Resolve mainly 'misleading indentation', but also one 'defined but not used' warning when building with GCC 6 (using GCC5 profile). Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org> Reviewed-by: Jaben Carsey <jaben.carsey@intel.com>
		
			
				
	
	
		
			307 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			307 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* @(#)k_rem_pio2.c 5.1 93/09/24 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| #include  <LibConfig.h>
 | |
| #include  <sys/EfiCdefs.h>
 | |
| #if defined(LIBM_SCCS) && !defined(lint)
 | |
| __RCSID("$NetBSD: k_rem_pio2.c,v 1.11 2003/01/04 23:43:03 wiz Exp $");
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
 | |
|  * double x[],y[]; int e0,nx,prec; int ipio2[];
 | |
|  *
 | |
|  * __kernel_rem_pio2 return the last three digits of N with
 | |
|  *    y = x - N*pi/2
 | |
|  * so that |y| < pi/2.
 | |
|  *
 | |
|  * The method is to compute the integer (mod 8) and fraction parts of
 | |
|  * (2/pi)*x without doing the full multiplication. In general we
 | |
|  * skip the part of the product that are known to be a huge integer (
 | |
|  * more accurately, = 0 mod 8 ). Thus the number of operations are
 | |
|  * independent of the exponent of the input.
 | |
|  *
 | |
|  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
 | |
|  *
 | |
|  * Input parameters:
 | |
|  *  x[] The input value (must be positive) is broken into nx
 | |
|  *    pieces of 24-bit integers in double precision format.
 | |
|  *    x[i] will be the i-th 24 bit of x. The scaled exponent
 | |
|  *    of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
 | |
|  *    match x's up to 24 bits.
 | |
|  *
 | |
|  *    Example of breaking a double positive z into x[0]+x[1]+x[2]:
 | |
|  *      e0 = ilogb(z)-23
 | |
|  *      z  = scalbn(z,-e0)
 | |
|  *    for i = 0,1,2
 | |
|  *      x[i] = floor(z)
 | |
|  *      z    = (z-x[i])*2**24
 | |
|  *
 | |
|  *
 | |
|  *  y[] output result in an array of double precision numbers.
 | |
|  *    The dimension of y[] is:
 | |
|  *      24-bit  precision 1
 | |
|  *      53-bit  precision 2
 | |
|  *      64-bit  precision 2
 | |
|  *      113-bit precision 3
 | |
|  *    The actual value is the sum of them. Thus for 113-bit
 | |
|  *    precison, one may have to do something like:
 | |
|  *
 | |
|  *    long double t,w,r_head, r_tail;
 | |
|  *    t = (long double)y[2] + (long double)y[1];
 | |
|  *    w = (long double)y[0];
 | |
|  *    r_head = t+w;
 | |
|  *    r_tail = w - (r_head - t);
 | |
|  *
 | |
|  *  e0  The exponent of x[0]
 | |
|  *
 | |
|  *  nx  dimension of x[]
 | |
|  *
 | |
|  *    prec  an integer indicating the precision:
 | |
|  *      0 24  bits (single)
 | |
|  *      1 53  bits (double)
 | |
|  *      2 64  bits (extended)
 | |
|  *      3 113 bits (quad)
 | |
|  *
 | |
|  *  ipio2[]
 | |
|  *    integer array, contains the (24*i)-th to (24*i+23)-th
 | |
|  *    bit of 2/pi after binary point. The corresponding
 | |
|  *    floating value is
 | |
|  *
 | |
|  *      ipio2[i] * 2^(-24(i+1)).
 | |
|  *
 | |
|  * External function:
 | |
|  *  double scalbn(), floor();
 | |
|  *
 | |
|  *
 | |
|  * Here is the description of some local variables:
 | |
|  *
 | |
|  *  jk  jk+1 is the initial number of terms of ipio2[] needed
 | |
|  *    in the computation. The recommended value is 2,3,4,
 | |
|  *    6 for single, double, extended,and quad.
 | |
|  *
 | |
|  *  jz  local integer variable indicating the number of
 | |
|  *    terms of ipio2[] used.
