |
| ToSplitPageTable (
 | |
|   IN EFI_PHYSICAL_ADDRESS               Address,
 | |
|   IN UINTN                              Size,
 | |
|   IN EFI_PHYSICAL_ADDRESS               StackBase,
 | |
|   IN UINTN                              StackSize
 | |
|   )
 | |
| {
 | |
|   if (IsNullDetectionEnabled () && Address == 0) {
 | |
|     return TRUE;
 | |
|   }
 | |
| 
 | |
|   if (PcdGetBool (PcdCpuStackGuard)) {
 | |
|     if (StackBase >= Address && StackBase < (Address + Size)) {
 | |
|       return TRUE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (PcdGetBool (PcdSetNxForStack)) {
 | |
|     if ((Address < StackBase + StackSize) && ((Address + Size) > StackBase)) {
 | |
|       return TRUE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return FALSE;
 | |
| }
 | |
| /**
 | |
|   Initialize a buffer pool for page table use only.
 | |
| 
 | |
|   To reduce the potential split operation on page table, the pages reserved for
 | |
|   page table should be allocated in the times of PAGE_TABLE_POOL_UNIT_PAGES and
 | |
|   at the boundary of PAGE_TABLE_POOL_ALIGNMENT. So the page pool is always
 | |
|   initialized with number of pages greater than or equal to the given PoolPages.
 | |
| 
 | |
|   Once the pages in the pool are used up, this method should be called again to
 | |
|   reserve at least another PAGE_TABLE_POOL_UNIT_PAGES. But usually this won't
 | |
|   happen in practice.
 | |
| 
 | |
|   @param PoolPages  The least page number of the pool to be created.
 | |
| 
 | |
|   @retval TRUE    The pool is initialized successfully.
 | |
|   @retval FALSE   The memory is out of resource.
 | |
| **/
 | |
| BOOLEAN
 | |
| InitializePageTablePool (
 | |
|   IN UINTN           PoolPages
 | |
|   )
 | |
| {
 | |
|   VOID          *Buffer;
 | |
| 
 | |
|   //
 | |
|   // Always reserve at least PAGE_TABLE_POOL_UNIT_PAGES, including one page for
 | |
|   // header.
 | |
|   //
 | |
|   PoolPages += 1;   // Add one page for header.
 | |
|   PoolPages = ((PoolPages - 1) / PAGE_TABLE_POOL_UNIT_PAGES + 1) *
 | |
|               PAGE_TABLE_POOL_UNIT_PAGES;
 | |
|   Buffer = AllocateAlignedPages (PoolPages, PAGE_TABLE_POOL_ALIGNMENT);
 | |
|   if (Buffer == NULL) {
 | |
|     DEBUG ((DEBUG_ERROR, "ERROR: Out of aligned pages\r\n"));
 | |
|     return FALSE;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Link all pools into a list for easier track later.
 | |
|   //
 | |
|   if (mPageTablePool == NULL) {
 | |
|     mPageTablePool = Buffer;
 | |
|     mPageTablePool->NextPool = mPageTablePool;
 | |
|   } else {
 | |
|     ((PAGE_TABLE_POOL *)Buffer)->NextPool = mPageTablePool->NextPool;
 | |
|     mPageTablePool->NextPool = Buffer;
 | |
|     mPageTablePool = Buffer;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Reserve one page for pool header.
 | |
|   //
 | |
|   mPageTablePool->FreePages  = PoolPages - 1;
 | |
|   mPageTablePool->Offset = EFI_PAGES_TO_SIZE (1);
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   This API provides a way to allocate memory for page table.
 | |
| 
 | |
|   This API can be called more than once to allocate memory for page tables.
 | |
| 
 | |
|   Allocates the number of 4KB pages and returns a pointer to the allocated
 | |
|   buffer. The buffer returned is aligned on a 4KB boundary.
 | |
| 
 | |
|   If Pages is 0, then NULL is returned.
 | |
|   If there is not enough memory remaining to satisfy the request, then NULL is
 | |
|   returned.
