// SPDX-License-Identifier: GPL-3.0-only #include #include #include #include #include #include #include #include #include #include #include #include #define GPIO_SET_DEBUG(G, V) { \ DEBUG("%s = %s\n", #G, V ? "true" : "false"); \ gpio_set(&G, V); \ } #ifndef DEEP_SX // Platform does not currently support Deep Sx #define DEEP_SX 0 #endif #ifndef HAVE_EC_EN #define HAVE_EC_EN 1 #endif #ifndef HAVE_LAN_WAKEUP_N #define HAVE_LAN_WAKEUP_N 1 #endif #ifndef HAVE_LED_BAT_CHG #define HAVE_LED_BAT_CHG 1 #endif #ifndef HAVE_LED_BAT_FULL #define HAVE_LED_BAT_FULL 1 #endif #ifndef HAVE_PCH_DPWROK_EC #define HAVE_PCH_DPWROK_EC 1 #endif #ifndef HAVE_PCH_PWROK_EC #define HAVE_PCH_PWROK_EC 1 #endif #ifndef HAVE_SLP_SUS_N #define HAVE_SLP_SUS_N 1 #endif #ifndef HAVE_XLP_OUT #define HAVE_XLP_OUT 1 #endif #ifndef HAVE_SUSWARN_N #define HAVE_SUSWARN_N 1 #endif #ifndef HAVE_SUS_PWR_ACK #define HAVE_SUS_PWR_ACK 1 #endif #ifndef HAVE_VA_EC_EN #define HAVE_VA_EC_EN 1 #endif #ifndef HAVE_XLP_OUT #define HAVE_XLP_OUT 1 #endif extern uint8_t main_cycle; // VccRTC stable (55%) to RTCRST# high #define tPCH01 delay_ms(9) // VccDSW stable (95%) to RSMRST# high #define tPCH02 delay_ms(10) // VccPrimary stable (95%) to RSMRST# high #define tPCH03 delay_ms(10) // VccRTC stable (90%) to start of VccDSW voltage ramp #define tPCH04 delay_ms(9) // RTCRST# high to DSW_PWROK #define tPCH05 delay_us(1) // VccDSW 3.3 stable to VccPrimary 1.05V #define tPCH06 delay_us(200) // DSW_PWROK high to RSMRST# high #define tPCH07 delay_ms(0) // SLP_S3# de-assertion to PCH_PWROK assertion #define tPCH08 delay_ms(1) // SLP_A# high when ASW rails are stable (95%) #define tPCH09 delay_ms(2, 4, 8, 16) //TODO // PCH_PWROK low to VCCIO dropping 5% #define tPCH10 delay_ns(400) // SLP_SUS# asserting to VccPRIM dropping 5% #define tPCH11 delay_ns(100) // RSMRST# asserting to VccPRIM dropping 5% #define tPCH12 delay_ns(400) // DSW_PWROK falling to any of VccDSW, VccPRIM dropping 5% #define tPCH14 delay_ns(400) // De-assertion of RSMRST# to de-assertion of ESPI_RESET# #if DEEP_SX #define tPCH18 delay_us(90) #else #define tPCH18 delay_ms(95) #endif // DSW_PWROK assertion to SLP_SUS# de-assertion #define tPCH32 delay_ms(95) // RSMRST# de-assertion to SUSPWRDNACK valid #define tPLT01 delay_ms(200) enum PowerState power_state = POWER_STATE_DEFAULT; enum PowerState calculate_power_state(void) { //TODO: Deep Sx states using SLP_SUS# if (gpio_get(&SUSB_N_PCH)) { // S3, S4, and S5 planes powered return POWER_STATE_S0; } if (gpio_get(&SUSC_N_PCH)) { // S4 and S5 planes powered return POWER_STATE_S3; } if (gpio_get(&EC_RSMRST_N)) { // S5 plane powered return POWER_STATE_S5; } #if HAVE_PCH_DPWROK_EC && DEEP_SX if (!gpio_get(&PCH_DPWROK_EC)) { return POWER_STATE_DEFAULT; } #endif // HAVE_PCH_DPWROK_EC && DEEP_SX return POWER_STATE_DS5; } void update_power_state(void) { enum PowerState new_power_state = calculate_power_state(); if (power_state != new_power_state) { power_state = new_power_state; #if LEVEL >= LEVEL_DEBUG switch (power_state) { case POWER_STATE_DEFAULT: DEBUG("POWER_STATE_DEFAULT\n"); break; case POWER_STATE_DS5: DEBUG("POWER_STATE_DS5\n"); break; case POWER_STATE_S5: