Compare commits

..

34 Commits

Author SHA1 Message Date
Richard Wackerbarth
5a54204f72 Marlin 1.1.0 Release Candidate 3 - 01 December 2015 2015-12-01 07:24:45 -06:00
AnHardt
bb4efcf603 Handle temp callbacks when THERMAL_PROTECTION_HOTENDS is not defined
by alternate definition for the callback macros
2015-12-01 07:21:52 -06:00
AnHardt
96d0d04b8f Update LCD buttons less frequently
Move slow_buttons_update into the LCD_UPDATE_INTERVAL block
lcd_implementation_read_slow_buttons() will then be executed ~10 times a
second.
2015-11-30 05:44:32 -06:00
Richard Wackerbarth
e293ea57f0 Unbalanced brackets in setPwmFrequency
This is a back port of the correct in issue #248
2015-11-30 05:44:32 -06:00
AnHardt
c956b52c4a Babystep Multiplier
Analog to https://github.com/MarlinFirmware/MarlinDev/pull/250 by
@RicardoGA

Restore the Babystep Multiplicator functionality and now it's available
for X/Y/Z
2015-11-30 05:43:10 -06:00
Richard Wackerbarth
956418c674 Kc is also a multi-PID parameter 2015-11-23 06:08:01 -06:00
Richard Wackerbarth
8cea79a81d Update reference to our wiki 2015-11-15 12:23:37 -06:00
AnHardt
33addc52a1 Suppress Z_MIN_PROBE_REPEATABILITY_TEST for DELTA and SCARA configurations (PR#2747)
For now Z_MIN_PROBE_REPEATABILITY_TEST is not possible for DELTA or SCARA
configurations.
This PR comments the feature out, where it is commented in by default.
2015-11-13 07:33:33 -06:00
AnHardt
8da2e98985 Split RAMPS 1.3 an 1.4 (PR#2741)
because of hardware differences on the SERVO0_PIN
2015-11-13 07:13:48 -06:00
AnHardt
6dfc7124a1 Add Travis check for ALLEN_KEY (PR#2748)
Tests DELTA, AUTO_BED_LEVELING_FEATURE and ALLEN_KEY
2015-11-13 07:09:05 -06:00
AnHardt
be7167ed97 Change XY formatting on LCD (PR#2740)
According to #123 negative values for XY at or below -100 are displaying incorrectly, dropping the first digit. Deltas can easily have XY values in this range. This PR adds a function to display floats/ints formatted like `_123`, `-123`, `_-12`, or `__-1` as appropriate and applies it to the XY coordinates on Hitachi displays. It also moves the Z value to the right to be consistent with the XY formatting.
2015-11-13 06:46:11 -06:00
vogtmann
9acdc6c234 Update LICENSE 2015-11-12 13:09:59 -06:00
Luis Correia
e7099ea597 Fix Portuguese (Portugal) strings (PR#2700)
Align strings with release
2015-11-12 00:08:42 -06:00
Richard Wackerbarth
a0f6407d6a Merge corrections from dev branch (PR#2704) 2015-11-12 00:04:18 -06:00
Scott Lahteine
754b13d8fe Patch issue #2315 2015-11-12 00:03:22 -06:00
Scott Lahteine
dbd4c17096 Init Kp, Ki, Kd to 0 2015-11-12 00:03:22 -06:00
Scott Lahteine
644c376e84 Use binary OR with endstop bits 2015-11-12 00:03:22 -06:00
Scott Lahteine
54a39d8c1a Use a ternary in qr_solve.cpp 2015-11-12 00:03:22 -06:00
Scott Lahteine
17c23bbaf3 Shorten gcode_M221 yet function the same 2015-11-12 00:03:22 -06:00
Scott Lahteine
c0e791dbe9 Only look for "N" line number as first parameter 2015-11-12 00:03:22 -06:00
Scott Lahteine
b4af4441c5 Clean up watchdog impl. 2015-11-12 00:03:22 -06:00
Scott Lahteine
8f16563bbd Use "defined" with LCD_PIN_BL and LCD_PIN_RESET 2015-11-12 00:03:22 -06:00
Scott Lahteine
6fa7e24af3 Use "UNUSED" to squash compiler warnings 2015-11-12 00:03:22 -06:00
Scott Lahteine
d5b7c595ae Use static locals in utf_mapper.h 2015-11-12 00:03:21 -06:00
Scott Lahteine
9bdab4f3a8 Clean up "else" and other spacing 2015-11-12 00:03:21 -06:00
Scott Lahteine
9b23490f01 Clean up spacing in configs 2015-11-12 00:03:21 -06:00
esenapaj
c6c37abd41 Update language_kana.h 2015-11-12 00:00:51 -06:00
esenapaj
c24045475a Update language_kana_utf8.h 2015-11-12 00:00:32 -06:00
Richard Wackerbarth
25d636c9e0 Compiler issues (PR#2696) 2015-11-11 23:52:11 -06:00
AnHardt
47401ec97b MSG_EXTRUDER_SWITCHED_OFF was renamed to MSG_REDUNDANCY
in language.h, but was not renamed here. If TEMP_SENSOR_1 is enabled as redundant then
an error is thrown that MSG_EXTRUDER_SWITCHED_OFF is not defined.

Originaly by @12dstring
2015-10-08 10:45:11 -05:00
Scott Lahteine
ba6a243197 DEBUG message has no parameter (PR#2671) 2015-10-03 22:03:03 -05:00
Scott Lahteine
0c7f7ebcfb Styling adjustments (PR#2668 & PR#2670)
Keep "astyled" reformatting
2015-10-03 22:02:45 -05:00
Rafa Couto
b5fb7075b9 Galician (gl) language. 2015-09-30 14:46:01 -05:00
Richard Wackerbarth
7b4bdc0203 DUAL_X_CARRIAGE motor enabling
As noted by @darkjavi et.al. in #103, the E1 motor was not being enabled in planner.cpp when using DUAL_X_CARRIAGE. This patch enables and disables E1 as it should.
2015-09-30 04:31:19 -05:00
73 changed files with 1889 additions and 1336 deletions

View File

@@ -187,6 +187,13 @@ script:
- cp Marlin/example_configurations/delta/generic/Configuration* Marlin/
- rm -rf .build/
- DISPLAY=:1.0 ~/bin/arduino --verify --board marlin:avr:mega Marlin/Marlin.ino
# Delta Config (generic) + ABL + ALLEN_KEY
- cp Marlin/example_configurations/delta/generic/Configuration* Marlin/
- sed -i 's/#define DISABLE_MIN_ENDSTOPS/\/\/#define DISABLE_MIN_ENDSTOPS/g' Marlin/Configuration.h
- sed -i 's/\/\/#define AUTO_BED_LEVELING_FEATURE/#define AUTO_BED_LEVELING_FEATURE/g' Marlin/Configuration.h
- sed -i 's/\/\/#define Z_PROBE_ALLEN_KEY/#define Z_PROBE_ALLEN_KEY/g' Marlin/Configuration.h
- rm -rf .build/
- DISPLAY=:1.0 ~/bin/arduino --verify --board marlin:avr:mega Marlin/Marlin.ino
# Delta Config (Mini Kossel)
- cp Marlin/example_configurations/delta/kossel_mini/Configuration* Marlin/
- rm -rf .build/

845
LICENSE
View File

@@ -1,278 +1,677 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc., <http://fsf.org/>
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
TERMS AND CONDITIONS
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
0. Definitions.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
"This License" refers to version 3 of the GNU General Public License.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
A "covered work" means either the unmodified Program or a work based
on the Program.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
1. Source Code.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
The Corresponding Source for a work in source code form is that
same work.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
2. Basic Permissions.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
13. Use with the GNU Affero General Public License.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
14. Revised Versions of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
NO WARRANTY
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
{one line to give the program's name and a brief idea of what it does.}
Copyright (C) {year} {name of author}
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
{project} Copyright (C) {year} {fullname}
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

View File

@@ -853,11 +853,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -363,7 +363,7 @@
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
//not implemented for CoreXY and deltabots!
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder

View File

@@ -6,9 +6,9 @@
// #error "You must specify the following parameters related to your distribution"
#if true
#define SHORT_BUILD_VERSION "1.1.0-RC2"
#define DETAILED_BUILD_VERSION "1.1.0-RC2 From Archive"
#define STRING_DISTRIBUTION_DATE "2015-09-28 12:00"
#define SHORT_BUILD_VERSION "1.1.0-RC3"
#define DETAILED_BUILD_VERSION "1.1.0-RC3 From Archive"
#define STRING_DISTRIBUTION_DATE "2015-12-01 12:00"
// It might also be appropriate to define a location where additional information can be found
#define SOURCE_CODE_URL "http:// ..."
#endif

View File

@@ -98,6 +98,30 @@ MCU ?= atmega2560
else ifeq ($(HARDWARE_MOTHERBOARD),34)
HARDWARE_VARIANT ?= arduino
MCU ?= atmega2560
else ifeq ($(HARDWARE_MOTHERBOARD),35)
HARDWARE_VARIANT ?= arduino
MCU ?= atmega2560
else ifeq ($(HARDWARE_MOTHERBOARD),36)
HARDWARE_VARIANT ?= arduino
MCU ?= atmega2560
else ifeq ($(HARDWARE_MOTHERBOARD),38)
HARDWARE_VARIANT ?= arduino
MCU ?= atmega2560
else ifeq ($(HARDWARE_MOTHERBOARD),43)
HARDWARE_VARIANT ?= arduino
MCU ?= atmega2560
else ifeq ($(HARDWARE_MOTHERBOARD),44)
HARDWARE_VARIANT ?= arduino
MCU ?= atmega2560
else ifeq ($(HARDWARE_MOTHERBOARD),45)
HARDWARE_VARIANT ?= arduino
MCU ?= atmega2560
else ifeq ($(HARDWARE_MOTHERBOARD),46)
HARDWARE_VARIANT ?= arduino
MCU ?= atmega2560
else ifeq ($(HARDWARE_MOTHERBOARD),48)
HARDWARE_VARIANT ?= arduino
MCU ?= atmega2560
#Gen6
else ifeq ($(HARDWARE_MOTHERBOARD),5)

View File

@@ -74,11 +74,12 @@ void MarlinSerial::begin(long baud) {
useU2X = false;
}
#endif
if (useU2X) {
M_UCSRxA = BIT(M_U2Xx);
baud_setting = (F_CPU / 4 / baud - 1) / 2;
} else {
}
else {
M_UCSRxA = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
@@ -261,7 +262,7 @@ void MarlinSerial::printFloat(double number, uint8_t digits) {
double rounding = 0.5;
for (uint8_t i = 0; i < digits; ++i)
rounding /= 10.0;
number += rounding;
// Extract the integer part of the number and print it

View File

@@ -45,13 +45,16 @@
#include "stepper.h"
#include "temperature.h"
#include "cardreader.h"
#include "watchdog.h"
#include "configuration_store.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"
#include "buzzer.h"
#if ENABLED(USE_WATCHDOG)
#include "watchdog.h"
#endif
#if ENABLED(BLINKM)
#include "blinkm.h"
#include "Wire.h"
@@ -681,7 +684,11 @@ void setup() {
tp_init(); // Initialize temperature loop
plan_init(); // Initialize planner;
watchdog_init();
#if ENABLED(USE_WATCHDOG)
watchdog_init();
#endif
st_init(); // Initialize stepper, this enables interrupts!
setup_photpin();
servo_init();
@@ -827,8 +834,10 @@ void get_command() {
fromsd[cmd_queue_index_w] = false;
#endif
char *npos = strchr(command, 'N');
char *apos = strchr(command, '*');
while (*command == ' ') command++; // skip any leading spaces
char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
char* apos = strchr(command, '*');
if (npos) {
boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
@@ -1512,7 +1521,7 @@ static void setup_for_endstop_move() {
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
SERIAL_EOL;
SERIAL_ECHOPAIR("> SERVO_ENDSTOPS > raise_z_after_probing()");
SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
SERIAL_EOL;
}
#endif
@@ -1688,7 +1697,8 @@ static void setup_for_endstop_move() {
if (a < b) {
if (b < c) median = b;
if (c < a) median = a;
} else { // b <= a
}
else { // b <= a
if (c < b) median = b;
if (a < c) median = a;
}
@@ -1783,7 +1793,8 @@ static void setup_for_endstop_move() {
#endif
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
digitalWrite(SLED_PIN, LOW); // turn off magnet
} else {
}
else {
float z_loc = current_position[Z_AXIS];
if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
@@ -2696,7 +2707,8 @@ inline void gcode_G28() {
SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
return;
}
} else {
}
else {
SERIAL_PROTOCOLPGM("X not entered.\n");
return;
}
@@ -2706,7 +2718,8 @@ inline void gcode_G28() {
SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
return;
}
} else {
}
else {
SERIAL_PROTOCOLPGM("Y not entered.\n");
return;
}
@@ -2983,7 +2996,7 @@ inline void gcode_G28() {
#endif
probePointCounter++;
idle();
} //xProbe
@@ -4653,13 +4666,8 @@ inline void gcode_M220() {
inline void gcode_M221() {
if (code_seen('S')) {
int sval = code_value();
if (code_seen('T')) {
if (setTargetedHotend(221)) return;
extruder_multiplier[target_extruder] = sval;
}
else {
extruder_multiplier[active_extruder] = sval;
}
if (setTargetedHotend(221)) return;
extruder_multiplier[target_extruder] = sval;
}
}
@@ -6381,25 +6389,29 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
x_splits ^= BIT(ix);
} else if (ix < pix && (x_splits) & BIT(pix)) {
}
else if (ix < pix && (x_splits) & BIT(pix)) {
nx = mbl.get_x(pix);
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
x_splits ^= BIT(pix);
} else if (iy > piy && (y_splits) & BIT(iy)) {
}
else if (iy > piy && (y_splits) & BIT(iy)) {
ny = mbl.get_y(iy);
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
y_splits ^= BIT(iy);
} else if (iy < piy && (y_splits) & BIT(piy)) {
}
else if (iy < piy && (y_splits) & BIT(piy)) {
ny = mbl.get_y(piy);
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
y_splits ^= BIT(piy);
} else {
}
else {
// Already split on a border
plan_buffer_line(x, y, z, e, feed_rate, extruder);
set_current_to_destination();
@@ -7056,6 +7068,8 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
void kill(const char* lcd_msg) {
#if ENABLED(ULTRA_LCD)
lcd_setalertstatuspgm(lcd_msg);
#else
UNUSED(lcd_msg);
#endif
cli(); // Stop interrupts
@@ -7146,8 +7160,8 @@ void kill(const char* lcd_msg) {
TCCR5B |= val;
break;
#endif
}
}
#endif // FAST_PWM_FAN
void Stop() {

