BZ: https://bugzilla.tianocore.org/show_bug.cgi?id=2198 Currently, the OVMF code relies on the hypervisor to enable the cache support on the processor in order to improve the boot speed. However, with SEV-ES, the hypervisor is not allowed to change the CR0 register to enable caching. Update the OVMF Sec support to enable caching in order to improve the boot speed when running as an SEV-ES guest. Cc: Jordan Justen <jordan.l.justen@intel.com> Cc: Laszlo Ersek <lersek@redhat.com> Cc: Ard Biesheuvel <ard.biesheuvel@arm.com> Reviewed-by: Laszlo Ersek <lersek@redhat.com> Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Regression-tested-by: Laszlo Ersek <lersek@redhat.com>
1105 lines
32 KiB
C
1105 lines
32 KiB
C
/** @file
|
|
Main SEC phase code. Transitions to PEI.
|
|
|
|
Copyright (c) 2008 - 2015, Intel Corporation. All rights reserved.<BR>
|
|
(C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include <PiPei.h>
|
|
|
|
#include <Library/PeimEntryPoint.h>
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/PeiServicesLib.h>
|
|
#include <Library/PcdLib.h>
|
|
#include <Library/UefiCpuLib.h>
|
|
#include <Library/DebugAgentLib.h>
|
|
#include <Library/IoLib.h>
|
|
#include <Library/PeCoffLib.h>
|
|
#include <Library/PeCoffGetEntryPointLib.h>
|
|
#include <Library/PeCoffExtraActionLib.h>
|
|
#include <Library/ExtractGuidedSectionLib.h>
|
|
#include <Library/LocalApicLib.h>
|
|
#include <Library/CpuExceptionHandlerLib.h>
|
|
#include <Register/Amd/Ghcb.h>
|
|
#include <Register/Amd/Msr.h>
|
|
|
|
#include <Ppi/TemporaryRamSupport.h>
|
|
|
|
#define SEC_IDT_ENTRY_COUNT 34
|
|
|
|
typedef struct _SEC_IDT_TABLE {
|
|
EFI_PEI_SERVICES *PeiService;
|
|
IA32_IDT_GATE_DESCRIPTOR IdtTable[SEC_IDT_ENTRY_COUNT];
|
|
} SEC_IDT_TABLE;
|
|
|
|
typedef struct _SEC_SEV_ES_WORK_AREA {
|
|
UINT8 SevEsEnabled;
|
|
} SEC_SEV_ES_WORK_AREA;
|
|
|
|
VOID
|
|
EFIAPI
|
|
SecStartupPhase2 (
|
|
IN VOID *Context
|
|
);
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
TemporaryRamMigration (
|
|
IN CONST EFI_PEI_SERVICES **PeiServices,
|
|
IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
|
|
IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
|
|
IN UINTN CopySize
|
|
);
|
|
|
|
//
|
|
//
|
|
//
|
|
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI mTemporaryRamSupportPpi = {
|
|
TemporaryRamMigration
|
|
};
|
|
|
|
EFI_PEI_PPI_DESCRIPTOR mPrivateDispatchTable[] = {
|
|
{
|
|
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
|
|
&gEfiTemporaryRamSupportPpiGuid,
|
|
&mTemporaryRamSupportPpi
|
|
},
|
|
};
|
|
|
|
//
|
|
// Template of an IDT entry pointing to 10:FFFFFFE4h.
|
|
//
|
|
IA32_IDT_GATE_DESCRIPTOR mIdtEntryTemplate = {
|
|
{ // Bits
|
|
0xffe4, // OffsetLow
|
|
0x10, // Selector
|
|
0x0, // Reserved_0
|
|
IA32_IDT_GATE_TYPE_INTERRUPT_32, // GateType
|
|
0xffff // OffsetHigh
|
|
}
|
|
};
|
|
|
|
/**
|
|
Locates the main boot firmware volume.
|
|
|
|
@param[in,out] BootFv On input, the base of the BootFv
|
|
On output, the decompressed main firmware volume
|
|
|
|
@retval EFI_SUCCESS The main firmware volume was located and decompressed
|
|
@retval EFI_NOT_FOUND The main firmware volume was not found
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindMainFv (
|
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **BootFv
|
|
)
|
|
{
|
|
EFI_FIRMWARE_VOLUME_HEADER *Fv;
|
|
UINTN Distance;
|
|
|
|
ASSERT (((UINTN) *BootFv & EFI_PAGE_MASK) == 0);
|
|
|
|
Fv = *BootFv;
|
|
Distance = (UINTN) (*BootFv)->FvLength;
|
|
do {
|
|
Fv = (EFI_FIRMWARE_VOLUME_HEADER*) ((UINT8*) Fv - EFI_PAGE_SIZE);
|
|
Distance += EFI_PAGE_SIZE;
|
|
if (Distance > SIZE_32MB) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
if (Fv->Signature != EFI_FVH_SIGNATURE) {
|
|
continue;
|
|
}
|
|
|
|
if ((UINTN) Fv->FvLength > Distance) {
|
|
continue;
|
|
}
|
|
|
|
*BootFv = Fv;
|
|
return EFI_SUCCESS;
|
|
|
|
} while (TRUE);
|
|
}
|
|
|
|
/**
|
|
Locates a section within a series of sections
|
|
with the specified section type.
|
|
|
|
The Instance parameter indicates which instance of the section
|
|
type to return. (0 is first instance, 1 is second...)