 | |
| 
 | |
|   @param  Pages                 The number of 4 KB pages to allocate.
 | |
| 
 | |
|   @return A pointer to the allocated buffer or NULL if allocation fails.
 | |
| 
 | |
| **/
 | |
| VOID *
 | |
| AllocatePageTableMemory (
 | |
|   IN UINTN           Pages
 | |
|   )
 | |
| {
 | |
|   VOID          *Buffer;
 | |
| 
 | |
|   if (Pages == 0) {
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Renew the pool if necessary.
 | |
|   //
 | |
|   if (mPageTablePool == NULL ||
 | |
|       Pages > mPageTablePool->FreePages) {
 | |
|     if (!InitializePageTablePool (Pages)) {
 | |
|       return NULL;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Buffer = (UINT8 *)mPageTablePool + mPageTablePool->Offset;
 | |
| 
 | |
|   mPageTablePool->Offset     += EFI_PAGES_TO_SIZE (Pages);
 | |
|   mPageTablePool->FreePages  -= Pages;
 | |
| 
 | |
|   return Buffer;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Split 2M page to 4K.
 | |
| 
 | |
|   @param[in]      PhysicalAddress       Start physical address the 2M page covered.
 | |
|   @param[in, out] PageEntry2M           Pointer to 2M page entry.
 | |
|   @param[in]      StackBase             Stack base address.
 | |
|   @param[in]      StackSize             Stack size.
 | |
| 
 | |
| **/
 | |
| VOID
 | |
| Split2MPageTo4K (
 | |
|   IN EFI_PHYSICAL_ADDRESS               PhysicalAddress,
 | |
|   IN OUT UINT64                         *PageEntry2M,
 | |
|   IN EFI_PHYSICAL_ADDRESS               StackBase,
 | |
|   IN UINTN                              StackSize
 | |
|   )
 | |
| {
 | |
|   EFI_PHYSICAL_ADDRESS                  PhysicalAddress4K;
 | |
|   UINTN                                 IndexOfPageTableEntries;
 | |
|   PAGE_TABLE_4K_ENTRY                   *PageTableEntry;
 | |
|   UINT64                                AddressEncMask;
 | |
| 
 | |
|   //
 | |
|   // Make sure AddressEncMask is contained to smallest supported address field
 | |
|   //
 | |
|   AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
 | |
| 
 | |
|   PageTableEntry = AllocatePageTableMemory (1);
 | |
|   ASSERT (PageTableEntry != NULL);
 | |
| 
 | |
|   //
 | |
|   // Fill in 2M page entry.
 | |
|   //
 | |
|   *PageEntry2M = (UINT64) (UINTN) PageTableEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;
 | |
| 
 | |
|   PhysicalAddress4K = PhysicalAddress;
 | |
|   for (IndexOfPageTableEntries = 0; IndexOfPageTableEntries < 512; IndexOfPageTableEntries++, PageTableEntry++, PhysicalAddress4K += SIZE_4KB) {
 | |
|     //
 | |
|     // Fill in the Page Table entries
 | |
|     //
 | |
|     PageTableEntry->Uint64 = (UINT64) PhysicalAddress4K | AddressEncMask;
 | |
|     PageTableEntry->Bits.ReadWrite = 1;
 | |
| 
 | |
|     if ((IsNullDetectionEnabled () && PhysicalAddress4K == 0) ||
 | |
|         (PcdGetBool (PcdCpuStackGuard) && PhysicalAddress4K == StackBase)) {
 | |
|       PageTableEntry->Bits.Present = 0;
 | |
|     } else {
 | |
|       PageTableEntry->Bits.Present = 1;
 | |
|     }
 | |
| 
 | |
|     if (PcdGetBool (PcdSetNxForStack)
 | |
|         && (PhysicalAddress4K >= StackBase)
 | |
|         && (PhysicalAddress4K < StackBase + StackSize)) {
 | |
|       //
 | |
|       // Set Nx bit for stack.
 | |
|       //
 | |
|       PageTableEntry->Bits.Nx = 1;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Split 1G page to 2M.