View File

@@ -91,18 +91,18 @@
cli();
// output pin high - like sending 0XFF
fastDigitalWrite(SPI_MOSI_PIN, HIGH);
for (uint8_t i = 0; i < 8; i++) {
fastDigitalWrite(SPI_SCK_PIN, HIGH);
// adjust so SCK is nice
nop;
nop;
data <<= 1;
if (fastDigitalRead(SPI_MISO_PIN)) data |= 1;
fastDigitalWrite(SPI_SCK_PIN, LOW);
}
// enable interrupts
@@ -122,11 +122,11 @@
cli();
for (uint8_t i = 0; i < 8; i++) {
fastDigitalWrite(SPI_SCK_PIN, LOW);
fastDigitalWrite(SPI_MOSI_PIN, data & 0X80);
data <<= 1;
fastDigitalWrite(SPI_SCK_PIN, HIGH);
}
// hold SCK high for a few ns
@@ -134,7 +134,7 @@
nop;
nop;
nop;
fastDigitalWrite(SPI_SCK_PIN, LOW);
// enable interrupts
sei();
@@ -192,11 +192,13 @@ uint32_t Sd2Card::cardSize() {
uint8_t c_size_mult = (csd.v1.c_size_mult_high << 1)
| csd.v1.c_size_mult_low;
return (uint32_t)(c_size + 1) << (c_size_mult + read_bl_len - 7);
} else if (csd.v2.csd_ver == 1) {
}
else if (csd.v2.csd_ver == 1) {
uint32_t c_size = ((uint32_t)csd.v2.c_size_high << 16)
| (csd.v2.c_size_mid << 8) | csd.v2.c_size_low;
return (c_size + 1) << 10;
} else {
}
else {
error(SD_CARD_ERROR_BAD_CSD);
return 0;
}

View File

@@ -396,7 +396,8 @@ static inline __attribute__((always_inline))
bool getPinMode(uint8_t pin) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
return (*digitalPinMap[pin].ddr >> digitalPinMap[pin].bit) & 1;
} else {
}
else {
return badPinNumber();
}
}
@@ -405,10 +406,12 @@ static inline __attribute__((always_inline))
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (mode) {
*digitalPinMap[pin].ddr |= BIT(digitalPinMap[pin].bit);
} else {
}
else {
*digitalPinMap[pin].ddr &= ~BIT(digitalPinMap[pin].bit);
}
} else {
}
else {
badPinNumber();
}
}
@@ -416,7 +419,8 @@ static inline __attribute__((always_inline))
bool fastDigitalRead(uint8_t pin) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
return (*digitalPinMap[pin].pin >> digitalPinMap[pin].bit) & 1;
} else {
}
else {
return badPinNumber();
}
}
@@ -425,10 +429,12 @@ static inline __attribute__((always_inline))
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (value) {
*digitalPinMap[pin].port |= BIT(digitalPinMap[pin].bit);
} else {
}
else {
*digitalPinMap[pin].port &= ~BIT(digitalPinMap[pin].bit);
}
} else {
}
else {
badPinNumber();
}
}

View File

@@ -1113,7 +1113,7 @@ int8_t SdBaseFile::readDir(dir_t* dir, char* longFilename) {
int16_t n;
// if not a directory file or miss-positioned return an error
if (!isDir() || (0X1F & curPosition_)) return -1;
//If we have a longFilename buffer, mark it as invalid. If we find a long filename it will be filled automaticly.
if (longFilename != NULL) longFilename[0] = '\0';

View File

@@ -42,7 +42,7 @@ class SdFile : public SdBaseFile, public Print {
#else
void write(uint8_t b);
#endif
int16_t write(const void* buf, uint16_t nbyte);
void write(const char* str);
void write_P(PGM_P str);

View File

@@ -10,13 +10,18 @@
#define BOARD_CHEAPTRONIC 2 // Cheaptronic v1.0
#define BOARD_SETHI 20 // Sethi 3D_1
#define BOARD_RAMPS_OLD 3 // MEGA/RAMPS up to 1.2
#define BOARD_RAMPS_13_EFB 33 // RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Bed)
#define BOARD_RAMPS_13_EEB 34 // RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Bed)
#define BOARD_RAMPS_13_EFF 35 // RAMPS 1.3 / 1.4 (Power outputs: Extruder, Fan, Fan)
#define BOARD_RAMPS_13_EEF 36 // RAMPS 1.3 / 1.4 (Power outputs: Extruder0, Extruder1, Fan)
#define BOARD_RAMPS_13_SF 38 // RAMPS 1.3 / 1.4 (Power outputs: Spindle, Controller Fan)
#define BOARD_RAMPS_13_EFB 33 // RAMPS 1.3 (Power outputs: Extruder, Fan, Bed)
#define BOARD_RAMPS_13_EEB 34 // RAMPS 1.3 (Power outputs: Extruder0, Extruder1, Bed)
#define BOARD_RAMPS_13_EFF 35 // RAMPS 1.3 (Power outputs: Extruder, Fan, Fan)
#define BOARD_RAMPS_13_EEF 36 // RAMPS 1.3 (Power outputs: Extruder0, Extruder1, Fan)
#define BOARD_RAMPS_13_SF 38 // RAMPS 1.3 (Power outputs: Spindle, Controller Fan)
#define BOARD_FELIX2 37 // Felix 2.0+ Electronics Board (RAMPS like)
#define BOARD_RIGIDBOARD 42 // Invent-A-Part RigidBoard
#define BOARD_RAMPS_14_EFB 43 // RAMPS 1.4 (Power outputs: Extruder, Fan, Bed)
#define BOARD_RAMPS_14_EEB 44 // RAMPS 1.4 (Power outputs: Extruder0, Extruder1, Bed)
#define BOARD_RAMPS_14_EFF 45 // RAMPS 1.4 (Power outputs: Extruder, Fan, Fan)
#define BOARD_RAMPS_14_EEF 46 // RAMPS 1.4 (Power outputs: Extruder0, Extruder1, Fan)
#define BOARD_RAMPS_14_SF 48 // RAMPS 1.4 (Power outputs: Spindle, Controller Fan)
#define BOARD_GEN6 5 // Gen6
#define BOARD_GEN6_DELUXE 51 // Gen6 deluxe
#define BOARD_SANGUINOLOLU_11 6 // Sanguinololu < 1.2

View File

@@ -410,7 +410,7 @@ void Config_RetrieveSettings() {
EEPROM_READ_VAR(i, dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) {
bedKp = dummy;
bedKp = dummy; UNUSED(bedKp);
EEPROM_READ_VAR(i, bedKi);
EEPROM_READ_VAR(i, bedKd);
}
@@ -540,7 +540,7 @@ void Config_ResetDefault() {
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
for (int e = 0; e < EXTRUDERS; e++)
#else
int e = 0; // only need to write once
int e = 0; UNUSED(e); // only need to write once
#endif
{
PID_PARAM(Kp, e) = DEFAULT_Kp;

View File

@@ -852,11 +852,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -362,7 +362,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder

View File

@@ -234,6 +234,5 @@
0x1E, 0x00, 0x00, 0x0F, 0x00, 0x00, 0x0F, 0x00, 0x01, 0xFF, 0xFF, 0x80, 0x7F, 0xFF, 0xE0,
0x0C, 0x00, 0x00, 0x06, 0x00, 0x00, 0x06, 0x00, 0x01, 0xFF, 0xFF, 0x80, 0x00, 0x00, 0x00
};
#endif // Extruders
#endif // Extruders

View File

@@ -197,18 +197,20 @@ char lcd_printPGM(const char* str) {
/* Warning: This function is called from interrupt context */
static void lcd_implementation_init() {
#if ENABLED(LCD_PIN_BL) // Enable LCD backlight
#if defined(LCD_PIN_BL) && LCD_PIN_BL > -1 // Enable LCD backlight
pinMode(LCD_PIN_BL, OUTPUT);
digitalWrite(LCD_PIN_BL, HIGH);
#endif
#if ENABLED(LCD_PIN_RESET)
#if defined(LCD_PIN_RESET) && LCD_PIN_RESET > -1
pinMode(LCD_PIN_RESET, OUTPUT);
digitalWrite(LCD_PIN_RESET, HIGH);
#endif
#if DISABLED(MINIPANEL) // setContrast not working for Mini Panel
u8g.setContrast(lcd_contrast);
#endif
// FIXME: remove this workaround
// Uncomment this if you have the first generation (V1.10) of STBs board
// pinMode(17, OUTPUT); // Enable LCD backlight
@@ -283,7 +285,7 @@ static void lcd_implementation_status_screen() {
// Symbols menu graphics, animated fan
u8g.drawBitmapP(9,1,STATUS_SCREENBYTEWIDTH,STATUS_SCREENHEIGHT, (blink % 2) && fanSpeed ? status_screen0_bmp : status_screen1_bmp);
#if ENABLED(SDSUPPORT)
// SD Card Symbol
u8g.drawBox(42, 42 - TALL_FONT_CORRECTION, 8, 7);
@@ -296,7 +298,7 @@ static void lcd_implementation_status_screen() {
// SD Card Progress bar and clock
lcd_setFont(FONT_STATUSMENU);
if (IS_SD_PRINTING) {
// Progress bar solid part
u8g.drawBox(55, 50, (unsigned int)(71.f * card.percentDone() / 100.f), 2 - TALL_FONT_CORRECTION);
@@ -373,7 +375,7 @@ static void lcd_implementation_status_screen() {
else
lcd_printPGM(PSTR("---.--"));
u8g.setColorIndex(1); // black on white
// Feedrate
lcd_setFont(FONT_MENU);
u8g.setPrintPos(3, 49);

