Files
system76-firmware-open/models/addw3/AlderLakeFspBinPkg/Include/GpioConfig.h
2023-04-03 13:23:12 -06:00

357 lines
14 KiB
C

/** @file
Header file for GpioConfig structure used by GPIO library.
@copyright
INTEL CONFIDENTIAL
Copyright 2014 - 2017 Intel Corporation.
The source code contained or described herein and all documents related to the
source code ("Material") are owned by Intel Corporation or its suppliers or
licensors. Title to the Material remains with Intel Corporation or its suppliers
and licensors. The Material may contain trade secrets and proprietary and
confidential information of Intel Corporation and its suppliers and licensors,
and is protected by worldwide copyright and trade secret laws and treaty
provisions. No part of the Material may be used, copied, reproduced, modified,
published, uploaded, posted, transmitted, distributed, or disclosed in any way
without Intel's prior express written permission.
No license under any patent, copyright, trade secret or other intellectual
property right is granted to or conferred upon you by disclosure or delivery
of the Materials, either expressly, by implication, inducement, estoppel or
otherwise. Any license under such intellectual property rights must be
express and approved by Intel in writing.
Unless otherwise agreed by Intel in writing, you may not remove or alter
this notice or any other notice embedded in Materials by Intel or
Intel's suppliers or licensors in any way.
This file contains an 'Intel Peripheral Driver' and is uniquely identified as
"Intel Reference Module" and is licensed for Intel CPUs and chipsets under
the terms of your license agreement with Intel or your vendor. This file may
be modified by the user, subject to additional terms of the license agreement.
@par Specification Reference:
**/
#ifndef _GPIO_CONFIG_H_
#define _GPIO_CONFIG_H_
#pragma pack(push, 1)
///
/// For any GpioPad usage in code use GPIO_PAD type
///
typedef UINT32 GPIO_PAD;
///
/// For any GpioGroup usage in code use GPIO_GROUP type
///
typedef UINT32 GPIO_GROUP;
/**
GPIO configuration structure used for pin programming.
Structure contains fields that can be used to configure pad.
**/
typedef struct {
/**
Pad Mode
Pad can be set as GPIO or one of its native functions.
When in native mode setting Direction (except Inversion), OutputState,
InterruptConfig, Host Software Pad Ownership and OutputStateLock are unnecessary.
Refer to definition of GPIO_PAD_MODE.
Refer to EDS for each native mode according to the pad.
**/
UINT32 PadMode : 5;
/**
Host Software Pad Ownership
Set pad to ACPI mode or GPIO Driver Mode.
Refer to definition of GPIO_HOSTSW_OWN.
**/
UINT32 HostSoftPadOwn : 2;
/**
GPIO Direction
Can choose between In, In with inversion, Out, both In and Out, both In with inversion and out or disabling both.
Refer to definition of GPIO_DIRECTION for supported settings.
**/
UINT32 Direction : 6;
/**
Output State
Set Pad output value.
Refer to definition of GPIO_OUTPUT_STATE for supported settings.
This setting takes place when output is enabled.
**/
UINT32 OutputState : 2;
/**
GPIO Interrupt Configuration
Set Pad to cause one of interrupts (IOxAPIC/SCI/SMI/NMI).
This setting is applicable only if GPIO is in GpioMode with input enabled.
Refer to definition of GPIO_INT_CONFIG for supported settings.
**/
UINT32 InterruptConfig : 9;
/**
GPIO Power Configuration.
This setting controls Pad Reset Configuration.
Refer to definition of GPIO_RESET_CONFIG for supported settings.
**/
UINT32 PowerConfig : 8;
/**
GPIO Electrical Configuration
This setting controls pads termination and voltage tolerance.
Refer to definition of GPIO_ELECTRICAL_CONFIG for supported settings.
**/
UINT32 ElectricalConfig : 9;
/**
GPIO Lock Configuration
This setting controls pads lock.