 | |
| 
 | |
|   @param[in]      PhysicalAddress       Start physical address the 1G page covered.
 | |
|   @param[in, out] PageEntry1G           Pointer to 1G page entry.
 | |
|   @param[in]      StackBase             Stack base address.
 | |
|   @param[in]      StackSize             Stack size.
 | |
| 
 | |
| **/
 | |
| VOID
 | |
| Split1GPageTo2M (
 | |
|   IN EFI_PHYSICAL_ADDRESS               PhysicalAddress,
 | |
|   IN OUT UINT64                         *PageEntry1G,
 | |
|   IN EFI_PHYSICAL_ADDRESS               StackBase,
 | |
|   IN UINTN                              StackSize
 | |
|   )
 | |
| {
 | |
|   EFI_PHYSICAL_ADDRESS                  PhysicalAddress2M;
 | |
|   UINTN                                 IndexOfPageDirectoryEntries;
 | |
|   PAGE_TABLE_ENTRY                      *PageDirectoryEntry;
 | |
|   UINT64                                AddressEncMask;
 | |
| 
 | |
|   //
 | |
|   // Make sure AddressEncMask is contained to smallest supported address field
 | |
|   //
 | |
|   AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
 | |
| 
 | |
|   PageDirectoryEntry = AllocatePageTableMemory (1);
 | |
|   ASSERT (PageDirectoryEntry != NULL);
 | |
| 
 | |
|   //
 | |
|   // Fill in 1G page entry.
 | |
|   //
 | |
|   *PageEntry1G = (UINT64) (UINTN) PageDirectoryEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;
 | |
| 
 | |
|   PhysicalAddress2M = PhysicalAddress;
 | |
|   for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PhysicalAddress2M += SIZE_2MB) {
 | |
|     if (ToSplitPageTable (PhysicalAddress2M, SIZE_2MB, StackBase, StackSize)) {
 | |
|       //
 | |
|       // Need to split this 2M page that covers NULL or stack range.
 | |
|       //
 | |
|       Split2MPageTo4K (PhysicalAddress2M, (UINT64 *) PageDirectoryEntry, StackBase, StackSize);
 | |
|     } else {
 | |
|       //
 | |
|       // Fill in the Page Directory entries
 | |
|       //
 | |
|       PageDirectoryEntry->Uint64 = (UINT64) PhysicalAddress2M | AddressEncMask;
 | |
|       PageDirectoryEntry->Bits.ReadWrite = 1;
 | |
|       PageDirectoryEntry->Bits.Present = 1;
 | |
|       PageDirectoryEntry->Bits.MustBe1 = 1;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Set one page of page table pool memory to be read-only.
 | |
| 
 | |
|   @param[in] PageTableBase    Base address of page table (CR3).
 | |
|   @param[in] Address          Start address of a page to be set as read-only.
 | |
|   @param[in] Level4Paging     Level 4 paging flag.
 | |
| 
 | |
| **/
 | |
| VOID
 | |
| SetPageTablePoolReadOnly (
 | |
|   IN  UINTN                             PageTableBase,
 | |
|   IN  EFI_PHYSICAL_ADDRESS              Address,
 | |
|   IN  BOOLEAN                           Level4Paging
 | |
|   )
 | |
| {
 | |
|   UINTN                 Index;
 | |
|   UINTN                 EntryIndex;
 | |
|   UINT64                AddressEncMask;
 | |
|   EFI_PHYSICAL_ADDRESS  PhysicalAddress;
 | |
|   UINT64                *PageTable;
 | |
|   UINT64                *NewPageTable;
 | |
|   UINT64                PageAttr;
 | |
|   UINT64                LevelSize[5];
 | |
|   UINT64                LevelMask[5];
 | |
|   UINTN                 LevelShift[5];
 | |
|   UINTN                 Level;
 | |
|   UINT64                PoolUnitSize;
 | |
| 
 | |
|   ASSERT (PageTableBase != 0);
 | |
| 
 | |
|   //
 | |
|   // Since the page table is always from page table pool, which is always
 | |
|   // located at the boundary of PcdPageTablePoolAlignment, we just need to
 | |
|   // set the whole pool unit to be read-only.