DEBUG("POWER_STATE_S5\n"); break; case POWER_STATE_DS3: DEBUG("POWER_STATE_DS3\n"); break; case POWER_STATE_S3: DEBUG("POWER_STATE_S3\n"); break; case POWER_STATE_S0: DEBUG("POWER_STATE_S0\n"); break; } #endif } } // Enable deep sleep well power void power_on_ds5(void) { DEBUG("%02X: power_on_ds5\n", main_cycle); #if DEEP_SX // See Figure 12-18 in Whiskey Lake Platform Design Guide // | VCCRTC | RTCRST# | VCCDSW_3P3 | DSW_PWROK | // | tPCH01---------- | | | // | tPCH04----------------------- | | // | | tPCH05-------------------------- | // | | | tPCH02---------------- | // tPCH01 and tPCH02 combined make the longest delay tPCH01; tPCH02; #if HAVE_PCH_DPWROK_EC // Deep sleep well is a-ok GPIO_SET_DEBUG(PCH_DPWROK_EC, true); #endif // HAVE_PCH_DPWROK_EC // Wait for deep sleep well to propogate tPCH32; #else // DEEP_SX // See Figure 12-19 in Whiskey Lake Platform Design Guide // | VCCRTC | RTCRST# | VccPRIM | // | tPCH01---------- | | // | tPCH04-------------------- | // tPCH04 is the ideal delay tPCH04; #endif // DEEP_SX update_power_state(); } // Enable S5 power void power_on_s5(void) { DEBUG("%02X: power_on_s5\n", main_cycle); #if DEEP_SX // See Figure 12-18 in Whiskey Lake Platform Design Guide // TODO - signal timing graph // See Figure 12-24 in Whiskey Lake Platform Design Guide // TODO - rail timing graph // TODO: Must have SL_SUS# set high by PCH #if HAVE_VA_EC_EN // Enable VCCPRIM_* planes - must be enabled prior to USB power in order to // avoid leakage GPIO_SET_DEBUG(VA_EC_EN, true); #endif // HAVE_VA_EC_EN tPCH06; // Enable VDD5 GPIO_SET_DEBUG(DD_ON, true); //TODO: Should SUS_ACK# be de-asserted here? tPCH03; // De-assert RSMRST# GPIO_SET_DEBUG(EC_RSMRST_N, true); // Wait for PCH stability tPCH18; #if HAVE_EC_EN // Allow processor to control SUSB# and SUSC# GPIO_SET_DEBUG(EC_EN, true); #endif // HAVE_EC_EN // Extra wait - TODO remove delay_ms(200); #else // DEEP_SX // See Figure 12-19 in Whiskey Lake Platform Design Guide // TODO - signal timing graph // See Figure 12-25 in Whiskey Lake Platform Design Guide // TODO - rail timing graph #if HAVE_VA_EC_EN // Enable VCCPRIM_* planes - must be enabled prior to USB power in order to // avoid leakage GPIO_SET_DEBUG(VA_EC_EN, true); #endif // HAVE_VA_EC_EN tPCH06; // Enable VDD5 GPIO_SET_DEBUG(DD_ON, true); #if HAVE_SUS_PWR_ACK // De-assert SUS_ACK# - TODO is this needed on non-dsx? GPIO_SET_DEBUG(SUS_PWR_ACK, true); #endif // HAVE_SUS_PWR_ACK tPCH03; #if HAVE_PCH_DPWROK_EC // Assert DSW_PWROK GPIO_SET_DEBUG(PCH_DPWROK_EC, true); #endif // HAVE_PCH_DPWROK_EC // De-assert RSMRST# GPIO_SET_DEBUG(EC_RSMRST_N, true); // Wait for PCH stability tPCH18; #if HAVE_EC_EN // Allow processor to control SUSB# and SUSC# GPIO_SET_DEBUG(EC_EN, true); #endif // HAVE_EC_EN // Wait for SUSPWRDNACK validity tPLT01; // Extra wait - TODO remove delay_ms(200); #endif // DEEP_SX update_power_state(); } void power_off_s5(void) { DEBUG("%02X: power_off_s5\n", main_cycle); #if DEEP_SX // TODO #else // DEEP_SX #if HAVE_PCH_PWROK_EC // De-assert SYS_PWROK GPIO_SET_DEBUG(PCH_PWROK_EC, false); #endif // HAVE_PCH_PWROK_EC // De-assert PCH_PWROK GPIO_SET_DEBUG(PM_PWROK, false); #if HAVE_EC_EN // Block