#include #include #include #include #include #include #include #include #include #include // Platform does not currently support Deep Sx #define DEEP_SX 0 extern uint8_t main_cycle; // VccRTC stable (55%) to RTCRST# high #define tPCH01 delay_ms(9) // VccDSW stable (95%) to RSMRST# high #define tPCH02 delay_ms(10) // VccPrimary stable (95%) to RSMRST# high #define tPCH03 delay_ms(10) // VccRTC stable (90%) to start of VccDSW voltage ramp #define tPCH04 delay_ms(9) // RTCRST# high to DSW_PWROK #define tPCH05 delay_us(1) // VccDSW 3.3 stable to VccPrimary 1.05V #define tPCH06 delay_us(200) // DSW_PWROK high to RSMRST# high #define tPCH07 delay_ms(0) // SLP_S3# de-assertion to PCH_PWROK assertion #define tPCH08 delay_ms(1) // SLP_A# high when ASW rails are stable (95%) #define tPCH09 delay_ms(2, 4, 8, 16) //TODO // PCH_PWROK low to VCCIO dropping 5% #define tPCH10 delay_ns(400) // SLP_SUS# asserting to VccPRIM dropping 5% #define tPCH11 delay_ns(100) // RSMRST# asserting to VccPRIM dropping 5% #define tPCH12 delay_ns(400) // DSW_PWROK falling to any of VccDSW, VccPRIM dropping 5% #define tPCH14 delay_ns(400) // De-assertion of RSMRST# to de-assertion of ESPI_RESET# #if DEEP_SX #define tPCH18 delay_us(90) #else #define tPCH18 delay_ms(95) #endif // DSW_PWROK assertion to SLP_SUS# de-assertion #define tPCH32 delay_ms(95) // RSMRST# de-assertion to SUSPWRDNACK valid #define tPLT01 delay_ms(200) // Enable deep sleep well power void power_on_ds5() { DEBUG("%02X: power_on_ds5\n", main_cycle); #if DEEP_SX // See Figure 12-18 in Whiskey Lake Platform Design Guide // | VCCRTC | RTCRST# | VCCDSW_3P3 | DSW_PWROK | // | tPCH01---------- | | | // | tPCH04----------------------- | | // | | tPCH05-------------------------- | // | | | tPCH02---------------- | // tPCH01 and tPCH02 combined make the longest delay tPCH01; tPCH02; // Deep sleep well is a-ok gpio_set(PCH_DPWROK_EC, true); // Wait for deep sleep well to propogate tPCH32; #else // DEEP_SX // See Figure 12-19 in Whiskey Lake Platform Design Guide // | VCCRTC | RTCRST# | VccPRIM | // | tPCH01---------- | | // | tPCH04-------------------- | // tPCH04 is the ideal delay tPCH04; #endif // DEEP_SX } // Enable S5 power void power_on_s5() { DEBUG("%02X: power_on_s5\n", main_cycle); #if DEEP_SX // See Figure 12-18 in Whiskey Lake Platform Design Guide // TODO #else // DEEP_SX // See Figure 12-19 in Whiskey Lake Platform Design Guide // TODO - signal timing graph // See Figure 12-25 in Whiskey Lake Platform Design Guide // TODO - rail timing graph // Enable VCCPRIM_* planes - must be enabled prior to USB power in order to // avoid leakage gpio_set(&VA_EC_EN, true); tPCH06; // Enable VDD5 gpio_set(&DD_ON, true); // De-assert SUS_ACK# - TODO is this needed on non-dsx? gpio_set(&SUS_PWR_ACK, true); tPCH03; // Assert DSW_PWROK gpio_set(&PCH_DPWROK_EC, true); // De-assert RSMRST# gpio_set(&EC_RSMRST_N, true); // Wait for PCH stability tPCH18; // Allow processor to control SUSB# and SUSC# gpio_set(&EC_EN, true); // Wait for SUSPWRDNACK validity tPLT01; // Extra wait - TODO remove delay_ms(200); #endif // DEEP_SX } void power_off_s5() { DEBUG("%02X: power_off_s5\n", main_cycle); #if DEEP_SX // TODO #else // DEEP_SX // De-assert SYS_PWROK gpio_set(&PCH_PWROK_EC, false); // De-assert PCH_PWROK gpio_set(&PM_PWROK, false); // Block processor from controlling SUSB# and SUSC# gpio_set(&EC_EN, false); // De-assert RSMRST# gpio_set(&EC_RSMRST_N, false); // Disable VDD5 gpio_set(&DD_ON, false); tPCH12; // Disable VCCPRIM_* planes gpio_set(&VA_EC_EN, false); // De-assert DSW_PWROK gpio_set(&PCH_DPWROK_EC, false); tPCH14; #endif // DEEP_SX } enum PowerState { POWER_STATE_DEFAULT, POWER_STATE_DS5, POWER_STATE_S5, POWER_STATE_DS3, POWER_STATE_S3, POWER_STATE_S0, }; void power_event(void) { static enum PowerState state = POWER_STATE_DEFAULT; // Always switch to ds5 if EC is running if (state == POWER_STATE_DEFAULT) { power_on_ds5(); state = POWER_STATE_DS5; } // Check if the adapter line goes low static bool ac_send_sci = true; static bool ac_last = true; bool ac_new = gpio_get(&ACIN_N); if (ac_new != ac_last) { DEBUG("Power adapter "); if (ac_new) { DEBUG("unplugged\n"); battery_charger_disable(); } else { DEBUG("plugged in\n"); battery_charger_enable(); } battery_debug(); // Reset main loop cycle to force reading PECI and battery main_cycle = 0; // Send SCI to update AC and battery information ac_send_sci = true; } if (ac_send_sci) { // Send SCI 0x16 for AC detect event if (pmc_sci(&PMC_1, 0x16)) { ac_send_sci = false; } } ac_last = ac_new; // Read power switch state static bool ps_last = true; bool ps_new = gpio_get(&PWR_SW_N); // Disable power button if lid is closed and AC is disconnected if (!lid_state && ac_last) { ps_new = true; } if (!ps_new && ps_last) { // Ensure press is not spurious delay_ms(10); if (gpio_get(&PWR_SW_N) != ps_new) { DEBUG("%02X: Spurious press\n", main_cycle); ps_new = ps_last; } else { DEBUG("%02X: Power switch press\n", main_cycle); // Enable S5 power if necessary, before sending PWR_BTN if (state == POWER_STATE_DS5) { power_on_s5(); state = POWER_STATE_S5; } } } #if LEVEL >= LEVEL_DEBUG else if (ps_new && !ps_last) { DEBUG("%02X: Power switch release\n", main_cycle); } #endif ps_last = ps_new; // Send power signal to PCH gpio_set(&PWR_BTN_N, ps_new); #if DEEP_SX //TODO #else // DEEP_SX //TODO: set power state as necessary // If system power is good static bool pg_last = false; bool pg_new = gpio_get(&ALL_SYS_PWRGD); if (pg_new && !pg_last) { DEBUG("%02X: ALL_SYS_PWRGD asserted\n", main_cycle); //TODO: tPLT04; // Allow H_VR_READY to set PCH_PWROK gpio_set(&PM_PWROK, true); // OEM defined delay from ALL_SYS_PWRGD to SYS_PWROK - TODO delay_ms(10); // Assert SYS_PWROK, system can finally perform PLT_RST# and boot gpio_set(&PCH_PWROK_EC, true); } else if(!pg_new && pg_last) { DEBUG("%02X: ALL_SYS_PWRGD de-asserted\n", main_cycle); // De-assert SYS_PWROK gpio_set(&PCH_PWROK_EC, false); // De-assert PCH_PWROK gpio_set(&PM_PWROK, false); } pg_last = pg_new; static bool rst_last = false; bool rst_new = gpio_get(&BUF_PLT_RST_N); #if LEVEL >= LEVEL_DEBUG if (!rst_new && rst_last) { DEBUG("%02X: PLT_RST# asserted\n", main_cycle); } else #endif if(rst_new && !rst_last) { DEBUG("%02X: PLT_RST# de-asserted\n", main_cycle); // LPC was just reset, enable PNP devices pnp_enable(); //TODO: reset KBC and touchpad states kbled_reset(); } rst_last = rst_new; #if LEVEL >= LEVEL_DEBUG static bool s3_last = false; bool s3_new = gpio_get(&SUSB_N_PCH); if (!s3_new && s3_last) { DEBUG("%02X: SLP_S3# asserted\n", main_cycle); } else if(s3_new && !s3_last) { DEBUG("%02X: SLP_S3# de-asserted\n", main_cycle); } s3_last = s3_new; #endif static bool s4_last = false; bool s4_new = gpio_get(&SUSC_N_PCH); #if LEVEL >= LEVEL_DEBUG if (!s4_new && s4_last) { DEBUG("%02X: SLP_S4# asserted\n", main_cycle); } else if(s4_new && !s4_last) { DEBUG("%02X: SLP_S4# de-asserted\n", main_cycle); } #endif s4_last = s4_new; #if LEVEL >= LEVEL_DEBUG static bool sus_last = false; bool sus_new = gpio_get(&SLP_SUS_N); if (!sus_new && sus_last) { DEBUG("%02X: SLP_SUS# asserted\n", main_cycle); } else if (sus_new && !sus_last) { DEBUG("%02X: SLP_SUS# de-asserted\n", main_cycle); } sus_last = sus_new; #endif // EC must keep VccPRIM powered if SUSPWRDNACK is de-asserted low or system // state is S3 static bool ack_last = false; bool ack_new = gpio_get(&SUSWARN_N); if (ack_new && !ack_last) { DEBUG("%02X: SUSPWRDNACK asserted\n", main_cycle); if (s4_new) { DEBUG("%02X: entering S3 state\n", main_cycle); } else if (state == POWER_STATE_S5) { power_off_s5(); state = POWER_STATE_DS5; } } #if LEVEL >= LEVEL_DEBUG else if (!ack_new && ack_last) { DEBUG("%02X: SUSPWRDNACK de-asserted\n", main_cycle); } #endif ack_last = ack_new; if (rst_new) { // CPU on, green light gpio_set(&LED_PWR, true); gpio_set(&LED_ACIN, false); } else if (s4_new) { // Suspended, flashing green light static uint32_t last_time = 0; uint32_t time = time_get(); if ( (time < last_time) // overflow || (time >= (last_time + 1000)) // timeout ) { gpio_set(&LED_PWR, !gpio_get(&LED_PWR)); last_time = time; } gpio_set(&LED_ACIN, false); } else if (!ac_new) { // AC plugged in, orange light gpio_set(&LED_PWR, false); gpio_set(&LED_ACIN, true); } else { // CPU off and AC adapter unplugged, no light gpio_set(&LED_PWR, false); gpio_set(&LED_ACIN, false); } #endif // DEEP_SX }