Compare commits

...

174 Commits

Author SHA1 Message Date
Scott Lahteine
398cae7625 🔖 Version 2.1.1 2022-08-06 18:50:49 -05:00
Scott Lahteine
8192cc12d3 🎨 Misc. config cleanup 2022-08-06 18:50:49 -05:00
ExtNeon
7f2a836251 SD Endstop Abort G-Code (#24461) 2022-08-06 18:50:49 -05:00
Mark
b02c3258b5 Bed Distance Sensor (#24554) 2022-08-06 18:50:49 -05:00
Keith Bennett
a0462eb017 🩹 Fix AUTO_FAN_PIN sanity check (#24593) 2022-08-06 18:50:49 -05:00
Scott Lahteine
a1704c10b9 🩹 G0/G1 S seen => seenval 2022-08-06 18:50:49 -05:00
qwertymodo
7196f13125 M150 K – Keep unspecified components (#24315) 2022-08-06 18:50:49 -05:00
J.C. Nelson
e06340abd1 🔨 Trigorilla Pro disk based update (#24591) 2022-08-06 18:50:49 -05:00
Travis Ziegler
98095ddad6 🩹 Fix LPC176x USB Host Shield (#24588) 2022-08-06 18:50:49 -05:00
Scott Lahteine
2f4b121709 👔 Keep "Needs: More Data" open 2022-08-06 18:50:49 -05:00
Ruedi Steinmann
a0409289c8 🚸 Laser with only PWM pin (#24345) 2022-08-06 18:50:49 -05:00
Scott Lahteine
2ccdc4f9ed 🧑‍💻 MARLIN_TEST_BUILD – for future use (#24077) 2022-08-06 18:50:49 -05:00
Scott Lahteine
bbf2033211 🔧 Config INI, dump options (#24528) 2022-08-06 18:50:49 -05:00
Scott Lahteine
9a42d1e577 🩹 Fix Malyan M300 with S-Curve compile
Fixes #24548
2022-08-05 21:54:27 -05:00
ellensp
17794e18ae 🔧 Update 644p/1284p Serial 1 sanity check (#24575) 2022-08-01 01:59:37 -05:00
Scott Lahteine
3b30951e83 🔨 Simplify scripts with pathlib (#24574) 2022-08-01 01:59:37 -05:00
Mike La Spina
c3f2586445 🐛 Fix laser menu enable_state (#24557) 2022-08-01 01:59:37 -05:00
InsanityAutomation
c0cb7e35af Configurable Switching Nozzle dwell (#24304) 2022-08-01 01:59:37 -05:00
tombrazier
fd319928d2 Fix, improve Linear Advance (#24533) 2022-08-01 01:59:37 -05:00
tombrazier
5dad7e0d03 🩹 Use _MIN/_MAX macros for native compatibility (#24570) 2022-08-01 01:59:37 -05:00
DerAndere
9ee558afe1 🐛 Fix kinematic feedrate (#24568) 2022-08-01 01:59:37 -05:00
Keith Bennett
bbaccd342e Encoder Noise Filter (#24538) 2022-08-01 01:59:37 -05:00
lukasradek
6134d55360 📝 README Updates (#24564) 2022-08-01 01:59:37 -05:00
Scott Lahteine
868e76b965 🎨 Renum boards.h 2022-08-01 01:59:37 -05:00
Scott Lahteine
5f105e254d 🐛 Fix M125 for 9 Axis 2022-08-01 01:59:37 -05:00
Scott Lahteine
9534c6e903 🎨 Misc. 'else' cleanup 2022-08-01 01:59:37 -05:00
Ludy
ec9a2ee557 🌐 Update German language (#24555) 2022-08-01 01:59:37 -05:00
Scott Lahteine
d8db00e31f 🧑‍💻 Update planner/stepper includes 2022-08-01 01:59:37 -05:00
Scott Lahteine
e7c262dc30 🩹 Fix lcd_preheat compile 2022-08-01 01:59:37 -05:00
Scott Lahteine
cee9da6132 🔨 Update build/CI scripts 2022-08-01 01:59:37 -05:00
Scott Lahteine
a24b9e16ff 🎨 PIO scripts cleanup 2022-08-01 01:59:37 -05:00
Keith Bennett
1e9232723d 📺 Fix TFT Classic UI non-Touchscreen 1024x600 (#24541) 2022-08-01 01:59:37 -05:00
Keith Bennett
66369f8236 🩹 Fix JyersUI include (#24540) 2022-08-01 01:59:37 -05:00
Keith Bennett
0ca76bf9ed 📝 Update MPCTEMP G-Code M306 T (#24535)
M306 simply reports current values. M306 T starts autotune process.
2022-08-01 01:59:37 -05:00
Scott Lahteine
0f3c3c419e Reinstate JyersUI 2022-08-01 01:59:37 -05:00
Scott Lahteine
89e9ae0662 🧑‍💻 Give the simulator Stepper access 2022-08-01 01:59:37 -05:00
Scott Lahteine
5b8f7686cb 🧑‍💻 Fix and improve build_all_examples 2022-08-01 01:59:37 -05:00
Scott Lahteine
6e02f15dd6 🔨 Minor build script changes 2022-08-01 01:59:37 -05:00
Scott Lahteine
c9445cfc41 🩹 Fix TFT image PACKED conflict 2022-08-01 01:59:37 -05:00
Frederik Kemner
beacb73d93 🩹 Fix gcode.h include (#24527) 2022-08-01 01:59:37 -05:00
InsanityAutomation
53a57ff7bf 🐛 Fix Archim2 USB Hang (#24314) 2022-08-01 01:59:37 -05:00
Scott Lahteine
d726f641a5 EXP header pin numbers redux (#24525)
Followup to 504fec98
2022-08-01 01:59:37 -05:00
InsanityAutomation
feafa321d7 🚸 Use Tool 0 for G30 (#24511) 2022-08-01 01:59:37 -05:00
ellensp
f5b972bb10 📺 SKR_MINI_SCREEN_ADAPTER for BTT SKR Mini E3 V3 (#24521) 2022-08-01 01:59:37 -05:00
Eduard Sukharev
196795c0cc More ESP32 (MKS TinyBee) tests (#24493) 2022-08-01 01:59:36 -05:00
Keith Bennett
c3085d666f 📝 Update Contributing Guide (#24320) 2022-08-01 01:59:36 -05:00
InsanityAutomation
807f2ef969 🚸 Machine-relative Z_STEPPER_ALIGN_XY (#24261)
Co-authored-by: Scott Lahteine <thinkyhead@users.noreply.github.com>
2022-08-01 01:59:36 -05:00
Scott Lahteine
f752fe75ee ♻️ Small sound / buzz refactor (#24520) 2022-08-01 01:59:36 -05:00
Scott Lahteine
97a73147fa 🩹 Fix manual move titles (#24518) 2022-08-01 01:59:36 -05:00
tombrazier
915203f545 🩹 Arc/Planner optimization followup (#24509) 2022-08-01 01:59:36 -05:00
Scott Lahteine
173eb3ff71 🚸 Renumber EXP pins to match schematics/RRF/Klipper 2022-08-01 01:59:36 -05:00
Nikolay-Po
96d3c66b64 Steinhart-Hart C Coeff for Custom Thermistor (#24428) 2022-08-01 01:59:36 -05:00
tombrazier
cc4fc28fe0 ️ Optimize Planner calculations (#24484) 2022-08-01 01:59:36 -05:00
Arthur Masson
0a164a88fe Polargraph M665 settings (#24401) 2022-08-01 01:59:36 -05:00
GHGiampy
c72fe1a2f9 🩹 Add'l ProUI fixes (#24500, #24508) 2022-08-01 01:59:17 -05:00
Christophe Huriaux
2add8ca4eb eMotion-Tech eMotronic (Micro-Delta rework) (#24488) 2022-08-01 01:58:45 -05:00
Scott Lahteine
779c24122d 🔨 Update mfprep comment 2022-08-01 01:58:45 -05:00
Scott Lahteine
6ac3f2738e 🔨 Add mftest --default flag 2022-08-01 01:57:17 -05:00
Scott Lahteine
77c6d9af20 🩹 Fix TFT tImage struct packing 2022-08-01 01:57:11 -05:00
GHGiampy
929e12bf49 🔨 Remove log2file monitor filter (#24502) 2022-08-01 01:57:01 -05:00
Keith Bennett
fd18ac5667 📝 Update board MCU comments (#24486) 2022-07-29 18:42:42 -05:00
Scott Lahteine
06c1409843 🩹 Fix MAX31865 approximations
Followup to #24407
2022-07-29 18:42:42 -05:00
Scott Lahteine
ec95e66ff0 🔧 Base NUM_AXES on defined DRIVER_TYPEs (#24106) 2022-07-29 18:42:42 -05:00
Scott Lahteine
53ee7fce5b 🐛 Fix SDIO for STM32 (#24470)
Followup to #24271
2022-07-29 18:42:42 -05:00
Scott Lahteine
10f5f878ce 🚑️ Fix XYZEval = N not setting E 2022-07-29 18:42:42 -05:00
tombrazier
733ca940c0 🐛 Fix 2d mesh print (#24536) 2022-07-22 23:33:30 -05:00
Scott Lahteine
c880c7ed45 🔨 Fix and update Makefile
Followup to 89fe5f6d
2022-07-15 18:48:15 -05:00
Keith Bennett
e5e4cf920d 📌 Pin ESP32SSDP to 1.1.1 (#24489) 2022-07-15 18:48:15 -05:00
Victor Oliveira
3315f6faa4 Creality3D v4.2.5 / CR200B (#24491) 2022-07-15 18:48:15 -05:00
GHGiampy
4a6ad1c98b 🩹 Fix ProUI LED compile (#24473) 2022-07-15 18:48:15 -05:00
Miguel Risco-Castillo
3c9789fda8 🚸 Fix and update ProUI (#24477) 2022-07-15 18:48:15 -05:00
toomuchwonder
3a19d34c75 🩹 Fix MKS UI extruder speed (#24476) 2022-07-15 18:48:15 -05:00
Bob Kuhn
6b19a58f03 🔥 Drop STM L64** drivers, STEVAL_3DP001V1 (#24427) 2022-07-15 18:48:15 -05:00
Scott Lahteine
9283859b1e 🎨 ANY => EITHER 2022-07-15 18:48:15 -05:00
GHGiampy
e840015cad 🔨 Abort firmware update on transfer error (#24472, #24499) 2022-07-15 18:48:15 -05:00
Scott Lahteine
efe04e1016 🧑‍💻 Update Mac Sim directions 2022-07-15 18:48:15 -05:00
Scott Lahteine
f543b3cb84 📌 Ask for PlatformIO 6.1.1 or newer (#24435) 2022-07-15 18:48:15 -05:00
Keith Bennett
6a86c5bad3 MKS Monster8 V2 (#24483) 2022-07-15 18:48:15 -05:00
Scott Lahteine
7207a32434 🧑‍💻 Add Sim debug with lldb 2022-07-15 18:48:15 -05:00
Keith Bennett
678474d55c 🔧 Assert Probe Temp Comp requirements (#24468) 2022-07-15 18:48:15 -05:00
Mike La Spina
24c211307d 🐛 Fix laser/fan sync (#24460)
Followup to #22690, 307dfb15
2022-07-15 18:48:15 -05:00
tombrazier
0c78a6f657 ️ Optimize G2-G3 Arcs (#24366) 2022-07-15 18:48:15 -05:00
Jason Smith
79a332b57e 🩹 Fix LCD_BACKLIGHT_TIMEOUT compile (#24463) 2022-07-15 18:48:15 -05:00
Pauli Jokela
d9ecbdcdbb 🩹 Fix safe homing sanity-check (#24462) 2022-07-15 18:48:15 -05:00
Farva42
527fe2496a MAG_MOUNTED_PROBE (#24420)
Co-Authored-By: Scott Lahteine <thinkyhead@users.noreply.github.com>
2022-07-15 18:48:14 -05:00
Scott Lahteine
6c2ffe9d34 🔥 Remove JyersUI (#24459) 2022-07-15 18:48:14 -05:00
Scott Lahteine
0fdedfa2fb 📝 Configurations 02010100 (#24458) 2022-07-15 18:48:14 -05:00
Meilleur Gars
e93a1dd2fa 🚸 JyersUI updates (#24451) 2022-07-15 18:48:14 -05:00
Christophe Huriaux
03760fd79e 🩹 Fix ST7565 LCD contrast init (#24457) 2022-07-15 18:48:14 -05:00
Bob Kuhn
d3aed23e18 🐛 Fix Sensorless Probing compile (#24455) 2022-07-15 18:48:14 -05:00
Eduard Sukharev
893707711e 🐛 Fix MKS TinyBee compile (#24454) 2022-07-15 18:48:14 -05:00
Mike La Spina
d965303a7a ️ Fix and improve Inline Laser Power (#22690) 2022-07-15 18:48:14 -05:00
Keith Bennett
5b6c46db29 BigTreeTech SKR SE BX V3.0 (#24449)
SKR SE BX V3.0 removes the Reverse Driver Protection feature.
2022-07-15 18:48:14 -05:00
EvilGremlin
8f40a2f257 🔨 Fix OpenBLT encode; no-bootloader envs (#24446) 2022-07-15 18:48:14 -05:00
Scott Lahteine
e4f85e8fbc ♻️ Encapsulate PID in class (#24389) 2022-07-15 18:48:14 -05:00
Victor Oliveira
678955949f 🔨 Disable stack protector on macOS simulator (#24443) 2022-07-15 18:48:14 -05:00
Scott Lahteine
923d34550a 🔨 PlatformIO "--target upload" == "--target exec" 2022-07-15 18:48:14 -05:00
Scott Lahteine
ed643e634f 🔨 Fix Warnings/settings force-recompile 2022-07-15 18:48:14 -05:00
Scott Lahteine
3f4c8c31c6 Fix SDIO for STM32
Followup to #24271
2022-07-09 18:19:47 -05:00
Keith Bennett
171ed66de0 🚸 MPCTEMP: Home before cooling (#24434) 2022-07-04 00:29:53 -05:00
Keith Bennett
5f2e4487e7 🩹 Fix MKS TinyBee ADC Vref (#24432) 2022-07-04 00:29:53 -05:00
Scott Lahteine
80c7abd727 🩹 Remove poison wchar_t macro 2022-07-04 00:29:53 -05:00
Scott Lahteine
814b53750f 🩹 Remove obsolete split_move 2022-07-01 22:05:44 -05:00
Moonglow
23e93c51fd 🐛 Fix M149 (#24430) 2022-07-01 07:54:53 -05:00
tombrazier
afbdcc8eee 🚸 Vertical Max7219::quantity in portrait orientation (#24415) 2022-07-01 07:54:53 -05:00
Scott Lahteine
4820947203 Update path to Ender-3 S1 configs 2022-07-01 07:54:53 -05:00
Scott Lahteine
d44aef8b6b 📝 Index Mobo Rev03 => Opulo Lumen Rev3 2022-06-30 22:10:31 -05:00
Scott Lahteine
c1c0496073 🩹 Fix memset block warning 2022-06-30 22:10:26 -05:00
Keith Bennett
a48831d600 🐛 Fix Axis Homing (#24425)
Followup to 4520a51
2022-06-30 22:10:26 -05:00
John Lagonikas
c076094fa9 🐛 Fix MAX31865 PT1000 normalization (#24407)
Co-authored-by: Scott Lahteine <thinkyhead@users.noreply.github.com>
2022-06-30 22:10:26 -05:00
Scott Lahteine
57c137a60f ♻️ reset_acceleration_rates => refresh_… 2022-06-30 22:10:05 -05:00
Scott Lahteine
05bdc5640d ♻️ Planner flags refactor 2022-06-30 22:10:05 -05:00
Scott Lahteine
83784bd8b7 📝 Note about UBL bad splits 2022-06-30 22:10:05 -05:00
Scott Lahteine
23f19e9ce8 🎨 Misc. shorthand operators 2022-06-26 10:02:36 -05:00
Scott Lahteine
0435b2220a 🐛 Fix Manual Move axis selection (#24404) 2022-06-26 06:49:14 -05:00
Shlee
ab2fceda2c 📝 Add STM32F4 example, Ruby (#24399) 2022-06-26 06:39:00 -05:00
Giuliano Zaro
88dc360e9d 🌐 Update Italian language (#24398) 2022-06-26 06:39:00 -05:00
Roman Moravčík
f5bdb8b4d2 🌐 Update Slovak language (#24397) 2022-06-26 06:39:00 -05:00
sgparry
3e01e08989 🩹 Fix LCD contrast with K8800 board 2022-06-26 06:39:00 -05:00
tombrazier
4694a7fe74 MAX7219 idle profiler (#24375) 2022-06-26 06:39:00 -05:00
Scott Lahteine
537af0bb03 🌐 Drop unused delta strings 2022-06-24 22:09:59 -05:00
InsanityAutomation
0dc59311ec 🐛 Resolve DUE Servo pulse issue (#24305)
Co-authored-by: sjasonsmith <20053467+sjasonsmith@users.noreply.github.com>
Co-authored-by: Scott Lahteine <thinkyhead@users.noreply.github.com>
2022-06-24 18:03:19 -05:00
tombrazier
0523874e9c 🐛 Fix G2/G3 Arcs stutter / JD speed (#24362) 2022-06-24 18:03:19 -05:00
Scott Lahteine
106537ff43 ✏️ 9-axis followup (sanity-check) 2022-06-24 18:03:19 -05:00
Bob Kuhn
ad96c36730 🐛 Fix Lerdge build / encrypt (#24391)
Co-authored-by: Scott Lahteine <thinkyhead@users.noreply.github.com>
2022-06-24 18:03:19 -05:00
Victor Oliveira
a3629a7c28 Classic UI BIQU BX (#24387) 2022-06-24 18:03:19 -05:00
ellensp
b7e1b6b893 🩹 Fix DGUS (MKS) compile (#24378) 2022-06-24 18:03:19 -05:00
Victor Oliveira
253e35e066 🚑️ Fix BIQU BX touch freeze (#24383) 2022-06-24 18:03:19 -05:00
ellensp
831e1b5ecf 🐛 Fix M423 invocation (#24360)
Followup to #23745
2022-06-24 18:03:19 -05:00
tombrazier
c89ca2deb8 🩹 LCD strings followup, fix warning (#24328) 2022-06-24 18:03:19 -05:00
DerAndere
85e94038aa FOAMCUTTER_XYUV (for RAMPS) (#24325)
Co-authored-by: Scott Lahteine <github@thinkyhead.com>
2022-06-24 18:03:19 -05:00
ellensp
7c85f25042 🚑️ Fix SD mount bug (#24319)
Co-authored-by: Scott Lahteine <github@thinkyhead.com>
2022-06-24 18:03:19 -05:00
Scott Lahteine
eca5e46d17 🎨 Simplify move menus with substitution 2022-06-24 18:03:19 -05:00
Scott Lahteine
78b42ed387 🎨 Use MAP for home axis items 2022-06-24 18:03:19 -05:00
Scott Lahteine
95339c9561 🧑‍💻 Fix STATIC_ITEM_N arg order 2022-06-24 18:03:19 -05:00
Scott Lahteine
da6c16a9cd 🎨 Fix comments, formatting 2022-06-24 18:03:19 -05:00
ellensp
cc27cfb660 👷 CI test without src filter (emulate Arduino) (#24335) 2022-06-24 01:19:42 -05:00
Keith Bennett
25c0593c9b 👷 Use Biqu BX for CI test (#24331) 2022-06-24 01:19:36 -05:00
Scott Lahteine
5fff7bbef4 👔 Fix and comment use_example_configs 2022-06-24 01:11:07 -05:00
Scott Lahteine
3fd592e64b 👔 Update Marlin actions for 2.1.x 2022-06-24 01:11:07 -05:00
John Robertson
c34dd64469 ️ PWM for ESP32 I2S expander (#24193) 2022-06-24 01:11:07 -05:00
Scott Lahteine
7677368aaf 🔖 Moving to bugfix-2.1.x 2022-06-24 01:11:06 -05:00
Scott Lahteine
ece124fdea 🩹 M919 9-axis update 2022-06-20 21:09:20 -05:00
luzpaz
9aa499dbe9 🌐 Fix LCD string, typos (#24324) 2022-06-20 21:09:20 -05:00
Scott Lahteine
78a3ea0ed4 🧑‍💻 Apply F() to some LCD / TFT strings
Followup to #24228
2022-06-13 21:02:31 -05:00
ellensp
c605c1ebb5 🩹 Fix missing ProUI cpp wrapper (#24313) 2022-06-13 21:02:31 -05:00
ellensp
b2c4fb5f3a 🐛 Fix JGAurora A5S A1 build (#24326) 2022-06-13 04:32:49 -05:00
Steven Haigh
60cedf63f2 🩹 Fix ProUI compile (#24310)
Co-authored-by: Scott Lahteine <thinkyhead@users.noreply.github.com>
2022-06-13 04:32:49 -05:00
Scott Lahteine
1156557a47 🧑‍💻 Misc. servo code cleanup 2022-06-13 04:32:49 -05:00
Scott Lahteine
ea22640d78 🧑‍💻 Remove servo macros 2022-06-13 04:32:49 -05:00
lujios
d886320799 🩹 Fix G33 Delta Sensorless Probing compile (#24291) 2022-06-13 04:32:30 -05:00
Scott Lahteine
a65189c637 👔 Fix and comment use_example_configs 2022-06-13 04:31:26 -05:00
tombrazier
dfc8acf376 🩹 Fix Mesh Leveling + Debug compile (#24297) 2022-06-07 02:15:48 -05:00
ellensp
48d03ca0a9 🩹 Media Change followup (#24302)
Followup to #24015
2022-06-07 02:00:38 -05:00
Miguel Risco-Castillo
85e8d1f9fa 🚸 ProUI G-code preview, PID plot (#24282) 2022-06-07 02:00:38 -05:00
Scott Lahteine
679f4608ab 👔 Update mfconfig import 2022-06-06 23:40:26 -05:00
Scott Lahteine
5c225ba887 🔖 Marlin 2.1 2022-06-05 23:11:32 -05:00
ellensp
2685119332 🩹 Fix EXTRUDERS 0 manual move compile (#24255) 2022-06-05 23:11:32 -05:00
tombrazier
fc350701b2 💥 More M306 M => M306 H (#24258)
Followup to #24253
2022-06-05 23:11:32 -05:00
Miguel Risco-Castillo
0ad695d45a 🚸 Fix, improve, update ProUI (#24251) 2022-06-05 23:11:32 -05:00
elimisback
f1802bc7fe 🔨 BTT STM32G0B1RE xfer build (#24245) 2022-06-05 23:11:32 -05:00
Scott Lahteine
d6c673b9de ♻️ More updates for multi-axis 2022-06-05 23:11:32 -05:00
Scott Lahteine
6a2a592c26 🧑‍💻 Combined axis strings 2022-06-05 23:11:32 -05:00
Scott Lahteine
c4ac695c15 🧑‍💻 Forward-compatible axis strings (167672d, #24259) 2022-06-05 23:11:32 -05:00
Keith Bennett
8465818754 🎨 Fix/adjust warnings (#24225) 2022-06-05 23:11:32 -05:00
Scott Lahteine
3c482a9ba1 🧑‍💻 MAP macro for axis lists, etc. (#24191) 2022-06-05 23:11:32 -05:00
DerAndere
ecfe7b6400 🩹 Fix some parameters w/out values (#24051) 2022-06-05 23:11:32 -05:00
DerAndere
85599abba7 🚸 Better M350, M114 with more axes (#23986) 2022-06-05 23:11:32 -05:00
Scott Lahteine
494a2fc80c 🚨 Fix some compiler warnings 2022-06-05 23:11:31 -05:00
Scott Lahteine
f7bea2846f 🏗️ Axis name arrays
Co-Authored-By: DerAndere <26200979+DerAndere1@users.noreply.github.com>
2022-06-05 23:11:31 -05:00
Scott Lahteine
d56731cd07 🏗️ Extend AXIS_CHAR to include E
Co-Authored-By: DerAndere <26200979+DerAndere1@users.noreply.github.com>
2022-06-05 23:11:31 -05:00
DerAndere
0041de1a8a 💥 Update Motor Current G-codes for extra axes (#23975) 2022-06-05 23:11:31 -05:00
ellensp
d58497bc8e 🐛 Fix BACKLASH_COMPENSATION compile (#24072)
Followup to #23826
2022-06-05 23:11:31 -05:00
Scott Lahteine
fd13a928c1 Support for up to 9 axes (#23112, #24036, #24231) 2022-06-05 23:11:31 -05:00
572 changed files with 16953 additions and 14750 deletions

View File

@@ -34,8 +34,11 @@ This project and everyone participating in it is governed by the [Marlin Code of
We have a Message Board and a Facebook group where our knowledgable user community can provide helpful advice if you have questions.
* [Marlin RepRap forum](https://reprap.org/forum/list.php?415)
* [MarlinFirmware on Facebook](https://www.facebook.com/groups/1049718498464482/)
- [Marlin Documentation](https://marlinfw.org) - Official Marlin documentation
- Facebook Group ["Marlin Firmware"](https://www.facebook.com/groups/1049718498464482/)
- RepRap.org [Marlin Forum](https://forums.reprap.org/list.php?415)
- Facebook Group ["Marlin Firmware for 3D Printers"](https://www.facebook.com/groups/3Dtechtalk/)
- [Marlin Configuration](https://www.youtube.com/results?search_query=marlin+configuration) on YouTube
If chat is more your speed, you can join the MarlinFirmware Discord server:
@@ -116,7 +119,7 @@ Unsure where to begin contributing to Marlin? You can start by looking through t
### Pull Requests
Pull Requests should always be targeted to working branches (e.g., `bugfix-2.0.x` and/or `bugfix-1.1.x`) and never to release branches (e.g., `2.0.x` and/or `1.1.x`). If this is your first Pull Request, please read our [Guide to Pull Requests](https://marlinfw.org/docs/development/getting_started_pull_requests.html) and Github's [Pull Request](https://help.github.com/articles/creating-a-pull-request/) documentation.
Pull Requests should always be targeted to working branches (e.g., `bugfix-2.1.x` and/or `bugfix-1.1.x`) and never to release branches (e.g., `2.0.x` and/or `1.1.x`). If this is your first Pull Request, please read our [Guide to Pull Requests](https://marlinfw.org/docs/development/getting_started_pull_requests.html) and Github's [Pull Request](https://help.github.com/articles/creating-a-pull-request/) documentation.
* Fill in [the required template](pull_request_template.md).
* Don't include issue numbers in the PR title.