processor from controlling SUSB# and SUSC# GPIO_SET_DEBUG(EC_EN, false); #endif // HAVE_EC_EN // De-assert RSMRST# GPIO_SET_DEBUG(EC_RSMRST_N, false); // Disable VDD5 GPIO_SET_DEBUG(DD_ON, false); tPCH12; #if HAVE_VA_EC_EN // Disable VCCPRIM_* planes GPIO_SET_DEBUG(VA_EC_EN, false); #endif // HAVE_VA_EC_EN #if HAVE_PCH_DPWROK_EC // De-assert DSW_PWROK GPIO_SET_DEBUG(PCH_DPWROK_EC, false); #endif // HAVE_PCH_DPWROK_EC tPCH14; #endif // DEEP_SX update_power_state(); } // This function is run when the CPU is reset static void power_cpu_reset(void) { // LPC was just reset, enable PNP devices pnp_enable(); // Reset ACPI registers acpi_reset(); //TODO: reset KBC and touchpad states kbled_reset(); } void power_event(void) { // Always switch to ds5 if EC is running if (power_state == POWER_STATE_DEFAULT) { power_on_ds5(); } // Check if the adapter line goes low static bool ac_send_sci = true; static bool ac_last = true; bool ac_new = gpio_get(&ACIN_N); if (ac_new != ac_last) { board_on_ac(!ac_new); DEBUG("Power adapter "); if (ac_new) { DEBUG("unplugged\n"); battery_charger_disable(); } else { DEBUG("plugged in\n"); battery_charger_configure(); } battery_debug(); // Reset main loop cycle to force reading PECI and battery main_cycle = 0; // Send SCI to update AC and battery information ac_send_sci = true; } if (ac_send_sci) { // Send SCI 0x16 for AC detect event if ACPI OS is loaded if (acpi_ecos != EC_OS_NONE) { if (pmc_sci(&PMC_1, 0x16)) { ac_send_sci = false; } } } ac_last = ac_new; gpio_set(&AC_PRESENT, !ac_new); // Configure charger based on charging thresholds when plugged in if (!ac_new) { battery_charger_configure(); } // Read power switch state static bool ps_last = true; bool ps_new = gpio_get(&PWR_SW_N); // Disable power button if lid is closed and AC is disconnected if (!lid_state && ac_last) { ps_new = true; } if (!ps_new && ps_last) { // Ensure press is not spurious delay_ms(10); if (gpio_get(&PWR_SW_N) != ps_new) { DEBUG("%02X: Spurious press\n", main_cycle); ps_new = ps_last; } else { DEBUG("%02X: Power switch press\n", main_cycle); // Enable S5 power if necessary, before sending PWR_BTN update_power_state(); if (power_state == POWER_STATE_DS5) { power_on_s5(); } } } #if LEVEL >= LEVEL_DEBUG else if (ps_new && !ps_last) { DEBUG("%02X: Power switch release\n", main_cycle); } #endif ps_last = ps_new; // Send power signal to PCH gpio_set(&PWR_BTN_N, ps_new); // Update power state before determining actions update_power_state(); // If system power is good static bool pg_last = false; bool pg_new = gpio_get(&ALL_SYS_PWRGD); if (pg_new && !pg_last) { DEBUG("%02X: ALL_SYS_PWRGD asserted\n", main_cycle); //TODO: tPLT04; // Allow H_VR_READY to set PCH_PWROK GPIO_SET_DEBUG(PM_PWROK, true); // OEM defined delay from ALL_SYS_PWRGD to SYS_PWROK - TODO delay_ms(10); #if HAVE_PCH_PWROK_EC // Assert SYS_PWROK, system can finally perform PLT_RST# and boot GPIO_SET_DEBUG(PCH_PWROK_EC, true); #endif // HAVE_PCH_PWROK_EC } else if(!pg_new && pg_last) { DEBUG("%02X: ALL_SYS_PWRGD de-asserted\n", main_cycle); #if HAVE_PCH_PWROK_EC // De-assert SYS_PWROK GPIO_SET_DEBUG(PCH_PWROK_EC, false); #endif // HAVE_PCH_PWROK_EC // De-assert