Files
system76-embedded-controller/src/board/system76/common/power.c
Tim Crawford c1c082d2cc power: Set PL4 after CPU reset
Signed-off-by: Tim Crawford <tcrawford@system76.com>
2023-04-03 13:06:16 -06:00

629 lines
16 KiB
C

// SPDX-License-Identifier: GPL-3.0-only
#include <arch/delay.h>
#include <arch/time.h>
#include <board/acpi.h>
#include <board/battery.h>
#include <board/board.h>
#include <board/config.h>
#include <board/fan.h>
#include <board/gpio.h>
#include <board/kbled.h>
#include <board/lid.h>
#include <board/peci.h>
#include <board/power.h>
#include <board/pmc.h>
#include <board/pnp.h>
#include <board/wireless.h>
#include <common/debug.h>
#if CONFIG_BUS_ESPI
#include <ec/espi.h>
#include <board/espi.h>
#endif
#if CONFIG_SECURITY
#include <board/security.h>
#endif // CONFIG_SECURITY
#define GPIO_SET_DEBUG(G, V) \
{ \
DEBUG("%s = %s\n", #G, V ? "true" : "false"); \
gpio_set(&G, V); \
}
#ifndef HAVE_EC_EN
#define HAVE_EC_EN 1
#endif
#ifndef HAVE_LAN_WAKEUP_N
#define HAVE_LAN_WAKEUP_N 1
#endif
#ifndef HAVE_LED_BAT_CHG
#define HAVE_LED_BAT_CHG 1
#endif
#ifndef HAVE_LED_BAT_FULL
#define HAVE_LED_BAT_FULL 1
#endif
#ifndef HAVE_PCH_DPWROK_EC
#define HAVE_PCH_DPWROK_EC 1
#endif
#ifndef HAVE_PCH_PWROK_EC
#define HAVE_PCH_PWROK_EC 1
#endif
#ifndef HAVE_PM_PWROK
#define HAVE_PM_PWROK 1
#endif
#ifndef HAVE_SLP_SUS_N
#define HAVE_SLP_SUS_N 1
#endif
#ifndef HAVE_SUSWARN_N
#define HAVE_SUSWARN_N 1
#endif
#ifndef HAVE_SUS_PWR_ACK
#define HAVE_SUS_PWR_ACK 1
#endif
#ifndef HAVE_VA_EC_EN
#define HAVE_VA_EC_EN 1
#endif
// Only galp6 has this, so disable by default.
#ifndef HAVE_PD_EN
#define HAVE_PD_EN 0
#endif
#ifndef HAVE_XLP_OUT
#define HAVE_XLP_OUT 1
#endif
extern uint8_t main_cycle;
// VccRTC stable (55%) to RTCRST# high
#define tPCH01 delay_ms(9)
// VccDSW stable (95%) to RSMRST# high
#define tPCH02 delay_ms(10)
// VccPrimary stable (95%) to RSMRST# high
#define tPCH03 delay_ms(10)
// VccRTC stable (90%) to start of VccDSW voltage ramp
#define tPCH04 delay_ms(9)
// RTCRST# high to DSW_PWROK
#define tPCH05 delay_us(1)
// VccDSW 3.3 stable to VccPrimary 1.05V
#define tPCH06 delay_us(200)
// DSW_PWROK high to RSMRST# high
#define tPCH07 delay_ms(0)
// SLP_S3# de-assertion to PCH_PWROK assertion
#define tPCH08 delay_ms(1)
// SLP_A# high when ASW rails are stable (95%)
#define tPCH09 delay_ms(2, 4, 8, 16) //TODO
// PCH_PWROK low to VCCIO dropping 5%
#define tPCH10 delay_ns(400)
// SLP_SUS# asserting to VccPRIM dropping 5%