View File

@@ -35,7 +35,7 @@
*
* Advanced settings can be found in Configuration_adv.h
*/
#define CONFIGURATION_H_VERSION 02000904
#define CONFIGURATION_H_VERSION 02010100
//===========================================================================
//============================= Getting Started =============================
@@ -57,15 +57,6 @@
* https://www.thingiverse.com/thing:1278865
*/
//===========================================================================
//========================== DELTA / SCARA / TPARA ==========================
//===========================================================================
//
// Download configurations from the link above and customize for your machine.
// Examples are located in config/examples/delta, .../SCARA, and .../TPARA.
//
//===========================================================================
// @section info
// Author info of this build printed to the host during boot and M115
@@ -121,6 +112,7 @@
* :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000]
*/
#define BAUDRATE 250000
//#define BAUD_RATE_GCODE // Enable G-code M575 to set the baud rate
/**
@@ -129,7 +121,7 @@
* :[-2, -1, 0, 1, 2, 3, 4, 5, 6, 7]
*/
//#define SERIAL_PORT_2 -1
//#define BAUDRATE_2 250000 // Enable to override BAUDRATE
//#define BAUDRATE_2 250000 // :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000] Enable to override BAUDRATE
/**
* Select a third serial port on the board to use for communication with the host.
@@ -137,7 +129,7 @@
* :[-1, 0, 1, 2, 3, 4, 5, 6, 7]
*/
//#define SERIAL_PORT_3 1
//#define BAUDRATE_3 250000 // Enable to override BAUDRATE
//#define BAUDRATE_3 250000 // :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000] Enable to override BAUDRATE
// Enable the Bluetooth serial interface on AT90USB devices
//#define BLUETOOTH
@@ -157,13 +149,12 @@
*
* Use TMC2208/TMC2208_STANDALONE for TMC2225 drivers and TMC2209/TMC2209_STANDALONE for TMC2226 drivers.
*
* Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* Options: A4988, A5984, DRV8825, LV8729, TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/
#define X_DRIVER_TYPE A4988
#define Y_DRIVER_TYPE A4988
@@ -176,6 +167,9 @@
//#define I_DRIVER_TYPE A4988
//#define J_DRIVER_TYPE A4988
//#define K_DRIVER_TYPE A4988
//#define U_DRIVER_TYPE A4988
//#define V_DRIVER_TYPE A4988
//#define W_DRIVER_TYPE A4988
#define E0_DRIVER_TYPE A4988
//#define E1_DRIVER_TYPE A4988
//#define E2_DRIVER_TYPE A4988
@@ -186,20 +180,25 @@
//#define E7_DRIVER_TYPE A4988
/**
* Axis codes for additional axes:
* This defines the axis code that is used in G-code commands to
* reference a specific axis.
* 'A' for rotational axis parallel to X
* 'B' for rotational axis parallel to Y
* 'C' for rotational axis parallel to Z
* 'U' for secondary linear axis parallel to X
* 'V' for secondary linear axis parallel to Y
* 'W' for secondary linear axis parallel to Z
* Regardless of the settings, firmware-internal axis IDs are
* I (AXIS4), J (AXIS5), K (AXIS6).
* Additional Axis Settings
*
* Define AXISn_ROTATES for all axes that rotate or pivot.
* Rotational axis coordinates are expressed in degrees.
*
* AXISn_NAME defines the letter used to refer to the axis in (most) G-code commands.
* By convention the names and roles are typically:
* 'A' : Rotational axis parallel to X
* 'B' : Rotational axis parallel to Y
* 'C' : Rotational axis parallel to Z
* 'U' : Secondary linear axis parallel to X
* 'V' : Secondary linear axis parallel to Y
* 'W' : Secondary linear axis parallel to Z
*
* Regardless of these settings the axes are internally named I, J, K, U, V, W.
*/
#ifdef I_DRIVER_TYPE
#define AXIS4_NAME 'A' // :['A', 'B', 'C', 'U', 'V', 'W']
#define AXIS4_ROTATES
#endif
#ifdef J_DRIVER_TYPE
#define AXIS5_NAME 'B' // :['B', 'C', 'U', 'V', 'W']
@@ -209,6 +208,18 @@
#define AXIS6_NAME 'C' // :['C', 'U', 'V', 'W']
#define AXIS6_ROTATES
#endif
#ifdef U_DRIVER_TYPE
#define AXIS7_NAME 'U' // :['U', 'V', 'W']
//#define AXIS7_ROTATES
#endif
#ifdef V_DRIVER_TYPE
#define AXIS8_NAME 'V' // :['V', 'W']
//#define AXIS8_ROTATES
#endif
#ifdef W_DRIVER_TYPE
#define AXIS9_NAME 'W' // :['W']
//#define AXIS9_ROTATES
#endif
// @section extruder
@@ -260,6 +271,7 @@
#define SWITCHING_NOZZLE_SERVO_NR 0
//#define SWITCHING_NOZZLE_E1_SERVO_NR 1 // If two servos are used, the index of the second
#define SWITCHING_NOZZLE_SERVO_ANGLES { 0, 90 } // Angles for E0, E1 (single servo) or lowered/raised (dual servo)
#define SWITCHING_NOZZLE_SERVO_DWELL 2500 // Dwell time to wait for servo to make physical move
#endif
/**
@@ -376,7 +388,7 @@
//#define HOTEND_OFFSET_Y { 0.0, 5.00 } // (mm) relative Y-offset for each nozzle
//#define HOTEND_OFFSET_Z { 0.0, 0.00 } // (mm) relative Z-offset for each nozzle
// @section machine
// @section psu control
/**
* Power Supply Control
@@ -538,22 +550,32 @@
#define DUMMY_THERMISTOR_999_VALUE 100
// Resistor values when using MAX31865 sensors (-5) on TEMP_SENSOR_0 / 1
//#define MAX31865_SENSOR_OHMS_0 100 // (Ω) Typically 100 or 1000 (PT100 or PT1000)
//#define MAX31865_CALIBRATION_OHMS_0 430 // (Ω) Typically 430 for Adafruit PT100; 4300 for Adafruit PT1000
//#define MAX31865_SENSOR_OHMS_1 100
//#define MAX31865_CALIBRATION_OHMS_1 430
#if TEMP_SENSOR_IS_MAX_TC(0)
#define MAX31865_SENSOR_OHMS_0 100 // (Ω) Typically 100 or 1000 (PT100 or PT1000)
#define MAX31865_CALIBRATION_OHMS_0 430 // (Ω) Typically 430 for Adafruit PT100; 4300 for Adafruit PT1000
#endif
#if TEMP_SENSOR_IS_MAX_TC(1)
#define MAX31865_SENSOR_OHMS_1 100
#define MAX31865_CALIBRATION_OHMS_1 430
#endif
#define TEMP_RESIDENCY_TIME 10 // (seconds) Time to wait for hotend to "settle" in M109
#define TEMP_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
#if HAS_E_TEMP_SENSOR
#define TEMP_RESIDENCY_TIME 10 // (seconds) Time to wait for hotend to "settle" in M109
#define TEMP_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
#endif
#define TEMP_BED_RESIDENCY_TIME 10 // (seconds) Time to wait for bed to "settle" in M190
#define TEMP_BED_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_BED_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
#if TEMP_SENSOR_BED
#define TEMP_BED_RESIDENCY_TIME 10 // (seconds) Time to wait for bed to "settle" in M190
#define TEMP_BED_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_BED_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
#endif
#define TEMP_CHAMBER_RESIDENCY_TIME 10 // (seconds) Time to wait for chamber to "settle" in M191
#define TEMP_CHAMBER_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_CHAMBER_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
#if TEMP_SENSOR_CHAMBER
#define TEMP_CHAMBER_RESIDENCY_TIME 10 // (seconds) Time to wait for chamber to "settle" in M191
#define TEMP_CHAMBER_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_CHAMBER_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
#endif
/**
* Redundant Temperature Sensor (TEMP_SENSOR_REDUNDANT)
@@ -612,6 +634,8 @@
//============================= PID Settings ================================
//===========================================================================
// @section hotend temp
// Enable PIDTEMP for PID control or MPCTEMP for Predictive Model.
// temperature control. Disable both for bang-bang heating.
#define PIDTEMP // See the PID Tuning Guide at https://reprap.org/wiki/PID_Tuning
@@ -622,7 +646,8 @@
#define PID_K1 0.95 // Smoothing factor within any PID loop
#if ENABLED(PIDTEMP)
//#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders)
//#define PID_DEBUG // Print PID debug data to the serial port. Use 'M303 D' to toggle activation.
//#define PID_PARAMS_PER_HOTEND // Use separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with G-code: M301 E[extruder number, 0-2]
#if ENABLED(PID_PARAMS_PER_HOTEND)
@@ -643,7 +668,8 @@
*
* Use a physical model of the hotend to control temperature. When configured correctly
* this gives better responsiveness and stability than PID and it also removes the need
* for PID_EXTRUSION_SCALING and PID_FAN_SCALING. Use M306 to autotune the model.
* for PID_EXTRUSION_SCALING and PID_FAN_SCALING. Use M306 T to autotune the model.
* @section mpctemp
*/
#if ENABLED(MPCTEMP)
//#define MPC_EDIT_MENU // Add MPC editing to the "Advanced Settings" menu. (~1300 bytes of flash)
@@ -696,6 +722,7 @@
* impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W
* heater. If your configuration is significantly different than this and you don't understand
* the issues involved, don't use bed PID until someone else verifies that your hardware works.
* @section bed temp
*/
//#define PIDTEMPBED
@@ -711,7 +738,7 @@
#if ENABLED(PIDTEMPBED)
//#define MIN_BED_POWER 0
//#define PID_BED_DEBUG // Sends debug data to the serial port.
//#define PID_BED_DEBUG // Print Bed PID debug data to the serial port.
// 120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
// from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
@@ -739,6 +766,7 @@
* impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 200W
* heater. If your configuration is significantly different than this and you don't understand
* the issues involved, don't use chamber PID until someone else verifies that your hardware works.
* @section chamber temp
*/
//#define PIDTEMPCHAMBER
//#define CHAMBER_LIMIT_SWITCHING
@@ -753,7 +781,7 @@
#if ENABLED(PIDTEMPCHAMBER)
#define MIN_CHAMBER_POWER 0
//#define PID_CHAMBER_DEBUG // Sends debug data to the serial port.
//#define PID_CHAMBER_DEBUG // Print Chamber PID debug data to the serial port.
// Lasko "MyHeat Personal Heater" (200w) modified with a Fotek SSR-10DA to control only the heating element
// and placed inside the small Creality printer enclosure tent.
@@ -767,7 +795,6 @@
#endif // PIDTEMPCHAMBER
#if ANY(PIDTEMP, PIDTEMPBED, PIDTEMPCHAMBER)
//#define PID_DEBUG // Sends debug data to the serial port. Use 'M303 D' to toggle activation.
//#define PID_OPENLOOP // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
@@ -777,7 +804,7 @@
//#define PID_AUTOTUNE_MENU // Add PID auto-tuning to the "Advanced Settings" menu. (~250 bytes of flash)
#endif
// @section extruder
// @section safety
/**
* Prevent extrusion if the temperature is below EXTRUDE_MINTEMP.
@@ -845,11 +872,154 @@
#define POLAR_SEGMENTS_PER_SECOND 5
#endif
// @section delta
// Enable for DELTA kinematics and configure below
//#define DELTA
#if ENABLED(DELTA)
// Make delta curves from many straight lines (linear interpolation).
// This is a trade-off between visible corners (not enough segments)
// and processor overload (too many expensive sqrt calls).
#define DELTA_SEGMENTS_PER_SECOND 200
// After homing move down to a height where XY movement is unconstrained
//#define DELTA_HOME_TO_SAFE_ZONE
// Delta calibration menu
// uncomment to add three points calibration menu option.
// See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU
// uncomment to add G33 Delta Auto-Calibration (Enable EEPROM_SETTINGS to store results)
//#define DELTA_AUTO_CALIBRATION
// NOTE NB all values for DELTA_* values MUST be floating point, so always have a decimal point in them
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
#endif
#if EITHER(DELTA_AUTO_CALIBRATION, DELTA_CALIBRATION_MENU)
// Set the steprate for papertest probing
#define PROBE_MANUALLY_STEP 0.05 // (mm)
#endif
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define DELTA_PRINTABLE_RADIUS 140.0 // (mm)
// Maximum reachable area
#define DELTA_MAX_RADIUS 140.0 // (mm)
// Center-to-center distance of the holes in the diagonal push rods.
#define DELTA_DIAGONAL_ROD 250.0 // (mm)
// Distance between bed and nozzle Z home position
#define DELTA_HEIGHT 250.00 // (mm) Get this value from G33 auto calibrate
#define DELTA_ENDSTOP_ADJ { 0.0, 0.0, 0.0 } // Get these values from G33 auto calibrate
// Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS 124.0 // (mm) Get this value from G33 auto calibrate
// Trim adjustments for individual towers
// tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
// measured in degrees anticlockwise looking from above the printer
#define DELTA_TOWER_ANGLE_TRIM { 0.0, 0.0, 0.0 } // Get these values from G33 auto calibrate
// Delta radius and diagonal rod adjustments (mm)
//#define DELTA_RADIUS_TRIM_TOWER { 0.0, 0.0, 0.0 }
//#define DELTA_DIAGONAL_ROD_TRIM_TOWER { 0.0, 0.0, 0.0 }
#endif
// @section scara
/**
* MORGAN_SCARA was developed by QHARLEY in South Africa in 2012-2013.
* Implemented and slightly reworked by JCERNY in June, 2014.
*
* Mostly Printed SCARA is an open source design by Tyler Williams. See:
* https://www.thingiverse.com/thing:2487048
* https://www.thingiverse.com/thing:1241491
*/
//#define MORGAN_SCARA
//#define MP_SCARA
#if EITHER(MORGAN_SCARA, MP_SCARA)
// If movement is choppy try lowering this value
#define SCARA_SEGMENTS_PER_SECOND 200
// Length of inner and outer support arms. Measure arm lengths precisely.
#define SCARA_LINKAGE_1 150 // (mm)
#define SCARA_LINKAGE_2 150 // (mm)
// SCARA tower offset (position of Tower relative to bed zero position)
// This needs to be reasonably accurate as it defines the printbed position in the SCARA space.
#define SCARA_OFFSET_X 100 // (mm)
#define SCARA_OFFSET_Y -56 // (mm)
#if ENABLED(MORGAN_SCARA)
//#define DEBUG_SCARA_KINEMATICS
#define SCARA_FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly
// Radius around the center where the arm cannot reach
#define MIDDLE_DEAD_ZONE_R 0 // (mm)
#define THETA_HOMING_OFFSET 0 // Calculated from Calibration Guide and M360 / M114. See http://reprap.harleystudio.co.za/?page_id=1073
#define PSI_HOMING_OFFSET 0 // Calculated from Calibration Guide and M364 / M114. See http://reprap.harleystudio.co.za/?page_id=1073
#elif ENABLED(MP_SCARA)
#define SCARA_OFFSET_THETA1 12 // degrees
#define SCARA_OFFSET_THETA2 131 // degrees
#endif
#endif
// @section tpara
// Enable for TPARA kinematics and configure below
//#define AXEL_TPARA
#if ENABLED(AXEL_TPARA)
#define DEBUG_ROBOT_KINEMATICS
#define ROBOT_SEGMENTS_PER_SECOND 200
// Length of inner and outer support arms. Measure arm lengths precisely.
#define ROBOT_LINKAGE_1 120 // (mm)
#define ROBOT_LINKAGE_2 120 // (mm)
// SCARA tower offset (position of Tower relative to bed zero position)
// This needs to be reasonably accurate as it defines the printbed position in the SCARA space.
#define ROBOT_OFFSET_X 0 // (mm)
#define ROBOT_OFFSET_Y 0 // (mm)
#define ROBOT_OFFSET_Z 0 // (mm)
#define SCARA_FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly
// Radius around the center where the arm cannot reach
#define MIDDLE_DEAD_ZONE_R 0 // (mm)
// Calculated from Calibration Guide and M360 / M114. See http://reprap.harleystudio.co.za/?page_id=1073
#define THETA_HOMING_OFFSET 0
#define PSI_HOMING_OFFSET 0
#endif
// @section machine
// Articulated robot (arm). Joints are directly mapped to axes with no kinematics.
//#define ARTICULATED_ROBOT_ARM
// For a hot wire cutter with parallel horizontal axes (X, I) where the heights of the two wire
// ends are controlled by parallel axes (Y, J). Joints are directly mapped to axes (no kinematics).
//#define FOAMCUTTER_XYUV
//===========================================================================
//============================== Endstop Settings ===========================
//===========================================================================
// @section homing
// @section endstops
// Specify here all the endstop connectors that are connected to any endstop or probe.
// Almost all printers will be using one per axis. Probes will use one or more of the
@@ -860,12 +1030,18 @@
//#define USE_IMIN_PLUG
//#define USE_JMIN_PLUG
//#define USE_KMIN_PLUG
//#define USE_UMIN_PLUG
//#define USE_VMIN_PLUG
//#define USE_WMIN_PLUG
//#define USE_XMAX_PLUG
//#define USE_YMAX_PLUG
//#define USE_ZMAX_PLUG
//#define USE_IMAX_PLUG
//#define USE_JMAX_PLUG
//#define USE_KMAX_PLUG
//#define USE_UMAX_PLUG
//#define USE_VMAX_PLUG
//#define USE_WMAX_PLUG
// Enable pullup for all endstops to prevent a floating state
#define ENDSTOPPULLUPS
@@ -877,12 +1053,18 @@
//#define ENDSTOPPULLUP_IMIN
//#define ENDSTOPPULLUP_JMIN
//#define ENDSTOPPULLUP_KMIN
//#define ENDSTOPPULLUP_UMIN
//#define ENDSTOPPULLUP_VMIN
//#define ENDSTOPPULLUP_WMIN
//#define ENDSTOPPULLUP_XMAX
//#define ENDSTOPPULLUP_YMAX
//#define ENDSTOPPULLUP_ZMAX
//#define ENDSTOPPULLUP_IMAX
//#define ENDSTOPPULLUP_JMAX
//#define ENDSTOPPULLUP_KMAX
//#define ENDSTOPPULLUP_UMAX
//#define ENDSTOPPULLUP_VMAX
//#define ENDSTOPPULLUP_WMAX
//#define ENDSTOPPULLUP_ZMIN_PROBE
#endif
@@ -896,12 +1078,18 @@
//#define ENDSTOPPULLDOWN_IMIN
//#define ENDSTOPPULLDOWN_JMIN
//#define ENDSTOPPULLDOWN_KMIN
//#define ENDSTOPPULLDOWN_UMIN
//#define ENDSTOPPULLDOWN_VMIN
//#define ENDSTOPPULLDOWN_WMIN
//#define ENDSTOPPULLDOWN_XMAX
//#define ENDSTOPPULLDOWN_YMAX
//#define ENDSTOPPULLDOWN_ZMAX
//#define ENDSTOPPULLDOWN_IMAX
//#define ENDSTOPPULLDOWN_JMAX
//#define ENDSTOPPULLDOWN_KMAX
//#define ENDSTOPPULLDOWN_UMAX
//#define ENDSTOPPULLDOWN_VMAX
//#define ENDSTOPPULLDOWN_WMAX
//#define ENDSTOPPULLDOWN_ZMIN_PROBE
#endif
@@ -912,12 +1100,18 @@
#define I_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define J_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define K_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define U_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define V_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define W_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define X_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Y_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define I_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define J_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define K_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define U_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define V_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define W_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MIN_PROBE_ENDSTOP_INVERTING false // Set to true to invert the logic of the probe.
// Enable this feature if all enabled endstop pins are interrupt-capable.
@@ -962,16 +1156,16 @@
//#define DISTINCT_E_FACTORS
/**
* Default Axis Steps Per Unit (steps/mm)
* Default Axis Steps Per Unit (linear=steps/mm, rotational=steps/°)
* Override with M92
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
* X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 400, 500 }
/**
* Default Max Feed Rate (mm/s)
* Default Max Feed Rate (linear=mm/s, rotational=°/s)
* Override with M203
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
* X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]]
*/
#define DEFAULT_MAX_FEEDRATE { 300, 300, 5, 25 }
@@ -981,10 +1175,10 @@
#endif
/**
* Default Max Acceleration (change/s) change = mm/s
* Default Max Acceleration (speed change with time) (linear=mm/(s^2), rotational=°/(s^2))
* (Maximum start speed for accelerated moves)
* Override with M201
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
* X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]]
*/
#define DEFAULT_MAX_ACCELERATION { 3000, 3000, 100, 10000 }
@@ -994,7 +1188,7 @@
#endif
/**
* Default Acceleration (change/s) change = mm/s
* Default Acceleration (speed change with time) (linear=mm/(s^2), rotational=°/(s^2))
* Override with M204
*
* M204 P Acceleration
@@ -1007,7 +1201,7 @@
/**
* Default Jerk limits (mm/s)
* Override with M205 X Y Z E
* Override with M205 X Y Z . . . E
*
* "Jerk" specifies the minimum speed change that requires acceleration.
* When changing speed and direction, if the difference is less than the
@@ -1021,6 +1215,9 @@
//#define DEFAULT_IJERK 0.3
//#define DEFAULT_JJERK 0.3
//#define DEFAULT_KJERK 0.3
//#define DEFAULT_UJERK 0.3
//#define DEFAULT_VJERK 0.3
//#define DEFAULT_WJERK 0.3
//#define TRAVEL_EXTRA_XYJERK 0.0 // Additional jerk allowance for all travel moves
@@ -1170,6 +1367,27 @@
#define Z_PROBE_RETRACT_X X_MAX_POS
#endif
/**
* Magnetically Mounted Probe
* For probes such as Euclid, Klicky, Klackender, etc.
*/
//#define MAG_MOUNTED_PROBE
#if ENABLED(MAG_MOUNTED_PROBE)
#define PROBE_DEPLOY_FEEDRATE (133*60) // (mm/min) Probe deploy speed
#define PROBE_STOW_FEEDRATE (133*60) // (mm/min) Probe stow speed
#define MAG_MOUNTED_DEPLOY_1 { PROBE_DEPLOY_FEEDRATE, { 245, 114, 30 } } // Move to side Dock & Attach probe
#define MAG_MOUNTED_DEPLOY_2 { PROBE_DEPLOY_FEEDRATE, { 210, 114, 30 } } // Move probe off dock
#define MAG_MOUNTED_DEPLOY_3 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed
#define MAG_MOUNTED_DEPLOY_4 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed
#define MAG_MOUNTED_DEPLOY_5 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed
#define MAG_MOUNTED_STOW_1 { PROBE_STOW_FEEDRATE, { 245, 114, 20 } } // Move to dock
#define MAG_MOUNTED_STOW_2 { PROBE_STOW_FEEDRATE, { 245, 114, 0 } } // Place probe beside remover
#define MAG_MOUNTED_STOW_3 { PROBE_STOW_FEEDRATE, { 230, 114, 0 } } // Side move to remove probe
#define MAG_MOUNTED_STOW_4 { PROBE_STOW_FEEDRATE, { 210, 114, 20 } } // Side move to remove probe
#define MAG_MOUNTED_STOW_5 { PROBE_STOW_FEEDRATE, { 0, 0, 0 } } // Extra move if needed
#endif
// Duet Smart Effector (for delta printers) - https://bit.ly/2ul5U7J
// When the pin is defined you can use M672 to set/reset the probe sensitivity.
//#define DUET_SMART_EFFECTOR
@@ -1185,9 +1403,37 @@
*/
//#define SENSORLESS_PROBING
//
// For Z_PROBE_ALLEN_KEY see the Delta example configurations.
//
/**
* Allen key retractable z-probe as seen on many Kossel delta printers - https://reprap.org/wiki/Kossel#Automatic_bed_leveling_probe
* Deploys by touching z-axis belt. Retracts by pushing the probe down.
*/
//#define Z_PROBE_ALLEN_KEY
#if ENABLED(Z_PROBE_ALLEN_KEY)
// 2 or 3 sets of coordinates for deploying and retracting the spring loaded touch probe on G29,
// if servo actuated touch probe is not defined. Uncomment as appropriate for your printer/probe.
#define Z_PROBE_ALLEN_KEY_DEPLOY_1 { 30.0, DELTA_PRINTABLE_RADIUS, 100.0 }
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE XY_PROBE_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_2 { 0.0, DELTA_PRINTABLE_RADIUS, 100.0 }
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE (XY_PROBE_FEEDRATE)/10
#define Z_PROBE_ALLEN_KEY_DEPLOY_3 { 0.0, (DELTA_PRINTABLE_RADIUS) * 0.75, 100.0 }
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE XY_PROBE_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_1 { -64.0, 56.0, 23.0 } // Move the probe into position
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE XY_PROBE_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_2 { -64.0, 56.0, 3.0 } // Push it down
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE (XY_PROBE_FEEDRATE)/10
#define Z_PROBE_ALLEN_KEY_STOW_3 { -64.0, 56.0, 50.0 } // Move it up to clear
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE XY_PROBE_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_4 { 0.0, 0.0, 50.0 }
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE XY_PROBE_FEEDRATE
#endif // Z_PROBE_ALLEN_KEY
/**
* Nozzle-to-Probe offsets { X, Y, Z }
@@ -1359,6 +1605,9 @@
//#define I_ENABLE_ON 0
//#define J_ENABLE_ON 0
//#define K_ENABLE_ON 0
//#define U_ENABLE_ON 0
//#define V_ENABLE_ON 0
//#define W_ENABLE_ON 0
// Disable axis steppers immediately when they're not being stepped.
// WARNING: When motors turn off there is a chance of losing position accuracy!
@@ -1368,6 +1617,9 @@
//#define DISABLE_I false
//#define DISABLE_J false
//#define DISABLE_K false
//#define DISABLE_U false
//#define DISABLE_V false
//#define DISABLE_W false
// Turn off the display blinking that warns about possible accuracy reduction
//#define DISABLE_REDUCED_ACCURACY_WARNING
@@ -1386,6 +1638,9 @@
//#define INVERT_I_DIR false
//#define INVERT_J_DIR false
//#define INVERT_K_DIR false
//#define INVERT_U_DIR false
//#define INVERT_V_DIR false
//#define INVERT_W_DIR false
// @section extruder
@@ -1424,14 +1679,17 @@
//#define I_HOME_DIR -1
//#define J_HOME_DIR -1
//#define K_HOME_DIR -1
//#define U_HOME_DIR -1
//#define V_HOME_DIR -1
//#define W_HOME_DIR -1
// @section machine
// @section geometry
// The size of the printable area
#define X_BED_SIZE 200
#define Y_BED_SIZE 200
// Travel limits (mm) after homing, corresponding to endstop positions.
// Travel limits (linear=mm, rotational=°) after homing, corresponding to endstop positions.
#define X_MIN_POS 0
#define Y_MIN_POS 0
#define Z_MIN_POS 0
@@ -1444,6 +1702,12 @@
//#define J_MAX_POS 50
//#define K_MIN_POS 0
//#define K_MAX_POS 50
//#define U_MIN_POS 0
//#define U_MAX_POS 50
//#define V_MIN_POS 0
//#define V_MAX_POS 50
//#define W_MIN_POS 0
//#define W_MAX_POS 50
/**
* Software Endstops
@@ -1463,6 +1727,9 @@
#define MIN_SOFTWARE_ENDSTOP_I
#define MIN_SOFTWARE_ENDSTOP_J
#define MIN_SOFTWARE_ENDSTOP_K
#define MIN_SOFTWARE_ENDSTOP_U
#define MIN_SOFTWARE_ENDSTOP_V
#define MIN_SOFTWARE_ENDSTOP_W
#endif
// Max software endstops constrain movement within maximum coordinate bounds
@@ -1474,6 +1741,9 @@
#define MAX_SOFTWARE_ENDSTOP_I
#define MAX_SOFTWARE_ENDSTOP_J
#define MAX_SOFTWARE_ENDSTOP_K
#define MAX_SOFTWARE_ENDSTOP_U
#define MAX_SOFTWARE_ENDSTOP_V
#define MAX_SOFTWARE_ENDSTOP_W
#endif
#if EITHER(MIN_SOFTWARE_ENDSTOPS, MAX_SOFTWARE_ENDSTOPS)
@@ -1616,6 +1886,15 @@
#define LEVELING_BED_TEMP 50
#endif
/**
* Bed Distance Sensor
*
* Measures the distance from bed to nozzle with accuracy of 0.01mm.
* For information about this sensor https://github.com/markniu/Bed_Distance_sensor
* Uses I2C port, so it requires I2C library markyue/Panda_SoftMasterI2C.
*/
//#define BD_SENSOR
/**
* Enable detailed logging of G28, G29, M48, etc.
* Turn on with the command 'M111 S32'.
@@ -1738,7 +2017,7 @@
//#define LCD_BED_TRAMMING
#if ENABLED(LCD_BED_TRAMMING)
#define BED_TRAMMING_INSET_LFRB { 30, 30, 30, 30 } // (mm) Left, Front, Right, Back insets
#define BED_TRAMMING_INSET_LFRB { 30, 30, 30, 30 } // (mm) Left, Front, Right, Back insets
#define BED_TRAMMING_HEIGHT 0.0 // (mm) Z height of nozzle at leveling points
#define BED_TRAMMING_Z_HOP 4.0 // (mm) Z height of nozzle between leveling points
//#define BED_TRAMMING_INCLUDE_CENTER // Move to the center after the last corner
@@ -1788,6 +2067,9 @@
//#define MANUAL_I_HOME_POS 0
//#define MANUAL_J_HOME_POS 0
//#define MANUAL_K_HOME_POS 0
//#define MANUAL_U_HOME_POS 0
//#define MANUAL_V_HOME_POS 0
//#define MANUAL_W_HOME_POS 0
/**
* Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
@@ -1803,7 +2085,7 @@
#define Z_SAFE_HOMING_Y_POINT Y_CENTER // Y point for Z homing
#endif
// Homing speeds (mm/min)
// Homing speeds (linear=mm/min, rotational=°/min)
#define HOMING_FEEDRATE_MM_M { (50*60), (50*60), (4*60) }
// Validate that endstops are triggered on homing moves
@@ -1870,7 +2152,7 @@
//============================= Additional Features ===========================
//=============================================================================
// @section extras
// @section eeprom
/**
* EEPROM
@@ -1890,6 +2172,8 @@
//#define EEPROM_INIT_NOW // Init EEPROM on first boot after a new build.
#endif
// @section host
//
// Host Keepalive
//
@@ -1900,6 +2184,8 @@
#define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113.
#define BUSY_WHILE_HEATING // Some hosts require "busy" messages even during heating
// @section units
//
// G20/G21 Inch mode support
//
@@ -1927,6 +2213,8 @@
#define PREHEAT_2_TEMP_CHAMBER 35
#define PREHEAT_2_FAN_SPEED 0 // Value from 0 to 255
// @section motion
/**
* Nozzle Park
*
@@ -2025,6 +2313,8 @@
#endif
// @section host
/**
* Print Job Timer
*
@@ -2051,6 +2341,8 @@
*/
#define PRINTJOB_TIMER_AUTOSTART
// @section stats
/**
* Print Counter
*
@@ -2068,6 +2360,8 @@
#define PRINTCOUNTER_SAVE_INTERVAL 60 // (minutes) EEPROM save interval during print
#endif
// @section security
/**
* Password
*
@@ -2103,7 +2397,7 @@
//============================= LCD and SD support ============================
//=============================================================================
// @section lcd
// @section interface
/**
* LCD LANGUAGE
@@ -2219,6 +2513,16 @@
//
//#define REVERSE_SELECT_DIRECTION
//
// Encoder EMI Noise Filter
//
// This option increases encoder samples to filter out phantom encoder clicks caused by EMI noise.
//
//#define ENCODER_NOISE_FILTER
#if ENABLED(ENCODER_NOISE_FILTER)
#define ENCODER_SAMPLES 10
#endif
//
// Individual Axis Homing
//
@@ -2249,6 +2553,7 @@
//======================== LCD / Controller Selection =========================
//======================== (Character-based LCDs) =========================
//=============================================================================
// @section lcd
//
// RepRapDiscount Smart Controller.
@@ -2550,6 +2855,12 @@
//
//#define SILVER_GATE_GLCD_CONTROLLER
//
// eMotion Tech LCD with SD
// https://www.reprap-france.com/produit/1234568748-ecran-graphique-128-x-64-points-2-1
//
//#define EMOTION_TECH_LCD
//=============================================================================
//============================== OLED Displays ==============================
//=============================================================================
@@ -2877,7 +3188,7 @@
//=============================== Extra Features ==============================
//=============================================================================
// @section extras
// @section fans
// Set number of user-controlled fans. Disable to use all board-defined fans.
// :[1,2,3,4,5,6,7,8]
@@ -2901,14 +3212,18 @@
// duty cycle is attained.
//#define SOFT_PWM_DITHER
// @section extras
// Support for the BariCUDA Paste Extruder
//#define BARICUDA
// @section lights
// Temperature status LEDs that display the hotend and bed temperature.
// If all hotends, bed temperature, and target temperature are under 54C
// then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis)
//#define TEMP_STAT_LEDS
// Support for the BariCUDA Paste Extruder
//#define BARICUDA
// Support for BlinkM/CyzRgb
//#define BLINKM
@@ -2994,6 +3309,8 @@
#define PRINTER_EVENT_LEDS
#endif
// @section servos
/**
* Number of servos
*

File diff suppressed because it is too large Load Diff

View File

@@ -109,7 +109,7 @@ LIQUID_TWI2 ?= 0
# This defines if Wire is needed
WIRE ?= 0
# This defines if Tone is needed (i.e SPEAKER is defined in Configuration.h)
# This defines if Tone is needed (i.e., SPEAKER is defined in Configuration.h)
# Disabling this (and SPEAKER) saves approximately 350 bytes of memory.
TONE ?= 1
@@ -317,123 +317,10 @@ else ifeq ($(HARDWARE_MOTHERBOARD),1159)
else ifeq ($(HARDWARE_MOTHERBOARD),1160)
# Longer LKx PRO / Alfawise Uxx Pro (PRO version)
else ifeq ($(HARDWARE_MOTHERBOARD),1161)
# 3Drag Controller
else ifeq ($(HARDWARE_MOTHERBOARD),1100)
# Velleman K8200 Controller (derived from 3Drag Controller)
else ifeq ($(HARDWARE_MOTHERBOARD),1101)
# Velleman K8400 Controller (derived from 3Drag Controller)
else ifeq ($(HARDWARE_MOTHERBOARD),1102)
# Velleman K8600 Controller (Vertex Nano)
else ifeq ($(HARDWARE_MOTHERBOARD),1103)
# Velleman K8800 Controller (Vertex Delta)
else ifeq ($(HARDWARE_MOTHERBOARD),1104)
# 2PrintBeta BAM&DICE with STK drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1105)
# 2PrintBeta BAM&DICE Due with STK drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1106)
# MKS BASE v1.0
else ifeq ($(HARDWARE_MOTHERBOARD),1107)
# MKS v1.4 with A4982 stepper drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1108)
# MKS v1.5 with Allegro A4982 stepper drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1109)
# MKS v1.6 with Allegro A4982 stepper drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1110)
# MKS BASE 1.0 with Heroic HR4982 stepper drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1111)
# MKS GEN v1.3 or 1.4
else ifeq ($(HARDWARE_MOTHERBOARD),1112)
# MKS GEN L
else ifeq ($(HARDWARE_MOTHERBOARD),1113)
# zrib V2.0 control board (Chinese RAMPS replica)
else ifeq ($(HARDWARE_MOTHERBOARD),1114)
# BigTreeTech or BIQU KFB2.0
else ifeq ($(HARDWARE_MOTHERBOARD),1115)
# Felix 2.0+ Electronics Board (RAMPS like)
else ifeq ($(HARDWARE_MOTHERBOARD),1116)
# Invent-A-Part RigidBoard
else ifeq ($(HARDWARE_MOTHERBOARD),1117)
# Invent-A-Part RigidBoard V2
else ifeq ($(HARDWARE_MOTHERBOARD),1118)
# Sainsmart 2-in-1 board
else ifeq ($(HARDWARE_MOTHERBOARD),1119)
# Ultimaker
else ifeq ($(HARDWARE_MOTHERBOARD),1120)
# Ultimaker (Older electronics. Pre 1.5.4. This is rare)
else ifeq ($(HARDWARE_MOTHERBOARD),1121)
MCU ?= atmega1280
PROG_MCU ?= m1280
# Azteeg X3
else ifeq ($(HARDWARE_MOTHERBOARD),1122)
# Azteeg X3 Pro
else ifeq ($(HARDWARE_MOTHERBOARD),1123)
# Ultimainboard 2.x (Uses TEMP_SENSOR 20)
else ifeq ($(HARDWARE_MOTHERBOARD),1124)
# Rumba
else ifeq ($(HARDWARE_MOTHERBOARD),1125)
# Raise3D Rumba
else ifeq ($(HARDWARE_MOTHERBOARD),1126)
# Rapide Lite RL200 Rumba
else ifeq ($(HARDWARE_MOTHERBOARD),1127)
# Formbot T-Rex 2 Plus
else ifeq ($(HARDWARE_MOTHERBOARD),1128)
# Formbot T-Rex 3
else ifeq ($(HARDWARE_MOTHERBOARD),1129)
# Formbot Raptor
else ifeq ($(HARDWARE_MOTHERBOARD),1130)
# Formbot Raptor 2
else ifeq ($(HARDWARE_MOTHERBOARD),1131)
# bq ZUM Mega 3D
else ifeq ($(HARDWARE_MOTHERBOARD),1132)
# MakeBoard Mini v2.1.2 is a control board sold by MicroMake
else ifeq ($(HARDWARE_MOTHERBOARD),1133)
# TriGorilla Anycubic version 1.3 based on RAMPS EFB
else ifeq ($(HARDWARE_MOTHERBOARD),1134)
# TriGorilla Anycubic version 1.4 based on RAMPS EFB
else ifeq ($(HARDWARE_MOTHERBOARD),1135)
# TriGorilla Anycubic version 1.4 Rev 1.1
else ifeq ($(HARDWARE_MOTHERBOARD),1136)
# Creality: Ender-4, CR-8
else ifeq ($(HARDWARE_MOTHERBOARD),1137)
# Creality: CR10S, CR20, CR-X
else ifeq ($(HARDWARE_MOTHERBOARD),1138)
# Dagoma F5
else ifeq ($(HARDWARE_MOTHERBOARD),1139)
# FYSETC F6 1.3
else ifeq ($(HARDWARE_MOTHERBOARD),1140)
# FYSETC F6 1.5
else ifeq ($(HARDWARE_MOTHERBOARD),1141)
# Duplicator i3 Plus
else ifeq ($(HARDWARE_MOTHERBOARD),1142)
# VORON
else ifeq ($(HARDWARE_MOTHERBOARD),1143)
# TRONXY V3 1.0
else ifeq ($(HARDWARE_MOTHERBOARD),1144)
# Z-Bolt X Series
else ifeq ($(HARDWARE_MOTHERBOARD),1145)
# TT OSCAR
else ifeq ($(HARDWARE_MOTHERBOARD),1146)
# Overlord/Overlord Pro
else ifeq ($(HARDWARE_MOTHERBOARD),1147)
# ADIMLab Gantry v1
else ifeq ($(HARDWARE_MOTHERBOARD),1148)
# ADIMLab Gantry v2
else ifeq ($(HARDWARE_MOTHERBOARD),1149)
# BIQU Tango V1
else ifeq ($(HARDWARE_MOTHERBOARD),1150)
# MKS GEN L V2
else ifeq ($(HARDWARE_MOTHERBOARD),1151)
# MKS GEN L V2.1
else ifeq ($(HARDWARE_MOTHERBOARD),1152)
# Copymaster 3D
else ifeq ($(HARDWARE_MOTHERBOARD),1153)
# Ortur 4
else ifeq ($(HARDWARE_MOTHERBOARD),1154)
# Tenlog D3 Hero
else ifeq ($(HARDWARE_MOTHERBOARD),1155)
# Zonestar zrib V5.3 (Chinese RAMPS replica)
else ifeq ($(HARDWARE_MOTHERBOARD),1162)
# Pxmalion Core I3
else ifeq ($(HARDWARE_MOTHERBOARD),1163)
#
# RAMBo and derivatives

View File

@@ -28,7 +28,7 @@
/**
* Marlin release version identifier
*/
//#define SHORT_BUILD_VERSION "2.0.9.4"
//#define SHORT_BUILD_VERSION "2.1.1"
/**
* Verbose version identifier which should contain a reference to the location
@@ -41,7 +41,7 @@
* here we define this default string as the date where the latest release
* version was tagged.
*/
//#define STRING_DISTRIBUTION_DATE "2022-06-04"
//#define STRING_DISTRIBUTION_DATE "2022-08-06"
/**
* Defines a generic printer name to be output to the LCD after booting Marlin.