|
|
|
|
@param[in] Sections The sections to search
|
|
@param[in] SizeOfSections Total size of all sections
|
|
@param[in] SectionType The section type to locate
|
|
@param[in] Instance The section instance number
|
|
@param[out] FoundSection The FFS section if found
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindFfsSectionInstance (
|
|
IN VOID *Sections,
|
|
IN UINTN SizeOfSections,
|
|
IN EFI_SECTION_TYPE SectionType,
|
|
IN UINTN Instance,
|
|
OUT EFI_COMMON_SECTION_HEADER **FoundSection
|
|
)
|
|
{
|
|
EFI_PHYSICAL_ADDRESS CurrentAddress;
|
|
UINT32 Size;
|
|
EFI_PHYSICAL_ADDRESS EndOfSections;
|
|
EFI_COMMON_SECTION_HEADER *Section;
|
|
EFI_PHYSICAL_ADDRESS EndOfSection;
|
|
|
|
//
|
|
// Loop through the FFS file sections within the PEI Core FFS file
|
|
//
|
|
EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN) Sections;
|
|
EndOfSections = EndOfSection + SizeOfSections;
|
|
for (;;) {
|
|
if (EndOfSection == EndOfSections) {
|
|
break;
|
|
}
|
|
CurrentAddress = (EndOfSection + 3) & ~(3ULL);
|
|
if (CurrentAddress >= EndOfSections) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
Section = (EFI_COMMON_SECTION_HEADER*)(UINTN) CurrentAddress;
|
|
|
|
Size = SECTION_SIZE (Section);
|
|
if (Size < sizeof (*Section)) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
EndOfSection = CurrentAddress + Size;
|
|
if (EndOfSection > EndOfSections) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
//
|
|
// Look for the requested section type
|
|
//
|
|
if (Section->Type == SectionType) {
|
|
if (Instance == 0) {
|
|
*FoundSection = Section;
|
|
return EFI_SUCCESS;
|
|
} else {
|
|
Instance--;
|
|
}
|
|
}
|
|
}
|
|
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
/**
|
|
Locates a section within a series of sections
|
|
with the specified section type.
|
|
|
|
@param[in] Sections The sections to search
|
|
@param[in] SizeOfSections Total size of all sections
|
|
@param[in] SectionType The section type to locate
|
|
@param[out] FoundSection The FFS section if found
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindFfsSectionInSections (
|
|
IN VOID *Sections,
|
|
IN UINTN SizeOfSections,
|
|
IN EFI_SECTION_TYPE SectionType,
|
|
OUT EFI_COMMON_SECTION_HEADER **FoundSection
|
|
)
|
|
{
|
|
return FindFfsSectionInstance (
|
|
Sections,
|
|
SizeOfSections,
|
|
SectionType,
|
|
0,
|
|
FoundSection
|
|
);
|
|
}
|
|
|
|
/**
|
|
Locates a FFS file with the specified file type and a section
|
|
within that file with the specified section type.
|
|
|
|
@param[in] Fv The firmware volume to search
|
|
@param[in] FileType The file type to locate
|
|
@param[in] SectionType The section type to locate
|
|
@param[out] FoundSection The FFS section if found
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindFfsFileAndSection (
|
|
IN EFI_FIRMWARE_VOLUME_HEADER *Fv,
|
|
IN EFI_FV_FILETYPE FileType,
|
|
IN EFI_SECTION_TYPE SectionType,
|
|
OUT EFI_COMMON_SECTION_HEADER **FoundSection
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS CurrentAddress;
|
|
EFI_PHYSICAL_ADDRESS EndOfFirmwareVolume;
|
|
EFI_FFS_FILE_HEADER *File;
|
|
UINT32 Size;
|
|
EFI_PHYSICAL_ADDRESS EndOfFile;
|
|
|
|
if (Fv->Signature != EFI_FVH_SIGNATURE) {
|
|
DEBUG ((DEBUG_ERROR, "FV at %p does not have FV header signature\n", Fv));
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) Fv;
|
|
EndOfFirmwareVolume = CurrentAddress + Fv->FvLength;
|
|
|
|
//
|
|
// Loop through the FFS files in the Boot Firmware Volume
|
|
//
|
|
for (EndOfFile = CurrentAddress + Fv->HeaderLength; ; ) {
|
|
|
|
CurrentAddress = (EndOfFile + 7) & ~(7ULL);
|
|
if (CurrentAddress > EndOfFirmwareVolume) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
File = (EFI_FFS_FILE_HEADER*)(UINTN) CurrentAddress;
|
|
Size = FFS_FILE_SIZE (File);
|
|
if (Size < (sizeof (*File) + sizeof (EFI_COMMON_SECTION_HEADER))) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
EndOfFile = CurrentAddress + Size;
|
|
if (EndOfFile > EndOfFirmwareVolume) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
//
|
|
// Look for the request file type
|
|
//
|
|
if (File->Type != FileType) {
|
|
continue;
|
|
}
|
|
|
|
Status = FindFfsSectionInSections (
|
|
(VOID*) (File + 1),
|
|
(UINTN) EndOfFile - (UINTN) (File + 1),
|
|
SectionType,
|
|
FoundSection
|
|
);
|
|
if (!EFI_ERROR (Status) || (Status == EFI_VOLUME_CORRUPTED)) {
|
|
return Status;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Locates the compressed main firmware volume and decompresses it.