View File

@@ -725,7 +725,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -835,11 +835,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -366,7 +366,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//=========================== Manual Bed Leveling ===========================
//===========================================================================
@@ -459,7 +459,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10" // These commands will be executed in the end of G29 routine.
// Useful to retract a deployable Z probe.
//#define Z_PROBE_SLED // Turn on if you have a Z probe mounted on a sled like those designed by Charles Bell.
//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.
@@ -799,11 +799,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -145,7 +145,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -343,8 +343,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -371,7 +371,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -466,7 +466,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -479,56 +479,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -539,67 +539,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -79,7 +79,7 @@ Here are some standard links for getting your machine calibrated:
// Added for BQ
#define SOURCE_CODE_URL "http://www.bq.com/gb/downloads-prusa-i3-hephestos.html"
// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
@@ -734,7 +734,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -844,11 +844,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -145,7 +145,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -343,8 +343,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -371,7 +371,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -466,7 +466,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -479,56 +479,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -539,67 +539,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -730,7 +730,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -840,11 +840,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -145,7 +145,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -343,8 +343,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -371,7 +371,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -466,7 +466,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -479,56 +479,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -539,67 +539,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -742,7 +742,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -852,11 +852,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -732,7 +732,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -842,11 +842,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -137,7 +137,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -336,8 +336,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -363,7 +363,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -461,7 +461,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -474,56 +474,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -534,67 +534,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -37,16 +37,16 @@ Here are some standard links for getting your machine calibrated:
// QHARLEYS Autobedlevelling has not been ported, because Marlin has now Bed-levelling
// You might need Z-Min endstop on SCARA-Printer to use this feature. Actually untested!
// Uncomment to use Morgan scara mode
#define SCARA
#define SCARA
#define SCARA_SEGMENTS_PER_SECOND 200 // If movement is choppy try lowering this value
// Length of inner support arm
#define Linkage_1 150 //mm Preprocessor cannot handle decimal point...
// Length of outer support arm Measure arm lengths precisely and enter
#define Linkage_2 150 //mm
// Length of outer support arm Measure arm lengths precisely and enter
#define Linkage_2 150 //mm
// SCARA tower offset (position of Tower relative to bed zero position)
// SCARA tower offset (position of Tower relative to bed zero position)
// This needs to be reasonably accurate as it defines the printbed position in the SCARA space.
#define SCARA_offset_x 100 //mm
#define SCARA_offset_x 100 //mm
#define SCARA_offset_y -56 //mm
#define SCARA_RAD2DEG 57.2957795 // to convert RAD to degrees
@@ -452,7 +452,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//#define AUTO_BED_LEVELING_FEATURE // Delete the comment to enable (remove // at the start of the line)
//#define DEBUG_LEVELING_FEATURE
#define Z_MIN_PROBE_REPEATABILITY_TEST // If not commented out, Z-Probe Repeatability test will be included if Auto Bed Leveling is Enabled.
//#define Z_MIN_PROBE_REPEATABILITY_TEST // If not commented out, Z-Probe Repeatability test will be included if Auto Bed Leveling is Enabled.
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
@@ -750,7 +750,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -860,11 +860,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -145,7 +145,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -343,8 +343,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -371,7 +371,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -466,7 +466,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -479,56 +479,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -539,67 +539,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -761,7 +761,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -871,11 +871,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -145,7 +145,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -343,8 +343,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -371,7 +371,7 @@
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
//not implemented for CoreXY and deltabots!
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -469,7 +469,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -482,56 +482,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -542,67 +542,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -733,7 +733,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -843,11 +843,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -145,7 +145,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -343,8 +343,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -371,7 +371,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -466,7 +466,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -479,56 +479,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -539,67 +539,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -742,7 +742,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -852,11 +852,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -479,7 +479,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
//#define AUTO_BED_LEVELING_FEATURE // Delete the comment to enable (remove // at the start of the line)
//#define DEBUG_LEVELING_FEATURE
#define Z_MIN_PROBE_REPEATABILITY_TEST // If not commented out, Z-Probe Repeatability test will be included if Auto Bed Leveling is Enabled.
//#define Z_MIN_PROBE_REPEATABILITY_TEST // If not commented out, Z-Probe Repeatability test will be included if Auto Bed Leveling is Enabled.
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
@@ -867,7 +867,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -977,11 +977,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -145,7 +145,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -345,8 +345,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -372,7 +372,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -467,7 +467,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -480,56 +480,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -540,67 +540,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -872,7 +872,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -982,11 +982,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -145,7 +145,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -345,8 +345,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -373,7 +373,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -468,7 +468,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -481,56 +481,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -541,67 +541,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -480,7 +480,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//#define AUTO_BED_LEVELING_FEATURE // Delete the comment to enable (remove // at the start of the line)
//#define DEBUG_LEVELING_FEATURE
#define Z_MIN_PROBE_REPEATABILITY_TEST // If not commented out, Z-Probe Repeatability test will be included if Auto Bed Leveling is Enabled.
//#define Z_MIN_PROBE_REPEATABILITY_TEST // If not commented out, Z-Probe Repeatability test will be included if Auto Bed Leveling is Enabled.
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
@@ -872,7 +872,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -982,11 +982,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -145,7 +145,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -344,8 +344,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -372,7 +372,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -467,7 +467,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -480,56 +480,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -540,67 +540,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -467,7 +467,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//#define AUTO_BED_LEVELING_FEATURE // Delete the comment to enable (remove // at the start of the line)
//#define DEBUG_LEVELING_FEATURE
#define Z_MIN_PROBE_REPEATABILITY_TEST // If not commented out, Z-Probe Repeatability test will be included if Auto Bed Leveling is Enabled.
//#define Z_MIN_PROBE_REPEATABILITY_TEST // If not commented out, Z-Probe Repeatability test will be included if Auto Bed Leveling is Enabled.
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
@@ -862,7 +862,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -972,11 +972,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -149,7 +149,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -348,8 +348,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -376,7 +376,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -471,7 +471,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -484,56 +484,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -544,67 +544,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -590,7 +590,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
// default settings
#define DEFAULT_AXIS_STEPS_PER_UNIT {400, 400, 400, 163} // default steps per unit for ***** MakiBox A6 *****
#define DEFAULT_MAX_FEEDRATE {60, 60, 20, 45} // (mm/sec)
#define DEFAULT_MAX_FEEDRATE {60, 60, 20, 45} // (mm/sec)
#define DEFAULT_MAX_ACCELERATION {2000,2000,30,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration in mm/s^2 for printing moves
@@ -744,7 +744,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -854,11 +854,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = false; // set to true to invert the l
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -145,7 +145,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -342,8 +342,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -370,7 +370,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -465,7 +465,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -478,56 +478,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -538,67 +538,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -581,7 +581,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
//#define DEFAULT_AXIS_STEPS_PER_UNIT {81.26, 80.01, 2561, 599.14} // Michel TVRR old
//#define DEFAULT_AXIS_STEPS_PER_UNIT {71.1, 71.1, 2560, 739.65} // Michel TVRR
#define DEFAULT_AXIS_STEPS_PER_UNIT {71.1, 71.1, 2560, 600} // David TVRR
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 45} // (mm/sec) David TVRR
#define DEFAULT_MAX_FEEDRATE {500, 500, 5, 45} // (mm/sec) David TVRR
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot.
/* MICHEL: This has an impact on the "ripples" in print walls */
@@ -737,7 +737,7 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
// Panucatt VIKI LCD with status LEDs, integrated click & L/R/U/P buttons, separate encoder inputs
//#define LCD_I2C_VIKI
// SSD1306 OLED generic display support
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define U8GLIB_SSD1306
@@ -847,11 +847,6 @@ const bool Z_MIN_PROBE_ENDSTOP_INVERTING = true; // set to true to invert the lo
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#include "Configuration_adv.h"
#include "thermistortables.h"

View File

@@ -145,7 +145,7 @@
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
@@ -343,8 +343,8 @@
// save 3120 bytes of PROGMEM by commenting out #define USE_BIG_EDIT_FONT
// we don't have a big font for Cyrillic, Kana
//#define USE_BIG_EDIT_FONT
// If you have spare 2300Byte of progmem and want to use a
// If you have spare 2300Byte of progmem and want to use a
// smaller font on the Info-screen uncomment the next line.
//#define USE_SMALL_INFOFONT
#endif // DOGLCD
@@ -371,7 +371,7 @@
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
@@ -466,7 +466,7 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
@@ -479,56 +479,56 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
//#define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
//#define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
//#define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_MICROSTEPS 16 //number of microsteps
//#define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
//#define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
//#define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
//#define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
//#define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
//#define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
@@ -539,67 +539,64 @@ const unsigned int dropsegments=5; //everything with less than this number of st
//#define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
//#define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
#include "Conditionals.h"

View File

@@ -30,15 +30,15 @@
#define _WRITE_C(IO, v) do { if (v) { \
CRITICAL_SECTION_START; \
{DIO ## IO ## _WPORT |= MASK(DIO ## IO ## _PIN); }\
{DIO ## IO ## _WPORT |= MASK(DIO ## IO ## _PIN); } \
CRITICAL_SECTION_END; \
}\
else {\
} \
else { \
CRITICAL_SECTION_START; \
{DIO ## IO ## _WPORT &= ~MASK(DIO ## IO ## _PIN); }\
{DIO ## IO ## _WPORT &= ~MASK(DIO ## IO ## _PIN); } \
CRITICAL_SECTION_END; \
}\
}\
} \
} \
while (0)
#define _WRITE(IO, v) do { if (&(DIO ## IO ## _RPORT) >= (uint8_t *)0x100) {_WRITE_C(IO, v); } else {_WRITE_NC(IO, v); }; } while (0)

View File

@@ -1,4 +1,4 @@
The fonts are created with Fony.exe (http://hukka.ncn.fi/?fony) because Fontforge didn't do what I want (probably lack off experience).
The fonts are created with Fony.exe (http://hukka.ncn.fi/?fony) because Fontforge didn't do what I want (probably lack of experience).
In Fony export the fonts to bdf-format. Maybe another one can edit them with Fontforge.
Then run make_fonts.bat what calls bdf2u8g.exe with the needed parameters to produce the .h files.
The .h files must be edited to replace '#include "u8g.h"' with '#include <utility/u8g.h>', replace 'U8G_FONT_SECTION' with 'U8G_SECTION', insert '.progmem.' right behind the first '"' and moved to the main directory.
@@ -6,7 +6,7 @@ The .h files must be edited to replace '#include "u8g.h"' with '#include <utilit
How to integrate a new font:
Currently we are limited to 256 symbols per font. We use a menu system with 5 lines, on a display with 64 pixel height. That means we have 12 pixel for a line. To have some space in between the lines we can't use more then 10 pixel height for the symbols. For up to 11 pixel set TALL_FONT_CORRECTION 1 when loading the font.
To fit 22 Symbols on the 128 pixel wide screen, the symbols can't be wider than 5 pixel, for the first 128 symbols.
For the second half of the font we now support up to 11x11 pixel.
For the second half of the font we now support up to 11x11 pixel.
* Get 'Fony.exe'
* Copy one of the existing *.fon files and work with this.

View File

@@ -27,6 +27,7 @@
// fi Finnish
// an Aragonese
// nl Dutch
// gl Galician
// ca Catalan
// eu Basque-Euskera
// kana Japanese

151
Marlin/language_gl.h Normal file
View File

@@ -0,0 +1,151 @@
/**
* Galician language (ISO "gl")
*
* LCD Menu Messages
* Se also documentation/LCDLanguageFont.md
*
*/
#ifndef LANGUAGE_GL_H
#define LANGUAGE_GL_H
#define MAPPER_C2C3
// Define SIMULATE_ROMFONT to see what is seen on the character based display defined in Configuration.h
//#define SIMULATE_ROMFONT
#define DISPLAY_CHARSET_ISO10646_1
#define WELCOME_MSG MACHINE_NAME " lista."
#define MSG_SD_INSERTED "Tarxeta inserida"
#define MSG_SD_REMOVED "Tarxeta retirada"
#define MSG_MAIN "Menu principal"
#define MSG_AUTOSTART "Autoarranque"
#define MSG_DISABLE_STEPPERS "Apagar motores"
#define MSG_AUTO_HOME "Ir a orixe"
#define MSG_SET_ORIGIN "Fixar orixe"
#define MSG_PREHEAT_PLA "Prequentar PLA"
#define MSG_PREHEAT_PLA_N "Prequentar PLA "
#define MSG_PREHEAT_PLA_ALL "Preque. PLA Todo"
#define MSG_PREHEAT_PLA_BEDONLY "Preque. PLA Cama"
#define MSG_PREHEAT_PLA_SETTINGS "Preque. PLA conf"
#define MSG_PREHEAT_ABS "Prequentar ABS"
#define MSG_PREHEAT_ABS_N "Prequentar ABS "
#define MSG_PREHEAT_ABS_ALL "Preque. ABS Todo"
#define MSG_PREHEAT_ABS_BEDONLY "Preque. ABS Cama"
#define MSG_PREHEAT_ABS_SETTINGS "Preque. ABS conf"
#define MSG_COOLDOWN "Arrefriar"
#define MSG_SWITCH_PS_ON "Acender"
#define MSG_SWITCH_PS_OFF "Apagar"
#define MSG_EXTRUDE "Extrudir"
#define MSG_RETRACT "Retraer"
#define MSG_MOVE_AXIS "Mover eixe"
#define MSG_LEVEL_BED "Nivelar cama"
#define MSG_MOVE_X "Mover X"
#define MSG_MOVE_Y "Mover Y"
#define MSG_MOVE_Z "Mover Z"
#define MSG_MOVE_E "Extruir"
#define MSG_MOVE_01MM "Mover 0.1mm"
#define MSG_MOVE_1MM "Mover 1mm"
#define MSG_MOVE_10MM "Mover 10mm"
#define MSG_SPEED "Velocidade"
#define MSG_NOZZLE "Bico"
#define MSG_BED "Cama"
#define MSG_FAN_SPEED "Velocidade vent."
#define MSG_FLOW "Fluxo"
#define MSG_CONTROL "Control"
#define MSG_MIN " " LCD_STR_THERMOMETER " Min"
#define MSG_MAX " " LCD_STR_THERMOMETER " Max"
#define MSG_FACTOR " " LCD_STR_THERMOMETER " Fact"
#define MSG_AUTOTEMP "Autotemp"
#define MSG_ON "On "
#define MSG_OFF "Off"
#define MSG_PID_P "PID-P"
#define MSG_PID_I "PID-I"
#define MSG_PID_D "PID-D"
#define MSG_PID_C "PID-C"
#define MSG_E1 " E1"
#define MSG_E2 " E2"
#define MSG_E3 " E3"
#define MSG_E4 " E4"
#define MSG_ACC "Acel"
#define MSG_VXY_JERK "Vxy-jerk"
#define MSG_VZ_JERK "Vz-jerk"
#define MSG_VE_JERK "Ve-jerk"
#define MSG_VMAX "Vmax "
#define MSG_X "x"
#define MSG_Y "y"
#define MSG_Z "z"
#define MSG_E "e"
#define MSG_VMIN "Vmin"
#define MSG_VTRAV_MIN "VTrav min"
#define MSG_AMAX "Amax "
#define MSG_A_RETRACT "A-retract"
#define MSG_A_TRAVEL "A-travel"
#define MSG_XSTEPS "Xpasos/mm"
#define MSG_YSTEPS "Ypasos/mm"
#define MSG_ZSTEPS "Zpasos/mm"
#define MSG_ESTEPS "Epasos/mm"
#define MSG_TEMPERATURE "Temperatura"
#define MSG_MOTION "Movemento"
#define MSG_VOLUMETRIC "Filamento"
#define MSG_VOLUMETRIC_ENABLED "E en mm3"
#define MSG_FILAMENT_DIAM "Diametro filam."
#define MSG_CONTRAST "Constraste LCD"
#define MSG_STORE_EPROM "Gardar en memo."
#define MSG_LOAD_EPROM "Cargar de memo."
#define MSG_RESTORE_FAILSAFE "Cargar de firm."
#define MSG_REFRESH "Volver a cargar"
#define MSG_WATCH "Monitorizacion"
#define MSG_PREPARE "Preparar"
#define MSG_TUNE "Axustar"
#define MSG_PAUSE_PRINT "Pausar impres."
#define MSG_RESUME_PRINT "Seguir impres."
#define MSG_STOP_PRINT "Deter impres."
#define MSG_CARD_MENU "Tarxeta SD"
#define MSG_NO_CARD "Sen tarxeta SD"
#define MSG_DWELL "En repouso..."
#define MSG_USERWAIT "A espera..."
#define MSG_RESUMING "Imprimindo..."
#define MSG_PRINT_ABORTED "Impre. cancelada"
#define MSG_NO_MOVE "Sen movemento."
#define MSG_KILLED "PROGRAMA MORTO"
#define MSG_STOPPED "PROGRAMA PARADO"
#define MSG_CONTROL_RETRACT "Retraccion mm"
#define MSG_CONTROL_RETRACT_SWAP "Cambio retra. mm"
#define MSG_CONTROL_RETRACTF "Retraccion V"
#define MSG_CONTROL_RETRACT_ZLIFT "Alzar Z mm"
#define MSG_CONTROL_RETRACT_RECOVER "Recup. retra. mm"
#define MSG_CONTROL_RETRACT_RECOVER_SWAP "Cambio recup. mm"
#define MSG_CONTROL_RETRACT_RECOVERF "Recuperacion V"
#define MSG_AUTORETRACT "Retraccion auto."
#define MSG_FILAMENTCHANGE "Cambiar filamen."
#define MSG_INIT_SDCARD "Iniciando SD"
#define MSG_CNG_SDCARD "Cambiar SD"
#define MSG_ZPROBE_OUT "Sonda-Z sen cama"
#define MSG_POSITION_UNKNOWN "X/Y antes que Z"
#define MSG_ZPROBE_ZOFFSET "Offset Z"
#define MSG_BABYSTEP_X "Micropaso X"
#define MSG_BABYSTEP_Y "Micropaso Y"
#define MSG_BABYSTEP_Z "Micropaso Z"
#define MSG_ENDSTOP_ABORT "Erro fin carro"
#define MSG_HEATING_FAILED_LCD "Fallo quentando"
#define MSG_ERR_REDUNDANT_TEMP "Erro temperatura"
#define MSG_THERMAL_RUNAWAY "Temp. excesiva"
#define MSG_ERR_MAXTEMP "Err: temp. max."
#define MSG_ERR_MINTEMP "Err: temp. min."
#define MSG_ERR_MAXTEMP_BED "Err: MAXTEMP BED"
#define MSG_ERR_MINTEMP_BED "Err: MINTEMP BED"
#define MSG_END_HOUR "horas"
#define MSG_END_MINUTE "minutos"
#define MSG_HEATING "Quentando..."
#define MSG_HEATING_COMPLETE "Xa esta quente"
#define MSG_BED_HEATING "Quentando cama"
#define MSG_BED_DONE "Cama esta quente"
#if ENABLED(DELTA_CALIBRATION_MENU)
#define MSG_DELTA_CALIBRATE "Calibracion Delta"
#define MSG_DELTA_CALIBRATE_X "Calibrar X"
#define MSG_DELTA_CALIBRATE_Y "Calibrar Y"
#define MSG_DELTA_CALIBRATE_Z "Calibrar Z"
#define MSG_DELTA_CALIBRATE_CENTER "Calibrar Centro"
#endif // DELTA_CALIBRATION_MENU
#endif // LANGUAGE_GL_H

