Bugzilla: 3150 (https://bugzilla.tianocore.org/show_bug.cgi?id=3150) Fix the ECC reported error "[9002] The function headers should follow Doxygen special documentation blocks in section 2.3.5 in Comment" Signed-off-by: Sami Mujawar <sami.mujawar@arm.com> Acked-by: Jiewen Yao <Jiewen.yao@intel.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@arm.com> Reviewed-by: Liming Gao <gaoliming@byosoft.com.cn>
		
			
				
	
	
		
			903 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			903 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /** @file
 | |
|   MM Driver Dispatcher.
 | |
| 
 | |
|   Step #1 - When a FV protocol is added to the system every driver in the FV
 | |
|             is added to the mDiscoveredList. The Before, and After Depex are
 | |
|             pre-processed as drivers are added to the mDiscoveredList. If an Apriori
 | |
|             file exists in the FV those drivers are addeded to the
 | |
|             mScheduledQueue. The mFwVolList is used to make sure a
 | |
|             FV is only processed once.
 | |
| 
 | |
|   Step #2 - Dispatch. Remove driver from the mScheduledQueue and load and
 | |
|             start it. After mScheduledQueue is drained check the
 | |
|             mDiscoveredList to see if any item has a Depex that is ready to
 | |
|             be placed on the mScheduledQueue.
 | |
| 
 | |
|   Step #3 - Adding to the mScheduledQueue requires that you process Before
 | |
|             and After dependencies. This is done recursively as the call to add
 | |
|             to the mScheduledQueue checks for Before Depexes and recursively
 | |
|             adds all Before Depexes. It then adds the item that was passed in
 | |
|             and then processess the After dependencies by recursively calling
 | |
|             the routine.
 | |
| 
 | |
|   Dispatcher Rules:
 | |
|   The rules for the dispatcher are similar to the DXE dispatcher.
 | |
| 
 | |
|   The rules for DXE dispatcher are in chapter 10 of the DXE CIS. Figure 10-3
 | |
|   is the state diagram for the DXE dispatcher
 | |
| 
 | |
|   Depex - Dependency Expresion.
 | |
| 
 | |
|   Copyright (c) 2014, Hewlett-Packard Development Company, L.P.
 | |
|   Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR>
 | |
|   Copyright (c) 2016 - 2021, Arm Limited. All rights reserved.<BR>
 | |
| 
 | |
|   SPDX-License-Identifier: BSD-2-Clause-Patent
 | |
| 
 | |
| **/
 | |
| 
 | |
| #include "StandaloneMmCore.h"
 | |
| 
 | |
| //
 | |
| // MM Dispatcher Data structures
 | |
| //
 | |
| #define KNOWN_FWVOL_SIGNATURE  SIGNATURE_32('k','n','o','w')
 | |
| 
 | |
| typedef struct {
 | |
|   UINTN                      Signature;
 | |
|   LIST_ENTRY                 Link;         // mFwVolList
 | |
|   EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader;
 | |
| } KNOWN_FWVOL;
 | |
| 
 | |
| //
 | |
| // Function Prototypes
 | |
| //
 | |
| 
 | |
| EFI_STATUS
 | |
| MmCoreFfsFindMmDriver (
 | |
|   IN  EFI_FIRMWARE_VOLUME_HEADER  *FwVolHeader
 | |
|   );
 | |
| 
 | |
| /**
 | |
|   Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
 | |
|   must add any driver with a before dependency on InsertedDriverEntry first.
 | |
|   You do this by recursively calling this routine. After all the Before Depexes
 | |
|   are processed you can add InsertedDriverEntry to the mScheduledQueue.
 | |
|   Then you can add any driver with an After dependency on InsertedDriverEntry
 | |
|   by recursively calling this routine.
 | |
| 
 | |
|   @param  InsertedDriverEntry   The driver to insert on the ScheduledLink Queue
 | |
| 
 | |
| **/
 | |
| VOID
 | |
| MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
 | |
|   IN  EFI_MM_DRIVER_ENTRY   *InsertedDriverEntry
 | |
|   );
 | |
| 
 | |
| //
 | |
| // The Driver List contains one copy of every driver that has been discovered.
 | |
| // Items are never removed from the driver list. List of EFI_MM_DRIVER_ENTRY
 | |
| //
 | |
| LIST_ENTRY  mDiscoveredList = INITIALIZE_LIST_HEAD_VARIABLE (mDiscoveredList);
 | |
| 
 | |
| //
 | |
| // Queue of drivers that are ready to dispatch. This queue is a subset of the
 | |
| // mDiscoveredList.list of EFI_MM_DRIVER_ENTRY.
 | |
| //
 | |
| LIST_ENTRY  mScheduledQueue = INITIALIZE_LIST_HEAD_VARIABLE (mScheduledQueue);
 | |
| 
 | |
| //
 | |
| // List of firmware volume headers whose containing firmware volumes have been
 | |
| // parsed and added to the mFwDriverList.
 | |
| //
 | |
| LIST_ENTRY  mFwVolList = INITIALIZE_LIST_HEAD_VARIABLE (mFwVolList);
 | |
| 
 | |
| //
 | |
| // Flag for the MM Dispacher.  TRUE if dispatcher is executing.