211
Marlin/config.ini Normal file
View File

@@ -0,0 +1,211 @@
#
# Marlin Firmware
# config.ini - Options to apply before the build
#
[config:base]
ini_use_config = none
# Load all config: sections in this file
;ini_use_config = all
# Load config file relative to Marlin/
;ini_use_config = another.ini
# Download configurations from GitHub
;ini_use_config = example/Creality/Ender-5 Plus @ bugfix-2.1.x
# Download configurations from your server
;ini_use_config = https://me.myserver.com/path/to/configs
# Evaluate config:base and do a config dump
;ini_use_config = base
;config_export = 2
[config:minimal]
motherboard = BOARD_RAMPS_14_EFB
serial_port = 0
baudrate = 250000
use_watchdog = on
thermal_protection_hotends = on
thermal_protection_hysteresis = 4
thermal_protection_period = 40
bufsize = 4
block_buffer_size = 16
max_cmd_size = 96
extruders = 1
temp_sensor_0 = 1
temp_hysteresis = 3
heater_0_mintemp = 5
heater_0_maxtemp = 275
preheat_1_temp_hotend = 180
bang_max = 255
pidtemp = on
pid_k1 = 0.95
pid_max = BANG_MAX
pid_functional_range = 10
default_kp = 22.20
default_ki = 1.08
default_kd = 114.00
x_driver_type = A4988
y_driver_type = A4988
z_driver_type = A4988
e0_driver_type = A4988
x_bed_size = 200
x_min_pos = 0
x_max_pos = X_BED_SIZE
y_bed_size = 200
y_min_pos = 0
y_max_pos = Y_BED_SIZE
z_min_pos = 0
z_max_pos = 200
x_home_dir = -1
y_home_dir = -1
z_home_dir = -1
use_xmin_plug = on
use_ymin_plug = on
use_zmin_plug = on
x_min_endstop_inverting = false
y_min_endstop_inverting = false
z_min_endstop_inverting = false
default_axis_steps_per_unit = { 80, 80, 400, 500 }
axis_relative_modes = { false, false, false, false }
default_max_feedrate = { 300, 300, 5, 25 }
default_max_acceleration = { 3000, 3000, 100, 10000 }
homing_feedrate_mm_m = { (50*60), (50*60), (4*60) }
homing_bump_divisor = { 2, 2, 4 }
x_enable_on = 0
y_enable_on = 0
z_enable_on = 0
e_enable_on = 0
invert_x_dir = false
invert_y_dir = true
invert_z_dir = false
invert_e0_dir = false
invert_e_step_pin = false
invert_x_step_pin = false
invert_y_step_pin = false
invert_z_step_pin = false
disable_x = false
disable_y = false
disable_z = false
disable_e = false
proportional_font_ratio = 1.0
default_nominal_filament_dia = 1.75
junction_deviation_mm = 0.013
default_acceleration = 3000
default_travel_acceleration = 3000
default_retract_acceleration = 3000
default_minimumfeedrate = 0.0
default_mintravelfeedrate = 0.0
minimum_planner_speed = 0.05
min_steps_per_segment = 6
default_minsegmenttime = 20000
[config:basic]
bed_overshoot = 10
busy_while_heating = on
default_ejerk = 5.0
default_keepalive_interval = 2
default_leveling_fade_height = 0.0
disable_inactive_extruder = on
display_charset_hd44780 = JAPANESE
eeprom_boot_silent = on
eeprom_chitchat = on
endstoppullups = on
extrude_maxlength = 200
extrude_mintemp = 170
host_keepalive_feature = on
hotend_overshoot = 15
jd_handle_small_segments = on
lcd_info_screen_style = 0
lcd_language = en
max_bed_power = 255
mesh_inset = 0
min_software_endstops = on
max_software_endstops = on
min_software_endstop_x = on
min_software_endstop_y = on
min_software_endstop_z = on
max_software_endstop_x = on
max_software_endstop_y = on
max_software_endstop_z = on
preheat_1_fan_speed = 0
preheat_1_label = "PLA"
preheat_1_temp_bed = 70
prevent_cold_extrusion = on
prevent_lengthy_extrude = on
printjob_timer_autostart = on
probing_margin = 10
show_bootscreen = on
soft_pwm_scale = 0
string_config_h_author = "(none, default config)"
temp_bed_hysteresis = 3
temp_bed_residency_time = 10
temp_bed_window = 1
temp_residency_time = 10
temp_window = 1
validate_homing_endstops = on
xy_probe_feedrate = (133*60)
z_clearance_between_probes = 5
z_clearance_deploy_probe = 10
z_clearance_multi_probe = 5
[config:advanced]
arc_support = on
auto_report_temperatures = on
autotemp = on
autotemp_oldweight = 0.98
bed_check_interval = 5000
default_stepper_deactive_time = 120
default_volumetric_extruder_limit = 0.00
disable_inactive_e = true
disable_inactive_x = true
disable_inactive_y = true
disable_inactive_z = true
e0_auto_fan_pin = -1
encoder_100x_steps_per_sec = 80
encoder_10x_steps_per_sec = 30
encoder_rate_multiplier = on
extended_capabilities_report = on
extruder_auto_fan_speed = 255
extruder_auto_fan_temperature = 50
fanmux0_pin = -1
fanmux1_pin = -1
fanmux2_pin = -1
faster_gcode_parser = on
homing_bump_mm = { 5, 5, 2 }
max_arc_segment_mm = 1.0
min_arc_segment_mm = 0.1
min_circle_segments = 72
n_arc_correction = 25
serial_overrun_protection = on
slowdown = on
slowdown_divisor = 2
temp_sensor_bed = 0
thermal_protection_bed_hysteresis = 2
thermocouple_max_errors = 15
tx_buffer_size = 0
watch_bed_temp_increase = 2
watch_bed_temp_period = 60
watch_temp_increase = 2
watch_temp_period = 20

View File

@@ -19,6 +19,10 @@
*/
#pragma once
/**
* HAL for Arduino AVR
*/
#include "../shared/Marduino.h"
#include "../shared/HAL_SPI.h"
#include "fastio.h"

View File

@@ -66,27 +66,26 @@ static volatile int8_t Channel[_Nbr_16timers]; // counter for the s
/************ static functions common to all instances ***********************/
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t* TCNTn, volatile uint16_t* OCRnA) {
if (Channel[timer] < 0)
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
else {
if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && SERVO(timer, Channel[timer]).Pin.isActive)
extDigitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated
}
static inline void handle_interrupts(const timer16_Sequence_t timer, volatile uint16_t* TCNTn, volatile uint16_t* OCRnA) {
int8_t cho = Channel[timer]; // Handle the prior Channel[timer] first
if (cho < 0) // Channel -1 indicates the refresh interval completed...
*TCNTn = 0; // ...so reset the timer
else if (SERVO_INDEX(timer, cho) < ServoCount) // prior channel handled?
extDigitalWrite(SERVO(timer, cho).Pin.nbr, LOW); // pulse the prior channel LOW
Channel[timer]++; // increment to the next channel
if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
*OCRnA = *TCNTn + SERVO(timer, Channel[timer]).ticks;
if (SERVO(timer, Channel[timer]).Pin.isActive) // check if activated
extDigitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, HIGH); // it's an active channel so pulse it high
Channel[timer] = ++cho; // Handle the next channel (or 0)
if (cho < SERVOS_PER_TIMER && SERVO_INDEX(timer, cho) < ServoCount) {
*OCRnA = *TCNTn + SERVO(timer, cho).ticks; // set compare to current ticks plus duration
if (SERVO(timer, cho).Pin.isActive) // activated?
extDigitalWrite(SERVO(timer, cho).Pin.nbr, HIGH); // yes: pulse HIGH
}
else {
// finished all channels so wait for the refresh period to expire before starting over
if (((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL)) // allow a few ticks to ensure the next OCR1A not missed
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
else
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
const unsigned int cval = ((unsigned)*TCNTn) + 32 / (SERVO_TIMER_PRESCALER), // allow 32 cycles to ensure the next OCR1A not missed
ival = (unsigned int)usToTicks(REFRESH_INTERVAL); // at least REFRESH_INTERVAL has elapsed
*OCRnA = max(cval, ival);
Channel[timer] = -1; // reset the timer counter to 0 on the next call
}
}
@@ -123,91 +122,102 @@ static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t
/****************** end of static functions ******************************/
void initISR(timer16_Sequence_t timer) {
#ifdef _useTimer1
if (timer == _timer1) {
TCCR1A = 0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega128__)
SBI(TIFR, OCF1A); // clear any pending interrupts;
SBI(TIMSK, OCIE1A); // enable the output compare interrupt
#else
// here if not ATmega8 or ATmega128
SBI(TIFR1, OCF1A); // clear any pending interrupts;
SBI(TIMSK1, OCIE1A); // enable the output compare interrupt
#endif
#ifdef WIRING
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
}
#endif
void initISR(const timer16_Sequence_t timer_index) {
switch (timer_index) {
default: break;
#ifdef _useTimer3
if (timer == _timer3) {
TCCR3A = 0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 = 0; // clear the timer count
#ifdef __AVR_ATmega128__
SBI(TIFR, OCF3A); // clear any pending interrupts;
SBI(ETIMSK, OCIE3A); // enable the output compare interrupt
#else
SBI(TIFR3, OCF3A); // clear any pending interrupts;
SBI(TIMSK3, OCIE3A); // enable the output compare interrupt
#endif
#ifdef WIRING
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif
}
#endif
#ifdef _useTimer1
case _timer1:
TCCR1A = 0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega128__)
SBI(TIFR, OCF1A); // clear any pending interrupts;
SBI(TIMSK, OCIE1A); // enable the output compare interrupt
#else
// here if not ATmega8 or ATmega128
SBI(TIFR1, OCF1A); // clear any pending interrupts;
SBI(TIMSK1, OCIE1A); // enable the output compare interrupt
#endif
#ifdef WIRING
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
break;
#endif
#ifdef _useTimer4
if (timer == _timer4) {
TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A); // enable the output compare interrupt
}
#endif
#ifdef _useTimer3
case _timer3:
TCCR3A = 0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 = 0; // clear the timer count
#ifdef __AVR_ATmega128__
SBI(TIFR, OCF3A); // clear any pending interrupts;
SBI(ETIMSK, OCIE3A); // enable the output compare interrupt
#else
SBI(TIFR3, OCF3A); // clear any pending interrupts;
SBI(TIMSK3, OCIE3A); // enable the output compare interrupt
#endif
#ifdef WIRING
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif
break;
#endif
#ifdef _useTimer5
if (timer == _timer5) {
TCCR5A = 0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 = 0; // clear the timer count
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIE5A); // enable the output compare interrupt
}
#endif
#ifdef _useTimer4
case _timer4:
TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A); // enable the output compare interrupt
break;
#endif
#ifdef _useTimer5
case _timer5:
TCCR5A = 0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 = 0; // clear the timer count
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIE5A); // enable the output compare interrupt
break;
#endif
}
}
void finISR(timer16_Sequence_t timer) {
void finISR(const timer16_Sequence_t timer_index) {
// Disable use of the given timer
#ifdef WIRING
if (timer == _timer1) {
CBI(
#if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
TIMSK1
#else
TIMSK
#endif
, OCIE1A); // disable timer 1 output compare interrupt
timerDetach(TIMER1OUTCOMPAREA_INT);
}
else if (timer == _timer3) {
CBI(
#if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
TIMSK3
#else
ETIMSK
#endif
, OCIE3A); // disable the timer3 output compare A interrupt
timerDetach(TIMER3OUTCOMPAREA_INT);
switch (timer_index) {
default: break;
case _timer1:
CBI(
#if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
TIMSK1
#else
TIMSK
#endif
, OCIE1A // disable timer 1 output compare interrupt
);
timerDetach(TIMER1OUTCOMPAREA_INT);
break;
case _timer3:
CBI(
#if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
TIMSK3
#else
ETIMSK
#endif
, OCIE3A // disable the timer3 output compare A interrupt
);
timerDetach(TIMER3OUTCOMPAREA_INT);
break;
}
#else // !WIRING
// For arduino - in future: call here to a currently undefined function to reset the timer
UNUSED(timer);
UNUSED(timer_index);
#endif
}

View File

@@ -213,6 +213,51 @@ void setup_endstop_interrupts() {
pciSetup(K_MIN_PIN);
#endif
#endif
#if HAS_U_MAX
#if (digitalPinToInterrupt(U_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(U_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(U_MAX_PIN), "U_MAX_PIN is not interrupt-capable");
pciSetup(U_MAX_PIN);
#endif
#elif HAS_U_MIN
#if (digitalPinToInterrupt(U_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(U_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(U_MIN_PIN), "U_MIN_PIN is not interrupt-capable");
pciSetup(U_MIN_PIN);
#endif
#endif
#if HAS_V_MAX
#if (digitalPinToInterrupt(V_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(V_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(V_MAX_PIN), "V_MAX_PIN is not interrupt-capable");
pciSetup(V_MAX_PIN);
#endif
#elif HAS_V_MIN
#if (digitalPinToInterrupt(V_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(V_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(V_MIN_PIN), "V_MIN_PIN is not interrupt-capable");
pciSetup(V_MIN_PIN);
#endif
#endif
#if HAS_W_MAX
#if (digitalPinToInterrupt(W_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(W_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(W_MAX_PIN), "W_MAX_PIN is not interrupt-capable");
pciSetup(W_MAX_PIN);
#endif
#elif HAS_W_MIN
#if (digitalPinToInterrupt(W_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(W_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(W_MIN_PIN), "W_MIN_PIN is not interrupt-capable");
pciSetup(W_MIN_PIN);
#endif
#endif
#if HAS_X2_MAX
#if (digitalPinToInterrupt(X2_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(X2_MAX_PIN);

View File

@@ -35,11 +35,19 @@
|| X_STEP_PIN == N || Y_STEP_PIN == N || Z_STEP_PIN == N \
|| X_DIR_PIN == N || Y_DIR_PIN == N || Z_DIR_PIN == N \
|| X_ENA_PIN == N || Y_ENA_PIN == N || Z_ENA_PIN == N \
|| BTN_EN1 == N || BTN_EN2 == N \
)
#if CONF_SERIAL_IS(0) // D0-D1. No known conflicts.
#if CONF_SERIAL_IS(0)
// D0-D1. No known conflicts.
#endif
#if CONF_SERIAL_IS(1) && (CHECK_SERIAL_PIN(18) || CHECK_SERIAL_PIN(19))
#error "Serial Port 1 pin D18 and/or D19 conflicts with another pin on the board."
#if NOT_TARGET(__AVR_ATmega644P__, __AVR_ATmega1284P__)
#if CONF_SERIAL_IS(1) && (CHECK_SERIAL_PIN(18) || CHECK_SERIAL_PIN(19))
#error "Serial Port 1 pin D18 and/or D19 conflicts with another pin on the board."
#endif
#else
#if CONF_SERIAL_IS(1) && (CHECK_SERIAL_PIN(10) || CHECK_SERIAL_PIN(11))
#error "Serial Port 1 pin D10 and/or D11 conflicts with another pin on the board."
#endif
#endif
#if CONF_SERIAL_IS(2) && (CHECK_SERIAL_PIN(16) || CHECK_SERIAL_PIN(17))
#error "Serial Port 2 pin D16 and/or D17 conflicts with another pin on the board."

View File

@@ -47,12 +47,12 @@
#include "../shared/servo.h"
#include "../shared/servo_private.h"
static volatile int8_t Channel[_Nbr_16timers]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
static Flags<_Nbr_16timers> DisablePending; // ISR should disable the timer at the next timer reset
// ------------------------
/// Interrupt handler for the TC0 channel 1.
// ------------------------
void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel);
void Servo_Handler(const timer16_Sequence_t, Tc*, const uint8_t);
#ifdef _useTimer1
void HANDLER_FOR_TIMER1() { Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1); }
@@ -70,88 +70,92 @@ void Servo_Handler(timer16_Sequence_t timer, Tc *pTc, uint8_t channel);
void HANDLER_FOR_TIMER5() { Servo_Handler(_timer5, TC_FOR_TIMER5, CHANNEL_FOR_TIMER5); }
#endif
void Servo_Handler(timer16_Sequence_t timer, Tc *tc, uint8_t channel) {
// clear interrupt
tc->TC_CHANNEL[channel].TC_SR;
if (Channel[timer] < 0)
tc->TC_CHANNEL[channel].TC_CCR |= TC_CCR_SWTRG; // channel set to -1 indicated that refresh interval completed so reset the timer
else if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && SERVO(timer, Channel[timer]).Pin.isActive)
extDigitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated
void Servo_Handler(const timer16_Sequence_t timer, Tc *tc, const uint8_t channel) {
static int8_t Channel[_Nbr_16timers]; // Servo counters to pulse (or -1 for refresh interval)
int8_t cho = Channel[timer]; // Handle the prior Channel[timer] first
if (cho < 0) { // Channel -1 indicates the refresh interval completed...
tc->TC_CHANNEL[channel].TC_CCR |= TC_CCR_SWTRG; // ...so reset the timer
if (DisablePending[timer]) {
// Disabling only after the full servo period expires prevents
// pulses being too close together if immediately re-enabled.
DisablePending.clear(timer);
TC_Stop(tc, channel);
tc->TC_CHANNEL[channel].TC_SR; // clear interrupt
return;
}
}
else if (SERVO_INDEX(timer, cho) < ServoCount) // prior channel handled?
extDigitalWrite(SERVO(timer, cho).Pin.nbr, LOW); // pulse the prior channel LOW
Channel[timer]++; // increment to the next channel
if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + SERVO(timer,Channel[timer]).ticks;
if (SERVO(timer,Channel[timer]).Pin.isActive) // check if activated
extDigitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, HIGH); // its an active channel so pulse it high
Channel[timer] = ++cho; // go to the next channel (or 0)
if (cho < SERVOS_PER_TIMER && SERVO_INDEX(timer, cho) < ServoCount) {
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + SERVO(timer, cho).ticks;
if (SERVO(timer, cho).Pin.isActive) // activated?
extDigitalWrite(SERVO(timer, cho).Pin.nbr, HIGH); // yes: pulse HIGH
}
else {
// finished all channels so wait for the refresh period to expire before starting over
tc->TC_CHANNEL[channel].TC_RA =
tc->TC_CHANNEL[channel].TC_CV < usToTicks(REFRESH_INTERVAL) - 4
? (unsigned int)usToTicks(REFRESH_INTERVAL) // allow a few ticks to ensure the next OCR1A not missed
: tc->TC_CHANNEL[channel].TC_CV + 4; // at least REFRESH_INTERVAL has elapsed
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
const unsigned int cval = tc->TC_CHANNEL[channel].TC_CV + 128 / (SERVO_TIMER_PRESCALER), // allow 128 cycles to ensure the next CV not missed
ival = (unsigned int)usToTicks(REFRESH_INTERVAL); // at least REFRESH_INTERVAL has elapsed
tc->TC_CHANNEL[channel].TC_RA = max(cval, ival);
Channel[timer] = -1; // reset the timer CCR on the next call
}
tc->TC_CHANNEL[channel].TC_SR; // clear interrupt
}
static void _initISR(Tc *tc, uint32_t channel, uint32_t id, IRQn_Type irqn) {
pmc_enable_periph_clk(id);
TC_Configure(tc, channel,
TC_CMR_TCCLKS_TIMER_CLOCK3 | // MCK/32
TC_CMR_WAVE | // Waveform mode
TC_CMR_WAVSEL_UP_RC ); // Counter running up and reset when equals to RC
TC_CMR_WAVE // Waveform mode
| TC_CMR_WAVSEL_UP_RC // Counter running up and reset when equal to RC
| (SERVO_TIMER_PRESCALER == 2 ? TC_CMR_TCCLKS_TIMER_CLOCK1 : 0) // MCK/2
| (SERVO_TIMER_PRESCALER == 8 ? TC_CMR_TCCLKS_TIMER_CLOCK2 : 0) // MCK/8
| (SERVO_TIMER_PRESCALER == 32 ? TC_CMR_TCCLKS_TIMER_CLOCK3 : 0) // MCK/32
| (SERVO_TIMER_PRESCALER == 128 ? TC_CMR_TCCLKS_TIMER_CLOCK4 : 0) // MCK/128
);
/* 84MHz, MCK/32, for 1.5ms: 3937 */
TC_SetRA(tc, channel, 2625); // 1ms
// Wait 1ms before the first ISR
TC_SetRA(tc, channel, (F_CPU) / (SERVO_TIMER_PRESCALER) / 1000UL); // 1ms
/* Configure and enable interrupt */
// Configure and enable interrupt
NVIC_EnableIRQ(irqn);
// TC_IER_CPAS: RA Compare
tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPAS;
tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPAS; // TC_IER_CPAS: RA Compare
// Enables the timer clock and performs a software reset to start the counting
TC_Start(tc, channel);
}
void initISR(timer16_Sequence_t timer) {
#ifdef _useTimer1
if (timer == _timer1)
_initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1);
#endif
#ifdef _useTimer2
if (timer == _timer2)
_initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2);
#endif
#ifdef _useTimer3
if (timer == _timer3)
_initISR(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3, ID_TC_FOR_TIMER3, IRQn_FOR_TIMER3);
#endif
#ifdef _useTimer4
if (timer == _timer4)
_initISR(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4, ID_TC_FOR_TIMER4, IRQn_FOR_TIMER4);
#endif
#ifdef _useTimer5
if (timer == _timer5)
_initISR(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5, ID_TC_FOR_TIMER5, IRQn_FOR_TIMER5);
#endif
void initISR(const timer16_Sequence_t timer_index) {
CRITICAL_SECTION_START();
const bool disable_soon = DisablePending[timer_index];
DisablePending.clear(timer_index);
CRITICAL_SECTION_END();
if (!disable_soon) switch (timer_index) {
default: break;
#ifdef _useTimer1
case _timer1: return _initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1);
#endif
#ifdef _useTimer2
case _timer2: return _initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2);
#endif
#ifdef _useTimer3
case _timer3: return _initISR(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3, ID_TC_FOR_TIMER3, IRQn_FOR_TIMER3);
#endif
#ifdef _useTimer4
case _timer4: return _initISR(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4, ID_TC_FOR_TIMER4, IRQn_FOR_TIMER4);
#endif
#ifdef _useTimer5
case _timer5: return _initISR(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5, ID_TC_FOR_TIMER5, IRQn_FOR_TIMER5);
#endif
}
}
void finISR(timer16_Sequence_t) {
#ifdef _useTimer1
TC_Stop(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1);
#endif
#ifdef _useTimer2
TC_Stop(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2);
#endif
#ifdef _useTimer3
TC_Stop(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3);
#endif
#ifdef _useTimer4
TC_Stop(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4);
#endif
#ifdef _useTimer5
TC_Stop(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5);
#endif
void finISR(const timer16_Sequence_t timer_index) {
// Timer is disabled from the ISR, to ensure proper final pulse length.
DisablePending.set(timer_index);
}
#endif // HAS_SERVOS

View File

@@ -37,7 +37,7 @@
#define _useTimer5
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays
#define SERVO_TIMER_PRESCALER 32 // timer prescaler
#define SERVO_TIMER_PRESCALER 2 // timer prescaler
/*
TC0, chan 0 => TC0_Handler

View File

@@ -70,4 +70,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
TERN_(HAS_U_MAX, _ATTACH(U_MAX_PIN));
TERN_(HAS_U_MIN, _ATTACH(U_MIN_PIN));
TERN_(HAS_V_MAX, _ATTACH(V_MAX_PIN));
TERN_(HAS_V_MIN, _ATTACH(V_MIN_PIN));
TERN_(HAS_W_MAX, _ATTACH(W_MAX_PIN));
TERN_(HAS_W_MIN, _ATTACH(W_MIN_PIN));
}

View File

@@ -89,10 +89,17 @@ void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
NVIC_SetPriority(irq, timer_config[timer_num].priority);
// wave mode, reset counter on match with RC,
TC_Configure(tc, channel, TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_TCCLKS_TIMER_CLOCK1);
TC_Configure(tc, channel,
TC_CMR_WAVE
| TC_CMR_WAVSEL_UP_RC
| (HAL_TIMER_PRESCALER == 2 ? TC_CMR_TCCLKS_TIMER_CLOCK1 : 0)
| (HAL_TIMER_PRESCALER == 8 ? TC_CMR_TCCLKS_TIMER_CLOCK2 : 0)
| (HAL_TIMER_PRESCALER == 32 ? TC_CMR_TCCLKS_TIMER_CLOCK3 : 0)
| (HAL_TIMER_PRESCALER == 128 ? TC_CMR_TCCLKS_TIMER_CLOCK4 : 0)
);
// Set compare value
TC_SetRC(tc, channel, VARIANT_MCK / 2 / frequency);
TC_SetRC(tc, channel, VARIANT_MCK / (HAL_TIMER_PRESCALER) / frequency);
// And start timer
TC_Start(tc, channel);

View File

@@ -35,7 +35,8 @@
typedef uint32_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
#define HAL_TIMER_RATE ((F_CPU) / 2) // frequency of timers peripherals
#define HAL_TIMER_PRESCALER 2
#define HAL_TIMER_RATE ((F_CPU) / (HAL_TIMER_PRESCALER)) // frequency of timers peripherals
#ifndef MF_TIMER_STEP
#define MF_TIMER_STEP 2 // Timer Index for Stepper

View File

@@ -1059,7 +1059,7 @@ static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data)
while (val_index < 8)
{
data[val_index++] = value & 0xFF;
value = value >> 8;
value >>= 8;
}
}

View File

@@ -65,6 +65,7 @@ portMUX_TYPE MarlinHAL::spinlock = portMUX_INITIALIZER_UNLOCKED;
// ------------------------
uint16_t MarlinHAL::adc_result;
pwm_pin_t MarlinHAL::pwm_pin_data[MAX_EXPANDER_BITS];
// ------------------------
// Private Variables
@@ -330,21 +331,46 @@ int8_t get_pwm_channel(const pin_t pin, const uint32_t freq, const uint16_t res)
}
void MarlinHAL::set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=_BV(PWM_RESOLUTION)-1*/, const bool invert/*=false*/) {
const int8_t cid = get_pwm_channel(pin, PWM_FREQUENCY, PWM_RESOLUTION);
if (cid >= 0) {
uint32_t duty = map(invert ? v_size - v : v, 0, v_size, 0, _BV(PWM_RESOLUTION)-1);
ledcWrite(cid, duty);
}
#if ENABLED(I2S_STEPPER_STREAM)
if (pin > 127) {
const uint8_t pinlo = pin & 0x7F;
pwm_pin_t &pindata = pwm_pin_data[pinlo];
const uint32_t duty = map(invert ? v_size - v : v, 0, v_size, 0, pindata.pwm_cycle_ticks);
if (duty == 0 || duty == pindata.pwm_cycle_ticks) { // max or min (i.e., on/off)
pindata.pwm_duty_ticks = 0; // turn off PWM for this pin
duty ? SBI32(i2s_port_data, pinlo) : CBI32(i2s_port_data, pinlo); // set pin level
}
else
pindata.pwm_duty_ticks = duty; // PWM duty count = # of 4µs ticks per full PWM cycle
}
else
#endif
{
const int8_t cid = get_pwm_channel(pin, PWM_FREQUENCY, PWM_RESOLUTION);
if (cid >= 0) {
const uint32_t duty = map(invert ? v_size - v : v, 0, v_size, 0, _BV(PWM_RESOLUTION)-1);
ledcWrite(cid, duty);
}
}
}
int8_t MarlinHAL::set_pwm_frequency(const pin_t pin, const uint32_t f_desired) {
const int8_t cid = channel_for_pin(pin);
if (cid >= 0) {
if (f_desired == ledcReadFreq(cid)) return cid; // no freq change
ledcDetachPin(chan_pin[cid]);
chan_pin[cid] = 0; // remove old freq channel
}
return get_pwm_channel(pin, f_desired, PWM_RESOLUTION); // try for new one
#if ENABLED(I2S_STEPPER_STREAM)
if (pin > 127) {
pwm_pin_data[pin & 0x7F].pwm_cycle_ticks = 1000000UL / f_desired / 4; // # of 4µs ticks per full PWM cycle
return 0;
}
else
#endif
{
const int8_t cid = channel_for_pin(pin);
if (cid >= 0) {
if (f_desired == ledcReadFreq(cid)) return cid; // no freq change
ledcDetachPin(chan_pin[cid]);
chan_pin[cid] = 0; // remove old freq channel
}
return get_pwm_channel(pin, f_desired, PWM_RESOLUTION); // try for new one
}
}
// use hardware PWM if avail, if not then ISR

View File

@@ -60,14 +60,17 @@
#endif
#endif
#define CRITICAL_SECTION_START() portENTER_CRITICAL(&spinlock)
#define CRITICAL_SECTION_END() portEXIT_CRITICAL(&spinlock)
#define CRITICAL_SECTION_START() portENTER_CRITICAL(&hal.spinlock)
#define CRITICAL_SECTION_END() portEXIT_CRITICAL(&hal.spinlock)
#define HAL_CAN_SET_PWM_FREQ // This HAL supports PWM Frequency adjustment
#define PWM_FREQUENCY 1000u // Default PWM frequency when set_pwm_duty() is called without set_pwm_frequency()
#define PWM_RESOLUTION 10u // Default PWM bit resolution
#define CHANNEL_MAX_NUM 15u // max PWM channel # to allocate (7 to only use low speed, 15 to use low & high)
#define MAX_PWM_IOPIN 33u // hardware pwm pins < 34
#ifndef MAX_EXPANDER_BITS
#define MAX_EXPANDER_BITS 32 // I2S expander bit width (max 32)
#endif
// ------------------------
// Types
@@ -76,6 +79,12 @@
typedef double isr_float_t; // FPU ops are used for single-precision, so use double for ISRs.
typedef int16_t pin_t;
typedef struct pwm_pin {
uint32_t pwm_cycle_ticks = 1000000UL / (PWM_FREQUENCY) / 4; // # ticks per pwm cycle
uint32_t pwm_tick_count = 0; // current tick count
uint32_t pwm_duty_ticks = 0; // # of ticks for current duty cycle
} pwm_pin_t;
class Servo;
typedef Servo hal_servo_t;
@@ -197,6 +206,8 @@ public:
// Free SRAM
static int freeMemory();
static pwm_pin_t pwm_pin_data[MAX_EXPANDER_BITS];
//
// ADC Methods
//

View File

@@ -65,4 +65,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
TERN_(HAS_U_MAX, _ATTACH(U_MAX_PIN));
TERN_(HAS_U_MIN, _ATTACH(U_MIN_PIN));
TERN_(HAS_V_MAX, _ATTACH(V_MAX_PIN));
TERN_(HAS_V_MIN, _ATTACH(V_MIN_PIN));
TERN_(HAS_W_MAX, _ATTACH(W_MAX_PIN));
TERN_(HAS_W_MIN, _ATTACH(W_MIN_PIN));
}

View File

@@ -337,6 +337,26 @@ uint8_t i2s_state(uint8_t pin) {
}
void i2s_push_sample() {
// Every 4µs (when space in DMA buffer) toggle each expander PWM output using
// the current duty cycle/frequency so they sync with any steps (once
// through the DMA/FIFO buffers). PWM signal inversion handled by other functions
LOOP_L_N(p, MAX_EXPANDER_BITS) {
if (hal.pwm_pin_data[p].pwm_duty_ticks > 0) { // pin has active pwm?
if (hal.pwm_pin_data[p].pwm_tick_count == 0) {
if (TEST32(i2s_port_data, p)) { // hi->lo
CBI32(i2s_port_data, p);
hal.pwm_pin_data[p].pwm_tick_count = hal.pwm_pin_data[p].pwm_cycle_ticks - hal.pwm_pin_data[p].pwm_duty_ticks;
}
else { // lo->hi
SBI32(i2s_port_data, p);
hal.pwm_pin_data[p].pwm_tick_count = hal.pwm_pin_data[p].pwm_duty_ticks;
}
}
else
hal.pwm_pin_data[p].pwm_tick_count--;
}
}
dma.current[dma.rw_pos++] = i2s_port_data;
}

View File

@@ -20,3 +20,10 @@
*
*/
#pragma once
//
// Board-specific options need to be defined before HAL.h
//
#if MB(MKS_TINYBEE)
#define MAX_EXPANDER_BITS 24 // TinyBee has 3 x HC595
#endif

View File

@@ -48,3 +48,7 @@
#if USING_PULLDOWNS
#error "PULLDOWN pin mode is not available on ESP32 boards."
#endif
#if BOTH(I2S_STEPPER_STREAM, LIN_ADVANCE)
#error "I2S stream is currently incompatible with LIN_ADVANCE."
#endif

View File

@@ -69,12 +69,12 @@ bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, ui
std::size_t bytes_written = 0;
for (std::size_t i = 0; i < size; i++) {
buffer[pos+i] = value[i];
bytes_written ++;
buffer[pos + i] = value[i];
bytes_written++;
}
crc16(crc, value, size);
pos = pos + size;
pos += size;
return (bytes_written != size); // return true for any error
}
@@ -82,21 +82,21 @@ bool PersistentStore::read_data(int &pos, uint8_t *value, const size_t size, uin
std::size_t bytes_read = 0;
if (writing) {
for (std::size_t i = 0; i < size; i++) {
value[i] = buffer[pos+i];
bytes_read ++;
value[i] = buffer[pos + i];
bytes_read++;
}
crc16(crc, value, size);
}
else {
uint8_t temp[size];
for (std::size_t i = 0; i < size; i++) {
temp[i] = buffer[pos+i];
bytes_read ++;
temp[i] = buffer[pos + i];
bytes_read++;
}
crc16(crc, temp, size);
}
pos = pos + size;
pos += size;
return bytes_read != size; // return true for any error
}

View File

@@ -26,8 +26,8 @@
struct LowpassFilter {
uint64_t data_delay = 0;
uint16_t update(uint16_t value) {
data_delay = data_delay - (data_delay >> 6) + value;
return (uint16_t)(data_delay >> 6);
data_delay += value - (data_delay >> 6);
return uint16_t(data_delay >> 6);
}
};

View File

@@ -155,4 +155,37 @@ void setup_endstop_interrupts() {
#endif
_ATTACH(K_MIN_PIN);
#endif
#if HAS_U_MAX
#if !LPC1768_PIN_INTERRUPT_M(U_MAX_PIN)
#error "U_MAX_PIN is not INTERRUPT-capable."
#endif
_ATTACH(U_MAX_PIN);
#elif HAS_U_MIN
#if !LPC1768_PIN_INTERRUPT_M(U_MIN_PIN)
#error "U_MIN_PIN is not INTERRUPT-capable."
#endif
_ATTACH(U_MIN_PIN);
#endif
#if HAS_V_MAX
#if !LPC1768_PIN_INTERRUPT_M(V_MAX_PIN)
#error "V_MAX_PIN is not INTERRUPT-capable."
#endif
_ATTACH(V_MAX_PIN);
#elif HAS_V_MIN
#if !LPC1768_PIN_INTERRUPT_M(V_MIN_PIN)
#error "V_MIN_PIN is not INTERRUPT-capable."
#endif
_ATTACH(V_MIN_PIN);
#endif
#if HAS_W_MAX
#if !LPC1768_PIN_INTERRUPT_M(W_MAX_PIN)
#error "W_MAX_PIN is not INTERRUPT-capable."
#endif
_ATTACH(W_MAX_PIN);
#elif HAS_W_MIN
#if !LPC1768_PIN_INTERRUPT_M(W_MIN_PIN)
#error "W_MIN_PIN is not INTERRUPT-capable."
#endif
_ATTACH(W_MIN_PIN);
#endif
}

View File

@@ -12,7 +12,7 @@ if pioutil.is_pio_build():
target_filename = "FIRMWARE.CUR"
target_drive = "REARM"
import os,getpass,platform
import platform
current_OS = platform.system()
Import("env")
@@ -26,7 +26,8 @@ if pioutil.is_pio_build():
def before_upload(source, target, env):
try:
#
from pathlib import Path
#
# Find a disk for upload
#
upload_disk = 'Disk not found'
@@ -38,6 +39,7 @@ if pioutil.is_pio_build():
# Windows - doesn't care about the disk's name, only cares about the drive letter
import subprocess,string
from ctypes import windll
from pathlib import PureWindowsPath
# getting list of drives
# https://stackoverflow.com/questions/827371/is-there-a-way-to-list-all-the-available-drive-letters-in-python
@@ -49,7 +51,7 @@ if pioutil.is_pio_build():
bitmask >>= 1
for drive in drives:
final_drive_name = drive + ':\\'
final_drive_name = drive + ':'
# print ('disc check: {}'.format(final_drive_name))
try:
volume_info = str(subprocess.check_output('cmd /C dir ' + final_drive_name, stderr=subprocess.STDOUT))
@@ -59,29 +61,33 @@ if pioutil.is_pio_build():
else:
if target_drive in volume_info and not target_file_found: # set upload if not found target file yet
target_drive_found = True
upload_disk = final_drive_name
upload_disk = PureWindowsPath(final_drive_name)
if target_filename in volume_info:
if not target_file_found:
upload_disk = final_drive_name
upload_disk = PureWindowsPath(final_drive_name)
target_file_found = True
elif current_OS == 'Linux':
#
# platformio.ini will accept this for a Linux upload port designation: 'upload_port = /media/media_name/drive'
#
drives = os.listdir(os.path.join(os.sep, 'media', getpass.getuser()))
import getpass
user = getpass.getuser()
mpath = Path('media', user)
drives = [ x for x in mpath.iterdir() if x.is_dir() ]
if target_drive in drives: # If target drive is found, use it.
target_drive_found = True
upload_disk = os.path.join(os.sep, 'media', getpass.getuser(), target_drive) + os.sep
upload_disk = mpath / target_drive
else:
for drive in drives:
try:
files = os.listdir(os.path.join(os.sep, 'media', getpass.getuser(), drive))
fpath = mpath / drive
files = [ x for x in fpath.iterdir() if x.is_file() ]
except:
continue
else:
if target_filename in files:
upload_disk = os.path.join(os.sep, 'media', getpass.getuser(), drive) + os.sep
upload_disk = mpath / drive
target_file_found = True
break
#
@@ -97,26 +103,28 @@ if pioutil.is_pio_build():
#
# platformio.ini will accept this for a OSX upload port designation: 'upload_port = /media/media_name/drive'
#
drives = os.listdir('/Volumes') # human readable names
dpath = Path('/Volumes') # human readable names
drives = [ x for x in dpath.iterdir() ]
if target_drive in drives and not target_file_found: # set upload if not found target file yet
target_drive_found = True
upload_disk = '/Volumes/' + target_drive + '/'
upload_disk = dpath / target_drive
for drive in drives:
try:
filenames = os.listdir('/Volumes/' + drive + '/') # will get an error if the drive is protected
fpath = dpath / drive # will get an error if the drive is protected
files = [ x for x in fpath.iterdir() ]
except:
continue
else:
if target_filename in filenames:
if target_filename in files:
if not target_file_found:
upload_disk = '/Volumes/' + drive + '/'
upload_disk = dpath / drive
target_file_found = True
#
# Set upload_port to drive if found
#
if target_file_found or target_drive_found:
env.Replace(UPLOAD_PORT=upload_disk)
env.Replace(UPLOAD_PORT=str(upload_disk))
print('\nUpload disk: ', upload_disk, '\n')
else:
print_error('Autodetect Error')

View File

@@ -598,7 +598,7 @@ void MarlinHAL::dma_init() {
void MarlinHAL::init() {
TERN_(DMA_IS_REQUIRED, dma_init());
#if ENABLED(SDSUPPORT)
#if SD_CONNECTION_IS(ONBOARD) && PIN_EXISTS(SD_DETECT)
#if HAS_SD_DETECT && SD_CONNECTION_IS(ONBOARD)
SET_INPUT_PULLUP(SD_DETECT_PIN);
#endif
OUT_WRITE(SDSS, HIGH); // Try to set SDSS inactive before any other SPI users start up