View File

@@ -17,7 +17,7 @@
// 片仮名表示定義
#define WELCOME_MSG MACHINE_NAME " ready."
#define MSG_SD_INSERTED "\xb6\xb0\xc4\xde\x20\xbf\xb3\xc6\xad\xb3\xbb\xda\xcf\xbc\xc0" // "Card inserted"
#define MSG_SD_REMOVED "\xb6\xb0\xc4\xde\xb6xde\xb1\xd8\xcf\xbe\xdd" // "Card removed"
#define MSG_SD_REMOVED "\xb6\xb0\xc4\xde\xb6\xde\xb1\xd8\xcf\xbe\xdd" // "Card removed"
#define MSG_MAIN "\xd2\xb2\xdd" // "Main"
#define MSG_AUTOSTART "\xbc\xde\xc4\xde\xb3\xb6\xb2\xbc" // "Autostart"
#define MSG_DISABLE_STEPPERS "\xd3\xb0\xc0\xb0\xc3\xde\xdd\xb9\xde\xdd\x20\xb5\xcc" // "Disable steppers"
@@ -35,8 +35,8 @@
#define MSG_PREHEAT_ABS_BEDONLY MSG_PREHEAT_ABS " \xcd\xde\xaf\xc4\xde" // "Bed"
#define MSG_PREHEAT_ABS_SETTINGS MSG_PREHEAT_ABS " \xbe\xaf\xc3\xb2" // "conf"
#define MSG_COOLDOWN "\xb6\xc8\xc2\xc3\xb2\xbc" // "Cooldown"
#define MSG_SWITCH_PS_ON "\xc3\xde\xdd\xb9\xdd\xde\x20\xb5\xdd" // "Switch power on"
#define MSG_SWITCH_PS_OFF "\xc3\xde\xdd\xb9\xdd\xde\x20\xb5\xcc" // "Switch power off"
#define MSG_SWITCH_PS_ON "\xc3\xde\xdd\xb9\xde\xdd\x20\xb5\xdd" // "Switch power on"
#define MSG_SWITCH_PS_OFF "\xc3\xde\xdd\xb9\xde\xdd\x20\xb5\xcc" // "Switch power off"
#define MSG_EXTRUDE "\xb5\xbc\xc0\xde\xbc" // "Extrude"
#define MSG_RETRACT "\xd8\xc4\xd7\xb8\xc4" // "Retract"
#define MSG_MOVE_AXIS "\xbc\xde\xb8\xb2\xc4\xde\xb3" // "Move axis"
@@ -87,7 +87,7 @@
#define MSG_FILAMENT_DIAM "Fil. Dia."
#define MSG_CONTRAST "LCD\xba\xdd\xc4\xd7\xbd\xc4" // "LCD contrast"
#define MSG_STORE_EPROM "\xd2\xd3\xd8\xcd\xb6\xb8\xc9\xb3" // "Store memory"
#define MSG_LOAD_EPROM "\xd2\xd3\xd8\xb6\xd7\xd6\xd0\ba\xd0" // "Load memory"
#define MSG_LOAD_EPROM "\xd2\xd3\xd8\xb6\xd7\xd6\xd0\xba\xd0" // "Load memory"
#define MSG_RESTORE_FAILSAFE "\xbe\xaf\xc3\xb2\xd8\xbe\xaf\xc4" // "Restore failsafe"
#define MSG_REFRESH "\xd8\xcc\xda\xaf\xbc\xad" // "Refresh"
#define MSG_WATCH "\xb2\xdd\xcc\xab" // "Info screen"
@@ -99,7 +99,7 @@
#define MSG_CARD_MENU "SD\xb6\xb0\xc4\xde\xb6\xd7\xcc\xdf\xd8\xdd\xc4" // "Print from SD"
#define MSG_NO_CARD "SD\xb6\xb0\xc4\xde\xb6\xde\xb1\xd8\xcf\xbe\xdd" // "No SD card"
#define MSG_DWELL "\xbd\xd8\xb0\xcc\xdf" // "Sleep..."
#define MSG_USERWAIT "\xbc\xca\xde\xd7\xb9\xb5\xcf\xc1\xb8\xc0\xde\xbb\xb2" // "Wait for user..."
#define MSG_USERWAIT "\xbc\xca\xde\xd7\xb8\xb5\xcf\xc1\xb8\xc0\xde\xbb\xb2" // "Wait for user..."
#define MSG_RESUMING "\xcc\xdf\xd8\xdd\xc4\xbb\xb2\xb6\xb2" // "Resuming print"
#define MSG_PRINT_ABORTED "\xcc\xdf\xd8\xdd\xc4\xc1\xad\xb3\xbc\xbb\xda\xcf\xbc\xc0" // "Print aborted"
#define MSG_NO_MOVE "\xb3\xba\xde\xb7\xcf\xbe\xdd" // "No move."
@@ -116,7 +116,7 @@
#define MSG_FILAMENTCHANGE "\xcc\xa8\xd7\xd2\xdd\xc4\xba\xb3\xb6\xdd" // "Change filament"
#define MSG_INIT_SDCARD "SD\xb6\xb0\xc4\xde\xbb\xb2\xd6\xd0\xba\xd0" // "Init. SD card"
#define MSG_CNG_SDCARD "SD\xb6\xb0\xc4\xde\xba\xb3\xb6\xdd" // "Change SD card"
#define MSG_ZPROBE_OUT "Z\xcc\xdf\xdb\xb0\xcc\xde \xcd\xde\xaf\xc4\xee\xb6\xde\xb2" // "Z probe out. bed"
#define MSG_ZPROBE_OUT "Z\xcc\xdf\xdb\xb0\xcc\xde \xcd\xde\xaf\xc4\xde\xb6\xde\xb2" // "Z probe out. bed"
#define MSG_POSITION_UNKNOWN "\xb9\xde\xdd\xc3\xdd\xcaXY\xb2\xc4\xde\xb3\xba\xdeZ" // "Home X/Y before Z"
#define MSG_ZPROBE_ZOFFSET "Z\xb5\xcc\xbe\xaf\xc4" // "Z Offset"
#define MSG_BABYSTEP_X "\xcb\xde\xc4\xde\xb3 X" // "Babystep X"
@@ -128,9 +128,9 @@
/* These are from language.h. PLEASE DON'T TRANSLATE! All translatable messages can be found in language_en.h
#define MSG_HEATING "\xb6\xc8\xc2\xc1\xad\xb3..." // "Heating..."
#define MSG_HEATING_COMPLETE "\xb6\xc8\xc2\xb6\xdd\xd8x\xae\xb3" // "Heating done."
#define MSG_HEATING_COMPLETE "\xb6\xc8\xc2\xb6\xdd\xd8\xae\xb3" // "Heating done."
#define MSG_BED_HEATING "\xcd\xde\xaf\xc4\xde\xb6\xc8\xc2\xc1\xad\xb3" // "Bed Heating."
#define MSG_BED_DONE "\xcd\xde\xaf\xc4\xde\xb6\xc8\xc2\xb6\xdd\xd8x\xae\xb3" // "Bed done."
#define MSG_BED_DONE "\xcd\xde\xaf\xc4\xde\xb6\xc8\xc2\xb6\xdd\xd8\xae\xb3" // "Bed done."
#define MSG_ENDSTOPS_HIT "endstops hit: "
^ typho
*/