Refer to definition of GPIO_LOCK_CONFIG for supported settings.
**/
UINT32 LockConfig : 4;
/**
Additional GPIO configuration
Refer to definition of GPIO_OTHER_CONFIG for supported settings.
**/
UINT32 OtherSettings : 2;
UINT32 RsvdBits : 17; ///< Reserved bits for future extension
} GPIO_CONFIG;
typedef enum {
GpioHardwareDefault = 0x0 ///< Leave setting unmodified
} GPIO_HARDWARE_DEFAULT;
/**
GPIO Pad Mode
Refer to GPIO documentation on native functions available for certain pad.
If GPIO is set to one of NativeX modes then following settings are not applicable
and can be skipped:
- Interrupt related settings
- Host Software Ownership
- Output/Input enabling/disabling
- Output lock
**/
typedef enum {
GpioPadModeGpio = 0x1,
GpioPadModeNative1 = 0x3,
GpioPadModeNative2 = 0x5,
GpioPadModeNative3 = 0x7,
GpioPadModeNative4 = 0x9
} GPIO_PAD_MODE;
/**
Host Software Pad Ownership modes
This setting affects GPIO interrupt status registers. Depending on chosen ownership
some GPIO Interrupt status register get updated and other masked.
Please refer to EDS for HOSTSW_OWN register description.
**/
typedef enum {
GpioHostOwnDefault = 0x0, ///< Leave ownership value unmodified
/**
Set HOST ownership to ACPI.
Use this setting if pad is not going to be used by GPIO OS driver.
If GPIO is configured to generate SCI/SMI/NMI then this setting must be
used for interrupts to work
**/
GpioHostOwnAcpi = 0x1,
/**
Set HOST ownership to GPIO Driver mode.
Use this setting only if GPIO pad should be controlled by GPIO OS Driver.
GPIO OS Driver will be able to control the pad if appropriate entry in
ACPI exists (refer to ACPI specification for GpioIo and GpioInt descriptors)
**/
GpioHostOwnGpio = 0x3
} GPIO_HOSTSW_OWN;
///
/// GPIO Direction
///
typedef enum {
GpioDirDefault = 0x0, ///< Leave pad direction setting unmodified
GpioDirInOut = (0x1 | (0x1 << 3)), ///< Set pad for both output and input
GpioDirInInvOut = (0x1 | (0x3 << 3)), ///< Set pad for both output and input with inversion
GpioDirIn = (0x3 | (0x1 << 3)), ///< Set pad for input only
GpioDirInInv = (0x3 | (0x3 << 3)), ///< Set pad for input with inversion
GpioDirOut = 0x5, ///< Set pad for output only
GpioDirNone = 0x7 ///< Disable both output and input
} GPIO_DIRECTION;
/**
GPIO Output State
This field is relevant only if output is enabled
**/
typedef enum {
GpioOutDefault = 0x0, ///< Leave output value unmodified
GpioOutLow = 0x1, ///< Set output to low
GpioOutHigh = 0x3 ///< Set output to high
} GPIO_OUTPUT_STATE;
/**
GPIO interrupt configuration
This setting is applicable only if pad is in GPIO mode and has input enabled.
GPIO_INT_CONFIG allows to choose which interrupt is generated (IOxAPIC/SCI/SMI/NMI)
and how it is triggered (edge or level). Refer to PADCFG_DW0 register description in
EDS for details on this settings.
Field from GpioIntNmi to GpioIntApic can be OR'ed with GpioIntLevel to GpioIntBothEdge
to describe an interrupt e.g. GpioIntApic | GpioIntLevel
If GPIO is set to cause an SCI then also GPI_GPE_EN is enabled for this pad.
If GPIO is set to cause an NMI then also GPI_NMI_EN is enabled for this pad.
Not all GPIO are capable of generating an SMI or NMI interrupt.
When routing GPIO to cause an IOxAPIC interrupt care must be taken, as this
interrupt cannot be shared and its IRQn number is not configurable.