 | |
| //
 | |
| BOOLEAN  gDispatcherRunning = FALSE;
 | |
| 
 | |
| //
 | |
| // Flag for the MM Dispacher.  TRUE if there is one or more MM drivers ready to be dispatched
 | |
| //
 | |
| BOOLEAN  gRequestDispatch = FALSE;
 | |
| 
 | |
| //
 | |
| // The global variable is defined for Loading modules at fixed address feature to track the MM code
 | |
| // memory range usage. It is a bit mapped array in which every bit indicates the correspoding
 | |
| // memory page available or not.
 | |
| //
 | |
| GLOBAL_REMOVE_IF_UNREFERENCED    UINT64                *mMmCodeMemoryRangeUsageBitMap=NULL;
 | |
| 
 | |
| /**
 | |
|   To check memory usage bit map array to figure out if the memory range in which the image will be loaded
 | |
|   is available or not. If memory range is avaliable, the function will mark the corresponding bits to 1
 | |
|   which indicates the memory range is used. The function is only invoked when load modules at fixed address
 | |
|   feature is enabled.
 | |
| 
 | |
|   @param  ImageBase                The base addres the image will be loaded at.
 | |
|   @param  ImageSize                The size of the image
 | |
| 
 | |
|   @retval EFI_SUCCESS              The memory range the image will be loaded in is available
 | |
|   @retval EFI_NOT_FOUND            The memory range the image will be loaded in is not available
 | |
| **/
 | |
| EFI_STATUS
 | |
| CheckAndMarkFixLoadingMemoryUsageBitMap (
 | |
|   IN  EFI_PHYSICAL_ADDRESS          ImageBase,
 | |
|   IN  UINTN                         ImageSize
 | |
|   )
 | |
| {
 | |
|   UINT32                             MmCodePageNumber;
 | |
|   UINT64                             MmCodeSize;
 | |
|   EFI_PHYSICAL_ADDRESS               MmCodeBase;
 | |
|   UINTN                              BaseOffsetPageNumber;
 | |
|   UINTN                              TopOffsetPageNumber;
 | |
|   UINTN                              Index;
 | |
| 
 | |
|   //
 | |
|   // Build tool will calculate the smm code size and then patch the PcdLoadFixAddressMmCodePageNumber
 | |
|   //
 | |
|   MmCodePageNumber = 0;
 | |
|   MmCodeSize = EFI_PAGES_TO_SIZE (MmCodePageNumber);
 | |
|   MmCodeBase = gLoadModuleAtFixAddressMmramBase;
 | |
| 
 | |
|   //
 | |
|   // If the memory usage bit map is not initialized,  do it. Every bit in the array
 | |
|   // indicate the status of the corresponding memory page, available or not
 | |
|   //
 | |
|   if (mMmCodeMemoryRangeUsageBitMap == NULL) {
 | |
|     mMmCodeMemoryRangeUsageBitMap = AllocateZeroPool (((MmCodePageNumber / 64) + 1) * sizeof (UINT64));
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // If the Dxe code memory range is not allocated or the bit map array allocation failed, return EFI_NOT_FOUND
 | |
|   //
 | |
|   if (mMmCodeMemoryRangeUsageBitMap == NULL) {
 | |
|     return EFI_NOT_FOUND;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // see if the memory range for loading the image is in the MM code range.
 | |
|   //
 | |
|   if (MmCodeBase + MmCodeSize <  ImageBase + ImageSize || MmCodeBase >  ImageBase) {
 | |
|     return EFI_NOT_FOUND;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Test if the memory is available or not.
 | |
|   //
 | |
|   BaseOffsetPageNumber = (UINTN)EFI_SIZE_TO_PAGES ((UINT32)(ImageBase - MmCodeBase));
 | |
|   TopOffsetPageNumber  = (UINTN)EFI_SIZE_TO_PAGES ((UINT32)(ImageBase + ImageSize - MmCodeBase));
 | |
|   for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
 | |
|     if ((mMmCodeMemoryRangeUsageBitMap[Index / 64] & LShiftU64 (1, (Index % 64))) != 0) {
 | |
|       //
 | |
|       // This page is already used.
 | |
|       //
 | |
|       return EFI_NOT_FOUND;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Being here means the memory range is available.  So mark the bits for the memory range
 | |
|   //
 | |
|   for (Index = BaseOffsetPageNumber; Index < TopOffsetPageNumber; Index ++) {
 | |
|     mMmCodeMemoryRangeUsageBitMap[Index / 64] |= LShiftU64 (1, (Index % 64));
 | |
|   }
 | |
|   return  EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Get the fixed loading address from image header assigned by build tool. This function only be called
 | |
|   when Loading module at Fixed address feature enabled.
 | |
| 
 | |
|   @param  ImageContext              Pointer to the image context structure that describes the PE/COFF
 | |
|                                     image that needs to be examined by this function.
 | |
|   @retval EFI_SUCCESS               An fixed loading address is assigned to this image by build tools .