View File

@@ -20,54 +20,54 @@
// 片仮名表示定義
#define WELCOME_MSG MACHINE_NAME " ready."
#define MSG_SD_INSERTED "ード ウニユウアレマシタ" // "Card inserted"
#define MSG_SD_REMOVED "ードアリマセン" // "Card removed"
#define MSG_MAIN "イン" // "Main"
#define MSG_AUTOSTART "ドウイシ" // "Autostart"
#define MSG_SD_INSERTED "ード ウニュウサレマシタ" // "Card inserted"
#define MSG_SD_REMOVED "ードアリマセン" // "Card removed"
#define MSG_MAIN "イン" // "Main"
#define MSG_AUTOSTART "ドウイシ" // "Autostart"
#define MSG_DISABLE_STEPPERS "モーターデンゲン オフ" // "Disable steppers"
#define MSG_AUTO_HOME "ゲンテンニイドウ" // "Auto home"
#define MSG_SET_HOME_OFFSETS "キヅユンオフセトセテイ" // "Set home offsets"
#define MSG_SET_ORIGIN "キヅユンセト" // "Set origin"
#define MSG_PREHEAT_PLA "PLA ヨネ" // "Preheat PLA"
#define MSG_SET_HOME_OFFSETS "キジュンオフセトセテイ" // "Set home offsets"
#define MSG_SET_ORIGIN "キジュンセト" // "Set origin"
#define MSG_PREHEAT_PLA "PLA ヨネ" // "Preheat PLA"
#define MSG_PREHEAT_PLA_N MSG_PREHEAT_PLA " "
#define MSG_PREHEAT_PLA_ALL MSG_PREHEAT_PLA " スベテ" // " All"
#define MSG_PREHEAT_PLA_BEDONLY MSG_PREHEAT_PLA " ベド" // "Bed"
#define MSG_PREHEAT_PLA_SETTINGS MSG_PREHEAT_PLA " セテイ" // "conf"
#define MSG_PREHEAT_ABS "ABS ヨネ" // "Preheat ABS"
#define MSG_PREHEAT_PLA_BEDONLY MSG_PREHEAT_PLA " ベド" // "Bed"
#define MSG_PREHEAT_PLA_SETTINGS MSG_PREHEAT_PLA " セテイ" // "conf"
#define MSG_PREHEAT_ABS "ABS ヨネ" // "Preheat ABS"
#define MSG_PREHEAT_ABS_N MSG_PREHEAT_ABS " "
#define MSG_PREHEAT_ABS_ALL MSG_PREHEAT_ABS " スベテ" // " All"
#define MSG_PREHEAT_ABS_BEDONLY MSG_PREHEAT_ABS " ベド" // "Bed"
#define MSG_PREHEAT_ABS_SETTINGS MSG_PREHEAT_ABS " セテイ" // "conf"
#define MSG_COOLDOWN "セネシテイシ" // "Cooldown"
#define MSG_SWITCH_PS_ON "デンケゾ オン" // "Switch power on"
#define MSG_SWITCH_PS_OFF "デンケゾ オフ" // "Switch power off"
#define MSG_PREHEAT_ABS_BEDONLY MSG_PREHEAT_ABS " ベド" // "Bed"
#define MSG_PREHEAT_ABS_SETTINGS MSG_PREHEAT_ABS " セテイ" // "conf"
#define MSG_COOLDOWN "カネツテイシ" // "Cooldown"
#define MSG_SWITCH_PS_ON "デンゲン オン" // "Switch power on"
#define MSG_SWITCH_PS_OFF "デンゲン オフ" // "Switch power off"
#define MSG_EXTRUDE "オシダシ" // "Extrude"
#define MSG_RETRACT "リトラト" // "Retract"
#define MSG_MOVE_AXIS "ヅケイドウ" // "Move axis"
#define MSG_MOVE_X "Xヅケ イドウ" // "Move X"
#define MSG_MOVE_Y "Yヅケ イドウ" // "Move Y"
#define MSG_MOVE_Z "Zヅケ イドウ" // "Move Z"
#define MSG_MOVE_E "エストルーダー" // "Extruder"
#define MSG_RETRACT "リトラト" // "Retract"
#define MSG_MOVE_AXIS "ジクイドウ" // "Move axis"
#define MSG_MOVE_X "Xジク イドウ" // "Move X"
#define MSG_MOVE_Y "Yジク イドウ" // "Move Y"
#define MSG_MOVE_Z "Zジク イドウ" // "Move Z"
#define MSG_MOVE_E "エストルーダー" // "Extruder"
#define MSG_MOVE_01MM "0.1mm イドウ" // "Move 0.1mm"
#define MSG_MOVE_1MM " 1mm イドウ" // "Move 1mm"
#define MSG_MOVE_10MM " 10mm イドウ" // "Move 10mm"
#define MSG_SPEED "スヒ゜ード" // "Speed"
#define MSG_SPEED "スード" // "Speed"
#define MSG_NOZZLE "ノズル" // "Nozzle"
#define MSG_BED "ベド" // "Bed"
#define MSG_FAN_SPEED "ファンンケド" // "Fan speed"
#define MSG_FLOW "オリリョウ" // "Flow"
#define MSG_BED "ベド" // "Bed"
#define MSG_FAN_SPEED "ファンソクド" // "Fan speed"
#define MSG_FLOW "オリリョウ" // "Flow"
#define MSG_CONTROL "コントロール" // "Control"
#define MSG_MIN LCD_STR_THERMOMETER " Min"
#define MSG_MAX LCD_STR_THERMOMETER " Max"
#define MSG_FACTOR LCD_STR_THERMOMETER " Fact"
#define MSG_AUTOTEMP "ドウオンド" // "Autotemp"
#define MSG_AUTOTEMP "ドウオンド" // "Autotemp"
#define MSG_ON "On "
#define MSG_OFF "Off"
#define MSG_PID_P "PID-P"
#define MSG_PID_I "PID-I"
#define MSG_PID_D "PID-D"
#define MSG_PID_C "PID-C"
#define MSG_ACC "センケド" // "Accel"
#define MSG_ACC "カソクド" // "Accel"
#define MSG_VXY_JERK "Vxy-jerk"
#define MSG_VZ_JERK "Vz-jerk"
#define MSG_VE_JERK "Ve-jerk"
@@ -85,27 +85,27 @@
#define MSG_ZSTEPS "Zsteps/mm"
#define MSG_ESTEPS "Esteps/mm"
#define MSG_TEMPERATURE "オンド" // "Temperature"
#define MSG_MOTION "ウゴキセテイ" // "Motion"
#define MSG_VOLUMETRIC "フィラント" // "Filament"
#define MSG_MOTION "ウゴキセテイ" // "Motion"
#define MSG_VOLUMETRIC "フィラント" // "Filament"
#define MSG_VOLUMETRIC_ENABLED "E in mm3"
#define MSG_FILAMENT_DIAM "Fil. Dia."
#define MSG_CONTRAST "LCDコントラスト" // "LCD contrast"
#define MSG_STORE_EPROM "モリヘセケノウ" // "Store memory"
#define MSG_LOAD_EPROM "モリラヨミbaミ" // "Load memory"
#define MSG_RESTORE_FAILSAFE "セテイリセト" // "Restore failsafe"
#define MSG_REFRESH "リフレツシユ" // "Refresh"
#define MSG_STORE_EPROM "モリヘカクノウ" // "Store memory"
#define MSG_LOAD_EPROM "モリラヨミミ" // "Load memory"
#define MSG_RESTORE_FAILSAFE "セテイリセト" // "Restore failsafe"
#define MSG_REFRESH "リフレッシュ" // "Refresh"
#define MSG_WATCH "インフォ" // "Info screen"
#define MSG_PREPARE "ヅユンゼセツテイ" //"Prepare"
#define MSG_PREPARE "ジュンビセッテイ" //"Prepare"
#define MSG_TUNE "チョウセイ" // "Tune"
#define MSG_PAUSE_PRINT "イチテイシ" // "Pause print"
#define MSG_RESUME_PRINT "プリントアイセイ" // "Resume print"
#define MSG_PAUSE_PRINT "イチテイシ" // "Pause print"
#define MSG_RESUME_PRINT "プリントサイカイ" // "Resume print"
#define MSG_STOP_PRINT "プリントテイシ" // "Stop print"
#define MSG_CARD_MENU "SDードラプリント" // "Print from SD"
#define MSG_NO_CARD "SDードアリマセン" // "No SD card"
#define MSG_CARD_MENU "SDードラプリント" // "Print from SD"
#define MSG_NO_CARD "SDードアリマセン" // "No SD card"
#define MSG_DWELL "スリープ" // "Sleep..."
#define MSG_USERWAIT "シバラオマチケダアイ" // "Wait for user..."
#define MSG_RESUMING "プリントアイセイ" // "Resuming print"
#define MSG_PRINT_ABORTED "プリントチウシレマシタ" // "Print aborted"
#define MSG_USERWAIT "シバラオマチクダサイ" // "Wait for user..."
#define MSG_RESUMING "プリントサイカイ" // "Resuming print"
#define MSG_PRINT_ABORTED "プリントチウシレマシタ" // "Print aborted"
#define MSG_NO_MOVE "ウゴキマセン" // "No move."
#define MSG_KILLED "ショウキョ" // "KILLED. "
#define MSG_STOPPED "テイシシマシタ" // "STOPPED. "
@@ -117,15 +117,15 @@
#define MSG_CONTROL_RETRACT_RECOVER_SWAP "S UnRet+mm"
#define MSG_CONTROL_RETRACT_RECOVERF "UnRet V"
#define MSG_AUTORETRACT "AutoRetr."
#define MSG_FILAMENTCHANGE "フィラントコウン" // "Change filament"
#define MSG_INIT_SDCARD "SDードイヨミコミ" // "Init. SD card"
#define MSG_CNG_SDCARD "SDードコウン" // "Change SD card"
#define MSG_ZPROBE_OUT "Zプローブ ベツトnゼイ" // "Z probe out. bed"
#define MSG_FILAMENTCHANGE "フィラントコウン" // "Change filament"
#define MSG_INIT_SDCARD "SDードイヨミコミ" // "Init. SD card"
#define MSG_CNG_SDCARD "SDードコウン" // "Change SD card"
#define MSG_ZPROBE_OUT "Zプローブ ベッドガイ" // "Z probe out. bed"
#define MSG_POSITION_UNKNOWN "ゲンテンハXYイドウゴZ" // "Home X/Y before Z"
#define MSG_ZPROBE_ZOFFSET "Zオフセト" // "Z Offset"
#define MSG_BABYSTEP_X "ドウ X" // "Babystep X"
#define MSG_BABYSTEP_Y "ドウ Y" // "Babystep Y"
#define MSG_BABYSTEP_Z "ドウ Z" // "Babystep Z"
#define MSG_ZPROBE_ZOFFSET "Zオフセト" // "Z Offset"
#define MSG_BABYSTEP_X "ドウ X" // "Babystep X"
#define MSG_BABYSTEP_Y "ドウ Y" // "Babystep Y"
#define MSG_BABYSTEP_Z "ドウ Z" // "Babystep Z"
#define MSG_ENDSTOP_ABORT "Endstop abort"
#define MSG_END_HOUR "hours"
#define MSG_END_MINUTE "minutes"

View File

@@ -18,20 +18,20 @@
#define MSG_SD_REMOVED "Cartao removido"
#define MSG_MAIN " Menu principal"
#define MSG_AUTOSTART "Autostart"
#define MSG_DISABLE_STEPPERS " Desligar motores"
#define MSG_AUTO_HOME "Ir para home"
#define MSG_SET_HOME_OFFSETS "Def. home offsets"
#define MSG_SET_ORIGIN "Estabelecer orig."
#define MSG_DISABLE_STEPPERS " Desactivar motores"
#define MSG_AUTO_HOME "Ir para origem"
#define MSG_SET_HOME_OFFSETS "Def. desvio origem"
#define MSG_SET_ORIGIN "Definir origem"
#define MSG_PREHEAT_PLA "Pre-aquecer PLA"
#define MSG_PREHEAT_PLA_N "Pre-aquecer PLA "
#define MSG_PREHEAT_PLA_ALL "Pre-aq. PLA Tudo"
#define MSG_PREHEAT_PLA_BEDONLY "Pre-aq. PLA " LCD_STR_THERMOMETER "Base"
#define MSG_PREHEAT_PLA_SETTINGS "PLA definicoes"
#define MSG_PREHEAT_PLA_SETTINGS "Definicoes PLA"
#define MSG_PREHEAT_ABS "Pre-aquecer ABS"
#define MSG_PREHEAT_ABS_N "Pre-aquecer ABS "
#define MSG_PREHEAT_ABS_ALL "Pre-aq. ABS Tudo"
#define MSG_PREHEAT_ABS_BEDONLY "Pre-aq. ABS " LCD_STR_THERMOMETER "Base"
#define MSG_PREHEAT_ABS_SETTINGS "ABS definicoes"
#define MSG_PREHEAT_ABS_SETTINGS "Definicoes ABS"
#define MSG_COOLDOWN "Arrefecer"
#define MSG_SWITCH_PS_ON "Ligar"
#define MSG_SWITCH_PS_OFF "Desligar"
@@ -54,7 +54,7 @@
#define MSG_MIN LCD_STR_THERMOMETER " Min"
#define MSG_MAX LCD_STR_THERMOMETER " Max"
#define MSG_FACTOR LCD_STR_THERMOMETER " Fact"
#define MSG_AUTOTEMP "Autotemp"
#define MSG_AUTOTEMP "Autotemp:"
#define MSG_ON "On "
#define MSG_OFF "Off"
#define MSG_PID_P "PID-P"
@@ -91,15 +91,15 @@
#define MSG_WATCH "Monitorar"
#define MSG_PREPARE "Preparar"
#define MSG_TUNE "Afinar"
#define MSG_PAUSE_PRINT "Pausar impressao"
#define MSG_RESUME_PRINT "Resumir impressao"
#define MSG_PAUSE_PRINT "Pausa impressao"
#define MSG_RESUME_PRINT "Retomar impressao"
#define MSG_STOP_PRINT "Parar impressao"
#define MSG_CARD_MENU "Menu cartao SD"
#define MSG_NO_CARD "Sem cartao SD"
#define MSG_DWELL "Repouso..."
#define MSG_USERWAIT "A espera de ordem"
#define MSG_RESUMING "Resumir impressao"
#define MSG_PRINT_ABORTED "Impr. Cancelada"
#define MSG_RESUMING "Retomando impressao"
#define MSG_PRINT_ABORTED "Impressao cancelada"
#define MSG_NO_MOVE "Sem movimento"
#define MSG_KILLED "INTRRP. DE EMERG."
#define MSG_STOPPED "PARADO. "
@@ -112,11 +112,11 @@
#define MSG_CONTROL_RETRACT_RECOVERF " DesRet V"
#define MSG_AUTORETRACT " AutoRetr."
#define MSG_FILAMENTCHANGE "Trocar filamento"
#define MSG_INIT_SDCARD "Inic. SD-Card"
#define MSG_CNG_SDCARD "Trocar SD-Card"
#define MSG_ZPROBE_OUT "Sens. fora da Base"
#define MSG_INIT_SDCARD "Cartao SD inic."
#define MSG_CNG_SDCARD "Cartao SD trocado
#define MSG_ZPROBE_OUT "Sensor fora d base"
#define MSG_POSITION_UNKNOWN "XY antes de Z"
#define MSG_ZPROBE_ZOFFSET "Z Offset"
#define MSG_ZPROBE_ZOFFSET "Desvio Z"
#define MSG_BABYSTEP_X "Babystep X"
#define MSG_BABYSTEP_Y "Babystep Y"
#define MSG_BABYSTEP_Z "Babystep Z"
@@ -125,11 +125,11 @@
#define MSG_END_MINUTE "minutos"
#if ENABLED(DELTA_CALIBRATION_MENU)
#define MSG_DELTA_CALIBRATE "Delta Calibracao"
#define MSG_DELTA_CALIBRATE_X "Calibrar X"
#define MSG_DELTA_CALIBRATE_Y "Calibrar Y"
#define MSG_DELTA_CALIBRATE_Z "Calibrar Z"
#define MSG_DELTA_CALIBRATE_CENTER "Calibrar Centro"
#define MSG_DELTA_CALIBRATE "Calibracao Delta"
#define MSG_DELTA_CALIBRATE_X "Calibrar X"
#define MSG_DELTA_CALIBRATE_Y "Calibrar Y"
#define MSG_DELTA_CALIBRATE_Z "Calibrar Z"
#define MSG_DELTA_CALIBRATE_CENTER "Calibrar Centro"
#endif // DELTA_CALIBRATION_MENU
#endif // LANGUAGE_PT_H

View File

@@ -5,7 +5,7 @@
mesh_bed_leveling mbl;
mesh_bed_leveling::mesh_bed_leveling() { reset(); }
void mesh_bed_leveling::reset() {
active = 0;
for (int y = 0; y < MESH_NUM_Y_POINTS; y++)

View File

@@ -9,33 +9,33 @@
public:
uint8_t active;
float z_values[MESH_NUM_Y_POINTS][MESH_NUM_X_POINTS];
mesh_bed_leveling();
void reset();
float get_x(int i) { return MESH_MIN_X + MESH_X_DIST * i; }
float get_y(int i) { return MESH_MIN_Y + MESH_Y_DIST * i; }
void set_z(int ix, int iy, float z) { z_values[iy][ix] = z; }
int select_x_index(float x) {
int i = 1;
while (x > get_x(i) && i < MESH_NUM_X_POINTS - 1) i++;
return i - 1;
}
int select_y_index(float y) {
int i = 1;
while (y > get_y(i) && i < MESH_NUM_Y_POINTS - 1) i++;
return i - 1;
}
float calc_z0(float a0, float a1, float z1, float a2, float z2) {
float delta_z = (z2 - z1) / (a2 - a1);
float delta_a = a0 - a1;
return z1 + delta_a * delta_z;
}
float get_z(float x0, float y0) {
int x_index = select_x_index(x0);
int y_index = select_y_index(y0);
@@ -51,7 +51,7 @@
return z0;
}
};
extern mesh_bed_leveling mbl;
#endif // MESH_BED_LEVELING

