Delete some old code

This commit is contained in:
Sravan Balaji
2021-12-09 17:59:12 -05:00
parent 729fd4fc05
commit a0d868db88

View File

@@ -52,167 +52,7 @@ num_preds = T_p / T_s;
num_states = 6; num_states = 6;
num_inputs = 2; num_inputs = 2;
%% Setup %% Constraint Functions
curr_pos = [state_init(1);state_init(3)];
%state_size = tbd;
% z = [init, init, -0.004, 3900]; %for testing purposes
% nsteps = 2;
% [LB, UB] = bounds(nsteps, 1);
% [g,h,dg,dh]=nonlcon(z, Xobs, nsteps);
% [J, dJ] = costfun(z, TestTrack.cline(:,1), TestTrack.theta(1), nsteps);
Nobs = randi([10 25], 1,1);
global Xobs
Xobs = generateRandomObstacles(Nobs);
U_final = [];
Y_final = [];
options = optimoptions('fmincon','SpecifyConstraintGradient',true,...
'SpecifyObjectiveGradient',true) ;
load('ROB535_ControlProject_part1_Team3.mat');
%[Y_submission, T_submission] = forwardIntegrateControlInput(ROB535_ControlProject_part1_input, init);
load('reftrack_info.mat');
load('segments_info.mat');
%% MPC
U_ref = ROB535_ControlProject_part1_input';
Y_ref = Y_submission';
dt = 0.01;
%discretize dynamics
F_zf=b/(a+b)*m*g;
F_zr=a/(a+b)*m*g;
%we are just going to use cornering stiffness to make linear so this derivative
%easier, the vehicle parameter's are close enough to problem 1 hw 2
B=10;
C=1.3;
D=1;
Ca_r= F_zr*B*C*D;
Ca_f= F_zf*B*C*D;
x = @(s,i) Y_ref(s,i);
Ac = @(i) [0, cos(x(5,i)), 0, -sin(x(5,i)), x(2,i)*sin(x(5,i))-x(4,i)*cos(x(5,i)), 0;
0, (-1/m)*Ca_f*x(2,i)^-2, 0, -Ca_f/m + 1, 0, Ca_f*(-a/m) + 1;
0, sin(x(5,i)), 0, cos(x(5,i)), -x(4,i)*sin(x(5,i))+x(2,i)*cos(x(5,i)), 0;
0, (1/m)*(-Ca_f*x(2,i)^-2 - Ca_r*x(2,i)^-2) - 1, 0, Ca_r/m*(-1/x(2,i)) + Ca_f/m*(-1/x(2,i)), 0, Ca_r/m*(b/x(2,i)) + Ca_f/m*(-a/x(2,i)) - x(2,i);
0, 0, 0, 0, 0, 1
0, (1/Iz)*(-Ca_f*a*x(2,i)^-2 - b*Ca_r*x(2,i)^-2), 0, -b*Ca_r/Iz*(-1/x(2,i)) + a*Ca_f/Iz*(-1/x(2,i)), 0, -b*Ca_r/Iz*(b/x(2,i)) + a*Ca_f/Iz*(-a/x(2,i))];
Bc = @(i) [0, -Ca_f/m, 0, Ca_f/m, 0, a*Ca_f/Iz;
0, Nw/m, 0, 0, 0, 0]';
A = @(i) eye(6) + dt*Ac(i);
B = @(i) dt*Bc(i);
%Decision variables
npred = 10;
nstates = 6;
ninputs = 2;
Ndec=(npred+1)*nstates+ninputs*npred;
input_range = [-0.5, 0.5; -5000, 5000];
eY0 = state_init';
[Aeq_test1,beq_test1]=eq_cons(1,A,B,eY0,npred,nstates,ninputs);
%simulate forward
T = 0:0.01:(size(Y_ref,2)/100);
%final trajectory
Y=NaN(nstates,length(T));
%applied inputs
U=NaN(ninputs,length(T));
%input from QP
u_mpc=NaN(ninputs,length(T));
%error in states (actual-reference)
eY=NaN(nstates,length(T));
%set random initial condition
Y(:,1)=eY0+Y_ref(:,1);
for i=1:length(T)-1
i
%shorten prediction horizon if we are at the end of trajectory
npred_i=min([npred,length(T)-i]);
%calculate error
eY(:,i)=Y(:,i)-Y_ref(:,i);
%generate equality constraints
[Aeq,beq]=eq_cons(i,A,B,eY(:,i),npred_i,nstates,ninputs);
%generate boundary constraints
[Lb,Ub]=bound_cons(i,U_ref,npred_i,input_range,nstates,ninputs);
%cost for states
Q=[1,1,1,1,1,1];
%cost for inputs
R=[0.1,0.01];
H=diag([repmat(Q,[1,npred_i+1]),repmat(R,[1,npred_i])]);
f=zeros(nstates*(npred_i+1)+ninputs*npred_i,1);
[x,fval] = quadprog(H,f,[],[],Aeq,beq,Lb,Ub);
%get linearized input
u_mpc(:,i)=x(nstates*(npred_i+1)+1:nstates*(npred_i+1)+ninputs);
%get input
U(:,i)=u_mpc(:,i)+U_ref(:,i);
%simulate model
[~,ztemp]=ode45(@(t,z)kinematic_bike(t,z,U(:,i),0),[0 dt],Y(:,i));
%store final state
Y(:,i+1)=ztemp(end,:)';
end
%% function start
function [start_idx, end_idx] = get_indices(segment_num, num_pts)
if segment_num == 1
start_idx = 1;
end_idx = num_pts(segment_num);
else
start_idx = sum(num_pts(1:segment_num-1)) + 1;
end_idx = sum(num_pts(1:segment_num));
end
end
%not used
function x0vec = initvec(x0, u0)
%function used because fmincon needs initial condition to be size of
%state vector
%x0 - last row of Y at checkpoint
%u0 - last row of U at checkpoint
global nsteps
x0vec = [];
for i = 1:nsteps
x0vec = [x0vec, x0];
end
%not sure if inputs should be instantiated or not
%will instantiate them to previous u
for i = 1:nsteps-1
x0vec = [x0vec, u0];
end
end
%% mpc functions
function [Lb, Ub] = bound_cons(idx, X_ref, U_ref) function [Lb, Ub] = bound_cons(idx, X_ref, U_ref)
global num_preds num_states num_inputs x_lims y_lims delta_lims Fx_lims global num_preds num_states num_inputs x_lims y_lims delta_lims Fx_lims