|
|
|
|
@param[in,out] Fv On input, the firmware volume to search
|
|
On output, the decompressed BOOT/PEI FV
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
EFI_STATUS
|
|
DecompressMemFvs (
|
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **Fv
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_GUID_DEFINED_SECTION *Section;
|
|
UINT32 OutputBufferSize;
|
|
UINT32 ScratchBufferSize;
|
|
UINT16 SectionAttribute;
|
|
UINT32 AuthenticationStatus;
|
|
VOID *OutputBuffer;
|
|
VOID *ScratchBuffer;
|
|
EFI_COMMON_SECTION_HEADER *FvSection;
|
|
EFI_FIRMWARE_VOLUME_HEADER *PeiMemFv;
|
|
EFI_FIRMWARE_VOLUME_HEADER *DxeMemFv;
|
|
UINT32 FvHeaderSize;
|
|
UINT32 FvSectionSize;
|
|
|
|
FvSection = (EFI_COMMON_SECTION_HEADER*) NULL;
|
|
|
|
Status = FindFfsFileAndSection (
|
|
*Fv,
|
|
EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE,
|
|
EFI_SECTION_GUID_DEFINED,
|
|
(EFI_COMMON_SECTION_HEADER**) &Section
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "Unable to find GUID defined section\n"));
|
|
return Status;
|
|
}
|
|
|
|
Status = ExtractGuidedSectionGetInfo (
|
|
Section,
|
|
&OutputBufferSize,
|
|
&ScratchBufferSize,
|
|
&SectionAttribute
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "Unable to GetInfo for GUIDed section\n"));
|
|
return Status;
|
|
}
|
|
|
|
OutputBuffer = (VOID*) ((UINT8*)(UINTN) PcdGet32 (PcdOvmfDxeMemFvBase) + SIZE_1MB);
|
|
ScratchBuffer = ALIGN_POINTER ((UINT8*) OutputBuffer + OutputBufferSize, SIZE_1MB);
|
|
|
|
DEBUG ((DEBUG_VERBOSE, "%a: OutputBuffer@%p+0x%x ScratchBuffer@%p+0x%x "
|
|
"PcdOvmfDecompressionScratchEnd=0x%x\n", __FUNCTION__, OutputBuffer,
|
|
OutputBufferSize, ScratchBuffer, ScratchBufferSize,
|
|
PcdGet32 (PcdOvmfDecompressionScratchEnd)));
|
|
ASSERT ((UINTN)ScratchBuffer + ScratchBufferSize ==
|
|
PcdGet32 (PcdOvmfDecompressionScratchEnd));
|
|
|
|
Status = ExtractGuidedSectionDecode (
|
|
Section,
|
|
&OutputBuffer,
|
|
ScratchBuffer,
|
|
&AuthenticationStatus
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "Error during GUID section decode\n"));
|
|
return Status;
|
|
}
|
|
|
|
Status = FindFfsSectionInstance (
|
|
OutputBuffer,
|
|
OutputBufferSize,
|
|
EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
|
|
0,
|
|
&FvSection
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "Unable to find PEI FV section\n"));
|
|
return Status;
|
|
}
|
|
|
|
ASSERT (SECTION_SIZE (FvSection) ==
|
|
(PcdGet32 (PcdOvmfPeiMemFvSize) + sizeof (*FvSection)));
|
|
ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);
|
|
|
|
PeiMemFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfPeiMemFvBase);
|
|
CopyMem (PeiMemFv, (VOID*) (FvSection + 1), PcdGet32 (PcdOvmfPeiMemFvSize));
|
|
|
|
if (PeiMemFv->Signature != EFI_FVH_SIGNATURE) {
|
|
DEBUG ((DEBUG_ERROR, "Extracted FV at %p does not have FV header signature\n", PeiMemFv));
|
|
CpuDeadLoop ();
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
Status = FindFfsSectionInstance (
|
|
OutputBuffer,
|
|
OutputBufferSize,
|
|
EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
|
|
1,
|
|
&FvSection
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "Unable to find DXE FV section\n"));
|
|
return Status;
|
|
}
|
|
|
|
ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);
|
|
|
|
if (IS_SECTION2 (FvSection)) {
|
|
FvSectionSize = SECTION2_SIZE (FvSection);
|
|
FvHeaderSize = sizeof (EFI_COMMON_SECTION_HEADER2);
|
|
} else {
|
|
FvSectionSize = SECTION_SIZE (FvSection);
|
|
FvHeaderSize = sizeof (EFI_COMMON_SECTION_HEADER);
|
|
}
|
|
|
|
ASSERT (FvSectionSize == (PcdGet32 (PcdOvmfDxeMemFvSize) + FvHeaderSize));
|
|
|
|
DxeMemFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfDxeMemFvBase);
|
|
CopyMem (DxeMemFv, (VOID*) ((UINTN)FvSection + FvHeaderSize), PcdGet32 (PcdOvmfDxeMemFvSize));
|
|
|
|
if (DxeMemFv->Signature != EFI_FVH_SIGNATURE) {
|
|
DEBUG ((DEBUG_ERROR, "Extracted FV at %p does not have FV header signature\n", DxeMemFv));
|
|
CpuDeadLoop ();
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
*Fv = PeiMemFv;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Locates the PEI Core entry point address
|
|
|
|
@param[in] Fv The firmware volume to search
|
|
@param[out] PeiCoreEntryPoint The entry point of the PEI Core image
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindPeiCoreImageBaseInFv (
|
|
IN EFI_FIRMWARE_VOLUME_HEADER *Fv,
|
|
OUT EFI_PHYSICAL_ADDRESS *PeiCoreImageBase
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_COMMON_SECTION_HEADER *Section;
|
|
|
|
Status = FindFfsFileAndSection (
|
|
Fv,
|
|
EFI_FV_FILETYPE_PEI_CORE,
|
|
EFI_SECTION_PE32,
|
|
&Section
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
Status = FindFfsFileAndSection (
|
|
Fv,
|
|
EFI_FV_FILETYPE_PEI_CORE,
|
|
EFI_SECTION_TE,
|
|
&Section
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((DEBUG_ERROR, "Unable to find PEI Core image\n"));
|
|
return Status;
|
|
}
|
|
}
|
|
|
|
*PeiCoreImageBase = (EFI_PHYSICAL_ADDRESS)(UINTN)(Section + 1);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Reads 8-bits of CMOS data.