View File

@@ -38,6 +38,12 @@
#include "pins_RAMPS_13_EFB.h"
#elif MB(RAMPS_13_EEB) || MB(RAMPS_13_EFF) || MB(RAMPS_13_EEF) || MB(RAMPS_13_SF)
#include "pins_RAMPS_13.h"
#elif MB(RAMPS_14_EFB)
#define IS_RAMPS_14
#include "pins_RAMPS_13_EFB.h"
#elif MB(RAMPS_14_EEB) || MB(RAMPS_14_EFF) || MB(RAMPS_14_EEF) || MB(RAMPS_14_SF)
#define IS_RAMPS_14
#include "pins_RAMPS_13.h"
#elif MB(GEN6)
#include "pins_GEN6.h"
#elif MB(GEN6_DELUXE)

View File

@@ -39,7 +39,7 @@
#define TEMP_0_PIN 0 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 33 extruder)
#define TEMP_1_PIN -1
#define TEMP_2_PIN -1
#define TEMP_BED_PIN 5 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 34 bed)
#define TEMP_BED_PIN 5 // MUST USE ANALOG INPUT NUMBERING NOT DIGITAL OUTPUT NUMBERING!!!!!!!!! (pin 34 bed)
#define SDPOWER -1
#define SDSS 4
#define HEATER_2_PIN -1

View File

@@ -23,7 +23,7 @@
#define X_DIR_PIN 57
#define X_ENABLE_PIN 59
#define X_MIN_PIN 37
#define X_MAX_PIN 40 // put to -1 to disable
#define X_MAX_PIN 40 // put to -1 to disable
#define Y_STEP_PIN 5
#define Y_DIR_PIN 17

View File

@@ -1,5 +1,5 @@
/**
* Arduino Mega with RAMPS v1.3 pin assignments
* Arduino Mega with RAMPS v1.3 v1.4 pin assignments
*
* Applies to the following boards:
*
@@ -8,8 +8,18 @@
* RAMPS_13_EFF (Extruder, Fan, Fan)
* RAMPS_13_EEF (Extruder, Extruder, Fan)
* RAMPS_13_SF (Spindle, Controller Fan)
*
* RAMPS_14_EFB (Extruder, Fan, Bed)
* RAMPS_14_EEB (Extruder, Extruder, Bed)
* RAMPS_14_EFF (Extruder, Fan, Fan)
* RAMPS_14_EEF (Extruder, Extruder, Fan)
* RAMPS_14_SF (Spindle, Controller Fan)
*
* Other pins_MYBOARD.h files may override these defaults
*
* Differences between
* RAMPS_13 | RAMPS_14
* 7 | 11
*/
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
@@ -18,7 +28,11 @@
#define LARGE_FLASH true
#define SERVO0_PIN 11
#ifdef IS_RAMPS_14
#define SERVO0_PIN 11
#else
#define SERVO0_PIN 7 // RAMPS_13 // Will conflict with BTN_EN2 on LCD_I2C_VIKI
#endif
#define SERVO1_PIN 6
#define SERVO2_PIN 5
#define SERVO3_PIN 4
@@ -154,7 +168,9 @@
#define KILL_PIN 41
#elif ENABLED(LCD_I2C_VIKI)
#define BTN_EN1 22 // reverse if the encoder turns the wrong way.
#define BTN_EN2 7
#define BTN_EN2 7 // http://files.panucatt.com/datasheets/viki_wiring_diagram.pdf
// tells about 40/42.
// 22/7 are unused on RAMPS_14. 22 is unused and 7 the SERVO0_PIN on RAMPS_13.
#define BTN_ENC -1
#define LCD_SDSS 53
#define SD_DETECT_PIN 49

View File

@@ -110,7 +110,7 @@ long position[NUM_AXIS]; // Rescaled from extern when axis_steps_p
static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
static float previous_nominal_speed; // Nominal speed of previous path line segment
unsigned char g_uc_extruder_last_move[4] = { 0 };
uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 };
#ifdef XY_FREQUENCY_LIMIT
// Used for the frequency limit
@@ -125,6 +125,10 @@ unsigned char g_uc_extruder_last_move[4] = { 0 };
static char meas_sample; //temporary variable to hold filament measurement sample
#endif
#if ENABLED(DUAL_X_CARRIAGE)
extern bool extruder_duplication_enabled;
#endif
//===========================================================================
//================================ functions ================================
//===========================================================================
@@ -435,10 +439,12 @@ void check_axes_activity() {
// Just starting up fan - run at full power.
fan_kick_end = ms + FAN_KICKSTART_TIME;
tail_fan_speed = 255;
} else if (fan_kick_end > ms)
}
else if (fan_kick_end > ms)
// Fan still spinning up.
tail_fan_speed = 255;
} else {
}
else {
fan_kick_end = 0;
}
#endif //FAN_KICKSTART_TIME
@@ -627,6 +633,12 @@ float junction_deviation = 0.1;
switch(extruder) {
case 0:
enable_e0();
#if ENABLED(DUAL_X_CARRIAGE)
if (extruder_duplication_enabled) {
enable_e1();
g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE * 2;
}
#endif
g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
#if EXTRUDERS > 1
if (g_uc_extruder_last_move[1] == 0) disable_e1();

View File

@@ -494,7 +494,8 @@ double dnrm2(int n, double x[], int incx)
if (scale < absxi) {
ssq = 1.0 + ssq * (scale / absxi) * (scale / absxi);
scale = absxi;
} else
}
else
ssq = ssq + (absxi / scale) * (absxi / scale);
}
ix += incx;
@@ -1023,7 +1024,7 @@ void dqrlss(double a[], int lda, int m, int n, int kr, double b[], double x[],
if (kr != 0) {
job = 110;
info = dqrsl(a, lda, m, kr, qraux, b, rsd, rsd, x, rsd, rsd, job);
info = dqrsl(a, lda, m, kr, qraux, b, rsd, rsd, x, rsd, rsd, job); UNUSED(info);
}
for (i = 0; i < n; i++)
@@ -1404,7 +1405,8 @@ void dscal(int n, double sa, double x[], int incx)
x[i + 3] = sa * x[i + 3];
x[i + 4] = sa * x[i + 4];
}
} else {
}
else {
if (0 <= incx)
ix = 0;
else
@@ -1486,15 +1488,10 @@ void dswap(int n, double x[], int incx, double y[], int incy)
x[i + 2] = y[i + 2];
y[i + 2] = temp;
}
} else {
if (0 <= incx)
ix = 0;
else
ix = (- n + 1) * incx;
if (0 <= incy)
iy = 0;
else
iy = (- n + 1) * incy;
}
else {
ix = (incx >= 0) ? 0 : (-n + 1) * incx;
iy = (incy >= 0) ? 0 : (-n + 1) * incy;
for (i = 0; i < n; i++) {
temp = x[ix];
x[ix] = y[iy];
@@ -1566,7 +1563,7 @@ void qr_solve(double x[], int m, int n, double a[], double b[])
tol = r8_epsilon() / r8mat_amax(m, n, a_qr);
itask = 1;
ind = dqrls(a_qr, lda, m, n, tol, &kr, b, x, r, jpvt, qraux, itask);
ind = dqrls(a_qr, lda, m, n, tol, &kr, b, x, r, jpvt, qraux, itask); UNUSED(ind);
}
/******************************************************************************/

View File

@@ -43,7 +43,7 @@
detach() - Stops an attached servos from pulsing its i/o pin.
*/
#include "Configuration.h"
#include "Configuration.h"
#if HAS_SERVOS

View File

@@ -50,8 +50,8 @@ static unsigned char out_bits = 0; // The next stepping-bits to be output
static unsigned int cleaning_buffer_counter;
#if ENABLED(Z_DUAL_ENDSTOPS)
static bool performing_homing = false,
locked_z_motor = false,
static bool performing_homing = false,
locked_z_motor = false,
locked_z2_motor = false;
#endif
@@ -139,11 +139,13 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
if (Z_HOME_DIR > 0) {\
if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
} else {\
} \
else { \
if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
} \
} else { \
} \
else { \
Z_STEP_WRITE(v); \
Z2_STEP_WRITE(v); \
}
@@ -288,7 +290,7 @@ void enable_endstops(bool check) { check_endstops = check; }
// Check endstops
inline void update_endstops() {
#if ENABLED(Z_DUAL_ENDSTOPS)
uint16_t
#else
@@ -316,7 +318,7 @@ inline void update_endstops() {
_ENDSTOP_HIT(AXIS); \
step_events_completed = current_block->step_event_count; \
}
#if ENABLED(COREXY)
// Head direction in -X axis for CoreXY bots.
// If DeltaX == -DeltaY, the movement is only in Y axis
@@ -397,7 +399,7 @@ inline void update_endstops() {
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
#endif
byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
@@ -433,7 +435,7 @@ inline void update_endstops() {
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
#endif
byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
@@ -536,7 +538,7 @@ void set_stepper_direction() {
Y_APPLY_DIR(!INVERT_Y_DIR, 0);
count_direction[Y_AXIS] = 1;
}
if (TEST(out_bits, Z_AXIS)) { // C_AXIS
Z_APPLY_DIR(INVERT_Z_DIR, 0);
count_direction[Z_AXIS] = -1;
@@ -545,7 +547,7 @@ void set_stepper_direction() {
Z_APPLY_DIR(!INVERT_Z_DIR, 0);
count_direction[Z_AXIS] = 1;
}
#if DISABLED(ADVANCE)
if (TEST(out_bits, E_AXIS)) {
REV_E_DIR();
@@ -566,7 +568,7 @@ FORCE_INLINE void trapezoid_generator_reset() {
out_bits = current_block->direction_bits;
set_stepper_direction();
}
#if ENABLED(ADVANCE)
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
@@ -1056,7 +1058,7 @@ void st_init() {
enable_endstops(true); // Start with endstops active. After homing they can be disabled
sei();
set_stepper_direction(); // Init directions to out_bits = 0
}
@@ -1134,7 +1136,7 @@ void quickStop() {
case Y_AXIS:
BABYSTEP_AXIS(y, Y, false);
break;
case Z_AXIS: {
#if DISABLED(DELTA)
@@ -1171,7 +1173,7 @@ void quickStop() {
#endif
} break;
default: break;
}
}

View File

@@ -21,11 +21,13 @@
#include "Marlin.h"
#include "ultralcd.h"
#include "temperature.h"
#include "watchdog.h"
#include "language.h"
#include "Sd2PinMap.h"
#if ENABLED(USE_WATCHDOG)
#include "watchdog.h"
#endif
//===========================================================================
//================================== macros =================================
//===========================================================================
@@ -207,7 +209,7 @@ void PID_autotune(float temp, int extruder, int ncycles) {
long bias, d;
float Ku, Tu;
float Kp, Ki, Kd;
float Kp = 0, Ki = 0, Kd = 0;
float max = 0, min = 10000;
#if HAS_AUTO_FAN
@@ -222,7 +224,7 @@ void PID_autotune(float temp, int extruder, int ncycles) {
SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
return;
}
SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
disable_all_heaters(); // switch off all heaters.
@@ -389,7 +391,7 @@ void setExtruderAutoFanState(int pin, bool state) {
void checkExtruderAutoFans() {
uint8_t fanState = 0;
// which fan pins need to be turned on?
// which fan pins need to be turned on?
#if HAS_AUTO_FAN_0
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
fanState |= 1;
@@ -424,7 +426,7 @@ void checkExtruderAutoFans() {
fanState |= 8;
}
#endif
// update extruder auto fan states
#if HAS_AUTO_FAN_0
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
@@ -511,11 +513,12 @@ float get_pid_output(int e) {
if (e_position > last_position[e]) {
lpq[lpq_ptr++] = e_position - last_position[e];
last_position[e] = e_position;
} else {
}
else {
lpq[lpq_ptr++] = 0;
}
if (lpq_ptr >= lpq_len) lpq_ptr = 0;
cTerm[e] = (lpq[lpq_ptr] / axis_steps_per_unit[E_AXIS]) * Kc;
cTerm[e] = (lpq[lpq_ptr] / axis_steps_per_unit[E_AXIS]) * PID_PARAM(Kc, e);
pid_output += cTerm[e];
}
#endif //PID_ADD_EXTRUSION_RATE
@@ -655,7 +658,7 @@ void manage_heater() {
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
_temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
_temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
}
#endif
@@ -673,7 +676,7 @@ void manage_heater() {
if (filament_sensor) {
meas_shift_index = delay_index1 - meas_delay_cm;
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
// Get the delayed info and add 100 to reconstitute to a percent of
// the nominal filament diameter then square it to get an area
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
@@ -689,7 +692,7 @@ void manage_heater() {
#endif
#if TEMP_SENSOR_BED != 0
#if ENABLED(THERMAL_PROTECTION_BED)
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
#endif
@@ -796,6 +799,7 @@ static float analog2tempBed(int raw) {
#else
UNUSED(raw);
return 0;
#endif
@@ -817,8 +821,11 @@ static void updateTemperaturesFromRawValues() {
#if HAS_FILAMENT_SENSOR
filament_width_meas = analog2widthFil();
#endif
//Reset the watchdog after we know we have a temperature measurement.
watchdog_reset();
#if ENABLED(USE_WATCHDOG)
// Reset the watchdog after we know we have a temperature measurement.
watchdog_reset();
#endif
CRITICAL_SECTION_START;
temp_meas_ready = false;
@@ -840,7 +847,7 @@ static void updateTemperaturesFromRawValues() {
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
return filament_width_nominal / temp * 100;
}
}
#endif
@@ -855,8 +862,8 @@ void tp_init() {
MCUCR = BIT(JTD);
MCUCR = BIT(JTD);
#endif
// Finish init of mult extruder arrays
// Finish init of mult extruder arrays
for (int e = 0; e < EXTRUDERS; e++) {
// populate with the first value
maxttemp[e] = maxttemp[0];
@@ -908,7 +915,7 @@ void tp_init() {
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN, HIGH);
#endif
OUT_WRITE(MAX6675_SS, HIGH);
#endif //HEATER_0_USES_MAX6675
@@ -1155,7 +1162,7 @@ void disable_all_heaters() {
if (ms < next_max6675_ms)
return max6675_temp;
next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
max6675_temp = 0;
@@ -1287,7 +1294,7 @@ ISR(TIMER0_COMPB_vect) {
#if HAS_FILAMENT_SENSOR
static unsigned long raw_filwidth_value = 0;
#endif
#if DISABLED(SLOW_PWM_HEATERS)
/**
* standard PWM modulation
@@ -1430,9 +1437,9 @@ ISR(TIMER0_COMPB_vect) {
if ((pwm_count % 64) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7f;
// EXTRUDER 0
if (state_timer_heater_0 > 0) state_timer_heater_0--;
if (state_timer_heater_0 > 0) state_timer_heater_0--;
#if EXTRUDERS > 1 // EXTRUDER 1
if (state_timer_heater_1 > 0) state_timer_heater_1--;
#if EXTRUDERS > 2 // EXTRUDER 2
@@ -1446,7 +1453,7 @@ ISR(TIMER0_COMPB_vect) {
if (state_timer_heater_BED > 0) state_timer_heater_BED--;
#endif
} // (pwm_count % 64) == 0
#endif // SLOW_PWM_HEATERS
#define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
@@ -1625,7 +1632,7 @@ ISR(TIMER0_COMPB_vect) {
#if ENABLED(BABYSTEPPING)
for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) {
int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
if (curTodo > 0) {
babystep(axis,/*fwd*/true);
babystepsTodo[axis]--; //fewer to do next time