 | |
|   @retval EFI_NOT_FOUND             The image has no assigned fixed loadding address.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| GetPeCoffImageFixLoadingAssignedAddress(
 | |
|   IN OUT PE_COFF_LOADER_IMAGE_CONTEXT  *ImageContext
 | |
|   )
 | |
| {
 | |
|   UINTN                              SectionHeaderOffset;
 | |
|   EFI_STATUS                         Status;
 | |
|   EFI_IMAGE_SECTION_HEADER           SectionHeader;
 | |
|   EFI_IMAGE_OPTIONAL_HEADER_UNION    *ImgHdr;
 | |
|   EFI_PHYSICAL_ADDRESS               FixLoadingAddress;
 | |
|   UINT16                             Index;
 | |
|   UINTN                              Size;
 | |
|   UINT16                             NumberOfSections;
 | |
|   UINT64                             ValueInSectionHeader;
 | |
| 
 | |
|   FixLoadingAddress = 0;
 | |
|   Status = EFI_NOT_FOUND;
 | |
| 
 | |
|   //
 | |
|   // Get PeHeader pointer
 | |
|   //
 | |
|   ImgHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)((CHAR8* )ImageContext->Handle + ImageContext->PeCoffHeaderOffset);
 | |
|   SectionHeaderOffset = ImageContext->PeCoffHeaderOffset + sizeof (UINT32) + sizeof (EFI_IMAGE_FILE_HEADER) +
 | |
|     ImgHdr->Pe32.FileHeader.SizeOfOptionalHeader;
 | |
|   NumberOfSections = ImgHdr->Pe32.FileHeader.NumberOfSections;
 | |
| 
 | |
|   //
 | |
|   // Get base address from the first section header that doesn't point to code section.
 | |
|   //
 | |
|   for (Index = 0; Index < NumberOfSections; Index++) {
 | |
|     //
 | |
|     // Read section header from file
 | |
|     //
 | |
|     Size = sizeof (EFI_IMAGE_SECTION_HEADER);
 | |
|     Status = ImageContext->ImageRead (
 | |
|                              ImageContext->Handle,
 | |
|                              SectionHeaderOffset,
 | |
|                              &Size,
 | |
|                              &SectionHeader
 | |
|                              );
 | |
|     if (EFI_ERROR (Status)) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     Status = EFI_NOT_FOUND;
 | |
| 
 | |
|     if ((SectionHeader.Characteristics & EFI_IMAGE_SCN_CNT_CODE) == 0) {
 | |
|       //
 | |
|       // Build tool will save the address in PointerToRelocations & PointerToLineNumbers fields
 | |
|       // in the first section header that doesn't point to code section in image header. So there
 | |
|       // is an assumption that when the feature is enabled, if a module with a loading address
 | |
|       // assigned by tools, the PointerToRelocations & PointerToLineNumbers fields should not be
 | |
|       // Zero, or else, these 2 fields should be set to Zero
 | |
|       //
 | |
|       ValueInSectionHeader = ReadUnaligned64 ((UINT64*)&SectionHeader.PointerToRelocations);
 | |
|       if (ValueInSectionHeader != 0) {
 | |
|         //
 | |
|         // Found first section header that doesn't point to code section in which build tool saves the
 | |
|         // offset to SMRAM base as image base in PointerToRelocations & PointerToLineNumbers fields
 | |
|         //
 | |
|         FixLoadingAddress = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressMmramBase + (INT64)ValueInSectionHeader);
 | |
|         //
 | |
|         // Check if the memory range is available.
 | |
|         //
 | |
|         Status = CheckAndMarkFixLoadingMemoryUsageBitMap (FixLoadingAddress, (UINTN)(ImageContext->ImageSize + ImageContext->SectionAlignment));
 | |
|         if (!EFI_ERROR(Status)) {
 | |
|           //
 | |
|           // The assigned address is valid. Return the specified loading address
 | |
|           //
 | |
|           ImageContext->ImageAddress = FixLoadingAddress;
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     SectionHeaderOffset += sizeof (EFI_IMAGE_SECTION_HEADER);
 | |
|   }
 | |
|   DEBUG ((DEBUG_INFO|DEBUG_LOAD, "LOADING MODULE FIXED INFO: Loading module at fixed address %x, Status = %r\n",
 | |
|           FixLoadingAddress, Status));
 | |
|   return Status;
 | |
| }
 | |
| /**
 | |
|   Loads an EFI image into SMRAM.