 | |
|   //
 | |
|   Address = Address & PAGE_TABLE_POOL_ALIGN_MASK;
 | |
| 
 | |
|   LevelShift[1] = PAGING_L1_ADDRESS_SHIFT;
 | |
|   LevelShift[2] = PAGING_L2_ADDRESS_SHIFT;
 | |
|   LevelShift[3] = PAGING_L3_ADDRESS_SHIFT;
 | |
|   LevelShift[4] = PAGING_L4_ADDRESS_SHIFT;
 | |
| 
 | |
|   LevelMask[1] = PAGING_4K_ADDRESS_MASK_64;
 | |
|   LevelMask[2] = PAGING_2M_ADDRESS_MASK_64;
 | |
|   LevelMask[3] = PAGING_1G_ADDRESS_MASK_64;
 | |
|   LevelMask[4] = PAGING_1G_ADDRESS_MASK_64;
 | |
| 
 | |
|   LevelSize[1] = SIZE_4KB;
 | |
|   LevelSize[2] = SIZE_2MB;
 | |
|   LevelSize[3] = SIZE_1GB;
 | |
|   LevelSize[4] = SIZE_512GB;
 | |
| 
 | |
|   AddressEncMask  = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) &
 | |
|                     PAGING_1G_ADDRESS_MASK_64;
 | |
|   PageTable       = (UINT64 *)(UINTN)PageTableBase;
 | |
|   PoolUnitSize    = PAGE_TABLE_POOL_UNIT_SIZE;
 | |
| 
 | |
|   for (Level = (Level4Paging) ? 4 : 3; Level > 0; --Level) {
 | |
|     Index = ((UINTN)RShiftU64 (Address, LevelShift[Level]));
 | |
|     Index &= PAGING_PAE_INDEX_MASK;
 | |
| 
 | |
|     PageAttr = PageTable[Index];
 | |
|     if ((PageAttr & IA32_PG_PS) == 0) {
 | |
|       //
 | |
|       // Go to next level of table.
 | |
|       //
 | |
|       PageTable = (UINT64 *)(UINTN)(PageAttr & ~AddressEncMask &
 | |
|                                     PAGING_4K_ADDRESS_MASK_64);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (PoolUnitSize >= LevelSize[Level]) {
 | |
|       //
 | |
|       // Clear R/W bit if current page granularity is not larger than pool unit
 | |
|       // size.
 | |
|       //
 | |
|       if ((PageAttr & IA32_PG_RW) != 0) {
 | |
|         while (PoolUnitSize > 0) {
 | |
|           //
 | |
|           // PAGE_TABLE_POOL_UNIT_SIZE and PAGE_TABLE_POOL_ALIGNMENT are fit in
 | |
|           // one page (2MB). Then we don't need to update attributes for pages
 | |
|           // crossing page directory. ASSERT below is for that purpose.
 | |
|           //
 | |
|           ASSERT (Index < EFI_PAGE_SIZE/sizeof (UINT64));
 | |
| 
 | |
|           PageTable[Index] &= ~(UINT64)IA32_PG_RW;
 | |
|           PoolUnitSize    -= LevelSize[Level];
 | |
| 
 | |
|           ++Index;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       break;
 | |
| 
 | |
|     } else {
 | |
|       //
 | |
|       // The smaller granularity of page must be needed.