View File

@@ -218,7 +218,7 @@ static void lcd_status_screen();
#if ENABLED(REPRAPWORLD_KEYPAD)
volatile uint8_t buttons_reprapworld_keypad; // to store the keypad shift register values
#endif
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
volatile uint8_t slow_buttons; // Bits of the pressed buttons.
#endif
@@ -461,7 +461,7 @@ void lcd_set_home_offsets() {
static void _lcd_babystep(int axis, const char* msg) {
if (encoderPosition != 0) {
babystepsTodo[axis] += (int)encoderPosition;
babystepsTodo[axis] += BABYSTEP_MULTIPLICATOR * (int)encoderPosition;
encoderPosition = 0;
lcdDrawUpdate = 1;
}
@@ -474,12 +474,86 @@ void lcd_set_home_offsets() {
#endif //BABYSTEPPING
/**
* Watch temperature callbacks
*/
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
#if TEMP_SENSOR_0 != 0
void watch_temp_callback_E0() { start_watching_heater(0); }
#endif
#if EXTRUDERS > 1 && TEMP_SENSOR_1 != 0
void watch_temp_callback_E1() { start_watching_heater(1); }
#endif // EXTRUDERS > 1
#if EXTRUDERS > 2 && TEMP_SENSOR_2 != 0
void watch_temp_callback_E2() { start_watching_heater(2); }
#endif // EXTRUDERS > 2
#if EXTRUDERS > 3 && TEMP_SENSOR_3 != 0
void watch_temp_callback_E3() { start_watching_heater(3); }
#endif // EXTRUDERS > 3
#else
#if TEMP_SENSOR_0 != 0
void watch_temp_callback_E0() {}
#endif
#if EXTRUDERS > 1 && TEMP_SENSOR_1 != 0
void watch_temp_callback_E1() {}
#endif // EXTRUDERS > 1
#if EXTRUDERS > 2 && TEMP_SENSOR_2 != 0
void watch_temp_callback_E2() {}
#endif // EXTRUDERS > 2
#if EXTRUDERS > 3 && TEMP_SENSOR_3 != 0
void watch_temp_callback_E3() {}
#endif // EXTRUDERS > 3
#endif
/**
* Items shared between Tune and Temperature menus
*/
static void nozzle_bed_fan_menu_items(uint8_t &encoderLine, uint8_t &_lineNr, uint8_t &_drawLineNr, uint8_t &_menuItemNr, bool &wasClicked, bool &itemSelected) {
//
// Nozzle:
// Nozzle [1-4]:
//
#if EXTRUDERS == 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif
#else //EXTRUDERS > 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif
#if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1);
#endif
#if EXTRUDERS > 2
#if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2);
#endif
#if EXTRUDERS > 3
#if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3);
#endif
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
//
// Bed:
//
#if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif
//
// Fan Speed:
//
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
}
/**
*
* "Tune" submenu
*
*/
static void lcd_tune_menu() {
START_MENU();
@@ -493,52 +567,8 @@ static void lcd_tune_menu() {
//
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999);
//
// Nozzle:
// Nozzle 1:
// Nozzle 2:
// Nozzle 3:
// Nozzle 4:
//
#if EXTRUDERS == 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
#endif
#else //EXTRUDERS > 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N1, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
#endif
#if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N2, &target_temperature[1], 0, HEATER_1_MAXTEMP - 15);
#endif
#if EXTRUDERS > 2
#if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N3, &target_temperature[2], 0, HEATER_2_MAXTEMP - 15);
#endif
#if EXTRUDERS > 3
#if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N4, &target_temperature[3], 0, HEATER_3_MAXTEMP - 15);
#endif
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1
//
// Bed:
//
#if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif
//
// Fan Speed:
//
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
//
// Flow:
//
MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiplier[active_extruder], 10, 999);
// Nozzle, Bed, and Fan Control
nozzle_bed_fan_menu_items(encoderLine, _lineNr, _drawLineNr, _menuItemNr, wasClicked, itemSelected);
//
// Flow:
@@ -550,6 +580,7 @@ static void lcd_tune_menu() {
#if EXTRUDERS == 1
MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiplier[0], 10, 999);
#else // EXTRUDERS > 1
MENU_ITEM_EDIT(int3, MSG_FLOW, &extruder_multiplier[active_extruder], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N1, &extruder_multiplier[0], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N2, &extruder_multiplier[1], 10, 999);
#if EXTRUDERS > 2
@@ -1002,44 +1033,8 @@ static void lcd_control_temperature_menu() {
//
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
//
// Nozzle
// Nozzle 1, Nozzle 2, Nozzle 3, Nozzle 4
//
#if EXTRUDERS == 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
#endif
#else //EXTRUDERS > 1
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N1, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
#endif
#if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N2, &target_temperature[1], 0, HEATER_1_MAXTEMP - 15);
#endif
#if EXTRUDERS > 2
#if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N3, &target_temperature[2], 0, HEATER_2_MAXTEMP - 15);
#endif
#if EXTRUDERS > 3
#if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N4, &target_temperature[3], 0, HEATER_3_MAXTEMP - 15);
#endif
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
//
// Bed
//
#if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif
//
// Fan Speed
//
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
// Nozzle, Bed, and Fan Control
nozzle_bed_fan_menu_items(encoderLine, _lineNr, _drawLineNr, _menuItemNr, wasClicked, itemSelected);
//
// Autotemp, Min, Max, Fact
@@ -1433,14 +1428,14 @@ menu_edit_type(unsigned long, long5, ftostr5, 0.01)
void lcd_quick_feedback() {
lcdDrawUpdate = 2;
next_button_update_ms = millis() + 500;
#if ENABLED(LCD_USE_I2C_BUZZER)
#ifndef LCD_FEEDBACK_FREQUENCY_HZ
#define LCD_FEEDBACK_FREQUENCY_HZ 100
#endif
#ifndef LCD_FEEDBACK_FREQUENCY_DURATION_MS
#define LCD_FEEDBACK_FREQUENCY_DURATION_MS (1000/6)
#endif
#endif
lcd.buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#elif PIN_EXISTS(BEEPER)
#ifndef LCD_FEEDBACK_FREQUENCY_HZ
@@ -1590,10 +1585,6 @@ void lcd_update() {
static millis_t return_to_status_ms = 0;
#endif
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
lcd_buttons_update();
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_DETECT)
@@ -1620,10 +1611,14 @@ void lcd_update() {
}
#endif //SDSUPPORT && SD_DETECT_PIN
millis_t ms = millis();
if (ms > next_lcd_update_ms) {
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif
#if ENABLED(ULTIPANEL)
#if ENABLED(REPRAPWORLD_KEYPAD)
@@ -1901,10 +1896,11 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
char conv[8];
// Convert float to string with +123.4 format
char* ftostr3(const float& x) {
return itostr3((int)x);
}
// Convert float to rj string with 123 or -12 format
char *ftostr3(const float& x) { return itostr3((int)x); }
// Convert float to rj string with _123, -123, _-12, or __-1 format
char *ftostr4sign(const float& x) { return itostr4sign((int)x); }
// Convert int to string with 12 format
char* itostr2(const uint8_t& x) {
@@ -1941,8 +1937,8 @@ char* ftostr31ns(const float& x) {
return conv;
}
// Convert float to string with 123.4 format
char* ftostr32(const float& x) {
// Convert float to string with 123.45 format
char *ftostr32(const float& x) {
long xx = abs(x * 100);
conv[0] = x >= 0 ? (xx / 10000) % 10 + '0' : '-';
conv[1] = (xx / 1000) % 10 + '0';
@@ -2086,6 +2082,30 @@ char* itostr4(const int& xx) {
return conv;
}
// Convert int to rj string with _123, -123, _-12, or __-1 format
char *itostr4sign(const int& x) {
int xx = abs(x);
int sign = 0;
if (xx >= 100) {
conv[1] = (xx / 100) % 10 + '0';
conv[2] = (xx / 10) % 10 + '0';
}
else if (xx >= 10) {
conv[0] = ' ';
sign = 1;
conv[2] = (xx / 10) % 10 + '0';
}
else {
conv[0] = ' ';
conv[1] = ' ';
sign = 2;
}
conv[sign] = x < 0 ? '-' : ' ';
conv[3] = xx % 10 + '0';
conv[4] = 0;
return conv;
}
// Convert float to rj string with 12345 format
char* ftostr5(const float& x) {
long xx = abs(x);

View File

@@ -53,7 +53,7 @@
extern int absPreheatFanSpeed;
extern bool cancel_heatup;
#if ENABLED(FILAMENT_LCD_DISPLAY)
extern millis_t previous_lcd_status_ms;
#endif
@@ -97,7 +97,7 @@
#define B_ST BIT(BL_ST)
#define EN_B BIT(BLEN_B)
#define EN_A BIT(BLEN_A)
#define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST))
#endif//NEWPANEL
@@ -121,8 +121,10 @@ char* itostr31(const int& xx);
char* itostr3(const int& xx);
char* itostr3left(const int& xx);
char* itostr4(const int& xx);
char* itostr4sign(const int& x);
char* ftostr3(const float& x);
char* ftostr4sign(const float& x);
char* ftostr31ns(const float& x); // float to string without sign character
char* ftostr31(const float& x);
char* ftostr32(const float& x);

View File

@@ -504,7 +504,7 @@ Possible status screens:
|0123456789012345|
16x4 |000/000 B000/000|
|SD100% Z000.00 |
|SD100% Z 000.00|
|F100% T--:--|
|0123456789012345|
@@ -512,12 +512,12 @@ Possible status screens:
|01234567890123456789|
20x4 |T000/000D B000/000D |
|X000 Y000 Z000.00 |
|X 000 Y 000 Z 000.00|
|F100% SD100% T--:--|
|01234567890123456789|
20x4 |T000/000D B000/000D |
|T000/000D Z000.00 |
|T000/000D Z 000.00|
|F100% SD100% T--:--|
|01234567890123456789|
*/
@@ -618,22 +618,22 @@ static void lcd_implementation_status_screen() {
lcd.print('X');
if (axis_known_position[X_AXIS])
lcd.print(ftostr3(current_position[X_AXIS]));
lcd.print(ftostr4sign(current_position[X_AXIS]));
else
lcd_printPGM(PSTR("---"));
lcd_printPGM(PSTR(" ---"));
lcd_printPGM(PSTR(" Y"));
lcd_printPGM(PSTR(" Y"));
if (axis_known_position[Y_AXIS])
lcd.print(ftostr3(current_position[Y_AXIS]));
lcd.print(ftostr4sign(current_position[Y_AXIS]));
else
lcd_printPGM(PSTR("---"));
lcd_printPGM(PSTR(" ---"));
#endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
#endif // LCD_WIDTH >= 20
lcd.setCursor(LCD_WIDTH - 8, 1);
lcd.print('Z');
lcd_printPGM(PSTR("Z "));
if (axis_known_position[Z_AXIS])
lcd.print(ftostr32sp(current_position[Z_AXIS] + 0.00001));
else
@@ -716,8 +716,8 @@ static void lcd_implementation_status_screen() {
lcd.print(ftostr12ns(filament_width_meas));
lcd_printPGM(PSTR(" V"));
lcd.print(itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
lcd.print('%');
return;
lcd.print('%');
return;
}
#endif // FILAMENT_LCD_DISPLAY

View File

@@ -26,13 +26,13 @@ static void ST7920_SWSPI_SND_8BIT(uint8_t val) {
for (i = 0; i < 8; i++) {
WRITE(ST7920_CLK_PIN,0);
#if F_CPU == 20000000
__asm__("nop\n\t");
__asm__("nop\n\t");
#endif
WRITE(ST7920_DAT_PIN,val&0x80);
WRITE(ST7920_DAT_PIN,val&0x80);
val<<=1;
WRITE(ST7920_CLK_PIN,1);
#if F_CPU == 20000000
__asm__("nop\n\t""nop\n\t");
__asm__("nop\n\t""nop\n\t");
#endif
}
}