 | |
|  *
 | |
|  *  jx  nx - 1
 | |
|  *
 | |
|  *  jv  index for pointing to the suitable ipio2[] for the
 | |
|  *    computation. In general, we want
 | |
|  *      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
 | |
|  *    is an integer. Thus
 | |
|  *      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
 | |
|  *    Hence jv = max(0,(e0-3)/24).
 | |
|  *
 | |
|  *  jp  jp+1 is the number of terms in PIo2[] needed, jp = jk.
 | |
|  *
 | |
|  *  q[] double array with integral value, representing the
 | |
|  *    24-bits chunk of the product of x and 2/pi.
 | |
|  *
 | |
|  *  q0  the corresponding exponent of q[0]. Note that the
 | |
|  *    exponent for q[i] would be q0-24*i.
 | |
|  *
 | |
|  *  PIo2[]  double precision array, obtained by cutting pi/2
 | |
|  *    into 24 bits chunks.
 | |
|  *
 | |
|  *  f[] ipio2[] in floating point
 | |
|  *
 | |
|  *  iq[]  integer array by breaking up q[] in 24-bits chunk.
 | |
|  *
 | |
|  *  fq[]  final product of x*(2/pi) in fq[0],..,fq[jk]
 | |
|  *
 | |
|  *  ih  integer. If >0 it indicates q[] is >= 0.5, hence
 | |
|  *    it also indicates the *sign* of the result.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Constants:
 | |
|  * The hexadecimal values are the intended ones for the following
 | |
|  * constants. The decimal values may be used, provided that the
 | |
|  * compiler will convert from decimal to binary accurately enough
 | |
|  * to produce the hexadecimal values shown.
 | |
|  */
 | |
| 
 | |
| #include "math.h"
 | |
| #include "math_private.h"
 | |
| 
 | |
| static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
 | |
| 
 | |
| static const double PIo2[] = {
 | |
|   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
 | |
|   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
 | |
|   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
 | |
|   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
 | |
|   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
 | |
|   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
 | |
|   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
 | |
|   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
 | |
| };
 | |
| 
 | |
| static const double
 | |
| zero   = 0.0,
 | |
| one    = 1.0,
 | |
| two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
 | |
| twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
 | |
| 
 | |
| int
 | |
| __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
 | |
| {
 | |
|   int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
 | |
|   double z,fw,f[20],fq[20],q[20];
 | |
| 
 | |
|     /* initialize jk*/
 | |
|   jk = init_jk[prec];
 | |
|   jp = jk;
 | |
| 
 | |
|     /* determine jx,jv,q0, note that 3>q0 */
 | |
|   jx =  nx-1;
 | |
|   jv = (e0-3)/24; if(jv<0) jv=0;
 | |
|   q0 =  e0-24*(jv+1);
 | |
| 
 | |
|     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
 | |
|   j = jv-jx; m = jx+jk;
 | |
|   for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
 | |
| 
 | |
|     /* compute q[0],q[1],...q[jk] */
 | |
|   for (i=0;i<=jk;i++) {
 | |
|       for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
 | |
|       q[i] = fw;
 | |
|   }
 | |
| 
 | |
|   jz = jk;
 | |
| recompute:
 | |
|     /* distill q[] into iq[] reversingly */
 | |
|   for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
 | |
|       fw    =  (double)((int32_t)(twon24* z));
 | |
|       iq[i] =  (int32_t)(z-two24*fw);
 | |
|       z     =  q[j-1]+fw;
 | |
|   }
 | |
| 
 | |
|     /* compute n */
 | |
|   z  = scalbn(z,q0);    /* actual value of z */
 | |
|   z -= 8.0*floor(z*0.125);    /* trim off integer >= 8 */