View File

@@ -77,7 +77,8 @@ HAL_SERVO_TIMER_ISR() {
;
const uint8_t tcChannel = TIMER_TCCHANNEL(timer);
if (currentServoIndex[timer] < 0) {
int8_t cho = currentServoIndex[timer]; // Handle the prior servo first
if (cho < 0) { // Servo -1 indicates the refresh interval completed...
#if defined(_useTimer1) && defined(_useTimer2)
if (currentServoIndex[timer ^ 1] >= 0) {
// Wait for both channels
@@ -86,45 +87,37 @@ HAL_SERVO_TIMER_ISR() {
return;
}
#endif
tc->COUNT16.COUNT.reg = TC_COUNTER_START_VAL;
tc->COUNT16.COUNT.reg = TC_COUNTER_START_VAL; // ...so reset the timer
SYNC(tc->COUNT16.SYNCBUSY.bit.COUNT);
}
else if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && SERVO(timer, currentServoIndex[timer]).Pin.isActive)
digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, LOW); // pulse this channel low if activated
else if (SERVO_INDEX(timer, cho) < ServoCount) // prior channel handled?
digitalWrite(SERVO(timer, cho).Pin.nbr, LOW); // pulse the prior channel LOW
// Select the next servo controlled by this timer
currentServoIndex[timer]++;
currentServoIndex[timer] = ++cho; // go to the next channel (or 0)
if (cho < SERVOS_PER_TIMER && SERVO_INDEX(timer, cho) < ServoCount) {
if (SERVO(timer, cho).Pin.isActive) // activated?
digitalWrite(SERVO(timer, cho).Pin.nbr, HIGH); // yes: pulse HIGH
if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && currentServoIndex[timer] < SERVOS_PER_TIMER) {
if (SERVO(timer, currentServoIndex[timer]).Pin.isActive) // check if activated
digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, HIGH); // it's an active channel so pulse it high
tc->COUNT16.CC[tcChannel].reg = getTimerCount() - (uint16_t)SERVO(timer, currentServoIndex[timer]).ticks;
tc->COUNT16.CC[tcChannel].reg = getTimerCount() - (uint16_t)SERVO(timer, cho).ticks;
}
else {
// finished all channels so wait for the refresh period to expire before starting over
currentServoIndex[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
const uint16_t tcCounterValue = getTimerCount();
if ((TC_COUNTER_START_VAL - tcCounterValue) + 4UL < usToTicks(REFRESH_INTERVAL)) // allow a few ticks to ensure the next OCR1A not missed
tc->COUNT16.CC[tcChannel].reg = TC_COUNTER_START_VAL - (uint16_t)usToTicks(REFRESH_INTERVAL);
else
tc->COUNT16.CC[tcChannel].reg = (uint16_t)(tcCounterValue - 4UL); // at least REFRESH_INTERVAL has elapsed
currentServoIndex[timer] = -1; // reset the timer COUNT.reg on the next call
const uint16_t cval = getTimerCount() - 256 / (SERVO_TIMER_PRESCALER), // allow 256 cycles to ensure the next CV not missed
ival = (TC_COUNTER_START_VAL) - (uint16_t)usToTicks(REFRESH_INTERVAL); // at least REFRESH_INTERVAL has elapsed
tc->COUNT16.CC[tcChannel].reg = min(cval, ival);
}
if (tcChannel == 0) {
SYNC(tc->COUNT16.SYNCBUSY.bit.CC0);
// Clear the interrupt
tc->COUNT16.INTFLAG.reg = TC_INTFLAG_MC0;
tc->COUNT16.INTFLAG.reg = TC_INTFLAG_MC0; // Clear the interrupt
}
else {
SYNC(tc->COUNT16.SYNCBUSY.bit.CC1);
// Clear the interrupt
tc->COUNT16.INTFLAG.reg = TC_INTFLAG_MC1;
tc->COUNT16.INTFLAG.reg = TC_INTFLAG_MC1; // Clear the interrupt
}
}
void initISR(timer16_Sequence_t timer) {
void initISR(const timer16_Sequence_t timer) {
Tc * const tc = timer_config[SERVO_TC].pTc;
const uint8_t tcChannel = TIMER_TCCHANNEL(timer);
@@ -201,9 +194,9 @@ void initISR(timer16_Sequence_t timer) {
}
}
void finISR(timer16_Sequence_t timer) {
void finISR(const timer16_Sequence_t timer_index) {
Tc * const tc = timer_config[SERVO_TC].pTc;
const uint8_t tcChannel = TIMER_TCCHANNEL(timer);
const uint8_t tcChannel = TIMER_TCCHANNEL(timer_index);
// Disable the match channel interrupt request
tc->COUNT16.INTENCLR.reg = (tcChannel == 0) ? TC_INTENCLR_MC0 : TC_INTENCLR_MC1;

View File

@@ -60,6 +60,12 @@
#define MATCH_J_MIN_EILINE(P) TERN0(HAS_J_MIN, DEFER4(MATCH_EILINE)(P, J_MIN_PIN))
#define MATCH_K_MAX_EILINE(P) TERN0(HAS_K_MAX, DEFER4(MATCH_EILINE)(P, K_MAX_PIN))
#define MATCH_K_MIN_EILINE(P) TERN0(HAS_K_MIN, DEFER4(MATCH_EILINE)(P, K_MIN_PIN))
#define MATCH_U_MAX_EILINE(P) TERN0(HAS_U_MAX, DEFER4(MATCH_EILINE)(P, U_MAX_PIN))
#define MATCH_U_MIN_EILINE(P) TERN0(HAS_U_MIN, DEFER4(MATCH_EILINE)(P, U_MIN_PIN))
#define MATCH_V_MAX_EILINE(P) TERN0(HAS_V_MAX, DEFER4(MATCH_EILINE)(P, V_MAX_PIN))
#define MATCH_V_MIN_EILINE(P) TERN0(HAS_V_MIN, DEFER4(MATCH_EILINE)(P, V_MIN_PIN))
#define MATCH_W_MAX_EILINE(P) TERN0(HAS_W_MAX, DEFER4(MATCH_EILINE)(P, W_MAX_PIN))
#define MATCH_W_MIN_EILINE(P) TERN0(HAS_W_MIN, DEFER4(MATCH_EILINE)(P, W_MIN_PIN))
#define MATCH_Z2_MAX_EILINE(P) TERN0(HAS_Z2_MAX, DEFER4(MATCH_EILINE)(P, Z2_MAX_PIN))
#define MATCH_Z2_MIN_EILINE(P) TERN0(HAS_Z2_MIN, DEFER4(MATCH_EILINE)(P, Z2_MIN_PIN))
#define MATCH_Z3_MAX_EILINE(P) TERN0(HAS_Z3_MAX, DEFER4(MATCH_EILINE)(P, Z3_MAX_PIN))
@@ -75,6 +81,9 @@
&& !MATCH_I_MAX_EILINE(P) && !MATCH_I_MIN_EILINE(P) \
&& !MATCH_J_MAX_EILINE(P) && !MATCH_J_MIN_EILINE(P) \
&& !MATCH_K_MAX_EILINE(P) && !MATCH_K_MIN_EILINE(P) \
&& !MATCH_U_MAX_EILINE(P) && !MATCH_U_MIN_EILINE(P) \
&& !MATCH_V_MAX_EILINE(P) && !MATCH_V_MIN_EILINE(P) \
&& !MATCH_W_MAX_EILINE(P) && !MATCH_W_MIN_EILINE(P) \
&& !MATCH_Z2_MAX_EILINE(P) && !MATCH_Z2_MIN_EILINE(P) \
&& !MATCH_Z3_MAX_EILINE(P) && !MATCH_Z3_MIN_EILINE(P) \
&& !MATCH_Z4_MAX_EILINE(P) && !MATCH_Z4_MIN_EILINE(P) \
@@ -199,4 +208,40 @@ void setup_endstop_interrupts() {
#endif
attachInterrupt(K_MIN_PIN, endstop_ISR, CHANGE);
#endif
#if HAS_U_MAX
#if !AVAILABLE_EILINE(U_MAX_PIN)
#error "U_MAX_PIN has no EXTINT line available."
#endif
attachInterrupt(U_MAX_PIN, endstop_ISR, CHANGE);
#endif
#if HAS_U_MIN
#if !AVAILABLE_EILINE(U_MIN_PIN)
#error "U_MIN_PIN has no EXTINT line available."
#endif
attachInterrupt(U_MIN_PIN, endstop_ISR, CHANGE);
#endif
#if HAS_V_MAX
#if !AVAILABLE_EILINE(V_MAX_PIN)
#error "V_MAX_PIN has no EXTINT line available."
#endif
attachInterrupt(V_MAX_PIN, endstop_ISR, CHANGE);
#endif
#if HAS_V_MIN
#if !AVAILABLE_EILINE(V_MIN_PIN)
#error "V_MIN_PIN has no EXTINT line available."
#endif
attachInterrupt(V_MIN_PIN, endstop_ISR, CHANGE);
#endif
#if HAS_W_MAX
#if !AVAILABLE_EILINE(W_MAX_PIN)
#error "W_MAX_PIN has no EXTINT line available."
#endif
attachInterrupt(W_MAX_PIN, endstop_ISR, CHANGE);
#endif
#if HAS_W_MIN
#if !AVAILABLE_EILINE(W_MIN_PIN)
#error "W_MIN_PIN has no EXTINT line available."
#endif
attachInterrupt(W_MIN_PIN, endstop_ISR, CHANGE);
#endif
}

View File

@@ -52,4 +52,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
TERN_(HAS_U_MAX, _ATTACH(U_MAX_PIN));
TERN_(HAS_U_MIN, _ATTACH(U_MIN_PIN));
TERN_(HAS_V_MAX, _ATTACH(V_MAX_PIN));
TERN_(HAS_V_MIN, _ATTACH(V_MIN_PIN));
TERN_(HAS_W_MAX, _ATTACH(W_MAX_PIN));
TERN_(HAS_W_MIN, _ATTACH(W_MIN_PIN));
}

View File

@@ -33,157 +33,43 @@
#include <stdint.h>
#include <stdbool.h>
// use local drivers
#if defined(STM32F103xE) || defined(STM32F103xG)
#include <stm32f1xx.h>
#include <stm32f1xx_hal_rcc_ex.h>
#include <stm32f1xx_hal_sd.h>
#elif defined(STM32F4xx)
#include <stm32f4xx.h>
#include <stm32f4xx_hal_rcc.h>
#include <stm32f4xx_hal_dma.h>
#include <stm32f4xx_hal_gpio.h>
#include <stm32f4xx_hal_sd.h>
#elif defined(STM32F7xx)
#include <stm32f7xx.h>
#include <stm32f7xx_hal_rcc.h>
#include <stm32f7xx_hal_dma.h>
#include <stm32f7xx_hal_gpio.h>
#include <stm32f7xx_hal_sd.h>
#elif defined(STM32H7xx)
#include <stm32h7xx.h>
#define SDIO_FOR_STM32H7
#include <stm32h7xx_hal_rcc.h>
#include <stm32h7xx_hal_dma.h>
#include <stm32h7xx_hal_gpio.h>
#include <stm32h7xx_hal_sd.h>
#else
#error "SDIO only supported with STM32F103xE, STM32F103xG, STM32F4xx, STM32F7xx, or STM32H7xx."
#error "SDIO is only supported with STM32F103xE, STM32F103xG, STM32F4xx, STM32F7xx, and STM32H7xx."
#endif
// SDIO Max Clock (naming from STM Manual, don't change)
#define SDIOCLK 48000000
// Target Clock, configurable. Default is 18MHz, from STM32F1
#ifndef SDIO_CLOCK
#define SDIO_CLOCK 18000000 // 18 MHz
#endif
#define SD_TIMEOUT 1000 // ms
// SDIO Max Clock (naming from STM Manual, don't change)
#define SDIOCLK 48000000
#if defined(STM32F1xx)
DMA_HandleTypeDef hdma_sdio;
extern "C" void DMA2_Channel4_5_IRQHandler(void) {
HAL_DMA_IRQHandler(&hdma_sdio);
}
#elif defined(STM32F4xx)
DMA_HandleTypeDef hdma_sdio_rx;
DMA_HandleTypeDef hdma_sdio_tx;
extern "C" void DMA2_Stream3_IRQHandler(void) {
HAL_DMA_IRQHandler(&hdma_sdio_rx);
}
extern "C" void DMA2_Stream6_IRQHandler(void) {
HAL_DMA_IRQHandler(&hdma_sdio_tx);
}
#elif defined(STM32H7xx)
#define __HAL_RCC_SDIO_FORCE_RESET __HAL_RCC_SDMMC1_FORCE_RESET
#define __HAL_RCC_SDIO_RELEASE_RESET __HAL_RCC_SDMMC1_RELEASE_RESET
#define __HAL_RCC_SDIO_CLK_ENABLE __HAL_RCC_SDMMC1_CLK_ENABLE
#define SDIO SDMMC1
#define SDIO_IRQn SDMMC1_IRQn
#define SDIO_IRQHandler SDMMC1_IRQHandler
#define SDIO_CLOCK_EDGE_RISING SDMMC_CLOCK_EDGE_RISING
#define SDIO_CLOCK_POWER_SAVE_DISABLE SDMMC_CLOCK_POWER_SAVE_DISABLE
#define SDIO_BUS_WIDE_1B SDMMC_BUS_WIDE_1B
#define SDIO_BUS_WIDE_4B SDMMC_BUS_WIDE_4B
#define SDIO_HARDWARE_FLOW_CONTROL_DISABLE SDMMC_HARDWARE_FLOW_CONTROL_DISABLE
#endif
uint8_t waitingRxCplt = 0;
uint8_t waitingTxCplt = 0;
SD_HandleTypeDef hsd;
extern "C" void SDIO_IRQHandler(void) {
HAL_SD_IRQHandler(&hsd);
}
void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsdio) {
waitingTxCplt = 0;
}
void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsdio) {
waitingRxCplt = 0;
}
void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
pinmap_pinout(PC_12, PinMap_SD);
pinmap_pinout(PD_2, PinMap_SD);
pinmap_pinout(PC_8, PinMap_SD);
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // define D1-D3 only if have a four bit wide SDIO bus
// D1-D3
pinmap_pinout(PC_9, PinMap_SD);
pinmap_pinout(PC_10, PinMap_SD);
pinmap_pinout(PC_11, PinMap_SD);
#endif
__HAL_RCC_SDIO_CLK_ENABLE();
HAL_NVIC_EnableIRQ(SDIO_IRQn);
// DMA Config
#if defined(STM32F1xx)
__HAL_RCC_DMA2_CLK_ENABLE();
HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn);
hdma_sdio.Instance = DMA2_Channel4;
hdma_sdio.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sdio.Init.MemInc = DMA_MINC_ENABLE;
hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_sdio.Init.Mode = DMA_NORMAL;
hdma_sdio.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_sdio);
__HAL_LINKDMA(hsd, hdmarx ,hdma_sdio);
__HAL_LINKDMA(hsd, hdmatx, hdma_sdio);
#elif defined(STM32F4xx)
__HAL_RCC_DMA2_CLK_ENABLE();
HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn);
hdma_sdio_rx.Instance = DMA2_Stream3;
hdma_sdio_rx.Init.Channel = DMA_CHANNEL_4;
hdma_sdio_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_sdio_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sdio_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_sdio_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_sdio_rx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_sdio_rx.Init.Mode = DMA_PFCTRL;
hdma_sdio_rx.Init.Priority = DMA_PRIORITY_LOW;
hdma_sdio_rx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_sdio_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_sdio_rx.Init.MemBurst = DMA_MBURST_INC4;
hdma_sdio_rx.Init.PeriphBurst = DMA_PBURST_INC4;
HAL_DMA_Init(&hdma_sdio_rx);
__HAL_LINKDMA(hsd,hdmarx,hdma_sdio_rx);
hdma_sdio_tx.Instance = DMA2_Stream6;
hdma_sdio_tx.Init.Channel = DMA_CHANNEL_4;
hdma_sdio_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_sdio_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sdio_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_sdio_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_sdio_tx.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_sdio_tx.Init.Mode = DMA_PFCTRL;
hdma_sdio_tx.Init.Priority = DMA_PRIORITY_LOW;
hdma_sdio_tx.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_sdio_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_sdio_tx.Init.MemBurst = DMA_MBURST_INC4;
hdma_sdio_tx.Init.PeriphBurst = DMA_PBURST_INC4;
HAL_DMA_Init(&hdma_sdio_tx);
__HAL_LINKDMA(hsd,hdmatx,hdma_sdio_tx);
#endif
}
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
#if !defined(STM32F1xx)
__HAL_RCC_SDIO_FORCE_RESET();
delay(10);
__HAL_RCC_SDIO_RELEASE_RESET();
delay(10);
#endif
}
SD_HandleTypeDef hsd; // SDIO structure
static uint32_t clock_to_divider(uint32_t clk) {
#if defined(STM32H7xx)
#ifdef SDIO_FOR_STM32H7
// SDMMC_CK frequency = sdmmc_ker_ck / [2 * CLKDIV].
uint32_t sdmmc_clk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SDMMC);
uint32_t sdmmc_clk = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SDMMC);
return sdmmc_clk / (2U * SDIO_CLOCK) + (sdmmc_clk % (2U * SDIO_CLOCK) != 0);
#else
// limit the SDIO master clock to 8/3 of PCLK2. See STM32 Manuals
@@ -198,62 +84,359 @@ static uint32_t clock_to_divider(uint32_t clk) {
#endif
}
bool SDIO_Init() {
HAL_StatusTypeDef sd_state = HAL_OK;
if (hsd.Instance == SDIO)
HAL_SD_DeInit(&hsd);
/* HAL SD initialization */
hsd.Instance = SDIO;
hsd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
hsd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE;
hsd.Init.BusWide = SDIO_BUS_WIDE_1B;
hsd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK);
sd_state = HAL_SD_Init(&hsd);
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3)
if (sd_state == HAL_OK) {
sd_state = HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B);
}
// Start the SDIO clock
void HAL_SD_MspInit(SD_HandleTypeDef *hsd) {
UNUSED(hsd);
#ifdef SDIO_FOR_STM32H7
pinmap_pinout(PC_12, PinMap_SD);
pinmap_pinout(PD_2, PinMap_SD);
pinmap_pinout(PC_8, PinMap_SD);
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // Define D1-D3 only for 4-bit wide SDIO bus
pinmap_pinout(PC_9, PinMap_SD);
pinmap_pinout(PC_10, PinMap_SD);
pinmap_pinout(PC_11, PinMap_SD);
#endif
__HAL_RCC_SDMMC1_CLK_ENABLE();
HAL_NVIC_EnableIRQ(SDMMC1_IRQn);
#else
__HAL_RCC_SDIO_CLK_ENABLE();
#endif
return (sd_state == HAL_OK) ? true : false;
}
bool SDIO_ReadBlock(uint32_t block, uint8_t *dst) {
uint32_t timeout = HAL_GetTick() + SD_TIMEOUT;
#ifdef SDIO_FOR_STM32H7
while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) {
if (HAL_GetTick() >= timeout) return false;
#define SD_TIMEOUT 1000 // ms
extern "C" void SDMMC1_IRQHandler(void) { HAL_SD_IRQHandler(&hsd); }
uint8_t waitingRxCplt = 0, waitingTxCplt = 0;
void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsdio) { waitingTxCplt = 0; }
void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsdio) { waitingRxCplt = 0; }
void HAL_SD_MspDeInit(SD_HandleTypeDef *hsd) {
__HAL_RCC_SDMMC1_FORCE_RESET(); delay(10);
__HAL_RCC_SDMMC1_RELEASE_RESET(); delay(10);
}
waitingRxCplt = 1;
if (HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t *)dst, block, 1) != HAL_OK)
bool SDIO_Init() {
HAL_StatusTypeDef sd_state = HAL_OK;
if (hsd.Instance == SDMMC1) HAL_SD_DeInit(&hsd);
// HAL SD initialization
hsd.Instance = SDMMC1;
hsd.Init.ClockEdge = SDMMC_CLOCK_EDGE_RISING;
hsd.Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_DISABLE;
hsd.Init.BusWide = SDMMC_BUS_WIDE_1B;
hsd.Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_DISABLE;
hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK);
sd_state = HAL_SD_Init(&hsd);
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3)
if (sd_state == HAL_OK)
sd_state = HAL_SD_ConfigWideBusOperation(&hsd, SDMMC_BUS_WIDE_4B);
#endif
return (sd_state == HAL_OK);
}
#else // !SDIO_FOR_STM32H7
#define SD_TIMEOUT 500 // ms
// SDIO retries, configurable. Default is 3, from STM32F1
#ifndef SDIO_READ_RETRIES
#define SDIO_READ_RETRIES 3
#endif
// F4 supports one DMA for RX and another for TX, but Marlin will never
// do read and write at same time, so we use the same DMA for both.
DMA_HandleTypeDef hdma_sdio;
#ifdef STM32F1xx
#define DMA_IRQ_HANDLER DMA2_Channel4_5_IRQHandler
#elif defined(STM32F4xx)
#define DMA_IRQ_HANDLER DMA2_Stream3_IRQHandler
#else
#error "Unknown STM32 architecture."
#endif
extern "C" void SDIO_IRQHandler(void) { HAL_SD_IRQHandler(&hsd); }
extern "C" void DMA_IRQ_HANDLER(void) { HAL_DMA_IRQHandler(&hdma_sdio); }
/*
SDIO_INIT_CLK_DIV is 118
SDIO clock frequency is 48MHz / (TRANSFER_CLOCK_DIV + 2)
SDIO init clock frequency should not exceed 400kHz = 48MHz / (118 + 2)
Default TRANSFER_CLOCK_DIV is 2 (118 / 40)
Default SDIO clock frequency is 48MHz / (2 + 2) = 12 MHz
This might be too fast for stable SDIO operations
MKS Robin SDIO seems stable with BusWide 1bit and ClockDiv 8 (i.e., 4.8MHz SDIO clock frequency)
More testing is required as there are clearly some 4bit init problems.
*/
void go_to_transfer_speed() {
/* Default SDIO peripheral configuration for SD card initialization */
hsd.Init.ClockEdge = hsd.Init.ClockEdge;
hsd.Init.ClockBypass = hsd.Init.ClockBypass;
hsd.Init.ClockPowerSave = hsd.Init.ClockPowerSave;
hsd.Init.BusWide = hsd.Init.BusWide;
hsd.Init.HardwareFlowControl = hsd.Init.HardwareFlowControl;
hsd.Init.ClockDiv = clock_to_divider(SDIO_CLOCK);
/* Initialize SDIO peripheral interface with default configuration */
SDIO_Init(hsd.Instance, hsd.Init);
}
void SD_LowLevel_Init() {
uint32_t tempreg;
// Enable GPIO clocks
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = 1; // GPIO_NOPULL
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
#if DISABLED(STM32F1xx)
GPIO_InitStruct.Alternate = GPIO_AF12_SDIO;
#endif
GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_12; // D0 & SCK
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // define D1-D3 only if have a four bit wide SDIO bus
GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11; // D1-D3
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
#endif
// Configure PD.02 CMD line
GPIO_InitStruct.Pin = GPIO_PIN_2;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
// Setup DMA
#ifdef STM32F1xx
hdma_sdio.Init.Mode = DMA_NORMAL;
hdma_sdio.Instance = DMA2_Channel4;
HAL_NVIC_EnableIRQ(DMA2_Channel4_5_IRQn);
#elif defined(STM32F4xx)
hdma_sdio.Init.Mode = DMA_PFCTRL;
hdma_sdio.Instance = DMA2_Stream3;
hdma_sdio.Init.Channel = DMA_CHANNEL_4;
hdma_sdio.Init.FIFOMode = DMA_FIFOMODE_ENABLE;
hdma_sdio.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
hdma_sdio.Init.MemBurst = DMA_MBURST_INC4;
hdma_sdio.Init.PeriphBurst = DMA_PBURST_INC4;
HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
#endif
HAL_NVIC_EnableIRQ(SDIO_IRQn);
hdma_sdio.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_sdio.Init.MemInc = DMA_MINC_ENABLE;
hdma_sdio.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
hdma_sdio.Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
hdma_sdio.Init.Priority = DMA_PRIORITY_LOW;
__HAL_LINKDMA(&hsd, hdmarx, hdma_sdio);
__HAL_LINKDMA(&hsd, hdmatx, hdma_sdio);
#ifdef STM32F1xx
__HAL_RCC_SDIO_CLK_ENABLE();
__HAL_RCC_DMA2_CLK_ENABLE();
#else
__HAL_RCC_SDIO_FORCE_RESET(); delay(2);
__HAL_RCC_SDIO_RELEASE_RESET(); delay(2);
__HAL_RCC_SDIO_CLK_ENABLE();
__HAL_RCC_DMA2_FORCE_RESET(); delay(2);
__HAL_RCC_DMA2_RELEASE_RESET(); delay(2);
__HAL_RCC_DMA2_CLK_ENABLE();
#endif
// Initialize the SDIO (with initial <400Khz Clock)
tempreg = 0 // Reset value
| SDIO_CLKCR_CLKEN // Clock enabled
| SDIO_INIT_CLK_DIV; // Clock Divider. Clock = 48000 / (118 + 2) = 400Khz
// Keep the rest at 0 => HW_Flow Disabled, Rising Clock Edge, Disable CLK ByPass, Bus Width = 0, Power save Disable
SDIO->CLKCR = tempreg;
// Power up the SDIO
SDIO_PowerState_ON(SDIO);
hsd.Instance = SDIO;
}
bool SDIO_Init() {
uint8_t retryCnt = SDIO_READ_RETRIES;
bool status;
hsd.Instance = SDIO;
hsd.State = HAL_SD_STATE_RESET;
SD_LowLevel_Init();
uint8_t retry_Cnt = retryCnt;
for (;;) {
hal.watchdog_refresh();
status = (bool) HAL_SD_Init(&hsd);
if (!status) break;
if (!--retry_Cnt) return false; // return failing status if retries are exhausted
}
go_to_transfer_speed();
#if PINS_EXIST(SDIO_D1, SDIO_D2, SDIO_D3) // go to 4 bit wide mode if pins are defined
retry_Cnt = retryCnt;
for (;;) {
hal.watchdog_refresh();
if (!HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B)) break; // some cards are only 1 bit wide so a pass here is not required
if (!--retry_Cnt) break;
}
if (!retry_Cnt) { // wide bus failed, go back to one bit wide mode
hsd.State = (HAL_SD_StateTypeDef) 0; // HAL_SD_STATE_RESET
SD_LowLevel_Init();
retry_Cnt = retryCnt;
for (;;) {
hal.watchdog_refresh();
status = (bool) HAL_SD_Init(&hsd);
if (!status) break;
if (!--retry_Cnt) return false; // return failing status if retries are exhausted
}
go_to_transfer_speed();
}
#endif
return true;
}
/**
* @brief Read or Write a block
* @details Read or Write a block with SDIO
*
* @param block The block index
* @param src The data buffer source for a write
* @param dst The data buffer destination for a read
*
* @return true on success
*/
static bool SDIO_ReadWriteBlock_DMA(uint32_t block, const uint8_t *src, uint8_t *dst) {
if (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) return false;
hal.watchdog_refresh();
HAL_StatusTypeDef ret;
if (src) {
hdma_sdio.Init.Direction = DMA_MEMORY_TO_PERIPH;
HAL_DMA_Init(&hdma_sdio);
ret = HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t*)src, block, 1);
}
else {
hdma_sdio.Init.Direction = DMA_PERIPH_TO_MEMORY;
HAL_DMA_Init(&hdma_sdio);
ret = HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t*)dst, block, 1);
}
if (ret != HAL_OK) {
HAL_DMA_Abort_IT(&hdma_sdio);
HAL_DMA_DeInit(&hdma_sdio);
return false;
}
millis_t timeout = millis() + SD_TIMEOUT;
// Wait the transfer
while (hsd.State != HAL_SD_STATE_READY) {
if (ELAPSED(millis(), timeout)) {
HAL_DMA_Abort_IT(&hdma_sdio);
HAL_DMA_DeInit(&hdma_sdio);
return false;
}
}
while (__HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TC_FLAG_INDEX(&hdma_sdio)) != 0
|| __HAL_DMA_GET_FLAG(&hdma_sdio, __HAL_DMA_GET_TE_FLAG_INDEX(&hdma_sdio)) != 0) { /* nada */ }
HAL_DMA_Abort_IT(&hdma_sdio);
HAL_DMA_DeInit(&hdma_sdio);
timeout = millis() + SD_TIMEOUT;
while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER) if (ELAPSED(millis(), timeout)) return false;
return true;
}
#endif // !SDIO_FOR_STM32H7
/**
* @brief Read a block
* @details Read a block from media with SDIO
*
* @param block The block index
* @param src The block buffer
*
* @return true on success
*/
bool SDIO_ReadBlock(uint32_t block, uint8_t *dst) {
#ifdef SDIO_FOR_STM32H7
uint32_t timeout = HAL_GetTick() + SD_TIMEOUT;
while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER)
if (HAL_GetTick() >= timeout) return false;
waitingRxCplt = 1;
if (HAL_SD_ReadBlocks_DMA(&hsd, (uint8_t*)dst, block, 1) != HAL_OK)
return false;
timeout = HAL_GetTick() + SD_TIMEOUT;
while (waitingRxCplt)
if (HAL_GetTick() >= timeout) return false;
return true;
#else
uint8_t retries = SDIO_READ_RETRIES;
while (retries--) if (SDIO_ReadWriteBlock_DMA(block, nullptr, dst)) return true;
return false;
timeout = HAL_GetTick() + SD_TIMEOUT;
while (waitingRxCplt)
if (HAL_GetTick() >= timeout) return false;
return true;
#endif
}
/**
* @brief Write a block
* @details Write a block to media with SDIO
*
* @param block The block index
* @param src The block data
*
* @return true on success
*/
bool SDIO_WriteBlock(uint32_t block, const uint8_t *src) {
uint32_t timeout = HAL_GetTick() + SD_TIMEOUT;
#ifdef SDIO_FOR_STM32H7
while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER)
if (HAL_GetTick() >= timeout) return false;
uint32_t timeout = HAL_GetTick() + SD_TIMEOUT;
waitingTxCplt = 1;
if (HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t *)src, block, 1) != HAL_OK)
while (HAL_SD_GetCardState(&hsd) != HAL_SD_CARD_TRANSFER)
if (HAL_GetTick() >= timeout) return false;
waitingTxCplt = 1;
if (HAL_SD_WriteBlocks_DMA(&hsd, (uint8_t*)src, block, 1) != HAL_OK)
return false;
timeout = HAL_GetTick() + SD_TIMEOUT;
while (waitingTxCplt)
if (HAL_GetTick() >= timeout) return false;
return true;
#else
uint8_t retries = SDIO_READ_RETRIES;
while (retries--) if (SDIO_ReadWriteBlock_DMA(block, src, nullptr)) return true;
return false;
timeout = HAL_GetTick() + SD_TIMEOUT;
while (waitingTxCplt)
if (HAL_GetTick() >= timeout) return false;
return true;
#endif
}
bool SDIO_IsReady() {

View File

@@ -159,24 +159,28 @@ void GT911::read_reg(uint16_t reg, uint8_t reg_len, uint8_t* r_data, uint8_t r_l
void GT911::Init() {
OUT_WRITE(GT911_RST_PIN, LOW);
OUT_WRITE(GT911_INT_PIN, LOW);
delay(20);
delay(11);
WRITE(GT911_INT_PIN, HIGH);
delayMicroseconds(110);
WRITE(GT911_RST_PIN, HIGH);
delay(6);
WRITE(GT911_INT_PIN, LOW);
delay(55);
SET_INPUT(GT911_INT_PIN);
sw_iic.init();
uint8_t clear_reg = 0x0000;
write_reg(0x814E, 2, &clear_reg, 2); // Reset to 0 for start
uint8_t clear_reg = 0x00;
write_reg(0x814E, 2, &clear_reg, 1); // Reset to 0 for start
}
bool GT911::getFirstTouchPoint(int16_t *x, int16_t *y) {
read_reg(0x814E, 2, &reg.REG.status, 1);
if (reg.REG.status & 0x80) {
if (reg.REG.status >= 0x80 && reg.REG.status <= 0x85) {
read_reg(0x8150, 2, reg.map + 2, 38);
uint8_t clear_reg = 0x00;
write_reg(0x814E, 2, &clear_reg, 1); // Reset to 0 for start
read_reg(0x8150, 2, reg.map + 2, 8 * (reg.REG.status & 0x0F));
// First touch point
*x = ((reg.REG.point[0].xh & 0x0F) << 8) | reg.REG.point[0].xl;
*y = ((reg.REG.point[0].yh & 0x0F) << 8) | reg.REG.point[0].yl;

View File

@@ -23,7 +23,7 @@
#include "../../../inc/MarlinConfig.h"
#define GT911_SLAVE_ADDRESS 0xBA
#define GT911_SLAVE_ADDRESS 0x28
#if !PIN_EXISTS(GT911_RST)
#error "GT911_RST_PIN is not defined."