#define tPCH11 delay_ns(100)
// RSMRST# asserting to VccPRIM dropping 5%
#define tPCH12 delay_ns(400)
// DSW_PWROK falling to any of VccDSW, VccPRIM dropping 5%
#define tPCH14 delay_ns(400)
// De-assertion of RSMRST# to de-assertion of ESPI_RESET#
#define tPCH18 delay_ms(95)
// DSW_PWROK assertion to SLP_SUS# de-assertion
#define tPCH32 delay_ms(95)
// RSMRST# de-assertion to SUSPWRDNACK valid
#define tPLT01 delay_ms(200)
enum PowerState power_state = POWER_STATE_OFF;
enum PowerState calculate_power_state(void) {
if (!gpio_get(&EC_RSMRST_N)) {
// S5 plane not powered
return POWER_STATE_OFF;
}
#if CONFIG_BUS_ESPI
// Use eSPI virtual wires if available
if (vw_get(&VW_SLP_S4_N) != VWS_HIGH) {
// S4 plane not powered
return POWER_STATE_S5;
}
if (vw_get(&VW_SLP_S3_N) != VWS_HIGH) {
// S3 plane not powered
return POWER_STATE_S3;
}
#else // CONFIG_BUS_ESPI
// Use dedicated GPIOs if not using ESPI
if (!gpio_get(&SUSC_N_PCH)) {
// S4 plane not powered
return POWER_STATE_S5;
}
if (!gpio_get(&SUSB_N_PCH)) {
// S3 plane not powered
return POWER_STATE_S3;
}
#endif // CONFIG_BUS_ESPI
// All planes are powered
return POWER_STATE_S0;
}
void update_power_state(void) {
enum PowerState new_power_state = calculate_power_state();
if (power_state != new_power_state) {
power_state = new_power_state;
#if LEVEL >= LEVEL_DEBUG
switch (power_state) {
case POWER_STATE_OFF:
DEBUG("POWER_STATE_OFF\n");
break;
case POWER_STATE_S5:
DEBUG("POWER_STATE_S5\n");
break;
case POWER_STATE_S3:
DEBUG("POWER_STATE_S3\n");
break;
case POWER_STATE_S0:
DEBUG("POWER_STATE_S0\n");
break;
}
#endif
}
}
void power_init(void) {
// See Figure 12-19 in Whiskey Lake Platform Design Guide
// | VCCRTC | RTCRST# | VccPRIM |
// | tPCH01---------- | |
// | tPCH04-------------------- |
// tPCH04 is the ideal delay
tPCH04;
update_power_state();
}
void power_on(void) {
// Configure WLAN GPIOs before powering on
wireless_power(true);
DEBUG("%02X: power_on\n", main_cycle);
// See Figure 12-19 in Whiskey Lake Platform Design Guide
// TODO - signal timing graph
// See Figure 12-25 in Whiskey Lake Platform Design Guide
// TODO - rail timing graph
#if HAVE_VA_EC_EN
// Enable VCCPRIM_* planes - must be enabled prior to USB power in order to
// avoid leakage
GPIO_SET_DEBUG(VA_EC_EN, true);
#endif // HAVE_VA_EC_EN
#if HAVE_PD_EN
GPIO_SET_DEBUG(PD_EN, true);
#endif
tPCH06;
// Enable VDD5
GPIO_SET_DEBUG(DD_ON, true);
#if HAVE_SUS_PWR_ACK
// De-assert SUS_ACK# - TODO is this needed on non-dsx?