PCH_PWROK GPIO_SET_DEBUG(PM_PWROK, false); } pg_last = pg_new; static bool rst_last = false; bool rst_new = gpio_get(&BUF_PLT_RST_N); #if LEVEL >= LEVEL_DEBUG if (!rst_new && rst_last) { DEBUG("%02X: PLT_RST# asserted\n", main_cycle); } else #endif if(rst_new && !rst_last) { DEBUG("%02X: PLT_RST# de-asserted\n", main_cycle); power_cpu_reset(); } rst_last = rst_new; #if HAVE_SLP_SUS_N #if LEVEL >= LEVEL_DEBUG static bool sus_last = true; bool sus_new = gpio_get(&SLP_SUS_N); if (!sus_new && sus_last) { DEBUG("%02X: SLP_SUS# asserted\n", main_cycle); } else if (sus_new && !sus_last) { DEBUG("%02X: SLP_SUS# de-asserted\n", main_cycle); } sus_last = sus_new; #endif #endif // HAVE_SLP_SUS_N #if HAVE_SUSWARN_N // EC must keep VccPRIM powered if SUSPWRDNACK is de-asserted low or system // state is S3 static bool ack_last = false; bool ack_new = gpio_get(&SUSWARN_N); #if LEVEL >= LEVEL_DEBUG if (ack_new && !ack_last) { DEBUG("%02X: SUSPWRDNACK asserted\n", main_cycle); } else if (!ack_new && ack_last) { DEBUG("%02X: SUSPWRDNACK de-asserted\n", main_cycle); } #endif ack_last = ack_new; if (ack_new) #endif // HAVE_SUSWARN_N { // Disable S5 power plane if not needed if (power_state == POWER_STATE_S5) { power_off_s5(); } } #if HAVE_LAN_WAKEUP_N static bool wake_last = true; bool wake_new = gpio_get(&LAN_WAKEUP_N); if (!wake_new && wake_last) { update_power_state(); DEBUG("%02X: LAN_WAKEUP# asserted\n", main_cycle); if (power_state == POWER_STATE_DS5) { power_on_s5(); } } #if LEVEL >= LEVEL_DEBUG else if (wake_new && !wake_last) { DEBUG("%02X: LAN_WAKEUP# de-asserted\n", main_cycle); } #endif wake_last = wake_new; #endif // HAVE_LAN_WAKEUP_N static uint32_t last_time = 0; uint32_t time = time_get(); if (power_state == POWER_STATE_S0) { // CPU on, green light gpio_set(&LED_PWR, true); gpio_set(&LED_ACIN, false); } else if (power_state == POWER_STATE_S3 || power_state == POWER_STATE_DS3) { // Suspended, flashing green light if ( (time < last_time) // overflow || (time >= (last_time + 1000)) // timeout ) { gpio_set(&LED_PWR, !gpio_get(&LED_PWR)); last_time = time; } gpio_set(&LED_ACIN, false); } else if (!ac_new) { // AC plugged in, orange light gpio_set(&LED_PWR, false); gpio_set(&LED_ACIN, true); } else { // CPU off and AC adapter unplugged, flashing orange light gpio_set(&LED_PWR, false); if ( (time < last_time) // overflow || (time >= (last_time + 1000)) // timeout ) { gpio_set(&LED_ACIN, !gpio_get(&LED_ACIN)); last_time = time; } #if HAVE_XLP_OUT // Power off VDD3 if system should be off gpio_set(&XLP_OUT, 0); #endif // HAVE_XLP_OUT } //TODO: do not require both LEDs #if HAVE_LED_BAT_CHG && HAVE_LED_BAT_FULL if (!(battery_status & BATTERY_INITIALIZED)) { // No battery connected gpio_set(&LED_BAT_CHG, false); gpio_set(&LED_BAT_FULL, false); } else if (ac_new) { // Discharging (no AC adapter) gpio_set(&LED_BAT_CHG, false); gpio_set(&LED_BAT_FULL, false); } else if (battery_current == 0) { // Fully charged // TODO: turn off charger gpio_set(&LED_BAT_CHG, false); gpio_set(&LED_BAT_FULL, true); } else { // Charging gpio_set(&LED_BAT_CHG, true); gpio_set(&LED_BAT_FULL, false); } #endif // HAVE_LED_BAT_CHG && HAVE_LED_BAT_FULL }