|
|
|
|
Reads the 8-bits of CMOS data at the location specified by Index.
|
|
The 8-bit read value is returned.
|
|
|
|
@param Index The CMOS location to read.
|
|
|
|
@return The value read.
|
|
|
|
**/
|
|
STATIC
|
|
UINT8
|
|
CmosRead8 (
|
|
IN UINTN Index
|
|
)
|
|
{
|
|
IoWrite8 (0x70, (UINT8) Index);
|
|
return IoRead8 (0x71);
|
|
}
|
|
|
|
|
|
STATIC
|
|
BOOLEAN
|
|
IsS3Resume (
|
|
VOID
|
|
)
|
|
{
|
|
return (CmosRead8 (0xF) == 0xFE);
|
|
}
|
|
|
|
|
|
STATIC
|
|
EFI_STATUS
|
|
GetS3ResumePeiFv (
|
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **PeiFv
|
|
)
|
|
{
|
|
*PeiFv = (EFI_FIRMWARE_VOLUME_HEADER*)(UINTN) PcdGet32 (PcdOvmfPeiMemFvBase);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
|
|
/**
|
|
Locates the PEI Core entry point address
|
|
|
|
@param[in,out] Fv The firmware volume to search
|
|
@param[out] PeiCoreEntryPoint The entry point of the PEI Core image
|
|
|
|
@retval EFI_SUCCESS The file and section was found
|
|
@retval EFI_NOT_FOUND The file and section was not found
|
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
|
|
|
**/
|
|
VOID
|
|
FindPeiCoreImageBase (
|
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **BootFv,
|
|
OUT EFI_PHYSICAL_ADDRESS *PeiCoreImageBase
|
|
)
|
|
{
|
|
BOOLEAN S3Resume;
|
|
|
|
*PeiCoreImageBase = 0;
|
|
|
|
S3Resume = IsS3Resume ();
|
|
if (S3Resume && !FeaturePcdGet (PcdSmmSmramRequire)) {
|
|
//
|
|
// A malicious runtime OS may have injected something into our previously
|
|
// decoded PEI FV, but we don't care about that unless SMM/SMRAM is required.
|
|
//
|
|
DEBUG ((DEBUG_VERBOSE, "SEC: S3 resume\n"));
|
|
GetS3ResumePeiFv (BootFv);
|
|
} else {
|
|
//
|
|
// We're either not resuming, or resuming "securely" -- we'll decompress
|
|
// both PEI FV and DXE FV from pristine flash.
|
|
//
|
|
DEBUG ((DEBUG_VERBOSE, "SEC: %a\n",
|
|
S3Resume ? "S3 resume (with PEI decompression)" : "Normal boot"));
|
|
FindMainFv (BootFv);
|
|
|
|
DecompressMemFvs (BootFv);
|
|
}
|
|
|
|
FindPeiCoreImageBaseInFv (*BootFv, PeiCoreImageBase);
|
|
}
|
|
|
|
/**
|
|
Find core image base.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
FindImageBase (
|
|
IN EFI_FIRMWARE_VOLUME_HEADER *BootFirmwareVolumePtr,
|
|
OUT EFI_PHYSICAL_ADDRESS *SecCoreImageBase
|
|
)
|
|
{
|
|
EFI_PHYSICAL_ADDRESS CurrentAddress;
|
|
EFI_PHYSICAL_ADDRESS EndOfFirmwareVolume;
|
|
EFI_FFS_FILE_HEADER *File;
|
|
UINT32 Size;
|
|
EFI_PHYSICAL_ADDRESS EndOfFile;
|
|
EFI_COMMON_SECTION_HEADER *Section;
|
|
EFI_PHYSICAL_ADDRESS EndOfSection;
|
|
|
|
*SecCoreImageBase = 0;
|
|
|
|
CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN) BootFirmwareVolumePtr;
|
|
EndOfFirmwareVolume = CurrentAddress + BootFirmwareVolumePtr->FvLength;
|
|
|
|
//
|
|
// Loop through the FFS files in the Boot Firmware Volume
|
|
//
|
|
for (EndOfFile = CurrentAddress + BootFirmwareVolumePtr->HeaderLength; ; ) {
|
|
|
|
CurrentAddress = (EndOfFile + 7) & 0xfffffffffffffff8ULL;
|
|
if (CurrentAddress > EndOfFirmwareVolume) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
File = (EFI_FFS_FILE_HEADER*)(UINTN) CurrentAddress;
|
|
Size = FFS_FILE_SIZE (File);
|
|
if (Size < sizeof (*File)) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
EndOfFile = CurrentAddress + Size;
|
|
if (EndOfFile > EndOfFirmwareVolume) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
//
|
|
// Look for SEC Core
|
|
//
|
|
if (File->Type != EFI_FV_FILETYPE_SECURITY_CORE) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Loop through the FFS file sections within the FFS file
|
|
//
|
|
EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN) (File + 1);
|
|
for (;;) {
|
|
CurrentAddress = (EndOfSection + 3) & 0xfffffffffffffffcULL;
|
|
Section = (EFI_COMMON_SECTION_HEADER*)(UINTN) CurrentAddress;
|
|
|
|
Size = SECTION_SIZE (Section);
|
|
if (Size < sizeof (*Section)) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
EndOfSection = CurrentAddress + Size;
|
|
if (EndOfSection > EndOfFile) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
//
|
|
// Look for executable sections
|
|
//
|
|
if (Section->Type == EFI_SECTION_PE32 || Section->Type == EFI_SECTION_TE) {
|
|
if (File->Type == EFI_FV_FILETYPE_SECURITY_CORE) {
|
|
*SecCoreImageBase = (PHYSICAL_ADDRESS) (UINTN) (Section + 1);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// SEC Core image found
|
|
//
|
|
if (*SecCoreImageBase != 0) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Find and return Pei Core entry point.