 | |
| 
 | |
|   @param  DriverEntry             EFI_MM_DRIVER_ENTRY instance
 | |
| 
 | |
|   @return EFI_STATUS
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| MmLoadImage (
 | |
|   IN OUT EFI_MM_DRIVER_ENTRY  *DriverEntry
 | |
|   )
 | |
| {
 | |
|   UINTN                          PageCount;
 | |
|   EFI_STATUS                     Status;
 | |
|   EFI_PHYSICAL_ADDRESS           DstBuffer;
 | |
|   PE_COFF_LOADER_IMAGE_CONTEXT   ImageContext;
 | |
| 
 | |
|   DEBUG ((DEBUG_INFO, "MmLoadImage - %g\n", &DriverEntry->FileName));
 | |
| 
 | |
|   Status               = EFI_SUCCESS;
 | |
| 
 | |
|   //
 | |
|   // Initialize ImageContext
 | |
|   //
 | |
|   ImageContext.Handle = DriverEntry->Pe32Data;
 | |
|   ImageContext.ImageRead = PeCoffLoaderImageReadFromMemory;
 | |
| 
 | |
|   //
 | |
|   // Get information about the image being loaded
 | |
|   //
 | |
|   Status = PeCoffLoaderGetImageInfo (&ImageContext);
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     return Status;
 | |
|   }
 | |
| 
 | |
|   PageCount = (UINTN)EFI_SIZE_TO_PAGES ((UINTN)ImageContext.ImageSize + ImageContext.SectionAlignment);
 | |
|   DstBuffer = (UINTN)(-1);
 | |
| 
 | |
|   Status = MmAllocatePages (
 | |
|              AllocateMaxAddress,
 | |
|              EfiRuntimeServicesCode,
 | |
|              PageCount,
 | |
|              &DstBuffer
 | |
|              );
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     return Status;
 | |
|   }
 | |
| 
 | |
|   ImageContext.ImageAddress = (EFI_PHYSICAL_ADDRESS)DstBuffer;
 | |
| 
 | |
|   //
 | |
|   // Align buffer on section boundary
 | |
|   //
 | |
|   ImageContext.ImageAddress += ImageContext.SectionAlignment - 1;
 | |
|   ImageContext.ImageAddress &= ~((EFI_PHYSICAL_ADDRESS)(ImageContext.SectionAlignment - 1));
 | |
| 
 | |
|   //
 | |
|   // Load the image to our new buffer
 | |
|   //
 | |
|   Status = PeCoffLoaderLoadImage (&ImageContext);
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     MmFreePages (DstBuffer, PageCount);
 | |
|     return Status;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Relocate the image in our new buffer
 | |
|   //
 | |
|   Status = PeCoffLoaderRelocateImage (&ImageContext);
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     MmFreePages (DstBuffer, PageCount);
 | |
|     return Status;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Flush the instruction cache so the image data are written before we execute it
 | |
|   //
 | |
|   InvalidateInstructionCacheRange ((VOID *)(UINTN) ImageContext.ImageAddress, (UINTN) ImageContext.ImageSize);
 | |
| 
 | |
|   //
 | |
|   // Save Image EntryPoint in DriverEntry
 | |
|   //
 | |
|   DriverEntry->ImageEntryPoint  = ImageContext.EntryPoint;
 | |
|   DriverEntry->ImageBuffer      = DstBuffer;
 | |
|   DriverEntry->NumberOfPage     = PageCount;
 | |
| 
 | |
|   if (mEfiSystemTable != NULL) {
 | |
|     Status = mEfiSystemTable->BootServices->AllocatePool (
 | |
|                                               EfiBootServicesData,
 | |
|                                               sizeof (EFI_LOADED_IMAGE_PROTOCOL),
 | |
|                                               (VOID **)&DriverEntry->LoadedImage
 | |
|                                               );
 | |
|     if (EFI_ERROR (Status)) {
 | |
|       MmFreePages (DstBuffer, PageCount);
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     ZeroMem (DriverEntry->LoadedImage, sizeof (EFI_LOADED_IMAGE_PROTOCOL));
 | |
|     //
 | |
|     // Fill in the remaining fields of the Loaded Image Protocol instance.
 | |
|     // Note: ImageBase is an SMRAM address that can not be accessed outside of SMRAM if SMRAM window is closed.
 | |
|     //
 | |
|     DriverEntry->LoadedImage->Revision      = EFI_LOADED_IMAGE_PROTOCOL_REVISION;
 | |
|     DriverEntry->LoadedImage->ParentHandle  = NULL;
 | |
|     DriverEntry->LoadedImage->SystemTable   = mEfiSystemTable;
 | |
|     DriverEntry->LoadedImage->DeviceHandle  = NULL;
 | |
|     DriverEntry->LoadedImage->FilePath      = NULL;
 | |
| 
 | |
|     DriverEntry->LoadedImage->ImageBase     = (VOID *)(UINTN)DriverEntry->ImageBuffer;
 | |
|     DriverEntry->LoadedImage->ImageSize     = ImageContext.ImageSize;
 | |
|     DriverEntry->LoadedImage->ImageCodeType = EfiRuntimeServicesCode;
 | |
|     DriverEntry->LoadedImage->ImageDataType = EfiRuntimeServicesData;
 | |
| 
 | |
|     //
 | |
|     // Create a new image handle in the UEFI handle database for the MM Driver
 | |
|     //
 | |
|     DriverEntry->ImageHandle = NULL;
 | |
|     Status = mEfiSystemTable->BootServices->InstallMultipleProtocolInterfaces (
 | |
|                                               &DriverEntry->ImageHandle,
 | |
|                                               &gEfiLoadedImageProtocolGuid,
 | |
|                                               DriverEntry->LoadedImage,
 | |
|                                               NULL
 | |
|                                               );
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Print the load address and the PDB file name if it is available
 | |
|   //
 | |
|   DEBUG_CODE_BEGIN ();
 | |
| 
 | |
|   UINTN Index;
 | |
|   UINTN StartIndex;
 | |
|   CHAR8 EfiFileName[256];
 | |
| 
 | |
|   DEBUG ((DEBUG_INFO | DEBUG_LOAD,
 | |
|           "Loading MM driver at 0x%11p EntryPoint=0x%11p ",
 | |
|           (VOID *)(UINTN) ImageContext.ImageAddress,
 | |
|           FUNCTION_ENTRY_POINT (ImageContext.EntryPoint)));
 | |
| 
 | |
|   //
 | |
|   // Print Module Name by Pdb file path.
 | |
|   // Windows and Unix style file path are all trimmed correctly.