Refer to EDS for GPIO pads IRQ numbers (PADCFG_DW1.IntSel)
If GPIO is under GPIO OS driver control and appropriate ACPI GpioInt descriptor
exist then use only trigger type setting (from GpioIntLevel to GpioIntBothEdge).
This type of GPIO Driver interrupt doesn't have any additional routing setting
required to be set by BIOS. Interrupt is handled by GPIO OS Driver.
**/
typedef enum {
GpioIntDefault = 0x0, ///< Leave value of interrupt routing unmodified
GpioIntDis = 0x1, ///< Disable IOxAPIC/SCI/SMI/NMI interrupt generation
GpioIntNmi = 0x3, ///< Enable NMI interrupt only
GpioIntSmi = 0x5, ///< Enable SMI interrupt only
GpioIntSci = 0x9, ///< Enable SCI interrupt only
GpioIntApic = 0x11, ///< Enable IOxAPIC interrupt only
GpioIntLevel = (0x1 << 5), ///< Set interrupt as level triggered
GpioIntEdge = (0x3 << 5), ///< Set interrupt as edge triggered (type of edge depends on input inversion)
GpioIntLvlEdgDis = (0x5 << 5), ///< Disable interrupt trigger
GpioIntBothEdge = (0x7 << 5) ///< Set interrupt as both edge triggered
} GPIO_INT_CONFIG;
#define B_GPIO_INT_CONFIG_INT_SOURCE_MASK 0x1F ///< Mask for GPIO_INT_CONFIG for interrupt source
#define B_GPIO_INT_CONFIG_INT_TYPE_MASK 0xE0 ///< Mask for GPIO_INT_CONFIG for interrupt type
/**
GPIO Power Configuration
GPIO_RESET_CONFIG allows to set GPIO Reset type (PADCFG_DW0.PadRstCfg) which will
be used to reset certain GPIO settings.
Refer to EDS for settings that are controllable by PadRstCfg.
**/
typedef enum {
GpioResetDefault = 0x00, ///< Leave value of pad reset unmodified
///
/// Deprecated settings. Maintained only for compatibility.
///
GpioResetPwrGood = 0x09, ///< GPP: RSMRST; GPD: DSW_PWROK; (PadRstCfg = 00b = "Powergood")
GpioResetDeep = 0x0B, ///< Deep GPIO Reset (PadRstCfg = 01b = "Deep GPIO Reset")
GpioResetNormal = 0x0D, ///< GPIO Reset (PadRstCfg = 10b = "GPIO Reset" )
GpioResetResume = 0x0F, ///< GPP: Reserved; GPD: RSMRST; (PadRstCfg = 11b = "Resume Reset" )
///
/// New GPIO reset configuration options
///
/**
Resume Reset (RSMRST)
GPP: PadRstCfg = 00b = "Powergood"
GPD: PadRstCfg = 11b = "Resume Reset"
Pad setting will reset on:
- DeepSx transition
- G3
Pad settings will not reset on:
- S3/S4/S5 transition
- Warm/Cold/Global reset
**/
GpioResumeReset = 0x01,
/**
Host Deep Reset
PadRstCfg = 01b = "Deep GPIO Reset"
Pad settings will reset on:
- Warm/Cold/Global reset
- DeepSx transition
- G3
Pad settings will not reset on:
- S3/S4/S5 transition
**/
GpioHostDeepReset = 0x03,
/**
Platform Reset (PLTRST)
PadRstCfg = 10b = "GPIO Reset"
Pad settings will reset on:
- S3/S4/S5 transition
- Warm/Cold/Global reset
- DeepSx transition
- G3
**/
GpioPlatformReset = 0x05,
/**
Deep Sleep Well Reset (DSW_PWROK)
GPP: not applicable
GPD: PadRstCfg = 00b = "Powergood"
Pad settings will reset on:
- G3
Pad settings will not reset on:
- S3/S4/S5 transition
- Warm/Cold/Global reset
- DeepSx transition
**/
GpioDswReset = 0x07
} GPIO_RESET_CONFIG;
/**
GPIO Electrical Configuration
Set GPIO termination and Pad Tolerance (applicable only for some pads)
Field from GpioTermNone to GpioTermNative can be OR'ed with GpioTolerance1v8.