GPIO_SET_DEBUG(SUS_PWR_ACK, true);
#endif // HAVE_SUS_PWR_ACK
tPCH03;
#if HAVE_PCH_DPWROK_EC
// Assert DSW_PWROK
GPIO_SET_DEBUG(PCH_DPWROK_EC, true);
#endif // HAVE_PCH_DPWROK_EC
// De-assert RSMRST#
GPIO_SET_DEBUG(EC_RSMRST_N, true);
// Wait for PCH stability
tPCH18;
#if HAVE_EC_EN
// Allow processor to control SUSB# and SUSC#
GPIO_SET_DEBUG(EC_EN, true);
#endif // HAVE_EC_EN
// Wait for SUSPWRDNACK validity
tPLT01;
GPIO_SET_DEBUG(PWR_BTN_N, false);
delay_ms(32); // PWRBTN# must assert for at least 16 ms, we do twice that
GPIO_SET_DEBUG(PWR_BTN_N, true);
uint16_t i;
for (i = 0; i < 5000; i++) {
// If we reached S0, exit this loop
update_power_state();
if (power_state == POWER_STATE_S0) {
DEBUG("reached S0 in %d ms\n", i);
break;
}
#if CONFIG_BUS_ESPI
// Check for VW changes
espi_event();
#endif // CONFIG_BUS_ESPI
// Extra wait until SUSPWRDNACK is valid
delay_ms(1);
}
if (power_state != POWER_STATE_S0) {
DEBUG("failed to reach S0, powering off\n");
power_off();
}
}
void power_off(void) {
DEBUG("%02X: power_off\n", main_cycle);
#if HAVE_PCH_PWROK_EC
// De-assert SYS_PWROK
GPIO_SET_DEBUG(PCH_PWROK_EC, false);
#endif // HAVE_PCH_PWROK_EC
#if HAVE_PM_PWROK
// De-assert PCH_PWROK
GPIO_SET_DEBUG(PM_PWROK, false);
#endif // HAVE_PM_PWROK
#if HAVE_EC_EN
// Block processor from controlling SUSB# and SUSC#
GPIO_SET_DEBUG(EC_EN, false);
#endif // HAVE_EC_EN
// De-assert RSMRST#
GPIO_SET_DEBUG(EC_RSMRST_N, false);
// Disable VDD5
GPIO_SET_DEBUG(DD_ON, false);
tPCH12;
#if HAVE_PD_EN
GPIO_SET_DEBUG(PD_EN, false);
#endif
#if HAVE_VA_EC_EN
// Disable VCCPRIM_* planes
GPIO_SET_DEBUG(VA_EC_EN, false);
#endif // HAVE_VA_EC_EN
#if HAVE_PCH_DPWROK_EC
// De-assert DSW_PWROK
GPIO_SET_DEBUG(PCH_DPWROK_EC, false);
#endif // HAVE_PCH_DPWROK_EC
tPCH14;
// Configure WLAN GPIOs after powering off
wireless_power(false);
update_power_state();
}
#ifdef HAVE_DGPU
static bool power_peci_limit(bool ac) {
uint16_t watts = ac ? POWER_LIMIT_AC : POWER_LIMIT_DC;
// Set PL4 using PECI
int16_t res = peci_wr_pkg_config(60, 0, ((uint32_t)watts) * 8);
DEBUG("power_peci_limit %d = %d\n", watts, res);
return res == 0x40;
}
// Set the power draw limit depending on if on AC or DC power
void power_set_limit(void) {
if (peci_available()) {
bool ac = !gpio_get(&ACIN_N);
power_peci_limit(ac);
}
}
#else // HAVE_DGPU
void power_set_limit(void) {}
#endif // HAVE_DGPU
// This function is run when the CPU is reset
void power_cpu_reset(void) {
// LPC was just reset, enable PNP devices
pnp_enable();
// Reset ACPI registers
acpi_reset();
// Reset fans
fan_reset();
//TODO: reset KBC and touchpad states
kbled_reset();
// Set PL4
power_set_limit();
}
static bool power_button_disabled(void) {
// Disable power button if lid is closed and AC is disconnected
return !gpio_get(&LID_SW_N) && gpio_get(&ACIN_N);
}
void power_event(void) {
// Check if the adapter line goes low
static bool ac_send_sci = true;
static bool ac_last = true;
bool ac_new = gpio_get(&ACIN_N);
if (ac_new != ac_last) {
power_set_limit();
DEBUG("Power adapter ");
if (ac_new) {
DEBUG("unplugged\n");