 | |
|   //
 | |
|   if (ImageContext.PdbPointer != NULL) {
 | |
|     StartIndex = 0;
 | |
|     for (Index = 0; ImageContext.PdbPointer[Index] != 0; Index++) {
 | |
|       if ((ImageContext.PdbPointer[Index] == '\\') || (ImageContext.PdbPointer[Index] == '/')) {
 | |
|         StartIndex = Index + 1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Copy the PDB file name to our temporary string, and replace .pdb with .efi
 | |
|     // The PDB file name is limited in the range of 0~255.
 | |
|     // If the length is bigger than 255, trim the redundant characters to avoid overflow in array boundary.
 | |
|     //
 | |
|     for (Index = 0; Index < sizeof (EfiFileName) - 4; Index++) {
 | |
|       EfiFileName[Index] = ImageContext.PdbPointer[Index + StartIndex];
 | |
|       if (EfiFileName[Index] == 0) {
 | |
|         EfiFileName[Index] = '.';
 | |
|       }
 | |
|       if (EfiFileName[Index] == '.') {
 | |
|         EfiFileName[Index + 1] = 'e';
 | |
|         EfiFileName[Index + 2] = 'f';
 | |
|         EfiFileName[Index + 3] = 'i';
 | |
|         EfiFileName[Index + 4] = 0;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Index == sizeof (EfiFileName) - 4) {
 | |
|       EfiFileName[Index] = 0;
 | |
|     }
 | |
|     DEBUG ((DEBUG_INFO | DEBUG_LOAD, "%a", EfiFileName));
 | |
|   }
 | |
|   DEBUG ((DEBUG_INFO | DEBUG_LOAD, "\n"));
 | |
| 
 | |
|   DEBUG_CODE_END ();
 | |
| 
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Preprocess dependency expression and update DriverEntry to reflect the
 | |
|   state of  Before and After dependencies. If DriverEntry->Before
 | |
|   or DriverEntry->After is set it will never be cleared.
 | |
| 
 | |
|   @param  DriverEntry           DriverEntry element to update .
 | |
| 
 | |
|   @retval EFI_SUCCESS           It always works.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| MmPreProcessDepex (
 | |
|   IN EFI_MM_DRIVER_ENTRY  *DriverEntry
 | |
|   )
 | |
| {
 | |
|   UINT8  *Iterator;
 | |
| 
 | |
|   Iterator = DriverEntry->Depex;
 | |
|   DriverEntry->Dependent = TRUE;
 | |
| 
 | |
|   if (*Iterator == EFI_DEP_BEFORE) {
 | |
|     DriverEntry->Before = TRUE;
 | |
|   } else if (*Iterator == EFI_DEP_AFTER) {
 | |
|     DriverEntry->After = TRUE;
 | |
|   }
 | |
| 
 | |
|   if (DriverEntry->Before || DriverEntry->After) {
 | |
|     CopyMem (&DriverEntry->BeforeAfterGuid, Iterator + 1, sizeof (EFI_GUID));
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Read Depex and pre-process the Depex for Before and After. If Section Extraction
 | |
|   protocol returns an error via ReadSection defer the reading of the Depex.
 | |
| 
 | |
|   @param  DriverEntry           Driver to work on.
 | |
| 
 | |
|   @retval EFI_SUCCESS           Depex read and preprossesed
 | |
|   @retval EFI_PROTOCOL_ERROR    The section extraction protocol returned an error
 | |
|                                 and  Depex reading needs to be retried.
 | |
|   @retval Error                 DEPEX not found.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| MmGetDepexSectionAndPreProccess (
 | |
|   IN EFI_MM_DRIVER_ENTRY  *DriverEntry
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS                     Status;
 | |
| 
 | |
|   //
 | |
|   // Data already read
 | |
|   //
 | |
|   if (DriverEntry->Depex == NULL) {
 | |
|     Status = EFI_NOT_FOUND;
 | |
|   } else {
 | |
|     Status = EFI_SUCCESS;
 | |
|   }
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     if (Status == EFI_PROTOCOL_ERROR) {
 | |
|       //
 | |
|       // The section extraction protocol failed so set protocol error flag
 | |
|       //
 | |
|       DriverEntry->DepexProtocolError = TRUE;
 | |
|     } else {
 | |
|       //
 | |
|       // If no Depex assume depend on all architectural protocols
 | |
|       //
 | |
|       DriverEntry->Depex = NULL;
 | |
|       DriverEntry->Dependent = TRUE;
 | |
|       DriverEntry->DepexProtocolError = FALSE;
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Set Before and After state information based on Depex
 | |
|     // Driver will be put in Dependent state
 | |
|     //
 | |
|     MmPreProcessDepex (DriverEntry);
 | |
|     DriverEntry->DepexProtocolError = FALSE;
 | |
|   }
 | |
| 
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   This is the main Dispatcher for MM and it exits when there are no more
 | |
|   drivers to run. Drain the mScheduledQueue and load and start a PE
 | |
|   image for each driver. Search the mDiscoveredList to see if any driver can
 | |
|   be placed on the mScheduledQueue. If no drivers are placed on the
 | |
|   mScheduledQueue exit the function.
 | |
| 
 | |
|   @retval EFI_SUCCESS           All of the MM Drivers that could be dispatched
 | |
|                                 have been run and the MM Entry Point has been
 | |
|                                 registered.