 | |
|       //
 | |
|       ASSERT (Level > 1);
 | |
| 
 | |
|       NewPageTable = AllocatePageTableMemory (1);
 | |
|       ASSERT (NewPageTable != NULL);
 | |
| 
 | |
|       PhysicalAddress = PageAttr & LevelMask[Level];
 | |
|       for (EntryIndex = 0;
 | |
|             EntryIndex < EFI_PAGE_SIZE/sizeof (UINT64);
 | |
|             ++EntryIndex) {
 | |
|         NewPageTable[EntryIndex] = PhysicalAddress  | AddressEncMask |
 | |
|                                    IA32_PG_P | IA32_PG_RW;
 | |
|         if (Level > 2) {
 | |
|           NewPageTable[EntryIndex] |= IA32_PG_PS;
 | |
|         }
 | |
|         PhysicalAddress += LevelSize[Level - 1];
 | |
|       }
 | |
| 
 | |
|       PageTable[Index] = (UINT64)(UINTN)NewPageTable | AddressEncMask |
 | |
|                                         IA32_PG_P | IA32_PG_RW;
 | |
|       PageTable = NewPageTable;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Prevent the memory pages used for page table from been overwritten.
 | |
| 
 | |
|   @param[in] PageTableBase    Base address of page table (CR3).
 | |
|   @param[in] Level4Paging     Level 4 paging flag.
 | |
| 
 | |
| **/
 | |
| VOID
 | |
| EnablePageTableProtection (
 | |
|   IN  UINTN     PageTableBase,
 | |
|   IN  BOOLEAN   Level4Paging
 | |
|   )
 | |
| {
 | |
|   PAGE_TABLE_POOL         *HeadPool;
 | |
|   PAGE_TABLE_POOL         *Pool;
 | |
|   UINT64                  PoolSize;
 | |
|   EFI_PHYSICAL_ADDRESS    Address;
 | |
| 
 | |
|   if (mPageTablePool == NULL) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Disable write protection, because we need to mark page table to be write
 | |
|   // protected.
 | |
|   //
 | |
|   AsmWriteCr0 (AsmReadCr0() & ~CR0_WP);
 | |
| 
 | |
|   //
 | |
|   // SetPageTablePoolReadOnly might update mPageTablePool. It's safer to
 | |
|   // remember original one in advance.
 | |
|   //
 | |
|   HeadPool = mPageTablePool;
 | |
|   Pool = HeadPool;
 | |
|   do {
 | |
|     Address  = (EFI_PHYSICAL_ADDRESS)(UINTN)Pool;
 | |
|     PoolSize = Pool->Offset + EFI_PAGES_TO_SIZE (Pool->FreePages);
 | |
| 
 | |
|     //
 | |
|     // The size of one pool must be multiple of PAGE_TABLE_POOL_UNIT_SIZE, which
 | |
|     // is one of page size of the processor (2MB by default). Let's apply the
 | |
|     // protection to them one by one.
 | |
|     //
 | |
|     while (PoolSize > 0) {
 | |
|       SetPageTablePoolReadOnly(PageTableBase, Address, Level4Paging);
 | |
|       Address   += PAGE_TABLE_POOL_UNIT_SIZE;
 | |
|       PoolSize  -= PAGE_TABLE_POOL_UNIT_SIZE;
 | |
|     }
 | |
| 
 | |
|     Pool = Pool->NextPool;
 | |
|   } while (Pool != HeadPool);
 | |
| 
 | |
|   //
 | |
|   // Enable write protection, after page table attribute updated.
 | |
|   //
 | |
|   AsmWriteCr0 (AsmReadCr0() | CR0_WP);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Allocates and fills in the Page Directory and Page Table Entries to
 | |
|   establish a 1:1 Virtual to Physical mapping.
 | |
| 
 | |
|   @param[in] StackBase  Stack base address.
 | |
|   @param[in] StackSize  Stack size.
 | |
| 
 | |
|   @return The address of 4 level page map.