|
|
|
|
It also find SEC and PEI Core file debug information. It will report them if
|
|
remote debug is enabled.
|
|
|
|
**/
|
|
VOID
|
|
FindAndReportEntryPoints (
|
|
IN EFI_FIRMWARE_VOLUME_HEADER **BootFirmwareVolumePtr,
|
|
OUT EFI_PEI_CORE_ENTRY_POINT *PeiCoreEntryPoint
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS SecCoreImageBase;
|
|
EFI_PHYSICAL_ADDRESS PeiCoreImageBase;
|
|
PE_COFF_LOADER_IMAGE_CONTEXT ImageContext;
|
|
|
|
//
|
|
// Find SEC Core and PEI Core image base
|
|
//
|
|
Status = FindImageBase (*BootFirmwareVolumePtr, &SecCoreImageBase);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
FindPeiCoreImageBase (BootFirmwareVolumePtr, &PeiCoreImageBase);
|
|
|
|
ZeroMem ((VOID *) &ImageContext, sizeof (PE_COFF_LOADER_IMAGE_CONTEXT));
|
|
//
|
|
// Report SEC Core debug information when remote debug is enabled
|
|
//
|
|
ImageContext.ImageAddress = SecCoreImageBase;
|
|
ImageContext.PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageContext.ImageAddress);
|
|
PeCoffLoaderRelocateImageExtraAction (&ImageContext);
|
|
|
|
//
|
|
// Report PEI Core debug information when remote debug is enabled
|
|
//
|
|
ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)PeiCoreImageBase;
|
|
ImageContext.PdbPointer = PeCoffLoaderGetPdbPointer ((VOID*) (UINTN) ImageContext.ImageAddress);
|
|
PeCoffLoaderRelocateImageExtraAction (&ImageContext);
|
|
|
|
//
|
|
// Find PEI Core entry point
|
|
//
|
|
Status = PeCoffLoaderGetEntryPoint ((VOID *) (UINTN) PeiCoreImageBase, (VOID**) PeiCoreEntryPoint);
|
|
if (EFI_ERROR (Status)) {
|
|
*PeiCoreEntryPoint = 0;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
Handle an SEV-ES/GHCB protocol check failure.
|
|
|
|
Notify the hypervisor using the VMGEXIT instruction that the SEV-ES guest
|
|
wishes to be terminated.
|
|
|
|
@param[in] ReasonCode Reason code to provide to the hypervisor for the
|
|
termination request.
|
|
|
|
**/
|
|
STATIC
|
|
VOID
|
|
SevEsProtocolFailure (
|
|
IN UINT8 ReasonCode
|
|
)
|
|
{
|
|
MSR_SEV_ES_GHCB_REGISTER Msr;
|
|
|
|
//
|
|
// Use the GHCB MSR Protocol to request termination by the hypervisor
|
|
//
|
|
Msr.GhcbPhysicalAddress = 0;
|
|
Msr.GhcbTerminate.Function = GHCB_INFO_TERMINATE_REQUEST;
|
|
Msr.GhcbTerminate.ReasonCodeSet = GHCB_TERMINATE_GHCB;
|
|
Msr.GhcbTerminate.ReasonCode = ReasonCode;
|
|
AsmWriteMsr64 (MSR_SEV_ES_GHCB, Msr.GhcbPhysicalAddress);
|
|
|
|
AsmVmgExit ();
|
|
|
|
ASSERT (FALSE);
|
|
CpuDeadLoop ();
|
|
}
|
|
|
|
/**
|
|
Validate the SEV-ES/GHCB protocol level.
|
|
|
|
Verify that the level of SEV-ES/GHCB protocol supported by the hypervisor
|
|
and the guest intersect. If they don't intersect, request termination.
