Files
Control-Project/Experimentation/miscellaneous_stuff.m
Sravan Balaji 593d451ebf Add Gradients for Cost Function & Nonlinear Constraints
- Set gradient options to true for `fmincon` optimizer
- Play with optimizer limits a bit
- Add gradient computation for cost function
- Add gradient computation for track & obstacle constraints
- Compute gradients offline in `miscellaneous_stuff.m`
- Update `point_to_line` to output signed distance
2021-12-13 14:21:52 -05:00

111 lines
3.5 KiB
Matlab

%% Part 1 Testing Xenia's Code
close all;
figure(1)
hold on
plot(Y_ref(1,:), Y_ref(3,:), 'g-')
plot(Y(1,:), Y(3,:), 'b-')
[Y_test, T_test] = forwardIntegrateControlInput(U', init);
traj_info = getTrajectoryInfo(Y_test(1:439,:), U(:,1:439)')
plot(Y_test(:,1), Y_test(:,3), 'k-')
plot(TestTrack.bl(1,:), TestTrack.bl(2,:), 'r.')
plot(TestTrack.br(1,:), TestTrack.br(2,:), 'r.')
%% Part 2 Symbolic Jacobians for Linearized System
close all;
clear all;
clc;
Nw = 2;
f = 0.01;
Iz = 2667;
a = 1.35;
b = 1.45;
By = 0.27;
Cy = 1.2;
Dy = 0.7;
Ey = -1.6;
Shy = 0;
Svy = 0;
m = 1400;
g = 9.806;
syms x_var u_var y_var v_var psi_var r_var ... % states
delta_f_var F_x_var ... % inputs
F_yf_var F_yr_var % lateral forces
% Vehicle Dynamics (Equation 1)
dx = u_var*cos(psi_var) - v_var*sin(psi_var);
du = (1/m)*(-f*m*g + Nw*F_x_var - F_yf_var*sin(delta_f_var)) + v_var*r_var;
dy = u_var*sin(psi_var) + v_var*cos(psi_var);
dv = (1/m)*(F_yf_var*cos(delta_f_var) + F_yr_var) - u_var*r_var;
dpsi = r_var;
dr = (1/Iz)*(a*F_yf_var*cos(delta_f_var) - b*F_yr_var);
% Jacobians of continuous-time linearized system
% TODO: Change A_c & B_c computation to regular functions (e.g.,
% using `matlabFunction`) if speed is an issue
A_c_symb = [ ...
diff(dx, x_var), diff(dx, u_var), diff(dx, y_var), diff(dx, v_var), diff(dx, psi_var), diff(dx, r_var);
diff(du, x_var), diff(du, u_var), diff(du, y_var), diff(du, v_var), diff(du, psi_var), diff(du, r_var);
diff(dy, x_var), diff(dy, u_var), diff(dy, y_var), diff(dy, v_var), diff(dy, psi_var), diff(dy, r_var);
diff(dv, x_var), diff(dv, u_var), diff(dv, y_var), diff(dv, v_var), diff(dv, psi_var), diff(dv, r_var);
diff(dpsi,x_var), diff(dpsi,u_var), diff(dpsi,y_var), diff(dpsi,v_var), diff(dpsi,psi_var), diff(dpsi,r_var);
diff(dr, x_var), diff(dr, u_var), diff(dr, y_var), diff(dr, v_var), diff(dr, psi_var), diff(dr, r_var);
];
B_c_symb = [ ...
diff(dx, delta_f_var), diff(dx, F_x_var);
diff(du, delta_f_var), diff(du, F_x_var);
diff(dy, delta_f_var), diff(dy, F_x_var);
diff(dv, delta_f_var), diff(dv, F_x_var);
diff(dpsi,delta_f_var), diff(dpsi,F_x_var);
diff(dr, delta_f_var), diff(dr, F_x_var);
];
A_c = matlabFunction(A_c_symb, 'File', 'A_c_func');
B_c = matlabFunction(B_c_symb, 'File', 'B_c_func');
%% Part 2 Symbolic Jacobians for Track Constraint
close all;
clear all;
clc;
syms x_err y_err x_ref y_ref v1_x v1_y v2_x v2_y
x = x_err + x_ref;
y = y_err + y_ref;
pt = [x; y; 0];
v1 = [v1_x; v1_y; 0];
v2 = [v2_x; v2_y; 0];
% Compute vectors
a = v2 - v1; % vector from v1 to v2
b = pt - v1; % vector from v1 to pt
cross_p = cross(a,b);
% Compute distance & direction
dist = norm(cross_p) / norm(a);
direction = sign(cross_p(3));
signed_dist = dist * direction;
temp1 = matlabFunction(jacobian(signed_dist, x_err), 'File', 'signed_dist_x_err');
temp2 = matlabFunction(jacobian(signed_dist, y_err), 'File', 'signed_dist_y_err');
%% Part 2 Symbolic Jacobians for Obstacle Constraint
close all;
clear all;
clc;
syms x_err y_err x_ref y_ref rad_obstacle cen_obstacle_x cen_obstacle_y
x = x_err + x_ref;
y = y_err + y_ref;
obstacle_func = ...
(rad_obstacle)^2 ...
- (x - cen_obstacle_x)^2 ...
- (y - cen_obstacle_y)^2;
temp1 = matlabFunction(jacobian(obstacle_func, x_err), 'File', 'obstacle_x_err');
temp2 = matlabFunction(jacobian(obstacle_func, y_err), 'File', 'obstacle_y_err');