View File

@@ -67,7 +67,7 @@
// À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
0xd0,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xdb,0xdc,0xdd,0xde,0xdf, // c39 ÐÑÓÔÕÖרÙÚÛÜÝÞß
// Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
0xe0,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xeb,0xec,0xed,0xee,0xef, // c3a àáãäåæçèéêëìíîï
0xe0,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xeb,0xec,0xed,0xee,0xef, // c3a àáãäåæçèéêëìíîï
// à á â ã ä å æ ç è é ê ë ì í î ï
0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa,0xfb,0xfc,0xfd,0xfe,0xff // c3b ðñóôõö÷øùúûüýþÿ
// ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ
@@ -123,14 +123,17 @@
#endif // SIMULATE_ROMFONT
#if ENABLED(MAPPER_NON)
char charset_mapper(char c){
char charset_mapper(char c) {
HARDWARE_CHAR_OUT( c );
return 1;
}
#elif ENABLED(MAPPER_C2C3)
uint8_t utf_hi_char; // UTF-8 high part
bool seen_c2 = false;
char charset_mapper(char c){
char charset_mapper(char c) {
static uint8_t utf_hi_char; // UTF-8 high part
static bool seen_c2 = false;
uint8_t d = c;
if ( d >= 0x80 ) { // UTF-8 handling
if ( (d >= 0xc0) && (!seen_c2) ) {
@@ -138,16 +141,16 @@
seen_c2 = true;
return 0;
}
else if (seen_c2){
else if (seen_c2) {
d &= 0x3f;
#ifndef MAPPER_ONE_TO_ONE
HARDWARE_CHAR_OUT( (char) pgm_read_byte_near( utf_recode + d + ( utf_hi_char << 6 ) - 0x20 ) );
HARDWARE_CHAR_OUT((char)pgm_read_byte_near(utf_recode + d + (utf_hi_char << 6) - 0x20));
#else
HARDWARE_CHAR_OUT( (char) (0x80 + ( utf_hi_char << 6 ) + d) ) ;
HARDWARE_CHAR_OUT((char)(0x80 + (utf_hi_char << 6) + d)) ;
#endif
}
else {
HARDWARE_CHAR_OUT('?');
HARDWARE_CHAR_OUT('?');
}
}
else {
@@ -156,96 +159,116 @@
seen_c2 = false;
return 1;
}
#elif ENABLED(MAPPER_D0D1_MOD)
uint8_t utf_hi_char; // UTF-8 high part
bool seen_d5 = false;
char charset_mapper(char c){
char charset_mapper(char c) {
// it is a Russian alphabet translation
// except 0401 --> 0xa2 = Ё, 0451 --> 0xb5 = ё
static uint8_t utf_hi_char; // UTF-8 high part
static bool seen_d5 = false;
uint8_t d = c;
if ( d >= 0x80 ) { // UTF-8 handling
if ((d >= 0xd0) && (!seen_d5)) {
if (d >= 0x80) { // UTF-8 handling
if (d >= 0xd0 && !seen_d5) {
utf_hi_char = d - 0xd0;
seen_d5 = true;
return 0;
} else if (seen_d5) {
d &= 0x3f;
if ( !utf_hi_char && ( d == 1 )) {
HARDWARE_CHAR_OUT((char) 0xa2 ); // Ё
} else if ((utf_hi_char == 1) && (d == 0x11)) {
HARDWARE_CHAR_OUT((char) 0xb5 ); // ё
} else {
HARDWARE_CHAR_OUT((char) pgm_read_byte_near( utf_recode + d + ( utf_hi_char << 6 ) - 0x10 ) );
}
}
else if (seen_d5) {
d &= 0x3f;
if (!utf_hi_char && d == 1) {
HARDWARE_CHAR_OUT((char) 0xa2); // Ё
}
else if (utf_hi_char == 1 && d == 0x11) {
HARDWARE_CHAR_OUT((char)0xb5); // ё
}
else {
HARDWARE_CHAR_OUT('?');
HARDWARE_CHAR_OUT((char)pgm_read_byte_near(utf_recode + d + (utf_hi_char << 6) - 0x10));
}
} else {
}
else {
HARDWARE_CHAR_OUT('?');
}
}
else {
HARDWARE_CHAR_OUT((char) c );
}
seen_d5 = false;
return 1;
}
#elif ENABLED(MAPPER_D0D1)
uint8_t utf_hi_char; // UTF-8 high part
bool seen_d5 = false;
char charset_mapper(char c) {
static uint8_t utf_hi_char; // UTF-8 high part
static bool seen_d5 = false;
uint8_t d = c;
if ( d >= 0x80u ) { // UTF-8 handling
if ((d >= 0xd0u) && (!seen_d5)) {
if (d >= 0x80u) { // UTF-8 handling
if (d >= 0xd0u && !seen_d5) {
utf_hi_char = d - 0xd0u;
seen_d5 = true;
return 0;
} else if (seen_d5) {
d &= 0x3fu;
}
else if (seen_d5) {
d &= 0x3fu;
#ifndef MAPPER_ONE_TO_ONE
HARDWARE_CHAR_OUT( (char) pgm_read_byte_near( utf_recode + d + ( utf_hi_char << 6 ) - 0x20 ) );
HARDWARE_CHAR_OUT((char)pgm_read_byte_near(utf_recode + d + (utf_hi_char << 6) - 0x20));
#else
HARDWARE_CHAR_OUT( (char) (0xa0u + ( utf_hi_char << 6 ) + d ) ) ;
HARDWARE_CHAR_OUT((char)(0xa0u + (utf_hi_char << 6) + d)) ;
#endif
} else {
}
else {
HARDWARE_CHAR_OUT('?');
}
} else {
}
else {
HARDWARE_CHAR_OUT((char) c );
}
seen_d5 = false;
return 1;
}
#elif ENABLED(MAPPER_E382E383)
uint8_t utf_hi_char; // UTF-8 high part
bool seen_e3 = false;
bool seen_82_83 = false;
char charset_mapper(char c){
char charset_mapper(char c) {
static uint8_t utf_hi_char; // UTF-8 high part
static bool seen_e3 = false;
static bool seen_82_83 = false;
uint8_t d = c;
if ( d >= 0x80 ) { // UTF-8 handling
if ( (d == 0xe3) && (seen_e3 == false)) {
if (d >= 0x80) { // UTF-8 handling
if (d == 0xe3 && !seen_e3) {
seen_e3 = true;
return 0; // eat 0xe3
} else if ( (d >= 0x82) && (seen_e3 == true) && (seen_82_83 == false)) {
}
else if (d >= 0x82 && seen_e3 && !seen_82_83) {
utf_hi_char = d - 0x82;
seen_82_83 = true;
return 0;
} else if ((seen_e3 == true) && (seen_82_83 == true)){
}
else if (seen_e3 && seen_82_83) {
d &= 0x3f;
#ifndef MAPPER_ONE_TO_ONE
HARDWARE_CHAR_OUT( (char) pgm_read_byte_near( utf_recode + d + ( utf_hi_char << 6 ) - 0x20 ) );
HARDWARE_CHAR_OUT((char)pgm_read_byte_near(utf_recode + d + (utf_hi_char << 6) - 0x20));
#else
HARDWARE_CHAR_OUT( (char) (0x80 + ( utf_hi_char << 6 ) + d ) ) ;
HARDWARE_CHAR_OUT((char)(0x80 + (utf_hi_char << 6) + d)) ;
#endif
} else {
}
else {
HARDWARE_CHAR_OUT((char) '?' );
}
} else {
}
else {
HARDWARE_CHAR_OUT((char) c );
}
seen_e3 = false;
seen_82_83 = false;
return 1;
}
#else
#error "You have to define one of the DISPLAY_INPUT_CODE_MAPPERs in your language_xx.h file" // should not occur because (en) will set.
#endif // code mappers
#endif // UTF_MAPPER_H

View File

@@ -1,25 +1,14 @@
#include "Marlin.h"
#if ENABLED(USE_WATCHDOG)
#include <avr/wdt.h>
#include "watchdog.h"
#include "ultralcd.h"
//===========================================================================
//============================ private variables ============================
//===========================================================================
//===========================================================================
//================================ functions ================================
//===========================================================================
/// intialise watch dog with a 4 sec interrupt time
// Initialize watchdog with a 4 sec interrupt time
void watchdog_init() {
#if ENABLED(WATCHDOG_RESET_MANUAL)
//We enable the watchdog timer, but only for the interrupt.
//Take care, as this requires the correct order of operation, with interrupts disabled. See the datasheet of any AVR chip for details.
// We enable the watchdog timer, but only for the interrupt.
// Take care, as this requires the correct order of operation, with interrupts disabled. See the datasheet of any AVR chip for details.
wdt_reset();
_WD_CONTROL_REG = _BV(_WD_CHANGE_BIT) | _BV(WDE);
_WD_CONTROL_REG = _BV(WDIE) | WDTO_4S;
@@ -28,23 +17,18 @@ void watchdog_init() {
#endif
}
/// reset watchdog. MUST be called every 1s after init or avr will reset.
void watchdog_reset() {
wdt_reset();
}
//===========================================================================
//=================================== ISR ===================================
//===========================================================================
//Watchdog timer interrupt, called if main program blocks >1sec and manual reset is enabled.
// Watchdog timer interrupt, called if main program blocks >1sec and manual reset is enabled.
#if ENABLED(WATCHDOG_RESET_MANUAL)
ISR(WDT_vect) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Something is wrong, please turn off the printer.");
kill(PSTR("ERR:Please Reset")); //kill blocks //16 characters so it fits on a 16x2 display
while (1); //wait for user or serial reset
}
#endif//RESET_MANUAL
ISR(WDT_vect) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Something is wrong, please turn off the printer.");
kill(PSTR("ERR:Please Reset")); //kill blocks //16 characters so it fits on a 16x2 display
while (1); //wait for user or serial reset
}
#endif //WATCHDOG_RESET_MANUAL
#endif//USE_WATCHDOG
#endif //USE_WATCHDOG

View File

@@ -2,16 +2,13 @@
#define WATCHDOG_H
#include "Marlin.h"
#include <avr/wdt.h>
#if ENABLED(USE_WATCHDOG)
// initialize watch dog with a 1 sec interrupt time
void watchdog_init();
// pad the dog/reset watchdog. MUST be called at least every second after the first watchdog_init or AVR will go into emergency procedures..
void watchdog_reset();
#else
//If we do not have a watchdog, then we can have empty functions which are optimized away.
FORCE_INLINE void watchdog_init() {};
FORCE_INLINE void watchdog_reset() {};
#endif
// Initialize watchdog with a 4 second interrupt time
void watchdog_init();
// Reset watchdog. MUST be called at least every 4 seconds after the
// first watchdog_init or AVR will go into emergency procedures.
inline void watchdog_reset() { wdt_reset(); }
#endif

View File

@@ -1,18 +1,23 @@
# Marlin 3D Printer Firmware
<img align="top" width=175 src="Documentation/Logo/Marlin%20Logo%20GitHub.png" />
Documentation has moved to [marlinfirmware.org](http://www.marlinfirmware.org).
Additional documentation can be found in [our wiki](https://github.com/MarlinFirmware/Marlin/wiki/Main-Page).
## Release Candidate -- Marlin 1.1.0-RC2 - 29 September 2015
## Release Candidate -- Marlin 1.1.0-RC3 - 01 December 2015
__Not for production use use with caution!__
For the latest tagged version of Marlin (currently 1.0.2 January 2015) you should switch to the [Release branch](https://github.com/MarlinFirmware/Marlin/tree/Release).
Previously tagged versions of Marlin are not recommended. However, the latest patches to the Marlin 1.0 series can be found in the [1.0.x](https://github.com/MarlinFirmware/Marlin/tree/1.0.x) branch.
[This branch, "RC"](https://github.com/MarlinFirmware/Marlin/tree/RC), is our current pre-release candidate.
Future development takes place in the [MarlinDev repository](https://github.com/MarlinFirmware/MarlinDev/).
## Recent Changes
RC3 - 01 Dec 2015
A number of language sensitive strings have been revised
Formatting of the LCD display has been improved to handle negative coordinates better
Various compiler-related issues have been corrected
RC2 - 29 Sep 2015
File styling reverted
LCD update frequency reduced
@@ -44,8 +49,8 @@ __Google Hangout:__ <a href="https://plus.google.com/hangouts/_/gxn3wrea5gdhoo22
The current Marlin dev team consists of:
- Scott Lahteine [@thinkyhead] - English
- Andreas Hardtung [@AnHardt] - Deutsch, English
- Scott Lahteine [@thinkyhead] - English
- [@Wurstnase] - Deutsch, English
- F. Malpartida [@fmalpartida] - English, Spanish
- [@CONSULitAS] - Deutsch, English
@@ -67,7 +72,7 @@ More features have been added by:
## License
Marlin is published under the [GPL license](/Documentation/COPYING.md) because we believe in open development. The GPL comes with both rights and obligations. Whether you use Marlin firmware as the driver for your open or closed-source product, you must keep Marlin open, and you must provide your compatible Marlin source code to end users upon request. The most straightforward way to comply with the Marlin license is to make a fork of Marlin on Github, perform your modifications, and direct users to your modified fork.
Marlin is published under the [GPL license](/LICENSE) because we believe in open development. The GPL comes with both rights and obligations. Whether you use Marlin firmware as the driver for your open or closed-source product, you must keep Marlin open, and you must provide your compatible Marlin source code to end users upon request. The most straightforward way to comply with the Marlin license is to make a fork of Marlin on Github, perform your modifications, and direct users to your modified fork.
While we can't prevent the use of this code in products (3D printers, CNC, etc.) that are closed source or crippled by a patent, we would prefer that you choose another firmware or, better yet, make your own.