|
|
|
|
**/
|
|
STATIC
|
|
VOID
|
|
SevEsProtocolCheck (
|
|
VOID
|
|
)
|
|
{
|
|
MSR_SEV_ES_GHCB_REGISTER Msr;
|
|
GHCB *Ghcb;
|
|
|
|
//
|
|
// Use the GHCB MSR Protocol to obtain the GHCB SEV-ES Information for
|
|
// protocol checking
|
|
//
|
|
Msr.GhcbPhysicalAddress = 0;
|
|
Msr.GhcbInfo.Function = GHCB_INFO_SEV_INFO_GET;
|
|
AsmWriteMsr64 (MSR_SEV_ES_GHCB, Msr.GhcbPhysicalAddress);
|
|
|
|
AsmVmgExit ();
|
|
|
|
Msr.GhcbPhysicalAddress = AsmReadMsr64 (MSR_SEV_ES_GHCB);
|
|
|
|
if (Msr.GhcbInfo.Function != GHCB_INFO_SEV_INFO) {
|
|
SevEsProtocolFailure (GHCB_TERMINATE_GHCB_GENERAL);
|
|
}
|
|
|
|
if (Msr.GhcbProtocol.SevEsProtocolMin > Msr.GhcbProtocol.SevEsProtocolMax) {
|
|
SevEsProtocolFailure (GHCB_TERMINATE_GHCB_PROTOCOL);
|
|
}
|
|
|
|
if ((Msr.GhcbProtocol.SevEsProtocolMin > GHCB_VERSION_MAX) ||
|
|
(Msr.GhcbProtocol.SevEsProtocolMax < GHCB_VERSION_MIN)) {
|
|
SevEsProtocolFailure (GHCB_TERMINATE_GHCB_PROTOCOL);
|
|
}
|
|
|
|
//
|
|
// SEV-ES protocol checking succeeded, set the initial GHCB address
|
|
//
|
|
Msr.GhcbPhysicalAddress = FixedPcdGet32 (PcdOvmfSecGhcbBase);
|
|
AsmWriteMsr64 (MSR_SEV_ES_GHCB, Msr.GhcbPhysicalAddress);
|
|
|
|
Ghcb = Msr.Ghcb;
|
|
SetMem (Ghcb, sizeof (*Ghcb), 0);
|
|
|
|
//
|
|
// Set the version to the maximum that can be supported
|
|
//
|
|
Ghcb->ProtocolVersion = MIN (Msr.GhcbProtocol.SevEsProtocolMax, GHCB_VERSION_MAX);
|
|
Ghcb->GhcbUsage = GHCB_STANDARD_USAGE;
|
|
}
|
|
|
|
/**
|
|
Determine if SEV-ES is active.
|
|
|
|
During early booting, SEV-ES support code will set a flag to indicate that
|
|
SEV-ES is enabled. Return the value of this flag as an indicator that SEV-ES
|
|
is enabled.
|
|
|
|
@retval TRUE SEV-ES is enabled
|
|
@retval FALSE SEV-ES is not enabled
|
|
|
|
**/
|
|
STATIC
|
|
BOOLEAN
|
|
SevEsIsEnabled (
|
|
VOID
|
|
)
|
|
{
|
|
SEC_SEV_ES_WORK_AREA *SevEsWorkArea;
|
|
|
|
SevEsWorkArea = (SEC_SEV_ES_WORK_AREA *) FixedPcdGet32 (PcdSevEsWorkAreaBase);
|
|
|
|
return ((SevEsWorkArea != NULL) && (SevEsWorkArea->SevEsEnabled != 0));
|
|
}
|
|
|
|
VOID
|
|
EFIAPI
|
|
SecCoreStartupWithStack (
|
|
IN EFI_FIRMWARE_VOLUME_HEADER *BootFv,
|
|
IN VOID *TopOfCurrentStack
|
|
)
|
|
{
|
|
EFI_SEC_PEI_HAND_OFF SecCoreData;
|
|
SEC_IDT_TABLE IdtTableInStack;
|
|
IA32_DESCRIPTOR IdtDescriptor;
|
|
UINT32 Index;
|
|
volatile UINT8 *Table;
|
|
|
|
//
|
|
// To ensure SMM can't be compromised on S3 resume, we must force re-init of
|
|
// the BaseExtractGuidedSectionLib. Since this is before library contructors
|
|
// are called, we must use a loop rather than SetMem.
|
|
//
|
|
Table = (UINT8*)(UINTN)FixedPcdGet64 (PcdGuidedExtractHandlerTableAddress);
|
|
for (Index = 0;
|
|
Index < FixedPcdGet32 (PcdGuidedExtractHandlerTableSize);
|
|
++Index) {
|
|
Table[Index] = 0;
|
|
}
|
|
|
|
//
|
|
// Initialize IDT - Since this is before library constructors are called,
|
|
// we use a loop rather than CopyMem.