 | |
| 
 | |
| **/
 | |
| UINTN
 | |
| CreateIdentityMappingPageTables (
 | |
|   IN EFI_PHYSICAL_ADDRESS   StackBase,
 | |
|   IN UINTN                  StackSize
 | |
|   )
 | |
| {  
 | |
|   UINT32                                        RegEax;
 | |
|   UINT32                                        RegEdx;
 | |
|   UINT8                                         PhysicalAddressBits;
 | |
|   EFI_PHYSICAL_ADDRESS                          PageAddress;
 | |
|   UINTN                                         IndexOfPml4Entries;
 | |
|   UINTN                                         IndexOfPdpEntries;
 | |
|   UINTN                                         IndexOfPageDirectoryEntries;
 | |
|   UINT32                                        NumberOfPml4EntriesNeeded;
 | |
|   UINT32                                        NumberOfPdpEntriesNeeded;
 | |
|   PAGE_MAP_AND_DIRECTORY_POINTER                *PageMapLevel4Entry;
 | |
|   PAGE_MAP_AND_DIRECTORY_POINTER                *PageMap;
 | |
|   PAGE_MAP_AND_DIRECTORY_POINTER                *PageDirectoryPointerEntry;
 | |
|   PAGE_TABLE_ENTRY                              *PageDirectoryEntry;
 | |
|   UINTN                                         TotalPagesNum;
 | |
|   UINTN                                         BigPageAddress;
 | |
|   VOID                                          *Hob;
 | |
|   BOOLEAN                                       Page1GSupport;
 | |
|   PAGE_TABLE_1G_ENTRY                           *PageDirectory1GEntry;
 | |
|   UINT64                                        AddressEncMask;
 | |
| 
 | |
|   //
 | |
|   // Make sure AddressEncMask is contained to smallest supported address field
 | |
|   //
 | |
|   AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
 | |
| 
 | |
|   Page1GSupport = FALSE;
 | |
|   if (PcdGetBool(PcdUse1GPageTable)) {
 | |
|     AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
 | |
|     if (RegEax >= 0x80000001) {
 | |
|       AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
 | |
|       if ((RegEdx & BIT26) != 0) {
 | |
|         Page1GSupport = TRUE;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get physical address bits supported.
 | |
|   //
 | |
|   Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
 | |
|   if (Hob != NULL) {
 | |
|     PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
 | |
|   } else {
 | |
|     AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
 | |
|     if (RegEax >= 0x80000008) {
 | |
|       AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
 | |
|       PhysicalAddressBits = (UINT8) RegEax;
 | |
|     } else {
 | |
|       PhysicalAddressBits = 36;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
 | |
|   //
 | |
|   ASSERT (PhysicalAddressBits <= 52);
 | |
|   if (PhysicalAddressBits > 48) {
 | |
|     PhysicalAddressBits = 48;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Calculate the table entries needed.
 | |
|   //
 | |
|   if (PhysicalAddressBits <= 39 ) {
 | |
|     NumberOfPml4EntriesNeeded = 1;
 | |
|     NumberOfPdpEntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 30));
 | |
|   } else {
 | |
|     NumberOfPml4EntriesNeeded = (UINT32)LShiftU64 (1, (PhysicalAddressBits - 39));
 | |
|     NumberOfPdpEntriesNeeded = 512;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Pre-allocate big pages to avoid later allocations. 
 | |
|   //
 | |
|   if (!Page1GSupport) {
 | |
|     TotalPagesNum = (NumberOfPdpEntriesNeeded + 1) * NumberOfPml4EntriesNeeded + 1;
 | |
|   } else {
 | |
|     TotalPagesNum = NumberOfPml4EntriesNeeded + 1;
 | |
|   }
 | |
|   BigPageAddress = (UINTN) AllocatePageTableMemory (TotalPagesNum);
 | |
|   ASSERT (BigPageAddress != 0);
 | |
| 
 | |
|   //
 | |
|   // By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
 | |
|   //
 | |
|   PageMap         = (VOID *) BigPageAddress;
 | |
|   BigPageAddress += SIZE_4KB;
 | |
| 
 | |
|   PageMapLevel4Entry = PageMap;
 | |
|   PageAddress        = 0;
 | |
|   for (IndexOfPml4Entries = 0; IndexOfPml4Entries < NumberOfPml4EntriesNeeded; IndexOfPml4Entries++, PageMapLevel4Entry++) {
 | |
|     //
 | |
|     // Each PML4 entry points to a page of Page Directory Pointer entires.
 | |
|     // So lets allocate space for them and fill them in in the IndexOfPdpEntries loop.