 | |
|   n  = (int32_t) z;
 | |
|   z -= (double)n;
 | |
|   ih = 0;
 | |
|   if(q0>0) {  /* need iq[jz-1] to determine n */
 | |
|       i  = (iq[jz-1]>>(24-q0)); n += i;
 | |
|       iq[jz-1] -= i<<(24-q0);
 | |
|       ih = iq[jz-1]>>(23-q0);
 | |
|   }
 | |
|   else if(q0==0) ih = iq[jz-1]>>23;
 | |
|   else if(z>=0.5) ih=2;
 | |
| 
 | |
|   if(ih>0) {  /* q > 0.5 */
 | |
|       n += 1; carry = 0;
 | |
|       for(i=0;i<jz ;i++) {  /* compute 1-q */
 | |
|     j = iq[i];
 | |
|     if(carry==0) {
 | |
|         if(j!=0) {
 | |
|       carry = 1; iq[i] = 0x1000000- j;
 | |
|         }
 | |
|     } else  iq[i] = 0xffffff - j;
 | |
|       }
 | |
|       if(q0>0) {    /* rare case: chance is 1 in 12 */
 | |
|           switch(q0) {
 | |
|           case 1:
 | |
|            iq[jz-1] &= 0x7fffff; break;
 | |
|         case 2:
 | |
|            iq[jz-1] &= 0x3fffff; break;
 | |
|           }
 | |
|       }
 | |
|       if(ih==2) {
 | |
|     z = one - z;
 | |
|     if(carry!=0) z -= scalbn(one,q0);
 | |
|       }
 | |
|   }
 | |
| 
 | |
|     /* check if recomputation is needed */
 | |
|   if(z==zero) {
 | |
|       j = 0;
 | |
|       for (i=jz-1;i>=jk;i--) j |= iq[i];
 | |
|       if(j==0) { /* need recomputation */
 | |
|     for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
 | |
| 
 | |
|     for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
 | |
|         f[jx+i] = (double) ipio2[jv+i];
 | |
|         for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
 | |
|         q[i] = fw;
 | |
|     }
 | |
|     jz += k;
 | |
|     goto recompute;
 | |
|       }
 | |
|   }
 | |
| 
 | |
|     /* chop off zero terms */
 | |
|   if(z==0.0) {
 | |
|       jz -= 1; q0 -= 24;
 | |
|       while(iq[jz]==0) { jz--; q0-=24;}
 | |
|   } else { /* break z into 24-bit if necessary */
 | |
|       z = scalbn(z,-q0);
 | |
|       if(z>=two24) {
 | |
|     fw = (double)((int32_t)(twon24*z));
 | |
|     iq[jz] = (int32_t)(z-two24*fw);
 | |
|     jz += 1; q0 += 24;
 | |
|     iq[jz] = (int32_t) fw;
 | |
|       } else iq[jz] = (int32_t) z ;
 | |
|   }
 | |
| 
 | |
|     /* convert integer "bit" chunk to floating-point value */
 | |
|   fw = scalbn(one,q0);
 | |
|   for(i=jz;i>=0;i--) {
 | |
|       q[i] = fw*(double)iq[i]; fw*=twon24;
 | |
|   }
 | |
| 
 | |
|     /* compute PIo2[0,...,jp]*q[jz,...,0] */
 | |
|   for(i=jz;i>=0;i--) {
 | |
|       for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
 | |
|       fq[jz-i] = fw;
 | |
|   }
 | |
| 
 | |
|     /* compress fq[] into y[] */
 | |
|   switch(prec) {
 | |
|       case 0:
 | |
|     fw = 0.0;
 | |
|     for (i=jz;i>=0;i--) fw += fq[i];
 | |
|     y[0] = (ih==0)? fw: -fw;
 | |
|     break;
 | |
|       case 1:
 | |
|       case 2:
 | |
|     fw = 0.0;
 | |
|     for (i=jz;i>=0;i--) fw += fq[i];
 | |
|     y[0] = (ih==0)? fw: -fw;
 | |
|     fw = fq[0]-fw;
 | |
|     for (i=1;i<=jz;i++) fw += fq[i];
 | |
|     y[1] = (ih==0)? fw: -fw;
 | |
|     break;
 | |
|       case 3: /* painful */
 | |
|     for (i=jz;i>0;i--) {
 | |
|         fw      = fq[i-1]+fq[i];
 | |
|         fq[i]  += fq[i-1]-fw;
 | |
|         fq[i-1] = fw;
 | |
|     }
 | |
|     for (i=jz;i>1;i--) {
 | |
|         fw      = fq[i-1]+fq[i];
 | |
|         fq[i]  += fq[i-1]-fw;
 | |
|         fq[i-1] = fw;
 | |
|     }
 | |
|     for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
 | |
|     if(ih==0) {
 | |
|         y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
 | |
|     } else {
 | |
|         y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
 | |
|     }
 | |
|   }
 | |
|   return n&7;
 | |
| }
 |