|
|
//
|
|
IdtTableInStack.PeiService = NULL;
|
|
for (Index = 0; Index < SEC_IDT_ENTRY_COUNT; Index ++) {
|
|
UINT8 *Src;
|
|
UINT8 *Dst;
|
|
UINTN Byte;
|
|
|
|
Src = (UINT8 *) &mIdtEntryTemplate;
|
|
Dst = (UINT8 *) &IdtTableInStack.IdtTable[Index];
|
|
for (Byte = 0; Byte < sizeof (mIdtEntryTemplate); Byte++) {
|
|
Dst[Byte] = Src[Byte];
|
|
}
|
|
}
|
|
|
|
IdtDescriptor.Base = (UINTN)&IdtTableInStack.IdtTable;
|
|
IdtDescriptor.Limit = (UINT16)(sizeof (IdtTableInStack.IdtTable) - 1);
|
|
|
|
if (SevEsIsEnabled ()) {
|
|
SevEsProtocolCheck ();
|
|
|
|
//
|
|
// For SEV-ES guests, the exception handler is needed before calling
|
|
// ProcessLibraryConstructorList() because some of the library constructors
|
|
// perform some functions that result in #VC exceptions being generated.
|
|
//
|
|
// Due to this code executing before library constructors, *all* library
|
|
// API calls are theoretically interface contract violations. However,
|
|
// because this is SEC (executing in flash), those constructors cannot
|
|
// write variables with static storage duration anyway. Furthermore, only
|
|
// a small, restricted set of APIs, such as AsmWriteIdtr() and
|
|
// InitializeCpuExceptionHandlers(), are called, where we require that the
|
|
// underlying library not require constructors to have been invoked and
|
|
// that the library instance not trigger any #VC exceptions.
|
|
//
|
|
AsmWriteIdtr (&IdtDescriptor);
|
|
InitializeCpuExceptionHandlers (NULL);
|
|
}
|
|
|
|
ProcessLibraryConstructorList (NULL, NULL);
|
|
|
|
if (!SevEsIsEnabled ()) {
|
|
//
|
|
// For non SEV-ES guests, just load the IDTR.
|
|
//
|
|
AsmWriteIdtr (&IdtDescriptor);
|
|
} else {
|
|
//
|
|
// Under SEV-ES, the hypervisor can't modify CR0 and so can't enable
|
|
// caching in order to speed up the boot. Enable caching early for
|
|
// an SEV-ES guest.
|
|
//
|
|
AsmEnableCache ();
|
|
}
|
|
|
|
DEBUG ((DEBUG_INFO,
|
|
"SecCoreStartupWithStack(0x%x, 0x%x)\n",
|
|
(UINT32)(UINTN)BootFv,
|
|
(UINT32)(UINTN)TopOfCurrentStack
|
|
));
|
|
|
|
//
|
|
// Initialize floating point operating environment
|
|
// to be compliant with UEFI spec.
|
|
//
|
|
InitializeFloatingPointUnits ();
|
|
|
|
#if defined (MDE_CPU_X64)
|
|
//
|
|
// ASSERT that the Page Tables were set by the reset vector code to
|
|
// the address we expect.
|
|
//
|
|
ASSERT (AsmReadCr3 () == (UINTN) PcdGet32 (PcdOvmfSecPageTablesBase));
|
|
#endif
|
|
|
|
//
|
|
// |-------------| <-- TopOfCurrentStack
|
|
// | Stack | 32k
|
|
// |-------------|
|
|
// | Heap | 32k
|
|
// |-------------| <-- SecCoreData.TemporaryRamBase
|
|
//
|
|
|
|
ASSERT ((UINTN) (PcdGet32 (PcdOvmfSecPeiTempRamBase) +
|
|
PcdGet32 (PcdOvmfSecPeiTempRamSize)) ==
|
|
(UINTN) TopOfCurrentStack);
|
|
|
|
//
|
|
// Initialize SEC hand-off state
|
|
//
|
|
SecCoreData.DataSize = sizeof(EFI_SEC_PEI_HAND_OFF);
|
|
|
|
SecCoreData.TemporaryRamSize = (UINTN) PcdGet32 (PcdOvmfSecPeiTempRamSize);
|
|
SecCoreData.TemporaryRamBase = (VOID*)((UINT8 *)TopOfCurrentStack - SecCoreData.TemporaryRamSize);
|
|
|
|
SecCoreData.PeiTemporaryRamBase = SecCoreData.TemporaryRamBase;
|
|
SecCoreData.PeiTemporaryRamSize = SecCoreData.TemporaryRamSize >> 1;
|
|
|
|
SecCoreData.StackBase = (UINT8 *)SecCoreData.TemporaryRamBase + SecCoreData.PeiTemporaryRamSize;
|
|
SecCoreData.StackSize = SecCoreData.TemporaryRamSize >> 1;
|
|
|
|
SecCoreData.BootFirmwareVolumeBase = BootFv;
|
|
SecCoreData.BootFirmwareVolumeSize = (UINTN) BootFv->FvLength;
|
|
|
|
//
|
|
// Make sure the 8259 is masked before initializing the Debug Agent and the debug timer is enabled
|
|
//
|
|
IoWrite8 (0x21, 0xff);
|
|
IoWrite8 (0xA1, 0xff);
|
|
|
|
//
|
|
// Initialize Local APIC Timer hardware and disable Local APIC Timer
|
|
// interrupts before initializing the Debug Agent and the debug timer is
|
|
// enabled.
|
|
//
|
|
InitializeApicTimer (0, MAX_UINT32, TRUE, 5);
|
|
DisableApicTimerInterrupt ();
|
|
|
|
//
|
|
// Initialize Debug Agent to support source level debug in SEC/PEI phases before memory ready.
|
|
//
|
|
InitializeDebugAgent (DEBUG_AGENT_INIT_PREMEM_SEC, &SecCoreData, SecStartupPhase2);
|
|
}
|
|
|
|
/**
|
|
Caller provided function to be invoked at the end of InitializeDebugAgent().
|
|
|
|
Entry point to the C language phase of SEC. After the SEC assembly
|
|
code has initialized some temporary memory and set up the stack,
|
|
the control is transferred to this function.
|
|
|
|
@param[in] Context The first input parameter of InitializeDebugAgent().