View File

@@ -372,9 +372,9 @@ void TFT_LTDC::TransmitDMA(uint32_t MemoryIncrease, uint16_t *Data, uint16_t Cou
if (MemoryIncrease == DMA_PINC_ENABLE) {
DrawImage(x_min, y_cur, x_min + width, y_cur + height, Data);
Data += width * height;
} else {
DrawRect(x_min, y_cur, x_min + width, y_cur + height, *Data);
}
else
DrawRect(x_min, y_cur, x_min + width, y_cur + height, *Data);
y_cur += height;
}

View File

@@ -147,17 +147,17 @@ void libServo::move(const int32_t value) {
uint16_t SR = timer_get_status(tdev);
if (SR & TIMER_SR_CC1IF) { // channel 1 off
#ifdef SERVO0_PWM_OD
OUT_WRITE_OD(SERVO0_PIN, 1); // off
OUT_WRITE_OD(SERVO0_PIN, HIGH); // off
#else
OUT_WRITE(SERVO0_PIN, 0);
OUT_WRITE(SERVO0_PIN, LOW);
#endif
timer_reset_status_bit(tdev, TIMER_SR_CC1IF_BIT);
}
if (SR & TIMER_SR_CC2IF) { // channel 2 resume
#ifdef SERVO0_PWM_OD
OUT_WRITE_OD(SERVO0_PIN, 0); // on
OUT_WRITE_OD(SERVO0_PIN, LOW); // on
#else
OUT_WRITE(SERVO0_PIN, 1);
OUT_WRITE(SERVO0_PIN, HIGH);
#endif
timer_reset_status_bit(tdev, TIMER_SR_CC2IF_BIT);
}
@@ -167,9 +167,9 @@ void libServo::move(const int32_t value) {
timer_dev *tdev = HAL_get_timer_dev(MF_TIMER_SERVO0);
if (!tdev) return false;
#ifdef SERVO0_PWM_OD
OUT_WRITE_OD(inPin, 1);
OUT_WRITE_OD(inPin, HIGH);
#else
OUT_WRITE(inPin, 0);
OUT_WRITE(inPin, LOW);
#endif
timer_pause(tdev);
@@ -200,9 +200,9 @@ void libServo::move(const int32_t value) {
timer_disable_irq(tdev, 1);
timer_disable_irq(tdev, 2);
#ifdef SERVO0_PWM_OD
OUT_WRITE_OD(pin, 1); // off
OUT_WRITE_OD(pin, HIGH); // off
#else
OUT_WRITE(pin, 0);
OUT_WRITE(pin, LOW);
#endif
}
}

View File

@@ -77,4 +77,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
TERN_(HAS_U_MAX, _ATTACH(U_MAX_PIN));
TERN_(HAS_U_MIN, _ATTACH(U_MIN_PIN));
TERN_(HAS_V_MAX, _ATTACH(V_MAX_PIN));
TERN_(HAS_V_MIN, _ATTACH(V_MIN_PIN));
TERN_(HAS_W_MAX, _ATTACH(W_MAX_PIN));
TERN_(HAS_W_MIN, _ATTACH(W_MIN_PIN));
}

View File

@@ -70,4 +70,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
TERN_(HAS_U_MAX, _ATTACH(U_MAX_PIN));
TERN_(HAS_U_MIN, _ATTACH(U_MIN_PIN));
TERN_(HAS_V_MAX, _ATTACH(V_MAX_PIN));
TERN_(HAS_V_MIN, _ATTACH(V_MIN_PIN));
TERN_(HAS_W_MAX, _ATTACH(W_MAX_PIN));
TERN_(HAS_W_MIN, _ATTACH(W_MIN_PIN));
}

View File

@@ -69,4 +69,10 @@ void setup_endstop_interrupts() {
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
TERN_(HAS_U_MAX, _ATTACH(U_MAX_PIN));
TERN_(HAS_U_MIN, _ATTACH(U_MIN_PIN));
TERN_(HAS_V_MAX, _ATTACH(V_MAX_PIN));
TERN_(HAS_V_MIN, _ATTACH(V_MIN_PIN));
TERN_(HAS_W_MAX, _ATTACH(W_MAX_PIN));
TERN_(HAS_W_MIN, _ATTACH(W_MIN_PIN));
}

View File

@@ -1,139 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Software L6470 SPI functions originally from Arduino Sd2Card Library
* Copyright (c) 2009 by William Greiman
*/
#include "../../inc/MarlinConfig.h"
#if HAS_L64XX
#include "Delay.h"
#include "../../core/serial.h"
#include "../../libs/L64XX/L64XX_Marlin.h"
// Make sure GCC optimizes this file.
// Note that this line triggers a bug in GCC which is fixed by casting.
// See the note below.
#pragma GCC optimize (3)
// run at ~4Mhz
inline uint8_t L6470_SpiTransfer_Mode_0(uint8_t b) { // using Mode 0
for (uint8_t bits = 8; bits--;) {
WRITE(L6470_CHAIN_MOSI_PIN, b & 0x80);
b <<= 1; // little setup time
WRITE(L6470_CHAIN_SCK_PIN, HIGH);
DELAY_NS(125); // 10 cycles @ 84mhz
b |= (READ(L6470_CHAIN_MISO_PIN) != 0);
WRITE(L6470_CHAIN_SCK_PIN, LOW);
DELAY_NS(125); // 10 cycles @ 84mhz
}
return b;
}
inline uint8_t L6470_SpiTransfer_Mode_3(uint8_t b) { // using Mode 3
for (uint8_t bits = 8; bits--;) {
WRITE(L6470_CHAIN_SCK_PIN, LOW);
WRITE(L6470_CHAIN_MOSI_PIN, b & 0x80);
DELAY_NS(125); // 10 cycles @ 84mhz
WRITE(L6470_CHAIN_SCK_PIN, HIGH);
DELAY_NS(125); // Need more delay for fast CPUs
b <<= 1; // little setup time
b |= (READ(L6470_CHAIN_MISO_PIN) != 0);
}
DELAY_NS(125); // 10 cycles @ 84mhz
return b;
}
/**
* L64XX methods for SPI init and transfer
*/
void L64XX_Marlin::spi_init() {
OUT_WRITE(L6470_CHAIN_SS_PIN, HIGH);
OUT_WRITE(L6470_CHAIN_SCK_PIN, HIGH);
OUT_WRITE(L6470_CHAIN_MOSI_PIN, HIGH);
SET_INPUT(L6470_CHAIN_MISO_PIN);
#if PIN_EXISTS(L6470_BUSY)
SET_INPUT(L6470_BUSY_PIN);
#endif
OUT_WRITE(L6470_CHAIN_MOSI_PIN, HIGH);
}
uint8_t L64XX_Marlin::transfer_single(uint8_t data, int16_t ss_pin) {
// First device in chain has data sent last
extDigitalWrite(ss_pin, LOW);
hal.isr_off(); // Disable interrupts during SPI transfer (can't allow partial command to chips)
const uint8_t data_out = L6470_SpiTransfer_Mode_3(data);
hal.isr_on(); // Enable interrupts
extDigitalWrite(ss_pin, HIGH);
return data_out;
}
uint8_t L64XX_Marlin::transfer_chain(uint8_t data, int16_t ss_pin, uint8_t chain_position) {
uint8_t data_out = 0;
// first device in chain has data sent last
extDigitalWrite(ss_pin, LOW);
for (uint8_t i = L64XX::chain[0]; !L64xxManager.spi_abort && i >= 1; i--) { // Send data unless aborted
hal.isr_off(); // Disable interrupts during SPI transfer (can't allow partial command to chips)
const uint8_t temp = L6470_SpiTransfer_Mode_3(uint8_t(i == chain_position ? data : dSPIN_NOP));
hal.isr_on(); // Enable interrupts
if (i == chain_position) data_out = temp;
}
extDigitalWrite(ss_pin, HIGH);
return data_out;
}
/**
* Platform-supplied L6470 buffer transfer method
*/
void L64XX_Marlin::transfer(uint8_t L6470_buf[], const uint8_t length) {
// First device in chain has its data sent last
if (spi_active) { // Interrupted SPI transfer so need to
WRITE(L6470_CHAIN_SS_PIN, HIGH); // guarantee min high of 650ns
DELAY_US(1);
}
WRITE(L6470_CHAIN_SS_PIN, LOW);
for (uint8_t i = length; i >= 1; i--)
L6470_SpiTransfer_Mode_3(uint8_t(L6470_buf[i]));
WRITE(L6470_CHAIN_SS_PIN, HIGH);
}
#pragma GCC reset_options
#endif // HAS_L64XX

View File

@@ -135,11 +135,11 @@ static UnwResult UnwTabExecuteInstructions(const UnwindCallbacks *cb, UnwTabStat
while ((instruction = UnwTabGetNextInstruction(cb, ucb)) != -1) {
if ((instruction & 0xC0) == 0x00) { // ARM_EXIDX_CMD_DATA_POP
/* vsp = vsp + (xxxxxx << 2) + 4 */
/* vsp += (xxxxxx << 2) + 4 */
ucb->vrs[13] += ((instruction & 0x3F) << 2) + 4;
}
else if ((instruction & 0xC0) == 0x40) { // ARM_EXIDX_CMD_DATA_PUSH
/* vsp = vsp - (xxxxxx << 2) - 4 */
/* vsp -= (xxxxxx << 2) - 4 */
ucb->vrs[13] -= ((instruction & 0x3F) << 2) - 4;
}
else if ((instruction & 0xF0) == 0x80) {

View File

@@ -65,7 +65,7 @@ uint8_t ServoCount = 0; // the total number of attached
/************ static functions common to all instances ***********************/
static boolean isTimerActive(timer16_Sequence_t timer) {
static bool anyTimerChannelActive(const timer16_Sequence_t timer) {
// returns true if any servo is active on this timer
LOOP_L_N(channel, SERVOS_PER_TIMER) {
if (SERVO(timer, channel).Pin.isActive)
@@ -101,17 +101,18 @@ int8_t Servo::attach(const int inPin, const int inMin, const int inMax) {
max = (MAX_PULSE_WIDTH - inMax) / 4;
// initialize the timer if it has not already been initialized
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (!isTimerActive(timer)) initISR(timer);
servo_info[servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
const timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (!anyTimerChannelActive(timer)) initISR(timer);
servo_info[servoIndex].Pin.isActive = true; // this must be set after the check for anyTimerChannelActive
return servoIndex;
}
void Servo::detach() {
servo_info[servoIndex].Pin.isActive = false;
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (!isTimerActive(timer)) finISR(timer);
const timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (!anyTimerChannelActive(timer)) finISR(timer);
//pinMode(servo_info[servoIndex].Pin.nbr, INPUT); // set servo pin to input
}
void Servo::write(int value) {

View File

@@ -70,10 +70,10 @@
#define ticksToUs(_ticks) (unsigned(_ticks) * (SERVO_TIMER_PRESCALER) / clockCyclesPerMicrosecond())
// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / (SERVOS_PER_TIMER))) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % (SERVOS_PER_TIMER)) // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*(SERVOS_PER_TIMER)) + _channel) // macro to access servo index by timer and channel
#define SERVO(_timer,_channel) (servo_info[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
#define SERVO_INDEX_TO_TIMER(_servo_nbr) timer16_Sequence_t(_servo_nbr / (SERVOS_PER_TIMER)) // the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % (SERVOS_PER_TIMER)) // the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*(SERVOS_PER_TIMER)) + _channel) // servo index by timer and channel
#define SERVO(_timer,_channel) servo_info[SERVO_INDEX(_timer,_channel)] // servo class by timer and channel
// Types
@@ -94,5 +94,5 @@ extern ServoInfo_t servo_info[MAX_SERVOS];
// Public functions
extern void initISR(timer16_Sequence_t timer);
extern void finISR(timer16_Sequence_t timer);
void initISR(const timer16_Sequence_t timer_index);
void finISR(const timer16_Sequence_t timer_index);

View File

@@ -39,17 +39,13 @@
#endif
#include <math.h>
#include "core/utility.h"
#include "module/endstops.h"
#include "module/motion.h"
#include "module/planner.h"
#include "module/endstops.h"
#include "module/temperature.h"
#include "module/settings.h"
#include "module/printcounter.h" // PrintCounter or Stopwatch
#include "module/settings.h"
#include "module/stepper.h"
#include "module/stepper/indirection.h"
#include "module/temperature.h"
#include "gcode/gcode.h"
#include "gcode/parser.h"
@@ -125,6 +121,10 @@
#include "feature/bltouch.h"
#endif
#if ENABLED(BD_SENSOR)
#include "feature/bedlevel/bdl/bdl.h"
#endif
#if ENABLED(POLL_JOG)
#include "feature/joystick.h"
#endif
@@ -228,10 +228,6 @@
#include "feature/mmu/mmu2.h"
#endif
#if HAS_L64XX
#include "libs/L64XX/L64XX_Marlin.h"
#endif
#if ENABLED(PASSWORD_FEATURE)
#include "feature/password/password.h"
#endif
@@ -252,6 +248,10 @@
#include "feature/easythreed_ui.h"
#endif
#if ENABLED(MARLIN_TEST_BUILD)
#include "tests/marlin_tests.h"
#endif
PGMSTR(M112_KILL_STR, "M112 Shutdown");
MarlinState marlin_state = MF_INITIALIZING;
@@ -434,7 +434,7 @@ inline void manage_inactivity(const bool no_stepper_sleep=false) {
if (!has_blocks && !do_reset_timeout && gcode.stepper_inactive_timeout()) {
if (!already_shutdown_steppers) {
already_shutdown_steppers = true; // L6470 SPI will consume 99% of free time without this
already_shutdown_steppers = true;
// Individual axes will be disabled if configured
TERN_(DISABLE_INACTIVE_X, stepper.disable_axis(X_AXIS));
@@ -443,6 +443,9 @@ inline void manage_inactivity(const bool no_stepper_sleep=false) {
TERN_(DISABLE_INACTIVE_I, stepper.disable_axis(I_AXIS));
TERN_(DISABLE_INACTIVE_J, stepper.disable_axis(J_AXIS));
TERN_(DISABLE_INACTIVE_K, stepper.disable_axis(K_AXIS));
TERN_(DISABLE_INACTIVE_U, stepper.disable_axis(U_AXIS));
TERN_(DISABLE_INACTIVE_V, stepper.disable_axis(V_AXIS));
TERN_(DISABLE_INACTIVE_W, stepper.disable_axis(W_AXIS));
TERN_(DISABLE_INACTIVE_E, stepper.disable_e_steppers());
TERN_(AUTO_BED_LEVELING_UBL, bedlevel.steppers_were_disabled());
@@ -730,8 +733,6 @@ inline void manage_inactivity(const bool no_stepper_sleep=false) {
TERN_(MONITOR_DRIVER_STATUS, monitor_tmc_drivers());
TERN_(MONITOR_L6470_DRIVER_STATUS, L64xxManager.monitor_driver());
// Limit check_axes_activity frequency to 10Hz
static millis_t next_check_axes_ms = 0;
if (ELAPSED(ms, next_check_axes_ms)) {
@@ -773,16 +774,23 @@ inline void manage_inactivity(const bool no_stepper_sleep=false) {
* - Handle Joystick jogging
*/
void idle(bool no_stepper_sleep/*=false*/) {
#ifdef MAX7219_DEBUG_PROFILE
CodeProfiler idle_profiler;
#endif
#if ENABLED(MARLIN_DEV_MODE)
static uint16_t idle_depth = 0;
if (++idle_depth > 5) SERIAL_ECHOLNPGM("idle() call depth: ", idle_depth);
#endif
// Bed Distance Sensor task
TERN_(BD_SENSOR, bdl.process());
// Core Marlin activities
manage_inactivity(no_stepper_sleep);
// Manage Heaters (and Watchdog)
thermalManager.manage_heater();
thermalManager.task();
// Max7219 heartbeat, animation, etc
TERN_(MAX7219_DEBUG, max7219.idle_tasks());
@@ -1003,6 +1011,15 @@ inline void tmc_standby_setup() {
#if PIN_EXISTS(K_STDBY)
SET_INPUT_PULLDOWN(K_STDBY_PIN);
#endif
#if PIN_EXISTS(U_STDBY)
SET_INPUT_PULLDOWN(U_STDBY_PIN);
#endif
#if PIN_EXISTS(V_STDBY)
SET_INPUT_PULLDOWN(V_STDBY_PIN);
#endif
#if PIN_EXISTS(W_STDBY)
SET_INPUT_PULLDOWN(W_STDBY_PIN);
#endif
#if PIN_EXISTS(E0_STDBY)
SET_INPUT_PULLDOWN(E0_STDBY_PIN);
#endif
@@ -1048,7 +1065,6 @@ inline void tmc_standby_setup() {
* • TMC220x Stepper Drivers (Serial)
* • PSU control
* • Power-loss Recovery
* • L64XX Stepper Drivers (SPI)
* • Stepper Driver Reset: DISABLE
* • TMC Stepper Drivers (SPI)
* • Run hal.init_board() for additional pins setup
@@ -1211,10 +1227,10 @@ void setup() {
SETUP_RUN(hal.init());
// Init and disable SPI thermocouples; this is still needed
#if TEMP_SENSOR_0_IS_MAX_TC || (TEMP_SENSOR_REDUNDANT_IS_MAX_TC && REDUNDANT_TEMP_MATCH(SOURCE, E0))
#if TEMP_SENSOR_IS_MAX_TC(0) || (TEMP_SENSOR_IS_MAX_TC(REDUNDANT) && REDUNDANT_TEMP_MATCH(SOURCE, E0))
OUT_WRITE(TEMP_0_CS_PIN, HIGH); // Disable
#endif
#if TEMP_SENSOR_1_IS_MAX_TC || (TEMP_SENSOR_REDUNDANT_IS_MAX_TC && REDUNDANT_TEMP_MATCH(SOURCE, E1))
#if TEMP_SENSOR_IS_MAX_TC(1) || (TEMP_SENSOR_IS_MAX_TC(REDUNDANT) && REDUNDANT_TEMP_MATCH(SOURCE, E1))
OUT_WRITE(TEMP_1_CS_PIN, HIGH);
#endif
@@ -1237,10 +1253,6 @@ void setup() {
SETUP_RUN(tmc_init_cs_pins());
#endif
#if HAS_L64XX
SETUP_RUN(L64xxManager.init()); // Set up SPI, init drivers
#endif
#if ENABLED(PSU_CONTROL)
SETUP_LOG("PSU_CONTROL");
powerManager.init();
@@ -1627,9 +1639,15 @@ void setup() {
SETUP_RUN(test_tmc_connection());
#endif
#if ENABLED(BD_SENSOR)
SETUP_RUN(bdl.init(I2C_BD_SDA_PIN, I2C_BD_SCL_PIN, I2C_BD_DELAY));
#endif
marlin_state = MF_RUNNING;
SETUP_LOG("setup() completed.");
TERN_(MARLIN_TEST_BUILD, runStartupTests());
}
/**
@@ -1664,5 +1682,7 @@ void loop() {
TERN_(HAS_TFT_LVGL_UI, printer_state_polling());
TERN_(MARLIN_TEST_BUILD, runPeriodicTests());
} while (ENABLED(__AVR__)); // Loop forever on slower (AVR) boards
}

View File

@@ -238,6 +238,7 @@
#define BOARD_BTT_SKR_V1_1 2012 // BigTreeTech SKR v1.1
#define BOARD_BTT_SKR_V1_3 2013 // BigTreeTech SKR v1.3
#define BOARD_BTT_SKR_V1_4 2014 // BigTreeTech SKR v1.4
#define BOARD_EMOTRONIC 2015 // eMotion-Tech eMotronic
//
// LPC1769 ARM Cortex M3
@@ -332,40 +333,41 @@
#define BOARD_BTT_SKR_E3_DIP 4029 // BigTreeTech SKR E3 DIP V1.0 (STM32F103RC / STM32F103RE)
#define BOARD_BTT_SKR_CR6 4030 // BigTreeTech SKR CR6 v1.0 (STM32F103RE)
#define BOARD_JGAURORA_A5S_A1 4031 // JGAurora A5S A1 (STM32F103ZE)
#define BOARD_FYSETC_AIO_II 4032 // FYSETC AIO_II
#define BOARD_FYSETC_CHEETAH 4033 // FYSETC Cheetah
#define BOARD_FYSETC_CHEETAH_V12 4034 // FYSETC Cheetah V1.2
#define BOARD_LONGER3D_LK 4035 // Alfawise U20/U20+/U30 (Longer3D LK1/2) / STM32F103VE
#define BOARD_FYSETC_AIO_II 4032 // FYSETC AIO_II (STM32F103RC)
#define BOARD_FYSETC_CHEETAH 4033 // FYSETC Cheetah (STM32F103RC)
#define BOARD_FYSETC_CHEETAH_V12 4034 // FYSETC Cheetah V1.2 (STM32F103RC)
#define BOARD_LONGER3D_LK 4035 // Longer3D LK1/2 - Alfawise U20/U20+/U30 (STM32F103VE)
#define BOARD_CCROBOT_MEEB_3DP 4036 // ccrobot-online.com MEEB_3DP (STM32F103RC)
#define BOARD_CHITU3D_V5 4037 // Chitu3D TronXY X5SA V5 Board
#define BOARD_CHITU3D_V6 4038 // Chitu3D TronXY X5SA V6 Board
#define BOARD_CHITU3D_V9 4039 // Chitu3D TronXY X5SA V9 Board
#define BOARD_CHITU3D_V5 4037 // Chitu3D TronXY X5SA V5 Board (STM32F103ZE)
#define BOARD_CHITU3D_V6 4038 // Chitu3D TronXY X5SA V6 Board (STM32F103ZE)
#define BOARD_CHITU3D_V9 4039 // Chitu3D TronXY X5SA V9 Board (STM32F103ZE)
#define BOARD_CREALITY_V4 4040 // Creality v4.x (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V422 4041 // Creality v4.2.2 (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V423 4042 // Creality v4.2.3 (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V427 4043 // Creality v4.2.7 (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V4210 4044 // Creality v4.2.10 (STM32F103RC / STM32F103RE) as found in the CR-30
#define BOARD_CREALITY_V431 4045 // Creality v4.3.1 (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V431_A 4046 // Creality v4.3.1a (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V431_B 4047 // Creality v4.3.1b (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V431_C 4048 // Creality v4.3.1c (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V431_D 4049 // Creality v4.3.1d (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V452 4050 // Creality v4.5.2 (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V453 4051 // Creality v4.5.3 (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V24S1 4052 // Creality v2.4.S1 (STM32F103RC / STM32F103RE) v101 as found in the Ender-7
#define BOARD_CREALITY_V24S1_301 4053 // Creality v2.4.S1_301 (STM32F103RC / STM32F103RE) v301 as found in the Ender-3 S1
#define BOARD_CREALITY_V25S1 4054 // Creality v2.5.S1 (STM32F103RE) as found in the CR-10 Smart Pro
#define BOARD_TRIGORILLA_PRO 4055 // Trigorilla Pro (STM32F103ZE)
#define BOARD_FLY_MINI 4056 // FLYmaker FLY MINI (STM32F103RC)
#define BOARD_FLSUN_HISPEED 4057 // FLSUN HiSpeedV1 (STM32F103VE)
#define BOARD_BEAST 4058 // STM32F103RE Libmaple-based controller
#define BOARD_MINGDA_MPX_ARM_MINI 4059 // STM32F103ZE Mingda MD-16
#define BOARD_GTM32_PRO_VD 4060 // STM32F103VE controller
#define BOARD_ZONESTAR_ZM3E2 4061 // Zonestar ZM3E2 (STM32F103RC)
#define BOARD_ZONESTAR_ZM3E4 4062 // Zonestar ZM3E4 V1 (STM32F103VC)
#define BOARD_ZONESTAR_ZM3E4V2 4063 // Zonestar ZM3E4 V2 (STM32F103VC)
#define BOARD_ERYONE_ERY32_MINI 4064 // Eryone Ery32 mini (STM32F103VE)
#define BOARD_PANDA_PI_V29 4065 // Panda Pi V2.9 - Standalone (STM32F103RC)
#define BOARD_CREALITY_V425 4043 // Creality v4.2.5 (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V427 4044 // Creality v4.2.7 (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V4210 4045 // Creality v4.2.10 (STM32F103RC / STM32F103RE) as found in the CR-30
#define BOARD_CREALITY_V431 4046 // Creality v4.3.1 (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V431_A 4047 // Creality v4.3.1a (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V431_B 4048 // Creality v4.3.1b (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V431_C 4049 // Creality v4.3.1c (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V431_D 4050 // Creality v4.3.1d (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V452 4051 // Creality v4.5.2 (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V453 4052 // Creality v4.5.3 (STM32F103RC / STM32F103RE)
#define BOARD_CREALITY_V24S1 4053 // Creality v2.4.S1 (STM32F103RC / STM32F103RE) v101 as found in the Ender-7
#define BOARD_CREALITY_V24S1_301 4054 // Creality v2.4.S1_301 (STM32F103RC / STM32F103RE) v301 as found in the Ender-3 S1
#define BOARD_CREALITY_V25S1 4055 // Creality v2.5.S1 (STM32F103RE) as found in the CR-10 Smart Pro
#define BOARD_TRIGORILLA_PRO 4056 // Trigorilla Pro (STM32F103ZE)
#define BOARD_FLY_MINI 4057 // FLYmaker FLY MINI (STM32F103RC)
#define BOARD_FLSUN_HISPEED 4058 // FLSUN HiSpeedV1 (STM32F103VE)
#define BOARD_BEAST 4059 // STM32F103RE Libmaple-based controller
#define BOARD_MINGDA_MPX_ARM_MINI 4060 // STM32F103ZE Mingda MD-16
#define BOARD_GTM32_PRO_VD 4061 // STM32F103VE controller
#define BOARD_ZONESTAR_ZM3E2 4062 // Zonestar ZM3E2 (STM32F103RC)
#define BOARD_ZONESTAR_ZM3E4 4063 // Zonestar ZM3E4 V1 (STM32F103VC)
#define BOARD_ZONESTAR_ZM3E4V2 4064 // Zonestar ZM3E4 V2 (STM32F103VC)
#define BOARD_ERYONE_ERY32_MINI 4065 // Eryone Ery32 mini (STM32F103VE)
#define BOARD_PANDA_PI_V29 4066 // Panda Pi V2.9 - Standalone (STM32F103RC)
//
// ARM Cortex-M4F
@@ -385,35 +387,35 @@
#define BOARD_RUMBA32_BTT 4204 // RUMBA32 STM32F446VE based controller from BIGTREETECH
#define BOARD_BLACK_STM32F407VE 4205 // BLACK_STM32F407VE
#define BOARD_BLACK_STM32F407ZE 4206 // BLACK_STM32F407ZE
#define BOARD_STEVAL_3DP001V1 4207 // STEVAL-3DP001V1 3D PRINTER BOARD
#define BOARD_BTT_SKR_PRO_V1_1 4208 // BigTreeTech SKR Pro v1.1 (STM32F407ZG)
#define BOARD_BTT_SKR_PRO_V1_2 4209 // BigTreeTech SKR Pro v1.2 (STM32F407ZG)
#define BOARD_BTT_BTT002_V1_0 4210 // BigTreeTech BTT002 v1.0 (STM32F407VG)
#define BOARD_BTT_E3_RRF 4211 // BigTreeTech E3 RRF (STM32F407VG)
#define BOARD_BTT_SKR_V2_0_REV_A 4212 // BigTreeTech SKR v2.0 Rev A (STM32F407VG)
#define BOARD_BTT_SKR_V2_0_REV_B 4213 // BigTreeTech SKR v2.0 Rev B (STM32F407VG/STM32F429VG)
#define BOARD_BTT_GTR_V1_0 4214 // BigTreeTech GTR v1.0 (STM32F407IGT)
#define BOARD_BTT_OCTOPUS_V1_0 4215 // BigTreeTech Octopus v1.0 (STM32F446ZE)
#define BOARD_BTT_OCTOPUS_V1_1 4216 // BigTreeTech Octopus v1.1 (STM32F446ZE)
#define BOARD_BTT_OCTOPUS_PRO_V1_0 4217 // BigTreeTech Octopus Pro v1.0 (STM32F446ZE/STM32F429ZG)
#define BOARD_LERDGE_K 4218 // Lerdge K (STM32F407ZG)
#define BOARD_LERDGE_S 4219 // Lerdge S (STM32F407VE)
#define BOARD_LERDGE_X 4220 // Lerdge X (STM32F407VE)
#define BOARD_VAKE403D 4221 // VAkE 403D (STM32F446VE)
#define BOARD_FYSETC_S6 4222 // FYSETC S6 (STM32F446VE)
#define BOARD_FYSETC_S6_V2_0 4223 // FYSETC S6 v2.0 (STM32F446VE)
#define BOARD_FYSETC_SPIDER 4224 // FYSETC Spider (STM32F446VE)
#define BOARD_FLYF407ZG 4225 // FLYmaker FLYF407ZG (STM32F407ZG)
#define BOARD_MKS_ROBIN2 4226 // MKS_ROBIN2 (STM32F407ZE)
#define BOARD_MKS_ROBIN_PRO_V2 4227 // MKS Robin Pro V2 (STM32F407VE)
#define BOARD_MKS_ROBIN_NANO_V3 4228 // MKS Robin Nano V3 (STM32F407VG)
#define BOARD_MKS_ROBIN_NANO_V3_1 4229 // MKS Robin Nano V3.1 (STM32F407VE)
#define BOARD_MKS_MONSTER8 4230 // MKS Monster8 (STM32F407VG)
#define BOARD_BTT_SKR_PRO_V1_1 4207 // BigTreeTech SKR Pro v1.1 (STM32F407ZG)
#define BOARD_BTT_SKR_PRO_V1_2 4208 // BigTreeTech SKR Pro v1.2 (STM32F407ZG)
#define BOARD_BTT_BTT002_V1_0 4209 // BigTreeTech BTT002 v1.0 (STM32F407VG)
#define BOARD_BTT_E3_RRF 4210 // BigTreeTech E3 RRF (STM32F407VG)
#define BOARD_BTT_SKR_V2_0_REV_A 4211 // BigTreeTech SKR v2.0 Rev A (STM32F407VG)
#define BOARD_BTT_SKR_V2_0_REV_B 4212 // BigTreeTech SKR v2.0 Rev B (STM32F407VG/STM32F429VG)
#define BOARD_BTT_GTR_V1_0 4213 // BigTreeTech GTR v1.0 (STM32F407IGT)
#define BOARD_BTT_OCTOPUS_V1_0 4214 // BigTreeTech Octopus v1.0 (STM32F446ZE)
#define BOARD_BTT_OCTOPUS_V1_1 4215 // BigTreeTech Octopus v1.1 (STM32F446ZE)
#define BOARD_BTT_OCTOPUS_PRO_V1_0 4216 // BigTreeTech Octopus Pro v1.0 (STM32F446ZE / STM32F429ZG)
#define BOARD_LERDGE_K 4217 // Lerdge K (STM32F407ZG)
#define BOARD_LERDGE_S 4218 // Lerdge S (STM32F407VE)
#define BOARD_LERDGE_X 4219 // Lerdge X (STM32F407VE)
#define BOARD_VAKE403D 4220 // VAkE 403D (STM32F446VE)
#define BOARD_FYSETC_S6 4221 // FYSETC S6 (STM32F446VE)
#define BOARD_FYSETC_S6_V2_0 4222 // FYSETC S6 v2.0 (STM32F446VE)
#define BOARD_FYSETC_SPIDER 4223 // FYSETC Spider (STM32F446VE)
#define BOARD_FLYF407ZG 4224 // FLYmaker FLYF407ZG (STM32F407ZG)
#define BOARD_MKS_ROBIN2 4225 // MKS_ROBIN2 (STM32F407ZE)
#define BOARD_MKS_ROBIN_PRO_V2 4226 // MKS Robin Pro V2 (STM32F407VE)
#define BOARD_MKS_ROBIN_NANO_V3 4227 // MKS Robin Nano V3 (STM32F407VG)
#define BOARD_MKS_ROBIN_NANO_V3_1 4228 // MKS Robin Nano V3.1 (STM32F407VE)
#define BOARD_MKS_MONSTER8_V1 4229 // MKS Monster8 V1 (STM32F407VE)
#define BOARD_MKS_MONSTER8_V2 4230 // MKS Monster8 V2 (STM32F407VE)
#define BOARD_ANET_ET4 4231 // ANET ET4 V1.x (STM32F407VG)
#define BOARD_ANET_ET4P 4232 // ANET ET4P V1.x (STM32F407VG)
#define BOARD_FYSETC_CHEETAH_V20 4233 // FYSETC Cheetah V2.0
#define BOARD_TH3D_EZBOARD_V2 4234 // TH3D EZBoard v2.0
#define BOARD_INDEX_REV03 4235 // Index PnP Controller REV03 (STM32F407VE/VG)
#define BOARD_FYSETC_CHEETAH_V20 4233 // FYSETC Cheetah V2.0 (STM32F401RC)
#define BOARD_TH3D_EZBOARD_V2 4234 // TH3D EZBoard v2.0 (STM32F405RG)
#define BOARD_OPULO_LUMEN_REV3 4235 // Opulo Lumen PnP Controller REV3 (STM32F407VE / STM32F407VG)
#define BOARD_MKS_ROBIN_NANO_V1_3_F4 4236 // MKS Robin Nano V1.3 and MKS Robin Nano-S V1.3 (STM32F407VE)
#define BOARD_MKS_EAGLE 4237 // MKS Eagle (STM32F407VE)
#define BOARD_ARTILLERY_RUBY 4238 // Artillery Ruby (STM32F401RC)
@@ -428,9 +430,10 @@
#define BOARD_TEENSY41 5001 // Teensy 4.1
#define BOARD_T41U5XBB 5002 // T41U5XBB Teensy 4.1 breakout board
#define BOARD_NUCLEO_F767ZI 5003 // ST NUCLEO-F767ZI Dev Board
#define BOARD_BTT_SKR_SE_BX 5004 // BigTreeTech SKR SE BX (STM32H743II)
#define BOARD_BTT_SKR_V3_0 5005 // BigTreeTech SKR V3.0 (STM32H743VG)
#define BOARD_BTT_SKR_V3_0_EZ 5006 // BigTreeTech SKR V3.0 EZ (STM32H743VG)
#define BOARD_BTT_SKR_SE_BX_V2 5004 // BigTreeTech SKR SE BX V2.0 (STM32H743II)
#define BOARD_BTT_SKR_SE_BX_V3 5005 // BigTreeTech SKR SE BX V3.0 (STM32H743II)
#define BOARD_BTT_SKR_V3_0 5006 // BigTreeTech SKR V3.0 (STM32H743VG)
#define BOARD_BTT_SKR_V3_0_EZ 5007 // BigTreeTech SKR V3.0 EZ (STM32H743VG)
//
// Espressif ESP32 WiFi

View File

@@ -30,10 +30,6 @@
#define _A5984 0x5984
#define _DRV8825 0x8825
#define _LV8729 0x8729
#define _L6470 0x6470
#define _L6474 0x6474
#define _L6480 0x6480
#define _POWERSTEP01 0xF00D
#define _TB6560 0x6560
#define _TB6600 0x6600
#define _TMC2100 0x2100
@@ -63,6 +59,9 @@
#define AXIS_DRIVER_TYPE_I(T) _AXIS_DRIVER_TYPE(I,T)
#define AXIS_DRIVER_TYPE_J(T) _AXIS_DRIVER_TYPE(J,T)
#define AXIS_DRIVER_TYPE_K(T) _AXIS_DRIVER_TYPE(K,T)
#define AXIS_DRIVER_TYPE_U(T) _AXIS_DRIVER_TYPE(U,T)
#define AXIS_DRIVER_TYPE_V(T) _AXIS_DRIVER_TYPE(V,T)
#define AXIS_DRIVER_TYPE_W(T) _AXIS_DRIVER_TYPE(W,T)
#define AXIS_DRIVER_TYPE_X2(T) (HAS_X2_STEPPER && _AXIS_DRIVER_TYPE(X2,T))
#define AXIS_DRIVER_TYPE_Y2(T) (HAS_DUAL_Y_STEPPERS && _AXIS_DRIVER_TYPE(Y2,T))
@@ -87,6 +86,7 @@
#define HAS_DRIVER(T) ( AXIS_DRIVER_TYPE_X(T) || AXIS_DRIVER_TYPE_Y(T) || AXIS_DRIVER_TYPE_Z(T) \
|| AXIS_DRIVER_TYPE_I(T) || AXIS_DRIVER_TYPE_J(T) || AXIS_DRIVER_TYPE_K(T) \
|| AXIS_DRIVER_TYPE_U(T) || AXIS_DRIVER_TYPE_V(T) || AXIS_DRIVER_TYPE_W(T) \
|| AXIS_DRIVER_TYPE_X2(T) || AXIS_DRIVER_TYPE_Y2(T) || AXIS_DRIVER_TYPE_Z2(T) \
|| AXIS_DRIVER_TYPE_Z3(T) || AXIS_DRIVER_TYPE_Z4(T) || HAS_E_DRIVER(T) )
@@ -161,6 +161,7 @@
|| AXIS_HAS_##T(Y) || AXIS_HAS_##T(Y2) \
|| AXIS_HAS_##T(Z) || AXIS_HAS_##T(Z2) || AXIS_HAS_##T(Z3) || AXIS_HAS_##T(Z4) \
|| AXIS_HAS_##T(I) || AXIS_HAS_##T(J) || AXIS_HAS_##T(K) \
|| AXIS_HAS_##T(U) || AXIS_HAS_##T(V) || AXIS_HAS_##T(W) \
|| E_AXIS_HAS(T) )
#if ANY_AXIS_HAS(STEALTHCHOP)
@@ -188,16 +189,3 @@
#if HAS_DRIVER(TMC26X)
#define HAS_TMC26X 1
#endif
//
// L64XX Stepper Drivers
//
#if HAS_DRIVER(L6470) || HAS_DRIVER(L6474) || HAS_DRIVER(L6480) || HAS_DRIVER(POWERSTEP01)
#define HAS_L64XX 1
#endif
#if HAS_L64XX && !HAS_DRIVER(L6474)
#define HAS_L64XX_NOT_L6474 1
#endif
#define AXIS_IS_L64XX(A) (AXIS_DRIVER_TYPE_##A(L6470) || AXIS_DRIVER_TYPE_##A(L6474) || AXIS_DRIVER_TYPE_##A(L6480) || AXIS_DRIVER_TYPE_##A(POWERSTEP01))