 | |
|   @retval EFI_NOT_READY         The MM Driver that registered the MM Entry Point
 | |
|                                 was just dispatched.
 | |
|   @retval EFI_NOT_FOUND         There are no MM Drivers available to be dispatched.
 | |
|   @retval EFI_ALREADY_STARTED   The MM Dispatcher is already running
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| MmDispatcher (
 | |
|   VOID
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS            Status;
 | |
|   LIST_ENTRY            *Link;
 | |
|   EFI_MM_DRIVER_ENTRY  *DriverEntry;
 | |
|   BOOLEAN               ReadyToRun;
 | |
| 
 | |
|   DEBUG ((DEBUG_INFO, "MmDispatcher\n"));
 | |
| 
 | |
|   if (!gRequestDispatch) {
 | |
|     DEBUG ((DEBUG_INFO, "  !gRequestDispatch\n"));
 | |
|     return EFI_NOT_FOUND;
 | |
|   }
 | |
| 
 | |
|   if (gDispatcherRunning) {
 | |
|     DEBUG ((DEBUG_INFO, "  gDispatcherRunning\n"));
 | |
|     //
 | |
|     // If the dispatcher is running don't let it be restarted.
 | |
|     //
 | |
|     return EFI_ALREADY_STARTED;
 | |
|   }
 | |
| 
 | |
|   gDispatcherRunning = TRUE;
 | |
| 
 | |
|   do {
 | |
|     //
 | |
|     // Drain the Scheduled Queue
 | |
|     //
 | |
|     DEBUG ((DEBUG_INFO, "  Drain the Scheduled Queue\n"));
 | |
|     while (!IsListEmpty (&mScheduledQueue)) {
 | |
|       DriverEntry = CR (
 | |
|                       mScheduledQueue.ForwardLink,
 | |
|                       EFI_MM_DRIVER_ENTRY,
 | |
|                       ScheduledLink,
 | |
|                       EFI_MM_DRIVER_ENTRY_SIGNATURE
 | |
|                       );
 | |
|       DEBUG ((DEBUG_INFO, "  DriverEntry (Scheduled) - %g\n", &DriverEntry->FileName));
 | |
| 
 | |
|       //
 | |
|       // Load the MM Driver image into memory. If the Driver was transitioned from
 | |
|       // Untrusted to Scheduled it would have already been loaded so we may need to
 | |
|       // skip the LoadImage
 | |
|       //
 | |
|       if (DriverEntry->ImageHandle == NULL) {
 | |
|         Status = MmLoadImage (DriverEntry);
 | |
| 
 | |
|         //
 | |
|         // Update the driver state to reflect that it's been loaded
 | |
|         //
 | |
|         if (EFI_ERROR (Status)) {
 | |
|           //
 | |
|           // The MM Driver could not be loaded, and do not attempt to load or start it again.
 | |
|           // Take driver from Scheduled to Initialized.
 | |
|           //
 | |
|           DriverEntry->Initialized  = TRUE;
 | |
|           DriverEntry->Scheduled = FALSE;
 | |
|           RemoveEntryList (&DriverEntry->ScheduledLink);
 | |
| 
 | |
|           //
 | |
|           // If it's an error don't try the StartImage
 | |
|           //
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       DriverEntry->Scheduled    = FALSE;
 | |
|       DriverEntry->Initialized  = TRUE;
 | |
|       RemoveEntryList (&DriverEntry->ScheduledLink);
 | |
| 
 | |
|       //
 | |
|       // For each MM driver, pass NULL as ImageHandle
 | |
|       //
 | |
|       if (mEfiSystemTable == NULL) {
 | |
|         DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Standalone Mode)\n", DriverEntry->ImageEntryPoint));
 | |
|         Status = ((MM_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint) (DriverEntry->ImageHandle, &gMmCoreMmst);
 | |
|       } else {
 | |
|         DEBUG ((DEBUG_INFO, "StartImage - 0x%x (Tradition Mode)\n", DriverEntry->ImageEntryPoint));
 | |
|         Status = ((EFI_IMAGE_ENTRY_POINT)(UINTN)DriverEntry->ImageEntryPoint) (
 | |
|                                                                DriverEntry->ImageHandle,
 | |
|                                                                mEfiSystemTable
 | |
|                                                                );
 | |
|       }
 | |
|       if (EFI_ERROR(Status)) {
 | |
|         DEBUG ((DEBUG_INFO, "StartImage Status - %r\n", Status));
 | |
|         MmFreePages(DriverEntry->ImageBuffer, DriverEntry->NumberOfPage);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Search DriverList for items to place on Scheduled Queue
 | |
|     //
 | |
|     DEBUG ((DEBUG_INFO, "  Search DriverList for items to place on Scheduled Queue\n"));
 | |
|     ReadyToRun = FALSE;
 | |
|     for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
 | |
|       DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
 | |
|       DEBUG ((DEBUG_INFO, "  DriverEntry (Discovered) - %g\n", &DriverEntry->FileName));
 | |
| 
 | |
|       if (DriverEntry->DepexProtocolError) {
 | |
|         //
 | |
|         // If Section Extraction Protocol did not let the Depex be read before retry the read
 | |
|         //
 | |
|         Status = MmGetDepexSectionAndPreProccess (DriverEntry);
 | |
|       }
 | |
| 
 | |
|       if (DriverEntry->Dependent) {
 | |
|         if (MmIsSchedulable (DriverEntry)) {
 | |
|           MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
 | |
|           ReadyToRun = TRUE;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } while (ReadyToRun);
 | |
| 
 | |
|   //
 | |
|   // If there is no more MM driver to dispatch, stop the dispatch request
 | |
|   //
 | |
|   DEBUG ((DEBUG_INFO, "  no more MM driver to dispatch, stop the dispatch request\n"));
 | |
|   gRequestDispatch = FALSE;
 | |
|   for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
 | |
|     DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
 | |
|     DEBUG ((DEBUG_INFO, "  DriverEntry (Discovered) - %g\n", &DriverEntry->FileName));
 | |
| 
 | |
|     if (!DriverEntry->Initialized) {
 | |
|       //
 | |
|       // We have MM driver pending to dispatch
 | |
|       //
 | |
|       gRequestDispatch = TRUE;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   gDispatcherRunning = FALSE;
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Insert InsertedDriverEntry onto the mScheduledQueue. To do this you
 | |
|   must add any driver with a before dependency on InsertedDriverEntry first.