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
SecStartupPhase2(
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
EFI_SEC_PEI_HAND_OFF *SecCoreData;
|
|
EFI_FIRMWARE_VOLUME_HEADER *BootFv;
|
|
EFI_PEI_CORE_ENTRY_POINT PeiCoreEntryPoint;
|
|
|
|
SecCoreData = (EFI_SEC_PEI_HAND_OFF *) Context;
|
|
|
|
//
|
|
// Find PEI Core entry point. It will report SEC and Pei Core debug information if remote debug
|
|
// is enabled.
|
|
//
|
|
BootFv = (EFI_FIRMWARE_VOLUME_HEADER *)SecCoreData->BootFirmwareVolumeBase;
|
|
FindAndReportEntryPoints (&BootFv, &PeiCoreEntryPoint);
|
|
SecCoreData->BootFirmwareVolumeBase = BootFv;
|
|
SecCoreData->BootFirmwareVolumeSize = (UINTN) BootFv->FvLength;
|
|
|
|
//
|
|
// Transfer the control to the PEI core
|
|
//
|
|
(*PeiCoreEntryPoint) (SecCoreData, (EFI_PEI_PPI_DESCRIPTOR *)&mPrivateDispatchTable);
|
|
|
|
//
|
|
// If we get here then the PEI Core returned, which is not recoverable.
|
|
//
|
|
ASSERT (FALSE);
|
|
CpuDeadLoop ();
|
|
}
|
|
|
|
EFI_STATUS
|
|
EFIAPI
|
|
TemporaryRamMigration (
|
|
IN CONST EFI_PEI_SERVICES **PeiServices,
|
|
IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
|
|
IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
|
|
IN UINTN CopySize
|
|
)
|
|
{
|
|
IA32_DESCRIPTOR IdtDescriptor;
|
|
VOID *OldHeap;
|
|
VOID *NewHeap;
|
|
VOID *OldStack;
|
|
VOID *NewStack;
|
|
DEBUG_AGENT_CONTEXT_POSTMEM_SEC DebugAgentContext;
|
|
BOOLEAN OldStatus;
|
|
BASE_LIBRARY_JUMP_BUFFER JumpBuffer;
|
|
|
|
DEBUG ((DEBUG_INFO,
|
|
"TemporaryRamMigration(0x%Lx, 0x%Lx, 0x%Lx)\n",
|
|
TemporaryMemoryBase,
|
|
PermanentMemoryBase,
|
|
(UINT64)CopySize
|
|
));
|
|
|
|
OldHeap = (VOID*)(UINTN)TemporaryMemoryBase;
|
|
NewHeap = (VOID*)((UINTN)PermanentMemoryBase + (CopySize >> 1));
|
|
|
|
OldStack = (VOID*)((UINTN)TemporaryMemoryBase + (CopySize >> 1));
|
|
NewStack = (VOID*)(UINTN)PermanentMemoryBase;
|
|
|
|
DebugAgentContext.HeapMigrateOffset = (UINTN)NewHeap - (UINTN)OldHeap;
|
|
DebugAgentContext.StackMigrateOffset = (UINTN)NewStack - (UINTN)OldStack;
|
|
|
|
OldStatus = SaveAndSetDebugTimerInterrupt (FALSE);
|
|
InitializeDebugAgent (DEBUG_AGENT_INIT_POSTMEM_SEC, (VOID *) &DebugAgentContext, NULL);
|
|
|
|
//
|
|
// Migrate Heap
|
|
//
|
|
CopyMem (NewHeap, OldHeap, CopySize >> 1);
|
|
|
|
//
|
|
// Migrate Stack
|
|
//
|
|
CopyMem (NewStack, OldStack, CopySize >> 1);
|
|
|
|
//
|
|
// Rebase IDT table in permanent memory
|
|
//
|
|
AsmReadIdtr (&IdtDescriptor);
|
|
IdtDescriptor.Base = IdtDescriptor.Base - (UINTN)OldStack + (UINTN)NewStack;
|
|
|
|
AsmWriteIdtr (&IdtDescriptor);
|
|
|
|
//
|
|
// Use SetJump()/LongJump() to switch to a new stack.
|
|
//
|
|
if (SetJump (&JumpBuffer) == 0) {
|
|
#if defined (MDE_CPU_IA32)
|
|
JumpBuffer.Esp = JumpBuffer.Esp + DebugAgentContext.StackMigrateOffset;
|
|
JumpBuffer.Ebp = JumpBuffer.Ebp + DebugAgentContext.StackMigrateOffset;
|
|
#endif
|
|
#if defined (MDE_CPU_X64)
|
|
JumpBuffer.Rsp = JumpBuffer.Rsp + DebugAgentContext.StackMigrateOffset;
|
|
JumpBuffer.Rbp = JumpBuffer.Rbp + DebugAgentContext.StackMigrateOffset;
|
|
#endif
|
|
LongJump (&JumpBuffer, (UINTN)-1);
|
|
}
|
|
|
|
SaveAndSetDebugTimerInterrupt (OldStatus);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|