View File

@@ -227,10 +227,6 @@
#define STR_PID_DEBUG " PID_DEBUG "
#define STR_PID_DEBUG_INPUT ": Input "
#define STR_PID_DEBUG_OUTPUT " Output "
#define STR_PID_DEBUG_PTERM " pTerm "
#define STR_PID_DEBUG_ITERM " iTerm "
#define STR_PID_DEBUG_DTERM " dTerm "
#define STR_PID_DEBUG_CTERM " cTerm "
#define STR_INVALID_EXTRUDER_NUM " - Invalid extruder number !"
#define STR_MPC_AUTOTUNE "MPC Autotune"
#define STR_MPC_AUTOTUNE_START " start for " STR_E
@@ -457,6 +453,54 @@
#define STR_K ""
#endif
#if HAS_U_AXIS
#if AXIS7_NAME == 'U'
#define STR_U "U"
#define STR_U_MIN "u_min"
#define STR_U_MAX "u_max"
#elif AXIS7_NAME == 'V'
#define STR_U "V"
#define STR_U_MIN "v_min"
#define STR_U_MAX "v_max"
#elif AXIS7_NAME == 'W'
#define STR_U "W"
#define STR_U_MIN "w_min"
#define STR_U_MAX "w_max"
#else
#error "AXIS7_NAME can only be one of 'U', 'V', or 'W'."
#endif
#else
#define STR_U ""
#endif
#if HAS_V_AXIS
#if AXIS8_NAME == 'V'
#define STR_V "V"
#define STR_V_MIN "v_min"
#define STR_V_MAX "v_max"
#elif AXIS8_NAME == 'W'
#define STR_V "W"
#define STR_V_MIN "w_min"
#define STR_V_MAX "w_max"
#else
#error "AXIS8_NAME can only be one of 'V', or 'W'."
#endif
#else
#define STR_V ""
#endif
#if HAS_W_AXIS
#if AXIS9_NAME == 'W'
#define STR_W "W"
#define STR_W_MIN "w_min"
#define STR_W_MAX "w_max"
#else
#error "AXIS9_NAME can only be 'W'."
#endif
#else
#define STR_W ""
#endif
#if EITHER(HAS_MARLINUI_HD44780, IS_TFTGLCD_PANEL)
// Custom characters defined in the first 8 characters of the LCD

View File

@@ -39,24 +39,36 @@
#define _ISTOP_ 0x04
#define _JSTOP_ 0x05
#define _KSTOP_ 0x06
#define _USTOP_ 0x07
#define _VSTOP_ 0x08
#define _WSTOP_ 0x09
#define _XMIN_ 0x11
#define _YMIN_ 0x12
#define _ZMIN_ 0x13
#define _IMIN_ 0x14
#define _JMIN_ 0x15
#define _KMIN_ 0x16
#define _UMIN_ 0x17
#define _VMIN_ 0x18
#define _WMIN_ 0x19
#define _XMAX_ 0x21
#define _YMAX_ 0x22
#define _ZMAX_ 0x23
#define _IMAX_ 0x24
#define _JMAX_ 0x25
#define _KMAX_ 0x26
#define _UMAX_ 0x27
#define _VMAX_ 0x28
#define _WMAX_ 0x29
#define _XDIAG_ 0x31
#define _YDIAG_ 0x32
#define _ZDIAG_ 0x33
#define _IDIAG_ 0x34
#define _JDIAG_ 0x35
#define _KDIAG_ 0x36
#define _UDIAG_ 0x37
#define _VDIAG_ 0x38
#define _WDIAG_ 0x39
#define _E0DIAG_ 0xE0
#define _E1DIAG_ 0xE1
#define _E2DIAG_ 0xE2
@@ -350,7 +362,7 @@
#define _LIST_N(N,V...) LIST_##N(V)
#define LIST_N(N,V...) _LIST_N(N,V)
#define LIST_N_1(N,K) _LIST_N(N,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K)
#define LIST_N_1(N,K) _LIST_N(N,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K,K)
#define ARRAY_N(N,V...) { _LIST_N(N,V) }
#define ARRAY_N_1(N,K) { LIST_N_1(N,K) }
@@ -632,8 +644,8 @@
#define IS_PROBE(V...) SECOND(V, 0) // Get the second item passed, or 0
#define PROBE() ~, 1 // Second item will be 1 if this is passed
#define _NOT_0 PROBE()
#define NOT(x) IS_PROBE(_CAT(_NOT_, x)) // NOT('0') gets '1'. Anything else gets '0'.
#define _BOOL(x) NOT(NOT(x)) // NOT('0') gets '0'. Anything else gets '1'.
#define NOT(x) IS_PROBE(_CAT(_NOT_, x)) // NOT('0') gets '1'. Anything else gets '0'.
#define _BOOL(x) NOT(NOT(x)) // _BOOL('0') gets '0'. Anything else gets '1'.
#define IF_ELSE(TF) _IF_ELSE(_BOOL(TF))
#define _IF_ELSE(TF) _CAT(_IF_, TF)
@@ -647,7 +659,6 @@
#define HAS_ARGS(V...) _BOOL(FIRST(_END_OF_ARGUMENTS_ V)())
#define _END_OF_ARGUMENTS_() 0
// Simple Inline IF Macros, friendly to use in other macro definitions
#define IF(O, A, B) ((O) ? (A) : (B))
#define IF_0(O, A) IF(O, A, 0)
@@ -700,13 +711,27 @@
#define RREPEAT2_S(S,N,OP,V...) EVAL1024(_RREPEAT2(S,SUB##S(N),OP,V))
#define RREPEAT2(N,OP,V...) RREPEAT2_S(0,N,OP,V)
// See https://github.com/swansontec/map-macro
#define MAP_OUT
#define MAP_END(...)
#define MAP_GET_END() 0, MAP_END
#define MAP_NEXT0(test, next, ...) next MAP_OUT
#define MAP_NEXT1(test, next) MAP_NEXT0 (test, next, 0)
#define MAP_NEXT(test, next) MAP_NEXT1 (MAP_GET_END test, next)
#define MAP0(f, x, peek, ...) f(x) MAP_NEXT (peek, MAP1) (f, peek, __VA_ARGS__)
#define MAP1(f, x, peek, ...) f(x) MAP_NEXT (peek, MAP0) (f, peek, __VA_ARGS__)
#define MAP(f, ...) EVAL512 (MAP1 (f, __VA_ARGS__, (), 0))
// Call OP(A) with each item as an argument
#define _MAP(_MAP_OP,A,V...) \
_MAP_OP(A) \
IF_ELSE(HAS_ARGS(V)) \
( DEFER2(__MAP)()(_MAP_OP,V) ) \
( /* Do nothing */ )
#define __MAP() _MAP
#define MAP(OP,V...) EVAL(_MAP(OP,V))
// Emit a list of OP(A) with the given items
#define _MAPLIST(_MAP_OP,A,V...) \
_MAP_OP(A) \
IF_ELSE(HAS_ARGS(V)) \
( , DEFER2(__MAPLIST)()(_MAP_OP,V) ) \
( /* Do nothing */ )
#define __MAPLIST() _MAPLIST
#define MAPLIST(OP,V...) EVAL(_MAPLIST(OP,V))
// Temperature Sensor Config
#define _HAS_E_TEMP(N) || (TEMP_SENSOR_##N != 0)
#define HAS_E_TEMP_SENSOR (0 REPEAT(EXTRUDERS, _HAS_E_TEMP))
#define TEMP_SENSOR_IS_MAX_TC(T) (TEMP_SENSOR_##T == -5 || TEMP_SENSOR_##T == -3 || TEMP_SENSOR_##T == -2)

View File

@@ -30,16 +30,15 @@
uint8_t marlin_debug_flags = MARLIN_DEBUG_NONE;
// Commonly-used strings in serial output
PGMSTR(NUL_STR, ""); PGMSTR(SP_P_STR, " P"); PGMSTR(SP_T_STR, " T");
PGMSTR(X_STR, "X"); PGMSTR(Y_STR, "Y"); PGMSTR(Z_STR, "Z"); PGMSTR(E_STR, "E");
PGMSTR(X_LBL, "X:"); PGMSTR(Y_LBL, "Y:"); PGMSTR(Z_LBL, "Z:"); PGMSTR(E_LBL, "E:");
PGMSTR(SP_A_STR, " A"); PGMSTR(SP_B_STR, " B"); PGMSTR(SP_C_STR, " C");
PGMSTR(SP_X_STR, " X"); PGMSTR(SP_Y_STR, " Y"); PGMSTR(SP_Z_STR, " Z"); PGMSTR(SP_E_STR, " E");
PGMSTR(SP_X_LBL, " X:"); PGMSTR(SP_Y_LBL, " Y:"); PGMSTR(SP_Z_LBL, " Z:"); PGMSTR(SP_E_LBL, " E:");
PGMSTR(I_STR, STR_I); PGMSTR(J_STR, STR_J); PGMSTR(K_STR, STR_K);
PGMSTR(I_LBL, STR_I ":"); PGMSTR(J_LBL, STR_J ":"); PGMSTR(K_LBL, STR_K ":");
PGMSTR(SP_I_STR, " " STR_I); PGMSTR(SP_J_STR, " " STR_J); PGMSTR(SP_K_STR, " " STR_K);
PGMSTR(SP_I_LBL, " " STR_I ":"); PGMSTR(SP_J_LBL, " " STR_J ":"); PGMSTR(SP_K_LBL, " " STR_K ":");
PGMSTR(SP_A_STR, " A"); PGMSTR(SP_B_STR, " B"); PGMSTR(SP_C_STR, " C");
PGMSTR(SP_P_STR, " P"); PGMSTR(SP_T_STR, " T"); PGMSTR(NUL_STR, "");
#define _N_STR(N) PGMSTR(N##_STR, STR_##N);
#define _N_LBL(N) PGMSTR(N##_LBL, STR_##N ":");
#define _SP_N_STR(N) PGMSTR(SP_##N##_STR, " " STR_##N);
#define _SP_N_LBL(N) PGMSTR(SP_##N##_LBL, " " STR_##N ":");
MAP(_N_STR, LOGICAL_AXIS_NAMES); MAP(_SP_N_STR, LOGICAL_AXIS_NAMES);
MAP(_N_LBL, LOGICAL_AXIS_NAMES); MAP(_SP_N_LBL, LOGICAL_AXIS_NAMES);
// Hook Meatpack if it's enabled on the first leaf
#if ENABLED(MEATPACK_ON_SERIAL_PORT_1)
@@ -73,8 +72,8 @@ void serial_print_P(PGM_P str) {
while (const char c = pgm_read_byte(str++)) SERIAL_CHAR(c);
}
void serial_echo_start() { static PGMSTR(echomagic, "echo:"); serial_print_P(echomagic); }
void serial_error_start() { static PGMSTR(errormagic, "Error:"); serial_print_P(errormagic); }
void serial_echo_start() { serial_print(F("echo:")); }
void serial_error_start() { serial_print(F("Error:")); }
void serial_spaces(uint8_t count) { count *= (PROPORTIONAL_FONT_RATIO); while (count--) SERIAL_CHAR(' '); }
@@ -102,10 +101,10 @@ void print_bin(uint16_t val) {
}
}
void print_pos(LINEAR_AXIS_ARGS(const_float_t), FSTR_P const prefix/*=nullptr*/, FSTR_P const suffix/*=nullptr*/) {
void print_pos(NUM_AXIS_ARGS(const_float_t), FSTR_P const prefix/*=nullptr*/, FSTR_P const suffix/*=nullptr*/) {
if (prefix) serial_print(prefix);
SERIAL_ECHOPGM_P(
LIST_N(DOUBLE(LINEAR_AXES), SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z, SP_I_STR, i, SP_J_STR, j, SP_K_STR, k)
LIST_N(DOUBLE(NUM_AXES), SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z, SP_I_STR, i, SP_J_STR, j, SP_K_STR, k, SP_U_STR, u, SP_V_STR, v, SP_W_STR, w)
);
if (suffix) serial_print(suffix); else SERIAL_EOL();
}

View File

@@ -28,19 +28,6 @@
#include "../feature/meatpack.h"
#endif
// Commonly-used strings in serial output
extern const char NUL_STR[],
SP_X_STR[], SP_Y_STR[], SP_Z_STR[],
SP_A_STR[], SP_B_STR[], SP_C_STR[], SP_E_STR[],
SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[],
SP_I_STR[], SP_J_STR[], SP_K_STR[],
SP_I_LBL[], SP_J_LBL[], SP_K_LBL[],
SP_P_STR[], SP_T_STR[],
X_STR[], Y_STR[], Z_STR[], E_STR[],
I_STR[], J_STR[], K_STR[],
X_LBL[], Y_LBL[], Z_LBL[], E_LBL[],
I_LBL[], J_LBL[], K_LBL[];
//
// Debugging flags for use by M111
//
@@ -348,11 +335,40 @@ void serial_spaces(uint8_t count);
void serial_offset(const_float_t v, const uint8_t sp=0); // For v==0 draw space (sp==1) or plus (sp==2)
void print_bin(const uint16_t val);
void print_pos(LINEAR_AXIS_ARGS(const_float_t), FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr);
void print_pos(NUM_AXIS_ARGS(const_float_t), FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr);
inline void print_pos(const xyz_pos_t &xyz, FSTR_P const prefix=nullptr, FSTR_P const suffix=nullptr) {
print_pos(LINEAR_AXIS_ELEM(xyz), prefix, suffix);
print_pos(NUM_AXIS_ELEM(xyz), prefix, suffix);
}
#define SERIAL_POS(SUFFIX,VAR) do { print_pos(VAR, F(" " STRINGIFY(VAR) "="), F(" : " SUFFIX "\n")); }while(0)
#define SERIAL_XYZ(PREFIX,V...) do { print_pos(V, F(PREFIX)); }while(0)
//
// Commonly-used strings in serial output
//
#define _N_STR(N) N##_STR
#define _N_LBL(N) N##_LBL
#define _N_STR_A(N) _N_STR(N)[]
#define _N_LBL_A(N) _N_LBL(N)[]
#define _SP_N_STR(N) SP_##N##_STR
#define _SP_N_LBL(N) SP_##N##_LBL
#define _SP_N_STR_A(N) _SP_N_STR(N)[]
#define _SP_N_LBL_A(N) _SP_N_LBL(N)[]
extern const char SP_A_STR[], SP_B_STR[], SP_C_STR[], SP_P_STR[], SP_T_STR[], NUL_STR[],
MAPLIST(_N_STR_A, LOGICAL_AXIS_NAMES), MAPLIST(_SP_N_STR_A, LOGICAL_AXIS_NAMES),
MAPLIST(_N_LBL_A, LOGICAL_AXIS_NAMES), MAPLIST(_SP_N_LBL_A, LOGICAL_AXIS_NAMES);
PGM_P const SP_AXIS_LBL[] PROGMEM = { MAPLIST(_SP_N_LBL, LOGICAL_AXIS_NAMES) };
PGM_P const SP_AXIS_STR[] PROGMEM = { MAPLIST(_SP_N_STR, LOGICAL_AXIS_NAMES) };
#undef _N_STR
#undef _N_LBL
#undef _N_STR_A
#undef _N_LBL_A
#undef _SP_N_STR
#undef _SP_N_LBL
#undef _SP_N_STR_A
#undef _SP_N_LBL_A

View File

@@ -43,7 +43,9 @@ public:
}
constexpr SerialMask(const uint8_t mask) : mask(mask) {}
constexpr SerialMask(const SerialMask & other) : mask(other.mask) {} // Can't use = default here since not all framework support this
constexpr SerialMask(const SerialMask &rs) : mask(rs.mask) {} // Can't use = default here since not all frameworks support this
SerialMask& operator=(const SerialMask &rs) { mask = rs.mask; return *this; }
static constexpr uint8_t All = 0xFF;
};

View File

@@ -36,23 +36,41 @@ struct IF { typedef R type; };
template <class L, class R>
struct IF<true, L, R> { typedef L type; };
#define LINEAR_AXIS_GANG(V...) GANG_N(LINEAR_AXES, V)
#define LINEAR_AXIS_CODE(V...) CODE_N(LINEAR_AXES, V)
#define LINEAR_AXIS_LIST(V...) LIST_N(LINEAR_AXES, V)
#define LINEAR_AXIS_ARRAY(V...) { LINEAR_AXIS_LIST(V) }
#define LINEAR_AXIS_ARGS(T...) LINEAR_AXIS_LIST(T x, T y, T z, T i, T j, T k)
#define LINEAR_AXIS_ELEM(O) LINEAR_AXIS_LIST(O.x, O.y, O.z, O.i, O.j, O.k)
#define LINEAR_AXIS_DEFS(T,V) LINEAR_AXIS_LIST(T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
#define NUM_AXIS_GANG(V...) GANG_N(NUM_AXES, V)
#define NUM_AXIS_CODE(V...) CODE_N(NUM_AXES, V)
#define NUM_AXIS_LIST(V...) LIST_N(NUM_AXES, V)
#define NUM_AXIS_LIST_1(V) LIST_N_1(NUM_AXES, V)
#define NUM_AXIS_ARRAY(V...) { NUM_AXIS_LIST(V) }
#define NUM_AXIS_ARRAY_1(V) { NUM_AXIS_LIST_1(V) }
#define NUM_AXIS_ARGS(T...) NUM_AXIS_LIST(T x, T y, T z, T i, T j, T k, T u, T v, T w)
#define NUM_AXIS_ELEM(O) NUM_AXIS_LIST(O.x, O.y, O.z, O.i, O.j, O.k, O.u, O.v, O.w)
#define NUM_AXIS_DEFS(T,V) NUM_AXIS_LIST(T x=V, T y=V, T z=V, T i=V, T j=V, T k=V, T u=V, T v=V, T w=V)
#define MAIN_AXIS_NAMES NUM_AXIS_LIST(X, Y, Z, I, J, K, U, V, W)
#define MAIN_AXIS_MAP(F) MAP(F, MAIN_AXIS_NAMES)
#define STR_AXES_MAIN NUM_AXIS_GANG("X", "Y", "Z", STR_I, STR_J, STR_K, STR_U, STR_V, STR_W)
#define LOGICAL_AXIS_GANG(E,V...) LINEAR_AXIS_GANG(V) GANG_ITEM_E(E)
#define LOGICAL_AXIS_CODE(E,V...) LINEAR_AXIS_CODE(V) CODE_ITEM_E(E)
#define LOGICAL_AXIS_LIST(E,V...) LINEAR_AXIS_LIST(V) LIST_ITEM_E(E)
#define LOGICAL_AXIS_GANG(E,V...) NUM_AXIS_GANG(V) GANG_ITEM_E(E)
#define LOGICAL_AXIS_CODE(E,V...) NUM_AXIS_CODE(V) CODE_ITEM_E(E)
#define LOGICAL_AXIS_LIST(E,V...) NUM_AXIS_LIST(V) LIST_ITEM_E(E)
#define LOGICAL_AXIS_LIST_1(V) NUM_AXIS_LIST_1(V) LIST_ITEM_E(V)
#define LOGICAL_AXIS_ARRAY(E,V...) { LOGICAL_AXIS_LIST(E,V) }
#define LOGICAL_AXIS_ARGS(T...) LOGICAL_AXIS_LIST(T e, T x, T y, T z, T i, T j, T k)
#define LOGICAL_AXIS_ELEM(O) LOGICAL_AXIS_LIST(O.e, O.x, O.y, O.z, O.i, O.j, O.k)
#define LOGICAL_AXIS_DECL(T,V) LOGICAL_AXIS_LIST(T e=V, T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
#define LOGICAL_AXIS_ARRAY_1(V) { LOGICAL_AXIS_LIST_1(V) }
#define LOGICAL_AXIS_ARGS(T...) LOGICAL_AXIS_LIST(T e, T x, T y, T z, T i, T j, T k, T u, T v, T w)
#define LOGICAL_AXIS_ELEM(O) LOGICAL_AXIS_LIST(O.e, O.x, O.y, O.z, O.i, O.j, O.k, O.u, O.v, O.w)
#define LOGICAL_AXIS_DECL(T,V) LOGICAL_AXIS_LIST(T e=V, T x=V, T y=V, T z=V, T i=V, T j=V, T k=V, T u=V, T v=V, T w=V)
#define LOGICAL_AXIS_NAMES LOGICAL_AXIS_LIST(E, X, Y, Z, I, J, K, U, V, W)
#define LOGICAL_AXIS_MAP(F) MAP(F, LOGICAL_AXIS_NAMES)
#define STR_AXES_LOGICAL LOGICAL_AXIS_GANG("E", "X", "Y", "Z", STR_I, STR_J, STR_K, STR_U, STR_V, STR_W)
#define LOGICAL_AXES_STRING LOGICAL_AXIS_GANG("E", "X", "Y", "Z", STR_I, STR_J, STR_K)
#define XYZ_GANG(V...) GANG_N(PRIMARY_LINEAR_AXES, V)
#define XYZ_CODE(V...) CODE_N(PRIMARY_LINEAR_AXES, V)
#define SECONDARY_AXIS_GANG(V...) GANG_N(SECONDARY_AXES, V)
#define SECONDARY_AXIS_CODE(V...) CODE_N(SECONDARY_AXES, V)
#if HAS_ROTATIONAL_AXES
#define ROTATIONAL_AXIS_GANG(V...) GANG_N(ROTATIONAL_AXES, V)
#endif
#if HAS_EXTRUDERS
#define LIST_ITEM_E(N) , N
@@ -64,7 +82,7 @@ struct IF<true, L, R> { typedef L type; };
#define GANG_ITEM_E(N)
#endif
#define AXIS_COLLISION(L) (AXIS4_NAME == L || AXIS5_NAME == L || AXIS6_NAME == L)
#define AXIS_COLLISION(L) (AXIS4_NAME == L || AXIS5_NAME == L || AXIS6_NAME == L || AXIS7_NAME == L || AXIS8_NAME == L || AXIS9_NAME == L)
// General Flags for some number of states
template<size_t N>
@@ -81,9 +99,9 @@ struct Flags {
void set(const int n) { b |= (bits_t)_BV(n); }
void clear(const int n) { b &= ~(bits_t)_BV(n); }
bool test(const int n) const { return TEST(b, n); }
bool operator[](const int n) { return test(n); }
const bool operator[](const int n) { return test(n); }
const bool operator[](const int n) const { return test(n); }
const int size() const { return sizeof(b); }
int size() const { return sizeof(b); }
};
// Specialization for a single bool flag
@@ -95,9 +113,9 @@ struct Flags<1> {
void set(const int) { b = true; }
void clear(const int) { b = false; }
bool test(const int) const { return b; }
bool operator[](const int) { return b; }
const bool operator[](const int) const { return b; }
const int size() const { return sizeof(b); }
bool& operator[](const int) { return b; }
bool operator[](const int) const { return b; }
int size() const { return sizeof(b); }
};
typedef Flags<8> flags_8_t;
@@ -114,9 +132,9 @@ typedef struct AxisFlags {
void set(const int n, const bool onoff) { flags.set(n, onoff); }
void clear(const int n) { flags.clear(n); }
bool test(const int n) const { return flags.test(n); }
bool operator[](const int n) { return flags[n]; }
const bool operator[](const int n) const { return flags[n]; }
const int size() const { return sizeof(flags); }
bool operator[](const int n) { return flags[n]; }
bool operator[](const int n) const { return flags[n]; }
int size() const { return sizeof(flags); }
} axis_flags_t;
//
@@ -129,7 +147,7 @@ typedef struct AxisFlags {
enum AxisEnum : uint8_t {
// Linear axes may be controlled directly or indirectly
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS)
NUM_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS, U_AXIS, V_AXIS, W_AXIS)
// Extruder axes may be considered distinctly
#define _EN_ITEM(N) , E##N##_AXIS
@@ -168,7 +186,7 @@ typedef IF<(NUM_AXIS_ENUMS > 8), uint16_t, uint8_t>::type axis_bits_t;
// Loop over axes
//
#define LOOP_ABC(VAR) LOOP_S_LE_N(VAR, A_AXIS, C_AXIS)
#define LOOP_LINEAR_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, LINEAR_AXES)
#define LOOP_NUM_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, NUM_AXES)
#define LOOP_LOGICAL_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, LOGICAL_AXES)
#define LOOP_DISTINCT_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, DISTINCT_AXES)
#define LOOP_DISTINCT_E(VAR) LOOP_L_N(VAR, DISTINCT_E)
@@ -313,10 +331,10 @@ struct XYval {
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
#endif
#if LINEAR_AXES > XY
FI void set(const T (&arr)[LINEAR_AXES]) { x = arr[0]; y = arr[1]; }
#if NUM_AXES > XY
FI void set(const T (&arr)[NUM_AXES]) { x = arr[0]; y = arr[1]; }
#endif
#if LOGICAL_AXES > LINEAR_AXES
#if LOGICAL_AXES > NUM_AXES
FI void set(const T (&arr)[LOGICAL_AXES]) { x = arr[0]; y = arr[1]; }
#if DISTINCT_AXES > LOGICAL_AXES
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; }
@@ -438,60 +456,69 @@ struct XYval {
template<typename T>
struct XYZval {
union {
struct { T LINEAR_AXIS_ARGS(); };
struct { T LINEAR_AXIS_LIST(a, b, c, u, v, w); };
T pos[LINEAR_AXES];
struct { T NUM_AXIS_ARGS(); };
struct { T NUM_AXIS_LIST(a, b, c, _i, _j, _k, _u, _v, _w); };
T pos[NUM_AXES];
};
// Set all to 0
FI void reset() { LINEAR_AXIS_GANG(x =, y =, z =, i =, j =, k =) 0; }
FI void reset() { NUM_AXIS_GANG(x =, y =, z =, i =, j =, k =, u =, v =, w =) 0; }
// Setters taking struct types and arrays
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
FI void set(const XYval<T> pxy, const T pz) { LINEAR_AXIS_CODE(x = pxy.x, y = pxy.y, z = pz, NOOP, NOOP, NOOP); }
FI void set(const XYval<T> pxy, const T pz) { NUM_AXIS_CODE(x = pxy.x, y = pxy.y, z = pz, NOOP, NOOP, NOOP, NOOP, NOOP, NOOP); }
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
#if HAS_Z_AXIS
FI void set(const T (&arr)[LINEAR_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
FI void set(const T (&arr)[NUM_AXES]) { NUM_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5], u = arr[6], v = arr[7], w = arr[8]); }
FI void set(NUM_AXIS_ARGS(const T)) { NUM_AXIS_CODE(a = x, b = y, c = z, _i = i, _j = j, _k = k, _u = u, _v = v, _w = w ); }
#endif
#if LOGICAL_AXES > LINEAR_AXES
FI void set(const T (&arr)[LOGICAL_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
FI void set(LOGICAL_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
#if LOGICAL_AXES > NUM_AXES
FI void set(const T (&arr)[LOGICAL_AXES]) { NUM_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5], u = arr[6], v = arr[7], w = arr[8]); }
FI void set(LOGICAL_AXIS_ARGS(const T)) { NUM_AXIS_CODE(a = x, b = y, c = z, _i = i, _j = j, _k = k, _u = u, _v = v, _w = w ); }
#if DISTINCT_AXES > LOGICAL_AXES
FI void set(const T (&arr)[DISTINCT_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
FI void set(const T (&arr)[DISTINCT_AXES]) { NUM_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5], u = arr[6], v = arr[7], w = arr[8]); }
#endif
#endif
#if HAS_I_AXIS
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
#endif
#if HAS_J_AXIS
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
#endif
#if HAS_K_AXIS
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
#endif
#if HAS_U_AXIS
FI void set(const T px, const T py, const T pz, const T pi, const T pj, const T pk) { x = px; y = py; z = pz; i = pi; j = pj; k = pk; }
#endif
#if HAS_V_AXIS
FI void set(const T px, const T py, const T pz, const T pi, const T pj, const T pk, const T pm) { x = px; y = py; z = pz; i = pi; j = pj; k = pk; u = pu; }
#endif
#if HAS_W_AXIS
FI void set(const T px, const T py, const T pz, const T pi, const T pj, const T pk, const T pm, const T po) { x = px; y = py; z = pz; i = pi; j = pj; k = pk; u = pu; v = pv; }
#endif
// Length reduced to one dimension
FI T magnitude() const { return (T)sqrtf(LINEAR_AXIS_GANG(x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
FI T magnitude() const { return (T)sqrtf(NUM_AXIS_GANG(x*x, + y*y, + z*z, + i*i, + j*j, + k*k, + u*u, + v*v, + w*w)); }
// Pointer to the data as a simple array
FI operator T* () { return pos; }
// If any element is true then it's true
FI operator bool() { return LINEAR_AXIS_GANG(x, || y, || z, || i, || j, || k); }
FI operator bool() { return NUM_AXIS_GANG(x, || y, || z, || i, || j, || k, || u, || v, || w); }
// Explicit copy and copies with conversion
FI XYZval<T> copy() const { XYZval<T> o = *this; return o; }
FI XYZval<T> ABS() const { return LINEAR_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
FI XYZval<int16_t> asInt() { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZval<int16_t> asInt() const { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZval<int32_t> asLong() { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZval<int32_t> asLong() const { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZval<int32_t> ROUNDL() { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZval<int32_t> ROUNDL() const { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZval<float> asFloat() { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZval<float> asFloat() const { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZval<float> reciprocal() const { return LINEAR_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
FI XYZval<T> ABS() const { return NUM_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k)), T(_ABS(u)), T(_ABS(v)), T(_ABS(w))); }
FI XYZval<int16_t> asInt() { return NUM_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
FI XYZval<int16_t> asInt() const { return NUM_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
FI XYZval<int32_t> asLong() { return NUM_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
FI XYZval<int32_t> asLong() const { return NUM_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
FI XYZval<int32_t> ROUNDL() { return NUM_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k)), int32_t(LROUND(u)), int32_t(LROUND(v)), int32_t(LROUND(w))); }
FI XYZval<int32_t> ROUNDL() const { return NUM_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k)), int32_t(LROUND(u)), int32_t(LROUND(v)), int32_t(LROUND(w))); }
FI XYZval<float> asFloat() { return NUM_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k), static_cast<float>(u), static_cast<float>(v), static_cast<float>(w)); }
FI XYZval<float> asFloat() const { return NUM_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k), static_cast<float>(u), static_cast<float>(v), static_cast<float>(w)); }
FI XYZval<float> reciprocal() const { return NUM_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k), _RECIP(u), _RECIP(v), _RECIP(w)); }
// Marlin workspace shifting is done with G92 and M206
FI XYZval<float> asLogical() const { XYZval<float> o = asFloat(); toLogical(o); return o; }
@@ -502,78 +529,78 @@ struct XYZval {
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
// Cast to a type with more fields by making a new object
FI operator XYZEval<T>() const { return LINEAR_AXIS_ARRAY(x, y, z, i, j, k); }
FI operator XYZEval<T>() const { return NUM_AXIS_ARRAY(x, y, z, i, j, k, u, v, w); }
// Accessor via an AxisEnum (or any integer) [index]
FI T& operator[](const int n) { return pos[n]; }
FI const T& operator[](const int n) const { return pos[n]; }
// Assignment operator overrides do the expected thing
FI XYZval<T>& operator= (const T v) { set(ARRAY_N_1(LINEAR_AXES, v)); return *this; }
FI XYZval<T>& operator= (const T v) { set(ARRAY_N_1(NUM_AXES, v)); return *this; }
FI XYZval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y ); return *this; }
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(NUM_AXIS_ELEM(rs)); return *this; }
// Override other operators to get intuitive behaviors
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI const XYZval<T> operator-() const { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
FI XYZval<T> operator-() { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k, ls.u += rs.u, ls.v += rs.v, ls.w += rs.w); return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k, ls.u += rs.u, ls.v += rs.v, ls.w += rs.w); return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k, ls.u -= rs.u, ls.v -= rs.v, ls.w -= rs.w); return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k, ls.u -= rs.u, ls.v -= rs.v, ls.w -= rs.w); return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k, ls.u *= rs.u, ls.v *= rs.v, ls.w *= rs.w); return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k, ls.u *= rs.u, ls.v *= rs.v, ls.w *= rs.w); return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k, ls.u /= rs.u, ls.v /= rs.v, ls.w /= rs.w); return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k, ls.u /= rs.u, ls.v /= rs.v, ls.w /= rs.w); return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k, ls.u += rs.u, ls.v += rs.v, ls.w += rs.w); return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k, ls.u += rs.u, ls.v += rs.v, ls.w += rs.w); return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k, ls.u -= rs.u, ls.v -= rs.v, ls.w -= rs.w); return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k, ls.u -= rs.u, ls.v -= rs.v, ls.w -= rs.w); return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k, ls.u *= rs.u, ls.v *= rs.v, ls.w *= rs.w); return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k, ls.u *= rs.u, ls.v *= rs.v, ls.w *= rs.w); return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k, ls.u /= rs.u, ls.v /= rs.v, ls.w /= rs.w); return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k, ls.u /= rs.u, ls.v /= rs.v, ls.w /= rs.w); return ls; }
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v, ls.u *= v, ls.v *= v, ls.w *= v ); return ls; }
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v, ls.u *= v, ls.v *= v, ls.w *= v ); return ls; }
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v, ls.u *= v, ls.v *= v, ls.w *= v ); return ls; }
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v, ls.u *= v, ls.v *= v, ls.w *= v ); return ls; }
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v, ls.u /= v, ls.v /= v, ls.w /= v ); return ls; }
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v, ls.u /= v, ls.v /= v, ls.w /= v ); return ls; }
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v, ls.u /= v, ls.v /= v, ls.w /= v ); return ls; }
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v, ls.u /= v, ls.v /= v, ls.w /= v ); return ls; }
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; NUM_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k), _RS(ls.u), _RS(ls.v), _RS(ls.w) ); return ls; }
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; NUM_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k), _RS(ls.u), _RS(ls.v), _RS(ls.w) ); return ls; }
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; NUM_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k), _LS(ls.u), _LS(ls.v), _LS(ls.w) ); return ls; }
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; NUM_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k), _LS(ls.u), _LS(ls.v), _LS(ls.w) ); return ls; }
FI const XYZval<T> operator-() const { XYZval<T> o = *this; NUM_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k, o.u = -u, o.v = -v, o.w = -w); return o; }
FI XYZval<T> operator-() { XYZval<T> o = *this; NUM_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k, o.u = -u, o.v = -v, o.w = -w); return o; }
// Modifier operators
FI XYZval<T>& operator+=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator-=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator*=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator/=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZval<T>& operator*=(const float &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
FI XYZval<T>& operator*=(const int &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
FI XYZval<T>& operator>>=(const int &v) { LINEAR_AXIS_CODE(_RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
FI XYZval<T>& operator<<=(const int &v) { LINEAR_AXIS_CODE(_LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
FI XYZval<T>& operator+=(const XYval<T> &rs) { NUM_AXIS_CODE(x += rs.x, y += rs.y, NOOP, NOOP, NOOP, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator-=(const XYval<T> &rs) { NUM_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP, NOOP, NOOP, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator*=(const XYval<T> &rs) { NUM_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP, NOOP, NOOP, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator/=(const XYval<T> &rs) { NUM_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP, NOOP, NOOP, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator+=(const XYZval<T> &rs) { NUM_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k, u += rs.u, v += rs.v, w += rs.w); return *this; }
FI XYZval<T>& operator-=(const XYZval<T> &rs) { NUM_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k, u -= rs.u, v -= rs.v, w -= rs.w); return *this; }
FI XYZval<T>& operator*=(const XYZval<T> &rs) { NUM_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k, u *= rs.u, v *= rs.v, w *= rs.w); return *this; }
FI XYZval<T>& operator/=(const XYZval<T> &rs) { NUM_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k, u /= rs.u, v /= rs.v, w /= rs.w); return *this; }
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { NUM_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k, u += rs.u, v += rs.v, w += rs.w); return *this; }
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { NUM_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k, u -= rs.u, v -= rs.v, w -= rs.w); return *this; }
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { NUM_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k, u *= rs.u, v *= rs.v, w *= rs.w); return *this; }
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { NUM_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k, u /= rs.u, v /= rs.v, w /= rs.w); return *this; }
FI XYZval<T>& operator*=(const float &v) { NUM_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v, u *= v, v *= v, w *= v); return *this; }
FI XYZval<T>& operator*=(const int &v) { NUM_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v, u *= v, v *= v, w *= v); return *this; }
FI XYZval<T>& operator>>=(const int &v) { NUM_AXIS_CODE(_RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k), _RS(u), _RS(v), _RS(w)); return *this; }
FI XYZval<T>& operator<<=(const int &v) { NUM_AXIS_CODE(_LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k), _LS(u), _LS(v), _LS(w)); return *this; }
// Exact comparisons. For floats a "NEAR" operation may be better.
FI bool operator==(const XYZEval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator==(const XYZEval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator==(const XYZEval<T> &rs) { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
FI bool operator==(const XYZEval<T> &rs) const { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
FI bool operator!=(const XYZEval<T> &rs) { return !operator==(rs); }
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
};
@@ -585,56 +612,66 @@ template<typename T>
struct XYZEval {
union {
struct { T LOGICAL_AXIS_ARGS(); };
struct { T LOGICAL_AXIS_LIST(_e, a, b, c, u, v, w); };
struct { T LOGICAL_AXIS_LIST(_e, a, b, c, _i, _j, _k, _u, _v, _w); };
T pos[LOGICAL_AXES];
};
// Reset all to 0
FI void reset() { LOGICAL_AXIS_GANG(e =, x =, y =, z =, i =, j =, k =) 0; }
FI void reset() { LOGICAL_AXIS_GANG(e =, x =, y =, z =, i =, j =, k =, u =, v =, w =) 0; }
// Setters for some number of linear axes, not all
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
#if HAS_I_AXIS
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
#endif
#if HAS_J_AXIS
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
#endif
#if HAS_K_AXIS
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
#endif
#if HAS_U_AXIS
FI void set(const T px, const T py, const T pz, const T pi, const T pj, const T pk) { x = px; y = py; z = pz; i = pi; j = pj; k = pk; }
#endif
#if HAS_V_AXIS
FI void set(const T px, const T py, const T pz, const T pi, const T pj, const T pk, const T pm) { x = px; y = py; z = pz; i = pi; j = pj; k = pk; u = pu; }
#endif
#if HAS_W_AXIS
FI void set(const T px, const T py, const T pz, const T pi, const T pj, const T pk, const T pm, const T po) { x = px; y = py; z = pz; i = pi; j = pj; k = pk; u = pm; v = pv; }
#endif
// Setters taking struct types and arrays
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
FI void set(const XYZval<T> pxyz) { set(LINEAR_AXIS_ELEM(pxyz)); }
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
FI void set(const XYZval<T> pxyz) { set(NUM_AXIS_ELEM(pxyz)); }
#if HAS_Z_AXIS
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k); }
FI void set(NUM_AXIS_ARGS(const T)) { NUM_AXIS_CODE(a = x, b = y, c = z, _i = i, _j = j, _k = k, _u = u, _v = v, _w = w); }
#endif
FI void set(const XYval<T> pxy, const T pz) { set(pxy); TERN_(HAS_Z_AXIS, z = pz); }
#if LOGICAL_AXES > LINEAR_AXES
FI void set(const XYval<T> pxy, const T pz) { set(pxy); TERN_(HAS_Z_AXIS, z = pz); }
#if LOGICAL_AXES > NUM_AXES
FI void set(const XYval<T> pxy, const T pz, const T pe) { set(pxy, pz); e = pe; }
FI void set(const XYZval<T> pxyz, const T pe) { set(pxyz); e = pe; }
FI void set(LOGICAL_AXIS_ARGS(const T)) { LOGICAL_AXIS_CODE(_e = e, a = x, b = y, c = z, u = i, v = j, w = k); }
FI void set(const XYZval<T> pxyz, const T pe) { set(pxyz); e = pe; }
FI void set(LOGICAL_AXIS_ARGS(const T)) { LOGICAL_AXIS_CODE(_e = e, a = x, b = y, c = z, _i = i, _j = j, _k = k, _u = u, _v = v, _w = w); }
#endif
// Length reduced to one dimension
FI T magnitude() const { return (T)sqrtf(LOGICAL_AXIS_GANG(+ e*e, + x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
FI T magnitude() const { return (T)sqrtf(LOGICAL_AXIS_GANG(+ e*e, + x*x, + y*y, + z*z, + i*i, + j*j, + k*k, + u*u, + v*v, + w*w)); }
// Pointer to the data as a simple array
FI operator T* () { return pos; }
// If any element is true then it's true
FI operator bool() { return 0 LOGICAL_AXIS_GANG(|| e, || x, || y, || z, || i, || j, || k); }
FI operator bool() { return 0 LOGICAL_AXIS_GANG(|| e, || x, || y, || z, || i, || j, || k, || u, || v, || w); }
// Explicit copy and copies with conversion
FI XYZEval<T> copy() const { XYZEval<T> o = *this; return o; }
FI XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
FI XYZEval<int16_t> asInt() { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZEval<int32_t> asLong() { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZEval<int32_t> ROUNDL() { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZEval<float> asFloat() { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
FI XYZEval<T> copy() const { XYZEval<T> v = *this; return v; }
FI XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k)), T(_ABS(u)), T(_ABS(v)), T(_ABS(w))); }
FI XYZEval<int16_t> asInt() { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
FI XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k), int16_t(u), int16_t(v), int16_t(w)); }
FI XYZEval<int32_t> asLong() { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
FI XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k), int32_t(u), int32_t(v), int32_t(w)); }
FI XYZEval<int32_t> ROUNDL() { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k)), int32_t(LROUND(u)), int32_t(LROUND(v)), int32_t(LROUND(w))); }
FI XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k)), int32_t(LROUND(u)), int32_t(LROUND(v)), int32_t(LROUND(w))); }
FI XYZEval<float> asFloat() { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k), static_cast<float>(u), static_cast<float>(v), static_cast<float>(w)); }
FI XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k), static_cast<float>(u), static_cast<float>(v), static_cast<float>(w)); }
FI XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k), _RECIP(u), _RECIP(v), _RECIP(w)); }
// Marlin workspace shifting is done with G92 and M206
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
@@ -651,9 +688,9 @@ struct XYZEval {
FI const T& operator[](const int n) const { return pos[n]; }
// Assignment operator overrides do the expected thing
FI XYZEval<T>& operator= (const T v) { set(LIST_N_1(LINEAR_AXES, v)); return *this; }
FI XYZEval<T>& operator= (const T v) { set(LOGICAL_AXIS_LIST_1(v)); return *this; }
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; }
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(NUM_AXIS_ELEM(rs)); return *this; }
// Override other operators to get intuitive behaviors
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
@@ -664,57 +701,57 @@ struct XYZEval {
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI const XYZEval<T> operator-() const { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
FI XYZEval<T> operator-() { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k, ls.u += rs.u, ls.v += rs.v, ls.w += rs.w); return ls; }
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k, ls.u += rs.u, ls.v += rs.v, ls.w += rs.w); return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k, ls.u -= rs.u, ls.v -= rs.v, ls.w -= rs.w); return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k, ls.u -= rs.u, ls.v -= rs.v, ls.w -= rs.w); return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k, ls.u *= rs.u, ls.v *= rs.v, ls.w *= rs.w); return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k, ls.u *= rs.u, ls.v *= rs.v, ls.w *= rs.w); return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k, ls.u /= rs.u, ls.v /= rs.v, ls.w /= rs.w); return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; NUM_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k, ls.u /= rs.u, ls.v /= rs.v, ls.w /= rs.w); return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k, ls.u += rs.u, ls.v += rs.v, ls.w += rs.w); return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k, ls.u += rs.u, ls.v += rs.v, ls.w += rs.w); return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k, ls.u -= rs.u, ls.v -= rs.v, ls.w -= rs.w); return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k, ls.u -= rs.u, ls.v -= rs.v, ls.w -= rs.w); return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k, ls.u *= rs.u, ls.v *= rs.v, ls.w *= rs.w); return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k, ls.u *= rs.u, ls.v *= rs.v, ls.w *= rs.w); return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k, ls.u /= rs.u, ls.v /= rs.v, ls.w /= rs.w); return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k, ls.u /= rs.u, ls.v /= rs.v, ls.w /= rs.w); return ls; }
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v, ls.u *= v, ls.v *= v, ls.w *= v ); return ls; }
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v, ls.u *= v, ls.v *= v, ls.w *= v ); return ls; }
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v, ls.u *= v, ls.v *= v, ls.w *= v ); return ls; }
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v, ls.u *= v, ls.v *= v, ls.w *= v ); return ls; }
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v, ls.u /= v, ls.v /= v, ls.w /= v ); return ls; }
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v, ls.u /= v, ls.v /= v, ls.w /= v ); return ls; }
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v, ls.u /= v, ls.v /= v, ls.w /= v ); return ls; }
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v, ls.u /= v, ls.v /= v, ls.w /= v ); return ls; }
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k), _RS(ls.u), _RS(ls.v), _RS(ls.w) ); return ls; }
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k), _RS(ls.u), _RS(ls.v), _RS(ls.w) ); return ls; }
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k), _LS(ls.u), _LS(ls.v), _LS(ls.w) ); return ls; }
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k), _LS(ls.u), _LS(ls.v), _LS(ls.w) ); return ls; }
FI const XYZEval<T> operator-() const { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k, -u, -v, -w); }
FI XYZEval<T> operator-() { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k, -u, -v, -w); }
// Modifier operators
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e += rs.e, x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e -= rs.e, x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e *= rs.e, x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e /= rs.e, x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZEval<T>& operator*=(const T &v) { LOGICAL_AXIS_CODE(e *= v, x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
FI XYZEval<T>& operator>>=(const int &v) { LOGICAL_AXIS_CODE(_RS(e), _RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
FI XYZEval<T>& operator<<=(const int &v) { LOGICAL_AXIS_CODE(_LS(e), _LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { NUM_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k, u += rs.u, v += rs.v, w += rs.w); return *this; }
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { NUM_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k, u -= rs.u, v -= rs.v, w -= rs.w); return *this; }
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { NUM_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k, u *= rs.u, v *= rs.v, w *= rs.w); return *this; }
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { NUM_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k, u /= rs.u, v /= rs.v, w /= rs.w); return *this; }
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e += rs.e, x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k, u += rs.u, v += rs.v, w += rs.w); return *this; }
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e -= rs.e, x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k, u -= rs.u, v -= rs.v, w -= rs.w); return *this; }
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e *= rs.e, x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k, u *= rs.u, v *= rs.v, w *= rs.w); return *this; }
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e /= rs.e, x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k, u /= rs.u, v /= rs.v, w /= rs.w); return *this; }
FI XYZEval<T>& operator*=(const T &v) { LOGICAL_AXIS_CODE(e *= v, x *= v, y *= v, z *= v, i *= v, j *= v, k *= v, u *= v, v *= v, w *= v); return *this; }
FI XYZEval<T>& operator>>=(const int &v) { LOGICAL_AXIS_CODE(_RS(e), _RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k), _RS(u), _RS(v), _RS(w)); return *this; }
FI XYZEval<T>& operator<<=(const int &v) { LOGICAL_AXIS_CODE(_LS(e), _LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k), _LS(u), _LS(v), _LS(w)); return *this; }
// Exact comparisons. For floats a "NEAR" operation may be better.
FI bool operator==(const XYZval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator==(const XYZval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator==(const XYZval<T> &rs) { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
FI bool operator==(const XYZval<T> &rs) const { return true NUM_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k, && u == rs.u, && v == rs.v, && w == rs.w); }
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); }
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
};