battery_charger_disable();
} else {
DEBUG("plugged in\n");
battery_charger_configure();
}
battery_debug();
// Reset main loop cycle to force reading PECI and battery
main_cycle = 0;
// Send SCI to update AC and battery information
ac_send_sci = true;
}
if (ac_send_sci) {
// Send SCI 0x16 for AC detect event if ACPI OS is loaded
if (acpi_ecos != EC_OS_NONE) {
if (pmc_sci(&PMC_1, 0x16)) {
ac_send_sci = false;
}
}
}
ac_last = ac_new;
gpio_set(&AC_PRESENT, !ac_new);
// Configure charger based on charging thresholds when plugged in
if (!ac_new) {
battery_charger_configure();
}
// Read power switch state
static bool ps_last = true;
bool ps_new = gpio_get(&PWR_SW_N);
if (!ps_new && ps_last) {
// Ensure press is not spurious
for (uint8_t i = 100; i != 0; i--) {
delay_ms(1);
if (gpio_get(&PWR_SW_N) != ps_new) {
DEBUG("%02X: Spurious press\n", main_cycle);
ps_new = ps_last;
break;
} else if (power_button_disabled()) {
// Ignore press when power button disabled
ps_new = ps_last;
break;
}
}
if (ps_new != ps_last) {
DEBUG("%02X: Power switch press\n", main_cycle);
// Enable S5 power if necessary, before sending PWR_BTN
update_power_state();
if (power_state == POWER_STATE_OFF) {
if (config_should_reset())
config_reset();
power_on();
// After power on ensure there is no secondary press sent to PCH
ps_new = ps_last;
}
}
}
#if LEVEL >= LEVEL_DEBUG
else if (ps_new && !ps_last) {
DEBUG("%02X: Power switch release\n", main_cycle);
}
#endif
ps_last = ps_new;
// Send power signal to PCH
gpio_set(&PWR_BTN_N, ps_new);
// Update power state before determining actions
update_power_state();
// If system power is good
static bool pg_last = false;
bool pg_new = gpio_get(&ALL_SYS_PWRGD);
if (pg_new && !pg_last) {
DEBUG("%02X: ALL_SYS_PWRGD asserted\n", main_cycle);
//TODO: tPLT04;
#if HAVE_PM_PWROK
// Allow H_VR_READY to set PCH_PWROK
GPIO_SET_DEBUG(PM_PWROK, true);
#endif // HAVE_PM_PWROK
// OEM defined delay from ALL_SYS_PWRGD to SYS_PWROK - TODO
delay_ms(10);
#if HAVE_PCH_PWROK_EC
// Assert SYS_PWROK, system can finally perform PLT_RST# and boot
GPIO_SET_DEBUG(PCH_PWROK_EC, true);
#endif // HAVE_PCH_PWROK_EC
} else if (!pg_new && pg_last) {
DEBUG("%02X: ALL_SYS_PWRGD de-asserted\n", main_cycle);
#if HAVE_PCH_PWROK_EC
// De-assert SYS_PWROK
GPIO_SET_DEBUG(PCH_PWROK_EC, false);
#endif // HAVE_PCH_PWROK_EC
#if HAVE_PM_PWROK
// De-assert PCH_PWROK
GPIO_SET_DEBUG(PM_PWROK, false);
#endif // HAVE_PM_PWROK
}
pg_last = pg_new;
// clang-format off
static bool rst_last = false;
bool rst_new = gpio_get(&BUF_PLT_RST_N);
#if LEVEL >= LEVEL_DEBUG
if (!rst_new && rst_last) {
DEBUG("%02X: PLT_RST# asserted\n", main_cycle);
} else
#endif
if (rst_new && !rst_last) {
DEBUG("%02X: PLT_RST# de-asserted\n", main_cycle);
#if CONFIG_BUS_ESPI
espi_reset();
#else // CONFIG_BUS_ESPI
power_cpu_reset();
#endif // CONFIG_BUS_ESPI
}
rst_last = rst_new;
// clang-format on
#if HAVE_SLP_SUS_N
#if LEVEL >= LEVEL_DEBUG
static bool sus_last = true;
bool sus_new = gpio_get(&SLP_SUS_N);
if (!sus_new && sus_last) {
DEBUG("%02X: SLP_SUS# asserted\n", main_cycle);