**/
typedef enum {
GpioTermDefault = 0x0, ///< Leave termination setting unmodified
GpioTermNone = 0x1, ///< none
GpioTermWpd5K = 0x5, ///< 5kOhm weak pull-down
GpioTermWpd20K = 0x9, ///< 20kOhm weak pull-down
GpioTermWpu1K = 0x13, ///< 1kOhm weak pull-up
GpioTermWpu2K = 0x17, ///< 2kOhm weak pull-up
GpioTermWpu5K = 0x15, ///< 5kOhm weak pull-up
GpioTermWpu20K = 0x19, ///< 20kOhm weak pull-up
GpioTermWpu1K2K = 0x1B, ///< 1kOhm & 2kOhm weak pull-up
/**
Native function controls pads termination
This setting is applicable only to some native modes.
Please check EDS to determine which native functionality
can control pads termination
**/
GpioTermNative = 0x1F,
GpioNoTolerance1v8 = (0x1 << 5), ///< Disable 1.8V pad tolerance
GpioTolerance1v8 = (0x3 << 5) ///< Enable 1.8V pad tolerance
} GPIO_ELECTRICAL_CONFIG;
#define B_GPIO_ELECTRICAL_CONFIG_TERMINATION_MASK 0x1F ///< Mask for GPIO_ELECTRICAL_CONFIG for termination value
#define B_GPIO_ELECTRICAL_CONFIG_1V8_TOLERANCE_MASK 0x60 ///< Mask for GPIO_ELECTRICAL_CONFIG for 1v8 tolerance setting
/**
GPIO LockConfiguration
Set GPIO configuration lock and output state lock.
GpioLockPadConfig and GpioLockOutputState can be OR'ed.
Lock settings reset is in Powergood domain. Care must be taken when using this setting
as fields it locks may be reset by a different signal and can be controllable
by what is in GPIO_RESET_CONFIG (PADCFG_DW0.PadRstCfg). GPIO library provides
functions which allow to unlock a GPIO pad.
**/
typedef enum {
GpioLockDefault = 0x0, ///< Leave lock setting unmodified
GpioPadConfigLock = 0x3, ///< Lock Pad Configuration
GpioOutputStateLock = 0x5 ///< Lock GPIO pad output value
} GPIO_LOCK_CONFIG;
#define B_GPIO_LOCK_CONFIG_PAD_CONF_LOCK_MASK 0x3 ///< Mask for GPIO_LOCK_CONFIG for Pad Configuration Lock
#define B_GPIO_LOCK_CONFIG_OUTPUT_LOCK_MASK 0x5 ///< Mask for GPIO_LOCK_CONFIG for Pad Output Lock
/**
Other GPIO Configuration
GPIO_OTHER_CONFIG is used for less often settings and for future extensions
Supported settings:
- RX raw override to '1' - allows to override input value to '1'
This setting is applicable only if in input mode (both in GPIO and native usage).
The override takes place at the internal pad state directly from buffer and before the RXINV.
**/
typedef enum {
GpioRxRaw1Default = 0x0, ///< Use default input override value
GpioRxRaw1Dis = 0x1, ///< Don't override input
GpioRxRaw1En = 0x3 ///< Override input to '1'
} GPIO_OTHER_CONFIG;
#define B_GPIO_OTHER_CONFIG_RXRAW_MASK 0x3 ///< Mask for GPIO_OTHER_CONFIG for RxRaw1 setting
#pragma pack(pop)
#endif //_GPIO_CONFIG_H_