View File

@@ -29,10 +29,10 @@ void safe_delay(millis_t ms) {
while (ms > 50) {
ms -= 50;
delay(50);
thermalManager.manage_heater();
thermalManager.task();
}
delay(ms);
thermalManager.manage_heater(); // This keeps us safe if too many small safe_delay() calls are made
thermalManager.task(); // This keeps us safe if too many small safe_delay() calls are made
}
// A delay to provide brittle hosts time to receive bytes
@@ -51,7 +51,7 @@ void safe_delay(millis_t ms) {
#include "../module/probe.h"
#include "../module/motion.h"
#include "../module/stepper.h"
#include "../module/planner.h"
#include "../libs/numtostr.h"
#include "../feature/bedlevel/bedlevel.h"
@@ -70,6 +70,7 @@ void safe_delay(millis_t ms) {
TERN_(NOZZLE_AS_PROBE, "NOZZLE_AS_PROBE")
TERN_(FIX_MOUNTED_PROBE, "FIX_MOUNTED_PROBE")
TERN_(HAS_Z_SERVO_PROBE, TERN(BLTOUCH, "BLTOUCH", "SERVO PROBE"))
TERN_(BD_SENSOR, "BD_SENSOR")
TERN_(TOUCH_MI_PROBE, "TOUCH_MI_PROBE")
TERN_(Z_PROBE_SLED, "Z_PROBE_SLED")
TERN_(Z_PROBE_ALLEN_KEY, "Z_PROBE_ALLEN_KEY")
@@ -125,18 +126,17 @@ void safe_delay(millis_t ms) {
#endif
#if ABL_PLANAR
SERIAL_ECHOPGM("ABL Adjustment");
LOOP_LINEAR_AXES(a) {
SERIAL_CHAR(' ', AXIS_CHAR(a));
LOOP_NUM_AXES(a) {
SERIAL_ECHOPGM_P((PGM_P)pgm_read_ptr(&SP_AXIS_STR[a]));
serial_offset(planner.get_axis_position_mm(AxisEnum(a)) - current_position[a]);
}
#else
#if ENABLED(AUTO_BED_LEVELING_UBL)
SERIAL_ECHOPGM("UBL Adjustment Z");
const float rz = bedlevel.get_z_correction(current_position);
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
SERIAL_ECHOPGM("ABL Adjustment Z");
const float rz = bedlevel.get_z_correction(current_position);
#endif
const float rz = bedlevel.get_z_correction(current_position);
SERIAL_ECHO(ftostr43sign(rz, '+'));
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (planner.z_fade_height) {
@@ -156,11 +156,13 @@ void safe_delay(millis_t ms) {
SERIAL_ECHOPGM("Mesh Bed Leveling");
if (planner.leveling_active) {
SERIAL_ECHOLNPGM(" (enabled)");
SERIAL_ECHOPGM("MBL Adjustment Z", ftostr43sign(bedlevel.get_z(current_position), '+'));
const float z_offset = bedlevel.get_z_offset(),
z_correction = bedlevel.get_z_correction(current_position);
SERIAL_ECHOPGM("MBL Adjustment Z", ftostr43sign(z_offset + z_correction, '+'));
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (planner.z_fade_height) {
SERIAL_ECHOPGM(" (", ftostr43sign(
bedlevel.get_z(current_position, planner.fade_scaling_factor_for_z(current_position.z)), '+'
z_offset + z_correction * planner.fade_scaling_factor_for_z(current_position.z), '+'
));
SERIAL_CHAR(')');
}

View File

@@ -59,6 +59,11 @@ void safe_delay(millis_t ms); // Delay ensuring that temperatures are
#define log_machine_info() NOOP
#endif
/**
* A restorer instance remembers a variable's value before setting a
* new value, then restores the old value when it goes out of scope.
* Put operator= on your type to get extended behavior on value change.
*/
template<typename T>
class restorer {
T& ref_;
@@ -77,10 +82,13 @@ public:
// in the range 0-100 while avoiding rounding artifacts
constexpr uint8_t ui8_to_percent(const uint8_t i) { return (int(i) * 100 + 127) / 255; }
const xyze_char_t axis_codes LOGICAL_AXIS_ARRAY('E', 'X', 'Y', 'Z', AXIS4_NAME, AXIS5_NAME, AXIS6_NAME);
#if LINEAR_AXES <= XYZ
// Axis names for G-code parsing, reports, etc.
const xyze_char_t axis_codes LOGICAL_AXIS_ARRAY('E', 'X', 'Y', 'Z', AXIS4_NAME, AXIS5_NAME, AXIS6_NAME, AXIS7_NAME, AXIS8_NAME, AXIS9_NAME);
#if NUM_AXES <= XYZ && !HAS_EXTRUDERS
#define AXIS_CHAR(A) ((char)('X' + A))
#define IAXIS_CHAR AXIS_CHAR
#else
const xyze_char_t iaxis_codes LOGICAL_AXIS_ARRAY('E', 'X', 'Y', 'Z', 'I', 'J', 'K', 'U', 'V', 'W');
#define AXIS_CHAR(A) axis_codes[A]
#define IAXIS_CHAR(A) iaxis_codes[A]
#endif

View File

@@ -54,6 +54,18 @@ void Babystep::add_mm(const AxisEnum axis, const_float_t mm) {
add_steps(axis, mm * planner.settings.axis_steps_per_mm[axis]);
}
#if ENABLED(BD_SENSOR)
void Babystep::set_mm(const AxisEnum axis, const_float_t mm) {
//if (DISABLED(BABYSTEP_WITHOUT_HOMING) && axes_should_home(_BV(axis))) return;
const int16_t distance = mm * planner.settings.axis_steps_per_mm[axis];
accum = distance; // Count up babysteps for the UI
steps[BS_AXIS_IND(axis)] = distance;
TERN_(BABYSTEP_DISPLAY_TOTAL, axis_total[BS_TOTAL_IND(axis)] = distance);
TERN_(BABYSTEP_ALWAYS_AVAILABLE, gcode.reset_stepper_timeout());
TERN_(INTEGRATED_BABYSTEPPING, if (has_steps()) stepper.initiateBabystepping());
}
#endif
void Babystep::add_steps(const AxisEnum axis, const int16_t distance) {
if (DISABLED(BABYSTEP_WITHOUT_HOMING) && axes_should_home(_BV(axis))) return;

View File

@@ -63,6 +63,10 @@ public:
static void add_steps(const AxisEnum axis, const int16_t distance);
static void add_mm(const AxisEnum axis, const_float_t mm);
#if ENABLED(BD_SENSOR)
static void set_mm(const AxisEnum axis, const_float_t mm);
#endif
static bool has_steps() {
return steps[BS_AXIS_IND(X_AXIS)] || steps[BS_AXIS_IND(Y_AXIS)] || steps[BS_AXIS_IND(Z_AXIS)];
}

View File

@@ -97,7 +97,7 @@ void Backlash::add_correction_steps(const int32_t &da, const int32_t &db, const
const float f_corr = float(correction) / all_on;
LOOP_LINEAR_AXES(axis) {
LOOP_NUM_AXES(axis) {
if (distance_mm[axis]) {
const bool reverse = TEST(dm, axis);
@@ -145,7 +145,7 @@ void Backlash::add_correction_steps(const int32_t &da, const int32_t &db, const
}
int32_t Backlash::get_applied_steps(const AxisEnum axis) {
if (axis >= LINEAR_AXES) return 0;
if (axis >= NUM_AXES) return 0;
const bool reverse = TEST(last_direction_bits, axis);
@@ -162,32 +162,37 @@ int32_t Backlash::get_applied_steps(const AxisEnum axis) {
}
class Backlash::StepAdjuster {
xyz_long_t applied_steps;
public:
StepAdjuster() {
LOOP_LINEAR_AXES(axis) applied_steps[axis] = backlash.get_applied_steps((AxisEnum)axis);
}
~StepAdjuster() {
// after backlash compensation parameter changes, ensure applied step count does not change
LOOP_LINEAR_AXES(axis) residual_error[axis] += backlash.get_applied_steps((AxisEnum)axis) - applied_steps[axis];
}
private:
xyz_long_t applied_steps;
public:
StepAdjuster() {
LOOP_NUM_AXES(axis) applied_steps[axis] = backlash.get_applied_steps((AxisEnum)axis);
}
~StepAdjuster() {
// after backlash compensation parameter changes, ensure applied step count does not change
LOOP_NUM_AXES(axis) residual_error[axis] += backlash.get_applied_steps((AxisEnum)axis) - applied_steps[axis];
}
};
void Backlash::set_correction_uint8(const uint8_t v) {
StepAdjuster adjuster;
correction = v;
}
#if ENABLED(BACKLASH_GCODE)
void Backlash::set_distance_mm(const AxisEnum axis, const float v) {
StepAdjuster adjuster;
distance_mm[axis] = v;
}
#ifdef BACKLASH_SMOOTHING_MM
void Backlash::set_smoothing_mm(const float v) {
void Backlash::set_correction_uint8(const uint8_t v) {
StepAdjuster adjuster;
smoothing_mm = v;
correction = v;
}
void Backlash::set_distance_mm(const AxisEnum axis, const float v) {
StepAdjuster adjuster;
distance_mm[axis] = v;
}
#ifdef BACKLASH_SMOOTHING_MM
void Backlash::set_smoothing_mm(const float v) {
StepAdjuster adjuster;
smoothing_mm = v;
}
#endif
#endif
#if ENABLED(MEASURE_BACKLASH_WHEN_PROBING)

View File

@@ -0,0 +1,195 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2022 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(BD_SENSOR)
#include "../../../MarlinCore.h"
#include "../../../gcode/gcode.h"
#include "../../../module/settings.h"
#include "../../../module/motion.h"
#include "../../../module/planner.h"
#include "../../../module/stepper.h"
#include "../../../module/probe.h"
#include "../../../module/temperature.h"
#include "../../../module/endstops.h"
#include "../../babystep.h"
// I2C software Master library for segment bed heating and bed distance sensor
#include <Panda_segmentBed_I2C.h>
#include "bdl.h"
BDS_Leveling bdl;
//#define DEBUG_OUT_BD
// M102 S-5 Read raw Calibrate data
// M102 S-6 Start Calibrate
// M102 S4 Set the adjustable Z height value (e.g., 'M102 S4' means it will do adjusting while the Z height <= 0.4mm , disable with 'M102 S0'.)
// M102 S-1 Read sensor information
#define MAX_BD_HEIGHT 4.0f
#define CMD_START_READ_CALIBRATE_DATA 1017
#define CMD_END_READ_CALIBRATE_DATA 1018
#define CMD_START_CALIBRATE 1019
#define CMD_END_CALIBRATE 1021
#define CMD_READ_VERSION 1016
I2C_SegmentBED BD_I2C_SENSOR;
#define BD_SENSOR_I2C_ADDR 0x3C
int8_t BDS_Leveling::config_state;
uint8_t BDS_Leveling::homing;
void BDS_Leveling::echo_name() { SERIAL_ECHOPGM("Bed Distance Leveling"); }
void BDS_Leveling::init(uint8_t _sda, uint8_t _scl, uint16_t delay_s) {
int ret = BD_I2C_SENSOR.i2c_init(_sda, _scl, BD_SENSOR_I2C_ADDR, delay_s);
if (ret != 1) SERIAL_ECHOLNPGM("BD_I2C_SENSOR Init Fail return code:", ret);
config_state = 0;
}
float BDS_Leveling::read() {
const uint16_t tmp = BD_I2C_SENSOR.BD_i2c_read();
float BD_z = NAN;
if (BD_I2C_SENSOR.BD_Check_OddEven(tmp) && (tmp & 0x3FF) < 1020)
BD_z = (tmp & 0x3FF) / 100.0f;
return BD_z;
}
void BDS_Leveling::process() {
//if (config_state == 0) return;
static millis_t next_check_ms = 0; // starting at T=0
static float z_pose = 0.0f;
const millis_t ms = millis();
if (ELAPSED(ms, next_check_ms)) { // timed out (or first run)
next_check_ms = ms + (config_state < 0 ? 1000 : 100); // check at 1Hz or 10Hz
unsigned short tmp = 0;
const float cur_z = planner.get_axis_position_mm(Z_AXIS); //current_position.z
static float old_cur_z = cur_z,
old_buf_z = current_position.z;
tmp = BD_I2C_SENSOR.BD_i2c_read();
if (BD_I2C_SENSOR.BD_Check_OddEven(tmp) && (tmp & 0x3FF) < 1020) {
const float z_sensor = (tmp & 0x3FF) / 100.0f;
if (cur_z < 0) config_state = 0;
//float abs_z = current_position.z > cur_z ? (current_position.z - cur_z) : (cur_z - current_position.z);
if ( cur_z < config_state * 0.1f
&& config_state > 0
&& old_cur_z == cur_z
&& old_buf_z == current_position.z
&& z_sensor < (MAX_BD_HEIGHT)
) {
babystep.set_mm(Z_AXIS, cur_z - z_sensor);
#if ENABLED(DEBUG_OUT_BD)
SERIAL_ECHOLNPGM("BD:", z_sensor, ", Z:", cur_z, "|", current_position.z);
#endif
}
else {
babystep.set_mm(Z_AXIS, 0);
//if (old_cur_z <= cur_z) Z_DIR_WRITE(!INVERT_Z_DIR);
stepper.set_directions();
}
old_cur_z = cur_z;
old_buf_z = current_position.z;
endstops.bdp_state_update(z_sensor <= 0.01f);
//endstops.update();
}
else
stepper.set_directions();
#if ENABLED(DEBUG_OUT_BD)
SERIAL_ECHOLNPGM("BD:", tmp & 0x3FF, ", Z:", cur_z, "|", current_position.z);
if (BD_I2C_SENSOR.BD_Check_OddEven(tmp) == 0) SERIAL_ECHOLNPGM("errorCRC");
#endif
if ((tmp & 0x3FF) > 1020) {
BD_I2C_SENSOR.BD_i2c_stop();
safe_delay(10);
}
// read raw calibrate data
if (config_state == -5) {
BD_I2C_SENSOR.BD_i2c_write(CMD_START_READ_CALIBRATE_DATA);
safe_delay(1000);
for (int i = 0; i < MAX_BD_HEIGHT * 10; i++) {
tmp = BD_I2C_SENSOR.BD_i2c_read();
SERIAL_ECHOLNPGM("Calibrate data:", i, ",", tmp & 0x3FF, ", check:", BD_I2C_SENSOR.BD_Check_OddEven(tmp));
safe_delay(500);
}
config_state = 0;
BD_I2C_SENSOR.BD_i2c_write(CMD_END_READ_CALIBRATE_DATA);
safe_delay(500);
}
else if (config_state <= -6) { // Start Calibrate
safe_delay(100);
if (config_state == -6) {
//BD_I2C_SENSOR.BD_i2c_write(1019); // begin calibrate
//delay(1000);
gcode.stepper_inactive_time = SEC_TO_MS(60 * 5);
gcode.process_subcommands_now(F("M17 Z"));
gcode.process_subcommands_now(F("G1 Z0.0"));
z_pose = 0;
safe_delay(1000);
BD_I2C_SENSOR.BD_i2c_write(CMD_START_CALIBRATE); // Begin calibrate
SERIAL_ECHOLNPGM("Begin calibrate");
safe_delay(2000);
config_state = -7;
}
else if (planner.get_axis_position_mm(Z_AXIS) < 10.0f) {
if (z_pose >= MAX_BD_HEIGHT) {
BD_I2C_SENSOR.BD_i2c_write(CMD_END_CALIBRATE); // End calibrate
SERIAL_ECHOLNPGM("End calibrate data");
z_pose = 7;
config_state = 0;
safe_delay(1000);
}
else {
float tmp_k = 0;
char tmp_1[30];
sprintf_P(tmp_1, PSTR("G1 Z%d.%d"), int(z_pose), int(int(z_pose * 10) % 10));
gcode.process_subcommands_now(tmp_1);
SERIAL_ECHO(tmp_1);
SERIAL_ECHOLNPGM(" ,Z:", current_position.z);
while (tmp_k < (z_pose - 0.1f)) {
tmp_k = planner.get_axis_position_mm(Z_AXIS);
safe_delay(1);
}
safe_delay(800);
tmp = (z_pose + 0.0001f) * 10;
BD_I2C_SENSOR.BD_i2c_write(tmp);
SERIAL_ECHOLNPGM("w:", tmp, ",Zpose:", z_pose);
z_pose += 0.1001f;
//queue.enqueue_now_P(PSTR("G90"));
}
}
}
}
}
#endif // BD_SENSOR

View File

@@ -0,0 +1,36 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2022 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include <stdint.h>
class BDS_Leveling {
public:
static int8_t config_state;
static uint8_t homing;
static void echo_name();
static void init(uint8_t _sda, uint8_t _scl, uint16_t delay_s);
static void process();
static float read();
};
extern BDS_Leveling bdl;

View File

@@ -154,7 +154,7 @@ void reset_bed_level() {
#endif
LOOP_L_N(x, sx) {
SERIAL_CHAR(' ');
const float offset = values[x * sx + y];
const float offset = values[x * sy + y];
if (!isnan(offset)) {
if (offset >= 0) SERIAL_CHAR('+');
SERIAL_ECHO_F(offset, int(precision));

View File

@@ -31,7 +31,6 @@
#include "../../../libs/hex_print.h"
#include "../../../module/settings.h"
#include "../../../lcd/marlinui.h"
#include "../../../module/stepper.h"
#include "../../../module/planner.h"
#include "../../../module/motion.h"
#include "../../../module/probe.h"
@@ -317,6 +316,42 @@ void unified_bed_leveling::G29() {
// Send 'N' to force homing before G29 (internal only)
if (axes_should_home() || parser.seen_test('N')) gcode.home_all_axes();
TERN_(HAS_MULTI_HOTEND, if (active_extruder != 0) tool_change(0, true));
// Position bed horizontally and Z probe vertically.
#if defined(SAFE_BED_LEVELING_START_X) || defined(SAFE_BED_LEVELING_START_Y) || defined(SAFE_BED_LEVELING_START_Z) \
|| defined(SAFE_BED_LEVELING_START_I) || defined(SAFE_BED_LEVELING_START_J) || defined(SAFE_BED_LEVELING_START_K) \
|| defined(SAFE_BED_LEVELING_START_U) || defined(SAFE_BED_LEVELING_START_V) || defined(SAFE_BED_LEVELING_START_W)
xyze_pos_t safe_position = current_position;
#ifdef SAFE_BED_LEVELING_START_X
safe_position.x = SAFE_BED_LEVELING_START_X;
#endif
#ifdef SAFE_BED_LEVELING_START_Y
safe_position.y = SAFE_BED_LEVELING_START_Y;
#endif
#ifdef SAFE_BED_LEVELING_START_Z
safe_position.z = SAFE_BED_LEVELING_START_Z;
#endif
#ifdef SAFE_BED_LEVELING_START_I
safe_position.i = SAFE_BED_LEVELING_START_I;
#endif
#ifdef SAFE_BED_LEVELING_START_J
safe_position.j = SAFE_BED_LEVELING_START_J;
#endif
#ifdef SAFE_BED_LEVELING_START_K
safe_position.k = SAFE_BED_LEVELING_START_K;
#endif
#ifdef SAFE_BED_LEVELING_START_U
safe_position.u = SAFE_BED_LEVELING_START_U;
#endif
#ifdef SAFE_BED_LEVELING_START_V
safe_position.v = SAFE_BED_LEVELING_START_V;
#endif
#ifdef SAFE_BED_LEVELING_START_W
safe_position.w = SAFE_BED_LEVELING_START_W;
#endif
do_blocking_move_to(safe_position);
#endif
}
// Invalidate one or more nearby mesh points, possibly all.

View File

@@ -26,7 +26,6 @@
#include "../bedlevel.h"
#include "../../../module/planner.h"
#include "../../../module/stepper.h"
#include "../../../module/motion.h"
#if ENABLED(DELTA)
@@ -36,8 +35,18 @@
#include "../../../MarlinCore.h"
#include <math.h>
//#define DEBUG_UBL_MOTION
#define DEBUG_OUT ENABLED(DEBUG_UBL_MOTION)
#include "../../../core/debug_out.h"
#if !UBL_SEGMENTED
// TODO: The first and last parts of a move might result in very short segment(s)
// after getting split on the cell boundary, so moves like that should not
// get split. This will be most common for moves that start/end near the
// corners of cells. To fix the issue, simply check if the start/end of the line
// is very close to a cell boundary in advance and don't split the line there.
void unified_bed_leveling::line_to_destination_cartesian(const_feedRate_t scaled_fr_mm_s, const uint8_t extruder) {
/**
* Much of the nozzle movement will be within the same cell. So we will do as little computation
@@ -176,7 +185,9 @@
dest.z += z0;
planner.buffer_segment(dest, scaled_fr_mm_s, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
else
DEBUG_ECHOLNPGM("[ubl] skip Y segment");
}
// At the final destination? Usually not, but when on a Y Mesh Line it's completed.
@@ -225,7 +236,9 @@
dest.z += z0;
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
} //else printf("FIRST MOVE PRUNED ");
}
else
DEBUG_ECHOLNPGM("[ubl] skip Y segment");
}
if (xy_pos_t(current_position) != xy_pos_t(end))
@@ -360,11 +373,12 @@
#endif
NOLESS(segments, 1U); // Must have at least one segment
const float inv_segments = 1.0f / segments, // Reciprocal to save calculation
segment_xyz_mm = SQRT(cart_xy_mm_2 + sq(total.z)) * inv_segments; // Length of each segment
const float inv_segments = 1.0f / segments; // Reciprocal to save calculation
// Add hints to help optimize the move
PlannerHints hints(SQRT(cart_xy_mm_2 + sq(total.z)) * inv_segments); // Length of each segment
#if ENABLED(SCARA_FEEDRATE_SCALING)
const float inv_duration = scaled_fr_mm_s / segment_xyz_mm;
hints.inv_duration = scaled_fr_mm_s / hints.millimeters;
#endif
xyze_float_t diff = total * inv_segments;
@@ -378,13 +392,9 @@
if (!planner.leveling_active || !planner.leveling_active_at_z(destination.z)) {
while (--segments) {
raw += diff;
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm
OPTARG(SCARA_FEEDRATE_SCALING, inv_duration)
);
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, hints);
}
planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, segment_xyz_mm
OPTARG(SCARA_FEEDRATE_SCALING, inv_duration)
);
planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, hints);
return false; // Did not set current from destination
}
@@ -453,7 +463,7 @@
TERN_(ENABLE_LEVELING_FADE_HEIGHT, * fade_scaling_factor); // apply fade factor to interpolated height
const float oldz = raw.z; raw.z += z_cxcy;
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm OPTARG(SCARA_FEEDRATE_SCALING, inv_duration) );
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, hints);
raw.z = oldz;
if (segments == 0) // done with last segment

View File

@@ -45,7 +45,7 @@ void stop();
bool BLTouch::command(const BLTCommand cmd, const millis_t &ms) {
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("BLTouch Command :", cmd);
MOVE_SERVO(Z_PROBE_SERVO_NR, cmd);
servo[Z_PROBE_SERVO_NR].move(cmd);
safe_delay(_MAX(ms, (uint32_t)BLTOUCH_DELAY)); // BLTOUCH_DELAY is also the *minimum* delay
return triggered();
}

View File

@@ -11,7 +11,6 @@
#include "dac_dac084s085.h"
#include "../../MarlinCore.h"
#include "../../module/stepper.h"
#include "../../HAL/shared/Delay.h"
dac084s085::dac084s085() { }

View File

@@ -59,7 +59,7 @@ int StepperDAC::init() {
}
void StepperDAC::set_current_value(const uint8_t channel, uint16_t val) {
if (!dac_present) return;
if (!(dac_present && channel < LOGICAL_AXES)) return;
NOMORE(val, uint16_t(DAC_STEPPER_MAX));
@@ -84,13 +84,11 @@ void StepperDAC::print_values() {
if (!dac_present) return;
SERIAL_ECHO_MSG("Stepper current values in % (Amps):");
SERIAL_ECHO_START();
SERIAL_ECHOPGM_P(SP_X_LBL, dac_perc(X_AXIS), PSTR(" ("), dac_amps(X_AXIS), PSTR(")"));
#if HAS_Y_AXIS
SERIAL_ECHOPGM_P(SP_Y_LBL, dac_perc(Y_AXIS), PSTR(" ("), dac_amps(Y_AXIS), PSTR(")"));
#endif
#if HAS_Z_AXIS
SERIAL_ECHOPGM_P(SP_Z_LBL, dac_perc(Z_AXIS), PSTR(" ("), dac_amps(Z_AXIS), PSTR(")"));
#endif
LOOP_LOGICAL_AXES(a) {
SERIAL_CHAR(' ', IAXIS_CHAR(a), ':');
SERIAL_ECHO(dac_perc(a));
SERIAL_ECHOPGM_P(PSTR(" ("), dac_amps(AxisEnum(a)), PSTR(")"));
}
#if HAS_EXTRUDERS
SERIAL_ECHOLNPGM_P(SP_E_LBL, dac_perc(E_AXIS), PSTR(" ("), dac_amps(E_AXIS), PSTR(")"));
#endif