 | |
|   You do this by recursively calling this routine. After all the Before Depexes
 | |
|   are processed you can add InsertedDriverEntry to the mScheduledQueue.
 | |
|   Then you can add any driver with an After dependency on InsertedDriverEntry
 | |
|   by recursively calling this routine.
 | |
| 
 | |
|   @param  InsertedDriverEntry   The driver to insert on the ScheduledLink Queue
 | |
| 
 | |
| **/
 | |
| VOID
 | |
| MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (
 | |
|   IN  EFI_MM_DRIVER_ENTRY   *InsertedDriverEntry
 | |
|   )
 | |
| {
 | |
|   LIST_ENTRY            *Link;
 | |
|   EFI_MM_DRIVER_ENTRY *DriverEntry;
 | |
| 
 | |
|   //
 | |
|   // Process Before Dependency
 | |
|   //
 | |
|   for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
 | |
|     DriverEntry = CR(Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
 | |
|     if (DriverEntry->Before && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
 | |
|       DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
 | |
|       DEBUG ((DEBUG_DISPATCH, "  BEFORE FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
 | |
|       if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
 | |
|         //
 | |
|         // Recursively process BEFORE
 | |
|         //
 | |
|         DEBUG ((DEBUG_DISPATCH, "TRUE\n  END\n  RESULT = TRUE\n"));
 | |
|         MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
 | |
|       } else {
 | |
|         DEBUG ((DEBUG_DISPATCH, "FALSE\n  END\n  RESULT = FALSE\n"));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Convert driver from Dependent to Scheduled state
 | |
|   //
 | |
| 
 | |
|   InsertedDriverEntry->Dependent = FALSE;
 | |
|   InsertedDriverEntry->Scheduled = TRUE;
 | |
|   InsertTailList (&mScheduledQueue, &InsertedDriverEntry->ScheduledLink);
 | |
| 
 | |
| 
 | |
|   //
 | |
|   // Process After Dependency
 | |
|   //
 | |
|   for (Link = mDiscoveredList.ForwardLink; Link != &mDiscoveredList; Link = Link->ForwardLink) {
 | |
|     DriverEntry = CR(Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
 | |
|     if (DriverEntry->After && DriverEntry->Dependent && DriverEntry != InsertedDriverEntry) {
 | |
|       DEBUG ((DEBUG_DISPATCH, "Evaluate MM DEPEX for FFS(%g)\n", &DriverEntry->FileName));
 | |
|       DEBUG ((DEBUG_DISPATCH, "  AFTER FFS(%g) = ", &DriverEntry->BeforeAfterGuid));
 | |
|       if (CompareGuid (&InsertedDriverEntry->FileName, &DriverEntry->BeforeAfterGuid)) {
 | |
|         //
 | |
|         // Recursively process AFTER
 | |
|         //
 | |
|         DEBUG ((DEBUG_DISPATCH, "TRUE\n  END\n  RESULT = TRUE\n"));
 | |
|         MmInsertOnScheduledQueueWhileProcessingBeforeAndAfter (DriverEntry);
 | |
|       } else {
 | |
|         DEBUG ((DEBUG_DISPATCH, "FALSE\n  END\n  RESULT = FALSE\n"));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Return TRUE if the firmware volume has been processed, FALSE if not.
 | |
| 
 | |
|   @param  FwVolHeader           The header of the firmware volume that's being
 | |
|                                 tested.
 | |
| 
 | |
|   @retval TRUE                  The firmware volume denoted by FwVolHeader has
 | |
|                                 been processed
 | |
|   @retval FALSE                 The firmware volume denoted by FwVolHeader has
 | |
|                                 not yet been processed
 | |
| 
 | |
| **/
 | |
| BOOLEAN
 | |
| FvHasBeenProcessed (
 | |
|   IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader
 | |
|   )
 | |
| {
 | |
|   LIST_ENTRY    *Link;
 | |
|   KNOWN_FWVOL   *KnownFwVol;
 | |
| 
 | |
|   for (Link = mFwVolList.ForwardLink;
 | |
|        Link != &mFwVolList;
 | |
|        Link = Link->ForwardLink) {
 | |
|     KnownFwVol = CR (Link, KNOWN_FWVOL, Link, KNOWN_FWVOL_SIGNATURE);
 | |
|     if (KnownFwVol->FwVolHeader == FwVolHeader) {
 | |
|       return TRUE;
 | |
|     }
 | |
|   }
 | |
|   return FALSE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Remember that the firmware volume denoted by FwVolHeader has had its drivers
 | |
|   placed on mDiscoveredList. This function adds entries to mFwVolList. Items
 | |
|   are never removed/freed from mFwVolList.