 | |
|     //
 | |
|     PageDirectoryPointerEntry = (VOID *) BigPageAddress;
 | |
|     BigPageAddress += SIZE_4KB;
 | |
| 
 | |
|     //
 | |
|     // Make a PML4 Entry
 | |
|     //
 | |
|     PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry | AddressEncMask;
 | |
|     PageMapLevel4Entry->Bits.ReadWrite = 1;
 | |
|     PageMapLevel4Entry->Bits.Present = 1;
 | |
| 
 | |
|     if (Page1GSupport) {
 | |
|       PageDirectory1GEntry = (VOID *) PageDirectoryPointerEntry;
 | |
|     
 | |
|       for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
 | |
|         if (ToSplitPageTable (PageAddress, SIZE_1GB, StackBase, StackSize)) {
 | |
|           Split1GPageTo2M (PageAddress, (UINT64 *) PageDirectory1GEntry, StackBase, StackSize);
 | |
|         } else {
 | |
|           //
 | |
|           // Fill in the Page Directory entries
 | |
|           //
 | |
|           PageDirectory1GEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
 | |
|           PageDirectory1GEntry->Bits.ReadWrite = 1;
 | |
|           PageDirectory1GEntry->Bits.Present = 1;
 | |
|           PageDirectory1GEntry->Bits.MustBe1 = 1;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       for (IndexOfPdpEntries = 0; IndexOfPdpEntries < NumberOfPdpEntriesNeeded; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
 | |
|         //
 | |
|         // Each Directory Pointer entries points to a page of Page Directory entires.
 | |
|         // So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
 | |
|         //       
 | |
|         PageDirectoryEntry = (VOID *) BigPageAddress;
 | |
|         BigPageAddress += SIZE_4KB;
 | |
| 
 | |
|         //
 | |
|         // Fill in a Page Directory Pointer Entries
 | |
|         //
 | |
|         PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask;
 | |
|         PageDirectoryPointerEntry->Bits.ReadWrite = 1;
 | |
|         PageDirectoryPointerEntry->Bits.Present = 1;
 | |
| 
 | |
|         for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
 | |
|           if (ToSplitPageTable (PageAddress, SIZE_2MB, StackBase, StackSize)) {
 | |
|             //
 | |
|             // Need to split this 2M page that covers NULL or stack range.
 | |
|             //
 | |
|             Split2MPageTo4K (PageAddress, (UINT64 *) PageDirectoryEntry, StackBase, StackSize);
 | |
|           } else {
 | |
|             //
 | |
|             // Fill in the Page Directory entries
 | |
|             //
 | |
|             PageDirectoryEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
 | |
|             PageDirectoryEntry->Bits.ReadWrite = 1;
 | |
|             PageDirectoryEntry->Bits.Present = 1;
 | |
|             PageDirectoryEntry->Bits.MustBe1 = 1;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       for (; IndexOfPdpEntries < 512; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
 | |
|         ZeroMem (
 | |
|           PageDirectoryPointerEntry,
 | |
|           sizeof(PAGE_MAP_AND_DIRECTORY_POINTER)
 | |
|           );
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // For the PML4 entries we are not using fill in a null entry.
 | |
|   //
 | |
|   for (; IndexOfPml4Entries < 512; IndexOfPml4Entries++, PageMapLevel4Entry++) {
 | |
|     ZeroMem (
 | |
|       PageMapLevel4Entry,
 | |
|       sizeof (PAGE_MAP_AND_DIRECTORY_POINTER)
 | |
|       );
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Protect the page table by marking the memory used for page table to be
 | |
|   // read-only.
 | |
|   //
 | |
|   EnablePageTableProtection ((UINTN)PageMap, TRUE);
 | |
| 
 | |
|   if (PcdGetBool (PcdSetNxForStack)) {
 | |
|     EnableExecuteDisableBit ();
 | |
|   }
 | |
| 
 | |
|   return (UINTN)PageMap;
 | |
| }
 | |
| 
 |