} else if (sus_new && !sus_last) {
DEBUG("%02X: SLP_SUS# de-asserted\n", main_cycle);
}
sus_last = sus_new;
#endif
#endif // HAVE_SLP_SUS_N
#if CONFIG_BUS_ESPI
// ESPI systems must keep S5 planes powered unless VW_SUS_PWRDN_ACK is high
if (vw_get(&VW_SUS_PWRDN_ACK) == VWS_HIGH)
#elif HAVE_SUSWARN_N
// EC must keep VccPRIM powered if SUSPWRDNACK is de-asserted low or system
// state is S3
static bool ack_last = false;
bool ack_new = gpio_get(&SUSWARN_N);
#if LEVEL >= LEVEL_DEBUG
if (ack_new && !ack_last) {
DEBUG("%02X: SUSPWRDNACK asserted\n", main_cycle);
} else if (!ack_new && ack_last) {
DEBUG("%02X: SUSPWRDNACK de-asserted\n", main_cycle);
}
#endif
ack_last = ack_new;
if (ack_new)
#endif // HAVE_SUSWARN_N
{
// Disable S5 power plane if not needed
if (power_state == POWER_STATE_S5) {
power_off();
#if CONFIG_SECURITY
// Handle security state changes if necessary
if (security_power()) {
power_on();
}
#endif // CONFIG_SECURITY
}
}
#if HAVE_LAN_WAKEUP_N
static bool wake_last = true;
bool wake_new = gpio_get(&LAN_WAKEUP_N);
if (!wake_new && wake_last) {
update_power_state();
DEBUG("%02X: LAN_WAKEUP# asserted\n", main_cycle);
if (power_state == POWER_STATE_OFF) {
power_on();
}
}
#if LEVEL >= LEVEL_DEBUG
else if (wake_new && !wake_last) {
DEBUG("%02X: LAN_WAKEUP# de-asserted\n", main_cycle);
}
#endif
wake_last = wake_new;
#endif // HAVE_LAN_WAKEUP_N
static uint32_t last_time = 0;
uint32_t time = time_get();
if (power_state == POWER_STATE_S0) {
#if CONFIG_BUS_ESPI
// HOST_C10 virtual wire is high when CPU is in C10 sleep state
if (vw_get(&VW_HOST_C10) == VWS_HIGH) {
// Modern suspend, flashing green light
if ((time - last_time) >= 1000) {
gpio_set(&LED_PWR, !gpio_get(&LED_PWR));
last_time = time;
}
gpio_set(&LED_ACIN, false);
} else
#endif
{
// CPU on, green light
gpio_set(&LED_PWR, true);
gpio_set(&LED_ACIN, false);
}
} else if (power_state == POWER_STATE_S3) {
// Suspended, flashing green light
if ((time - last_time) >= 1000) {
gpio_set(&LED_PWR, !gpio_get(&LED_PWR));
last_time = time;
}
gpio_set(&LED_ACIN, false);
} else if (!ac_new) {
// AC plugged in, orange light
gpio_set(&LED_PWR, false);
gpio_set(&LED_ACIN, true);
} else {
// CPU off and AC adapter unplugged, flashing orange light
gpio_set(&LED_PWR, false);
if ((time - last_time) >= 1000) {
gpio_set(&LED_ACIN, !gpio_get(&LED_ACIN));
last_time = time;
}
#if HAVE_XLP_OUT
// Power off VDD3 if system should be off
gpio_set(&XLP_OUT, 0);
#endif // HAVE_XLP_OUT
}
//TODO: do not require both LEDs
#if HAVE_LED_BAT_CHG && HAVE_LED_BAT_FULL
if (!(battery_info.status & BATTERY_INITIALIZED)) {
// No battery connected
gpio_set(&LED_BAT_CHG, false);
gpio_set(&LED_BAT_FULL, false);
} else if (ac_new) {
// Discharging (no AC adapter)
gpio_set(&LED_BAT_CHG, false);
gpio_set(&LED_BAT_FULL, false);
} else if (battery_info.current == 0) {
// Fully charged
// TODO: turn off charger
gpio_set(&LED_BAT_CHG, false);
gpio_set(&LED_BAT_FULL, true);
} else {
// Charging
gpio_set(&LED_BAT_CHG, true);
gpio_set(&LED_BAT_FULL, false);
}
#endif // HAVE_LED_BAT_CHG && HAVE_LED_BAT_FULL
}