 | |
| 
 | |
|   @param  FwVolHeader           The header of the firmware volume that's being
 | |
|                                 processed.
 | |
| 
 | |
| **/
 | |
| VOID
 | |
| FvIsBeingProcessed (
 | |
|   IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader
 | |
|   )
 | |
| {
 | |
|   KNOWN_FWVOL   *KnownFwVol;
 | |
| 
 | |
|   DEBUG ((DEBUG_INFO, "FvIsBeingProcessed - 0x%08x\n", FwVolHeader));
 | |
| 
 | |
|   KnownFwVol = AllocatePool (sizeof (KNOWN_FWVOL));
 | |
|   ASSERT (KnownFwVol != NULL);
 | |
| 
 | |
|   KnownFwVol->Signature = KNOWN_FWVOL_SIGNATURE;
 | |
|   KnownFwVol->FwVolHeader = FwVolHeader;
 | |
|   InsertTailList (&mFwVolList, &KnownFwVol->Link);
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Add an entry to the mDiscoveredList. Allocate memory to store the DriverEntry,
 | |
|   and initialise any state variables. Read the Depex from the FV and store it
 | |
|   in DriverEntry. Pre-process the Depex to set the Before and After state.
 | |
|   The Discovered list is never freed and contains booleans that represent the
 | |
|   other possible MM driver states.
 | |
| 
 | |
|   @param [in]   FwVolHeader     Pointer to the formware volume header.
 | |
|   @param [in]   Pe32Data        Pointer to the PE data.
 | |
|   @param [in]   Pe32DataSize    Size of the PE data.
 | |
|   @param [in]   Depex           Pointer to the Depex info.
 | |
|   @param [in]   DepexSize       Size of the Depex info.
 | |
|   @param [in]   DriverName      Name of driver to add to mDiscoveredList.
 | |
| 
 | |
|   @retval EFI_SUCCESS           If driver was added to the mDiscoveredList.
 | |
| **/
 | |
| EFI_STATUS
 | |
| MmAddToDriverList (
 | |
|   IN EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader,
 | |
|   IN VOID                       *Pe32Data,
 | |
|   IN UINTN                      Pe32DataSize,
 | |
|   IN VOID                       *Depex,
 | |
|   IN UINTN                      DepexSize,
 | |
|   IN EFI_GUID                   *DriverName
 | |
|   )
 | |
| {
 | |
|   EFI_MM_DRIVER_ENTRY  *DriverEntry;
 | |
| 
 | |
|   DEBUG ((DEBUG_INFO, "MmAddToDriverList - %g (0x%08x)\n", DriverName, Pe32Data));
 | |
| 
 | |
|   //
 | |
|   // Create the Driver Entry for the list. ZeroPool initializes lots of variables to
 | |
|   // NULL or FALSE.
 | |
|   //
 | |
|   DriverEntry = AllocateZeroPool (sizeof (EFI_MM_DRIVER_ENTRY));
 | |
|   ASSERT (DriverEntry != NULL);
 | |
| 
 | |
|   DriverEntry->Signature        = EFI_MM_DRIVER_ENTRY_SIGNATURE;
 | |
|   CopyGuid (&DriverEntry->FileName, DriverName);
 | |
|   DriverEntry->FwVolHeader      = FwVolHeader;
 | |
|   DriverEntry->Pe32Data         = Pe32Data;
 | |
|   DriverEntry->Pe32DataSize     = Pe32DataSize;
 | |
|   DriverEntry->Depex            = Depex;
 | |
|   DriverEntry->DepexSize        = DepexSize;
 | |
| 
 | |
|   MmGetDepexSectionAndPreProccess (DriverEntry);
 | |
| 
 | |
|   InsertTailList (&mDiscoveredList, &DriverEntry->Link);
 | |
|   gRequestDispatch = TRUE;
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Traverse the discovered list for any drivers that were discovered but not loaded
 | |
|   because the dependency expressions evaluated to false.
 | |
| 
 | |
| **/
 | |
| VOID
 | |
| MmDisplayDiscoveredNotDispatched (
 | |
|   VOID
 | |
|   )
 | |
| {
 | |
|   LIST_ENTRY                   *Link;
 | |
|   EFI_MM_DRIVER_ENTRY         *DriverEntry;
 | |
| 
 | |
|   for (Link = mDiscoveredList.ForwardLink;Link !=&mDiscoveredList; Link = Link->ForwardLink) {
 | |
|     DriverEntry = CR (Link, EFI_MM_DRIVER_ENTRY, Link, EFI_MM_DRIVER_ENTRY_SIGNATURE);
 | |
|     if (DriverEntry->Dependent) {
 | |
|       DEBUG ((DEBUG_LOAD, "MM Driver %g was discovered but not loaded!!\n", &DriverEntry->FileName));
 | |
|     }
 | |
|   }
 | |
| }
 |