View File

@@ -143,14 +143,16 @@ namespace DirectStepping {
// special case for 8-bit, check if rolled back to 0
if (Cfg::DIRECTIONAL || !write_page_size) { // full 256 bytes
if (write_byte_idx) return true;
} else {
if (write_byte_idx < write_page_size) return true;
}
} else if (Cfg::DIRECTIONAL) {
if (write_byte_idx != Cfg::PAGE_SIZE) return true;
} else {
if (write_byte_idx < write_page_size) return true;
else if (write_byte_idx < write_page_size)
return true;
}
else if (Cfg::DIRECTIONAL) {
if (write_byte_idx != Cfg::PAGE_SIZE)
return true;
}
else if (write_byte_idx < write_page_size)
return true;
state = State::CHECKSUM;
return true;
@@ -161,11 +163,10 @@ namespace DirectStepping {
return true;
}
case State::UNFAIL:
if (c == 0) {
if (c == 0)
set_page_state(write_page_idx, PageState::FREE);
} else {
else
fatal_error = true;
}
state = State::MONITOR;
return true;
}

View File

@@ -49,7 +49,7 @@ void I2CPositionEncoder::init(const uint8_t address, const AxisEnum axis) {
initialized = true;
SERIAL_ECHOLNPGM("Setting up encoder on ", AS_CHAR(axis_codes[encoderAxis]), " axis, addr = ", address);
SERIAL_ECHOLNPGM("Setting up encoder on ", AS_CHAR(AXIS_CHAR(encoderAxis)), " axis, addr = ", address);
position = get_position();
}
@@ -67,7 +67,7 @@ void I2CPositionEncoder::update() {
/*
if (trusted) { //commented out as part of the note below
trusted = false;
SERIAL_ECHOLNPGM("Fault detected on ", AS_CHAR(axis_codes[encoderAxis]), " axis encoder. Disengaging error correction until module is trusted again.");
SERIAL_ECHOLNPGM("Fault detected on ", AS_CHAR(AXIS_CHAR(encoderAxis)), " axis encoder. Disengaging error correction until module is trusted again.");
}
*/
return;
@@ -92,7 +92,7 @@ void I2CPositionEncoder::update() {
if (millis() - lastErrorTime > I2CPE_TIME_TRUSTED) {
trusted = true;
SERIAL_ECHOLNPGM("Untrusted encoder module on ", AS_CHAR(axis_codes[encoderAxis]), " axis has been fault-free for set duration, reinstating error correction.");
SERIAL_ECHOLNPGM("Untrusted encoder module on ", AS_CHAR(AXIS_CHAR(encoderAxis)), " axis has been fault-free for set duration, reinstating error correction.");
//the encoder likely lost its place when the error occurred, so we'll reset and use the printer's
//idea of where it the axis is to re-initialize
@@ -172,7 +172,7 @@ void I2CPositionEncoder::update() {
float sumP = 0;
LOOP_L_N(i, I2CPE_ERR_PRST_ARRAY_SIZE) sumP += errPrst[i];
const int32_t errorP = int32_t(sumP * RECIPROCAL(I2CPE_ERR_PRST_ARRAY_SIZE));
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_CHAR(AXIS_CHAR(encoderAxis));
SERIAL_ECHOLNPGM(" : CORRECT ERR ", errorP * planner.mm_per_step[encoderAxis], "mm");
babystep.add_steps(encoderAxis, -LROUND(errorP));
errPrstIdx = 0;
@@ -192,7 +192,7 @@ void I2CPositionEncoder::update() {
if (ABS(error) > I2CPE_ERR_CNT_THRESH * planner.settings.axis_steps_per_mm[encoderAxis]) {
const millis_t ms = millis();
if (ELAPSED(ms, nextErrorCountTime)) {
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_CHAR(AXIS_CHAR(encoderAxis));
SERIAL_ECHOLNPGM(" : LARGE ERR ", error, "; diffSum=", diffSum);
errorCount++;
nextErrorCountTime = ms + I2CPE_ERR_CNT_DEBOUNCE_MS;
@@ -212,7 +212,7 @@ void I2CPositionEncoder::set_homed() {
homed = trusted = true;
#ifdef I2CPE_DEBUG
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_CHAR(AXIS_CHAR(encoderAxis));
SERIAL_ECHOLNPGM(" axis encoder homed, offset of ", zeroOffset, " ticks.");
#endif
}
@@ -223,7 +223,7 @@ void I2CPositionEncoder::set_unhomed() {
homed = trusted = false;
#ifdef I2CPE_DEBUG
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_CHAR(AXIS_CHAR(encoderAxis));
SERIAL_ECHOLNPGM(" axis encoder unhomed.");
#endif
}
@@ -231,7 +231,7 @@ void I2CPositionEncoder::set_unhomed() {
bool I2CPositionEncoder::passes_test(const bool report) {
if (report) {
if (H != I2CPE_MAG_SIG_GOOD) SERIAL_ECHOPGM("Warning. ");
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_CHAR(AXIS_CHAR(encoderAxis));
serial_ternary(H == I2CPE_MAG_SIG_BAD, F(" axis "), F("magnetic strip "), F("encoder "));
switch (H) {
case I2CPE_MAG_SIG_GOOD:
@@ -252,7 +252,7 @@ float I2CPositionEncoder::get_axis_error_mm(const bool report) {
error = ABS(diff) > 10000 ? 0 : diff; // Huge error is a bad reading
if (report) {
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_CHAR(AXIS_CHAR(encoderAxis));
SERIAL_ECHOLNPGM(" axis target=", target, "mm; actual=", actual, "mm; err=", error, "mm");
}
@@ -262,7 +262,7 @@ float I2CPositionEncoder::get_axis_error_mm(const bool report) {
int32_t I2CPositionEncoder::get_axis_error_steps(const bool report) {
if (!active) {
if (report) {
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_CHAR(AXIS_CHAR(encoderAxis));
SERIAL_ECHOLNPGM(" axis encoder not active!");
}
return 0;
@@ -287,7 +287,7 @@ int32_t I2CPositionEncoder::get_axis_error_steps(const bool report) {
errorPrev = error;
if (report) {
SERIAL_CHAR(axis_codes[encoderAxis]);
SERIAL_CHAR(AXIS_CHAR(encoderAxis));
SERIAL_ECHOLNPGM(" axis target=", target, "; actual=", encoderCountInStepperTicksScaled, "; err=", error);
}
@@ -337,7 +337,7 @@ bool I2CPositionEncoder::test_axis() {
ec = false;
xyze_pos_t startCoord, endCoord;
LOOP_LINEAR_AXES(a) {
LOOP_NUM_AXES(a) {
startCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
endCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
}
@@ -395,7 +395,7 @@ void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
travelDistance = endDistance - startDistance;
xyze_pos_t startCoord, endCoord;
LOOP_LINEAR_AXES(a) {
LOOP_NUM_AXES(a) {
startCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
endCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
}
@@ -657,7 +657,7 @@ void I2CPositionEncodersMgr::report_position(const int8_t idx, const bool units,
else {
if (noOffset) {
const int32_t raw_count = encoders[idx].get_raw_count();
SERIAL_CHAR(axis_codes[encoders[idx].get_axis()], ' ');
SERIAL_CHAR(AXIS_CHAR(encoders[idx).get_axis()], ' ');
for (uint8_t j = 31; j > 0; j--)
SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j)));
@@ -712,7 +712,7 @@ void I2CPositionEncodersMgr::change_module_address(const uint8_t oldaddr, const
// and enable it (it will likely have failed initialization on power-up, before the address change).
const int8_t idx = idx_from_addr(newaddr);
if (idx >= 0 && !encoders[idx].get_active()) {
SERIAL_CHAR(axis_codes[encoders[idx].get_axis()]);
SERIAL_CHAR(AXIS_CHAR(encoders[idx).get_axis()]);
SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again.");
encoders[idx].set_active(encoders[idx].passes_test(true));
}
@@ -814,7 +814,7 @@ void I2CPositionEncodersMgr::M860() {
if (I2CPE_idx == 0xFF) {
LOOP_LOGICAL_AXES(i) {
if (!I2CPE_anyaxis || parser.seen_test(axis_codes[i])) {
if (!I2CPE_anyaxis || parser.seen_test(AXIS_CHAR(i))) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_position(idx, hasU, hasO);
}
@@ -841,7 +841,7 @@ void I2CPositionEncodersMgr::M861() {
if (I2CPE_idx == 0xFF) {
LOOP_LOGICAL_AXES(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_status(idx);
}
@@ -869,7 +869,7 @@ void I2CPositionEncodersMgr::M862() {
if (I2CPE_idx == 0xFF) {
LOOP_LOGICAL_AXES(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) test_axis(idx);
}
@@ -900,7 +900,7 @@ void I2CPositionEncodersMgr::M863() {
if (I2CPE_idx == 0xFF) {
LOOP_LOGICAL_AXES(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) calibrate_steps_mm(idx, iterations);
}
@@ -976,7 +976,7 @@ void I2CPositionEncodersMgr::M865() {
if (!I2CPE_addr) {
LOOP_LOGICAL_AXES(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_module_firmware(encoders[idx].get_address());
}
@@ -1007,7 +1007,7 @@ void I2CPositionEncodersMgr::M866() {
if (I2CPE_idx == 0xFF) {
LOOP_LOGICAL_AXES(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) {
if (hasR)
@@ -1045,7 +1045,7 @@ void I2CPositionEncodersMgr::M867() {
if (I2CPE_idx == 0xFF) {
LOOP_LOGICAL_AXES(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) {
const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff;
@@ -1081,7 +1081,7 @@ void I2CPositionEncodersMgr::M868() {
if (I2CPE_idx == 0xFF) {
LOOP_LOGICAL_AXES(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) {
if (newThreshold != -9999)
@@ -1115,7 +1115,7 @@ void I2CPositionEncodersMgr::M869() {
if (I2CPE_idx == 0xFF) {
LOOP_LOGICAL_AXES(i) {
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
if (!I2CPE_anyaxis || parser.seen(AXIS_CHAR(i))) {
const uint8_t idx = idx_from_axis(AxisEnum(i));
if ((int8_t)idx >= 0) report_error(idx);
}

View File

@@ -261,32 +261,32 @@ class I2CPositionEncodersMgr {
static void report_error_count(const int8_t idx, const AxisEnum axis) {
CHECK_IDX();
SERIAL_ECHOLNPGM("Error count on ", AS_CHAR(axis_codes[axis]), " axis is ", encoders[idx].get_error_count());
SERIAL_ECHOLNPGM("Error count on ", AS_CHAR(AXIS_CHAR(axis)), " axis is ", encoders[idx].get_error_count());
}
static void reset_error_count(const int8_t idx, const AxisEnum axis) {
CHECK_IDX();
encoders[idx].set_error_count(0);
SERIAL_ECHOLNPGM("Error count on ", AS_CHAR(axis_codes[axis]), " axis has been reset.");
SERIAL_ECHOLNPGM("Error count on ", AS_CHAR(AXIS_CHAR(axis)), " axis has been reset.");
}
static void enable_ec(const int8_t idx, const bool enabled, const AxisEnum axis) {
CHECK_IDX();
encoders[idx].set_ec_enabled(enabled);
SERIAL_ECHOPGM("Error correction on ", AS_CHAR(axis_codes[axis]));
SERIAL_ECHOPGM("Error correction on ", AS_CHAR(AXIS_CHAR(axis)));
SERIAL_ECHO_TERNARY(encoders[idx].get_ec_enabled(), " axis is ", "en", "dis", "abled.\n");
}
static void set_ec_threshold(const int8_t idx, const float newThreshold, const AxisEnum axis) {
CHECK_IDX();
encoders[idx].set_ec_threshold(newThreshold);
SERIAL_ECHOLNPGM("Error correct threshold for ", AS_CHAR(axis_codes[axis]), " axis set to ", newThreshold, "mm.");
SERIAL_ECHOLNPGM("Error correct threshold for ", AS_CHAR(AXIS_CHAR(axis)), " axis set to ", newThreshold, "mm.");
}
static void get_ec_threshold(const int8_t idx, const AxisEnum axis) {
CHECK_IDX();
const float threshold = encoders[idx].get_ec_threshold();
SERIAL_ECHOLNPGM("Error correct threshold for ", AS_CHAR(axis_codes[axis]), " axis is ", threshold, "mm.");
SERIAL_ECHOLNPGM("Error correct threshold for ", AS_CHAR(AXIS_CHAR(axis)), " axis is ", threshold, "mm.");
}
static int8_t idx_from_axis(const AxisEnum axis) {

View File

@@ -34,7 +34,6 @@ FWRetract fwretract; // Single instance - this calls the constructor
#include "../module/motion.h"
#include "../module/planner.h"
#include "../module/stepper.h"
#include "../gcode/gcode.h"

View File

@@ -163,7 +163,7 @@ Joystick joystick;
// norm_jog values of [-1 .. 1] maps linearly to [-feedrate .. feedrate]
xyz_float_t move_dist{0};
float hypot2 = 0;
LOOP_LINEAR_AXES(i) if (norm_jog[i]) {
LOOP_NUM_AXES(i) if (norm_jog[i]) {
move_dist[i] = seg_time * norm_jog[i] * TERN(EXTENSIBLE_UI, manual_feedrate_mm_s, planner.settings.max_feedrate_mm_s)[i];
hypot2 += sq(move_dist[i]);
}
@@ -172,8 +172,9 @@ Joystick joystick;
current_position += move_dist;
apply_motion_limits(current_position);
const float length = sqrt(hypot2);
PlannerHints hints(length);
injecting_now = true;
planner.buffer_line(current_position, length / seg_time, active_extruder, length);
planner.buffer_line(current_position, length / seg_time, active_extruder, hints);
injecting_now = false;
}
}

View File

@@ -131,6 +131,13 @@ public:
// Accessors
static uint16_t pixels() { return adaneo1.numPixels() * TERN1(NEOPIXEL2_INSERIES, 2); }
static uint32_t pixel_color(const uint16_t n) {
#if ENABLED(NEOPIXEL2_INSERIES)
if (n >= NEOPIXEL_PIXELS) return adaneo2.getPixelColor(n - (NEOPIXEL_PIXELS));
#endif
return adaneo1.getPixelColor(n);
}
static uint8_t brightness() { return adaneo1.getBrightness(); }
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b OPTARG(HAS_WHITE_LED, uint8_t w)) {
@@ -174,6 +181,7 @@ extern Marlin_NeoPixel neo;
// Accessors
static uint16_t pixels() { return adaneo.numPixels();}
static uint32_t pixel_color(const uint16_t n) { return adaneo.getPixelColor(n); }
static uint8_t brightness() { return adaneo.getBrightness(); }
static uint32_t Color(uint8_t r, uint8_t g, uint8_t b OPTARG(HAS_WHITE_LED2, uint8_t w)) {
return adaneo.Color(r, g, b OPTARG(HAS_WHITE_LED2, w));

View File

@@ -44,7 +44,6 @@
#include "max7219.h"
#include "../module/planner.h"
#include "../module/stepper.h"
#include "../MarlinCore.h"
#include "../HAL/shared/Delay.h"
@@ -52,6 +51,7 @@
#define HAS_SIDE_BY_SIDE 1
#endif
#define _ROT ((MAX7219_ROTATE + 360) % 360)
#if _ROT == 0 || _ROT == 180
#define MAX7219_X_LEDS TERN(HAS_SIDE_BY_SIDE, 8, MAX7219_LINES)
#define MAX7219_Y_LEDS TERN(HAS_SIDE_BY_SIDE, MAX7219_LINES, 8)
@@ -62,6 +62,15 @@
#error "MAX7219_ROTATE must be a multiple of +/- 90°."
#endif
#ifdef MAX7219_DEBUG_PROFILE
CodeProfiler::Mode CodeProfiler::mode = ACCUMULATE_AVERAGE;
uint8_t CodeProfiler::instance_count = 0;
uint32_t CodeProfiler::last_calc_time = micros();
uint8_t CodeProfiler::time_fraction = 0;
uint32_t CodeProfiler::total_time = 0;
uint16_t CodeProfiler::call_count = 0;
#endif
Max7219 max7219;
uint8_t Max7219::led_line[MAX7219_LINES]; // = { 0 };
@@ -69,7 +78,7 @@ uint8_t Max7219::suspended; // = 0;
#define LINE_REG(Q) (max7219_reg_digit0 + ((Q) & 0x7))
#if _ROT == 0 || _ROT == 270
#if (_ROT == 0 || _ROT == 270) == DISABLED(MAX7219_REVERSE_EACH)
#define _LED_BIT(Q) (7 - ((Q) & 0x7))
#else
#define _LED_BIT(Q) ((Q) & 0x7)
@@ -266,26 +275,27 @@ void Max7219::set(const uint8_t line, const uint8_t bits) {
#endif // MAX7219_NUMERIC
// Modify a single LED bit and send the changed line
void Max7219::led_set(const uint8_t x, const uint8_t y, const bool on) {
void Max7219::led_set(const uint8_t x, const uint8_t y, const bool on, uint8_t * const rcm/*=nullptr*/) {
if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(F("led_set"), x, y);
if (BIT_7219(x, y) == on) return;
XOR_7219(x, y);
refresh_unit_line(LED_IND(x, y));
if (rcm != nullptr) *rcm |= _BV(LED_IND(x, y) & 0x07);
}
void Max7219::led_on(const uint8_t x, const uint8_t y) {
void Max7219::led_on(const uint8_t x, const uint8_t y, uint8_t * const rcm/*=nullptr*/) {
if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(F("led_on"), x, y);
led_set(x, y, true);
led_set(x, y, true, rcm);
}
void Max7219::led_off(const uint8_t x, const uint8_t y) {
void Max7219::led_off(const uint8_t x, const uint8_t y, uint8_t * const rcm/*=nullptr*/) {
if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(F("led_off"), x, y);
led_set(x, y, false);
led_set(x, y, false, rcm);
}
void Max7219::led_toggle(const uint8_t x, const uint8_t y) {
void Max7219::led_toggle(const uint8_t x, const uint8_t y, uint8_t * const rcm/*=nullptr*/) {
if (x >= MAX7219_X_LEDS || y >= MAX7219_Y_LEDS) return error(F("led_toggle"), x, y);
led_set(x, y, !BIT_7219(x, y));
led_set(x, y, !BIT_7219(x, y), rcm);
}
void Max7219::send_row(const uint8_t row) {
@@ -448,7 +458,7 @@ void Max7219::register_setup() {
pulse_load(); // Tell the chips to load the clocked out data
}
#ifdef MAX7219_INIT_TEST
#if MAX7219_INIT_TEST
uint8_t test_mode = 0;
millis_t next_patt_ms;
@@ -536,13 +546,9 @@ void Max7219::init() {
register_setup();
LOOP_LE_N(i, 7) { // Empty registers to turn all LEDs off
led_line[i] = 0x00;
send(max7219_reg_digit0 + i, 0);
pulse_load(); // Tell the chips to load the clocked out data
}
clear();
#ifdef MAX7219_INIT_TEST
#if MAX7219_INIT_TEST
start_test_pattern();
#endif
}
@@ -554,41 +560,55 @@ void Max7219::init() {
*/
// Apply changes to update a marker
void Max7219::mark16(const uint8_t pos, const uint8_t v1, const uint8_t v2) {
void Max7219::mark16(const uint8_t pos, const uint8_t v1, const uint8_t v2, uint8_t * const rcm/*=nullptr*/) {
#if MAX7219_X_LEDS > 8 // At least 16 LEDs on the X-Axis. Use single line.
led_off(v1 & 0xF, pos);
led_on(v2 & 0xF, pos);
led_off(v1 & 0xF, pos, rcm);
led_on(v2 & 0xF, pos, rcm);
#elif MAX7219_Y_LEDS > 8 // At least 16 LEDs on the Y-Axis. Use a single column.
led_off(pos, v1 & 0xF);
led_on(pos, v2 & 0xF);
led_off(pos, v1 & 0xF, rcm);
led_on(pos, v2 & 0xF, rcm);
#else // Single 8x8 LED matrix. Use two lines to get 16 LEDs.
led_off(v1 & 0x7, pos + (v1 >= 8));
led_on(v2 & 0x7, pos + (v2 >= 8));
led_off(v1 & 0x7, pos + (v1 >= 8), rcm);
led_on(v2 & 0x7, pos + (v2 >= 8), rcm);
#endif
}
// Apply changes to update a tail-to-head range
void Max7219::range16(const uint8_t y, const uint8_t ot, const uint8_t nt, const uint8_t oh, const uint8_t nh) {
void Max7219::range16(const uint8_t y, const uint8_t ot, const uint8_t nt, const uint8_t oh,
const uint8_t nh, uint8_t * const rcm/*=nullptr*/) {
#if MAX7219_X_LEDS > 8 // At least 16 LEDs on the X-Axis. Use single line.
if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
led_off(n & 0xF, y);
led_off(n & 0xF, y, rcm);
if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
led_on(n & 0xF, y);
led_on(n & 0xF, y, rcm);
#elif MAX7219_Y_LEDS > 8 // At least 16 LEDs on the Y-Axis. Use a single column.
if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
led_off(y, n & 0xF);
led_off(y, n & 0xF, rcm);
if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
led_on(y, n & 0xF);
led_on(y, n & 0xF, rcm);
#else // Single 8x8 LED matrix. Use two lines to get 16 LEDs.
if (ot != nt) for (uint8_t n = ot & 0xF; n != (nt & 0xF) && n != (nh & 0xF); n = (n + 1) & 0xF)
led_off(n & 0x7, y + (n >= 8));
led_off(n & 0x7, y + (n >= 8), rcm);
if (oh != nh) for (uint8_t n = (oh + 1) & 0xF; n != ((nh + 1) & 0xF); n = (n + 1) & 0xF)
led_on(n & 0x7, y + (n >= 8));
led_on(n & 0x7, y + (n >= 8), rcm);
#endif
}
// Apply changes to update a quantity
void Max7219::quantity16(const uint8_t pos, const uint8_t ov, const uint8_t nv) {
void Max7219::quantity(const uint8_t pos, const uint8_t ov, const uint8_t nv, uint8_t * const rcm/*=nullptr*/) {
for (uint8_t i = _MIN(nv, ov); i < _MAX(nv, ov); i++)
led_set(
#if MAX7219_X_LEDS >= MAX7219_Y_LEDS
i, pos // Single matrix or multiple matrices in Landscape
#else
pos, i // Multiple matrices in Portrait
#endif
, nv >= ov
, rcm
);
}
void Max7219::quantity16(const uint8_t pos, const uint8_t ov, const uint8_t nv, uint8_t * const rcm/*=nullptr*/) {
for (uint8_t i = _MIN(nv, ov); i < _MAX(nv, ov); i++)
led_set(
#if MAX7219_X_LEDS > 8 // At least 16 LEDs on the X-Axis. Use single line.
@@ -599,6 +619,7 @@ void Max7219::quantity16(const uint8_t pos, const uint8_t ov, const uint8_t nv)
i >> 1, pos + (i & 1)
#endif
, nv >= ov
, rcm
);
}
@@ -636,16 +657,20 @@ void Max7219::idle_tasks() {
register_setup();
}
#ifdef MAX7219_INIT_TEST
#if MAX7219_INIT_TEST
if (test_mode) {
run_test_pattern();
return;
}
#endif
// suspend updates and record which lines have changed for batching later
suspended++;
uint8_t row_change_mask = 0x00;
#if ENABLED(MAX7219_DEBUG_PRINTER_ALIVE)
if (do_blink) {
led_toggle(MAX7219_X_LEDS - 1, MAX7219_Y_LEDS - 1);
led_toggle(MAX7219_X_LEDS - 1, MAX7219_Y_LEDS - 1, &row_change_mask);
next_blink = ms + 1000;
}
#endif
@@ -655,7 +680,7 @@ void Max7219::idle_tasks() {
static int16_t last_head_cnt = 0xF, last_tail_cnt = 0xF;
if (last_head_cnt != head || last_tail_cnt != tail) {
range16(MAX7219_DEBUG_PLANNER_HEAD, last_tail_cnt, tail, last_head_cnt, head);
range16(MAX7219_DEBUG_PLANNER_HEAD, last_tail_cnt, tail, last_head_cnt, head, &row_change_mask);
last_head_cnt = head;
last_tail_cnt = tail;
}
@@ -665,7 +690,7 @@ void Max7219::idle_tasks() {
#ifdef MAX7219_DEBUG_PLANNER_HEAD
static int16_t last_head_cnt = 0x1;
if (last_head_cnt != head) {
mark16(MAX7219_DEBUG_PLANNER_HEAD, last_head_cnt, head);
mark16(MAX7219_DEBUG_PLANNER_HEAD, last_head_cnt, head, &row_change_mask);
last_head_cnt = head;
}
#endif
@@ -673,7 +698,7 @@ void Max7219::idle_tasks() {
#ifdef MAX7219_DEBUG_PLANNER_TAIL
static int16_t last_tail_cnt = 0x1;
if (last_tail_cnt != tail) {
mark16(MAX7219_DEBUG_PLANNER_TAIL, last_tail_cnt, tail);
mark16(MAX7219_DEBUG_PLANNER_TAIL, last_tail_cnt, tail, &row_change_mask);
last_tail_cnt = tail;
}
#endif
@@ -684,11 +709,26 @@ void Max7219::idle_tasks() {
static int16_t last_depth = 0;
const int16_t current_depth = (head - tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1) & 0xF;
if (current_depth != last_depth) {
quantity16(MAX7219_DEBUG_PLANNER_QUEUE, last_depth, current_depth);
quantity16(MAX7219_DEBUG_PLANNER_QUEUE, last_depth, current_depth, &row_change_mask);
last_depth = current_depth;
}
#endif
#ifdef MAX7219_DEBUG_PROFILE
static uint8_t last_time_fraction = 0;
const uint8_t current_time_fraction = (uint16_t(CodeProfiler::get_time_fraction()) * MAX7219_NUMBER_UNITS + 8) / 16;
if (current_time_fraction != last_time_fraction) {
quantity(MAX7219_DEBUG_PROFILE, last_time_fraction, current_time_fraction, &row_change_mask);
last_time_fraction = current_time_fraction;
}
#endif
// batch line updates
suspended--;
if (!suspended)
LOOP_L_N(i, 8) if (row_change_mask & _BV(i))
refresh_line(i);
// After resume() automatically do a refresh()
if (suspended == 0x80) {
suspended = 0;

View File

@@ -47,7 +47,6 @@
#ifndef MAX7219_ROTATE
#define MAX7219_ROTATE 0
#endif
#define _ROT ((MAX7219_ROTATE + 360) % 360)
#ifndef MAX7219_NUMBER_UNITS
#define MAX7219_NUMBER_UNITS 1
@@ -73,6 +72,67 @@
#define max7219_reg_shutdown 0x0C
#define max7219_reg_displayTest 0x0F
#ifdef MAX7219_DEBUG_PROFILE
// This class sums up the amount of time for which its instances exist.
// By default there is one instantiated for the duration of the idle()
// function. But an instance can be created in any code block to measure
// the time spent from the point of instantiation until the CPU leaves
// block. Be careful about having multiple instances of CodeProfiler as
// it does not guard against double counting. In general mixing ISR and
// non-ISR use will require critical sections but note that mode setting
// is atomic so the total or average times can safely be read if you set
// mode to FREEZE first.
class CodeProfiler {
public:
enum Mode : uint8_t { ACCUMULATE_AVERAGE, ACCUMULATE_TOTAL, FREEZE };
private:
static Mode mode;
static uint8_t instance_count;
static uint32_t last_calc_time;
static uint32_t total_time;
static uint8_t time_fraction;
static uint16_t call_count;
uint32_t start_time;
public:
CodeProfiler() : start_time(micros()) { instance_count++; }
~CodeProfiler() {
instance_count--;
if (mode == FREEZE) return;
call_count++;
const uint32_t now = micros();
total_time += now - start_time;
if (mode == ACCUMULATE_TOTAL) return;
// update time_fraction every hundred milliseconds
if (instance_count == 0 && ELAPSED(now, last_calc_time + 100000)) {
time_fraction = total_time * 128 / (now - last_calc_time);
last_calc_time = now;
total_time = 0;
}
}
static void set_mode(Mode _mode) { mode = _mode; }
static void reset() {
time_fraction = 0;
last_calc_time = micros();
total_time = 0;
call_count = 0;
}
// returns fraction of total time which was measured, scaled from 0 to 128
static uint8_t get_time_fraction() { return time_fraction; }
// returns total time in microseconds
static uint32_t get_total_time() { return total_time; }
static uint16_t get_call_count() { return call_count; }
};
#endif
class Max7219 {
public:
static uint8_t led_line[MAX7219_LINES];
@@ -110,10 +170,10 @@ public:
#endif
// Set a single LED by XY coordinate
static void led_set(const uint8_t x, const uint8_t y, const bool on);
static void led_on(const uint8_t x, const uint8_t y);
static void led_off(const uint8_t x, const uint8_t y);
static void led_toggle(const uint8_t x, const uint8_t y);
static void led_set(const uint8_t x, const uint8_t y, const bool on, uint8_t * const rcm=nullptr);
static void led_on(const uint8_t x, const uint8_t y, uint8_t * const rcm=nullptr);
static void led_off(const uint8_t x, const uint8_t y, uint8_t * const rcm=nullptr);
static void led_toggle(const uint8_t x, const uint8_t y, uint8_t * const rcm=nullptr);
// Set all LEDs in a single column
static void set_column(const uint8_t col, const uint32_t val);
@@ -147,11 +207,12 @@ private:
static void set(const uint8_t line, const uint8_t bits);
static void send_row(const uint8_t row);
static void send_column(const uint8_t col);
static void mark16(const uint8_t y, const uint8_t v1, const uint8_t v2);
static void range16(const uint8_t y, const uint8_t ot, const uint8_t nt, const uint8_t oh, const uint8_t nh);
static void quantity16(const uint8_t y, const uint8_t ov, const uint8_t nv);
static void mark16(const uint8_t y, const uint8_t v1, const uint8_t v2, uint8_t * const rcm=nullptr);
static void range16(const uint8_t y, const uint8_t ot, const uint8_t nt, const uint8_t oh, const uint8_t nh, uint8_t * const rcm=nullptr);
static void quantity(const uint8_t y, const uint8_t ov, const uint8_t nv, uint8_t * const rcm=nullptr);
static void quantity16(const uint8_t y, const uint8_t ov, const uint8_t nv, uint8_t * const rcm=nullptr);
#ifdef MAX7219_INIT_TEST
#if MAX7219_INIT_TEST
static void test_pattern();
static void run_test_pattern();
static void start_test_pattern();

View File

@@ -35,10 +35,13 @@
#include "../gcode/gcode.h"
#include "../module/motion.h"
#include "../module/planner.h"
#include "../module/stepper.h"
#include "../module/printcounter.h"
#include "../module/temperature.h"
#if HAS_EXTRUDERS
#include "../module/stepper.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "bedlevel/bedlevel.h"
#endif
@@ -63,7 +66,7 @@
#include "../lcd/marlinui.h"
#if HAS_BUZZER
#if HAS_SOUND
#include "../libs/buzzer.h"
#endif
@@ -98,7 +101,7 @@ fil_change_settings_t fc_settings[EXTRUDERS];
#define _PMSG(L) L##_LCD
#endif
#if HAS_BUZZER
#if HAS_SOUND
static void impatient_beep(const int8_t max_beep_count, const bool restart=false) {
if (TERN0(HAS_MARLINUI_MENU, pause_mode == PAUSE_MODE_PAUSE_PRINT)) return;
@@ -711,9 +714,13 @@ void resume_print(const_float_t slow_load_length/*=0*/, const_float_t fast_load_
TERN_(HAS_FILAMENT_SENSOR, runout.reset());
TERN(DWIN_LCD_PROUI, DWIN_Print_Resume(), ui.reset_status());
TERN_(HAS_MARLINUI_MENU, ui.return_to_status());
TERN_(DWIN_LCD_PROUI, HMI_ReturnScreen());
#if ENABLED(DWIN_LCD_PROUI)
DWIN_Print_Resume();
HMI_ReturnScreen();
#else
ui.reset_status();
ui.return_to_status();
#endif
}
#endif // ADVANCED_PAUSE_FEATURE

View File

@@ -30,7 +30,7 @@
#include "power.h"
#include "../module/planner.h"
#include "../module/stepper.h"
#include "../module/stepper/indirection.h" // for restore_stepper_drivers
#include "../module/temperature.h"
#include "../MarlinCore.h"
@@ -46,6 +46,7 @@ Power powerManager;
bool Power::psu_on;
#if ENABLED(AUTO_POWER_CONTROL)
#include "../module/stepper.h"
#include "../module/temperature.h"
#if BOTH(USE_CONTROLLER_FAN, AUTO_POWER_CONTROLLERFAN)

View File

@@ -53,7 +53,7 @@ PowerMonitor power_monitor; // Single instance - this calls the constructor
void PowerMonitor::draw_current() {
const float amps = getAmps();
lcd_put_u8str(amps < 100 ? ftostr31ns(amps) : ui16tostr4rj((uint16_t)amps));
lcd_put_wchar('A');
lcd_put_lchar('A');
}
#endif
@@ -61,7 +61,7 @@ PowerMonitor power_monitor; // Single instance - this calls the constructor
void PowerMonitor::draw_voltage() {
const float volts = getVolts();
lcd_put_u8str(volts < 100 ? ftostr31ns(volts) : ui16tostr4rj((uint16_t)volts));
lcd_put_wchar('V');
lcd_put_lchar('V');
}
#endif
@@ -69,7 +69,7 @@ PowerMonitor power_monitor; // Single instance - this calls the constructor
void PowerMonitor::draw_power() {
const float power = getPower();
lcd_put_u8str(power < 100 ? ftostr31ns(power) : ui16tostr4rj((uint16_t)power));
lcd_put_wchar('W');
lcd_put_lchar('W');
}
#endif

View File

@@ -32,7 +32,7 @@ struct pm_lpf_t {
uint32_t filter_buf;
float value;
void add_sample(const uint16_t sample) {
filter_buf = filter_buf - (filter_buf >> K_VALUE) + (uint32_t(sample) << K_SCALE);
filter_buf += (uint32_t(sample) << K_SCALE) - (filter_buf >> K_VALUE);
}
void capture() {
value = filter_buf * (SCALE * (1.0f / (1UL << (PM_K_VALUE + PM_K_SCALE))));

View File

@@ -567,7 +567,7 @@ void PrintJobRecovery::resume() {
TERN_(HAS_HOME_OFFSET, home_offset = info.home_offset);
TERN_(HAS_POSITION_SHIFT, position_shift = info.position_shift);
#if HAS_HOME_OFFSET || HAS_POSITION_SHIFT
LOOP_LINEAR_AXES(i) update_workspace_offset((AxisEnum)i);
LOOP_NUM_AXES(i) update_workspace_offset((AxisEnum)i);
#endif
// Relative axis modes
@@ -617,7 +617,7 @@ void PrintJobRecovery::resume() {
#if HAS_HOME_OFFSET
DEBUG_ECHOPGM("home_offset: ");
LOOP_LINEAR_AXES(i) {
LOOP_NUM_AXES(i) {
if (i) DEBUG_CHAR(',');
DEBUG_DECIMAL(info.home_offset[i]);
}
@@ -626,7 +626,7 @@ void PrintJobRecovery::resume() {
#if HAS_POSITION_SHIFT
DEBUG_ECHOPGM("position_shift: ");
LOOP_LINEAR_AXES(i) {
LOOP_NUM_AXES(i) {
if (i) DEBUG_CHAR(',');
DEBUG_DECIMAL(info.position_shift[i]);
}

View File

@@ -39,18 +39,26 @@
#endif
SpindleLaser cutter;
uint8_t SpindleLaser::power,
bool SpindleLaser::enable_state; // Virtual enable state, controls enable pin if present and or apply power if > 0
uint8_t SpindleLaser::power, // Actual power output 0-255 ocr or "0 = off" > 0 = "on"
SpindleLaser::last_power_applied; // = 0 // Basic power state tracking
#if ENABLED(LASER_FEATURE)
cutter_test_pulse_t SpindleLaser::testPulse = 50; // Test fire Pulse time ms value.
#endif
bool SpindleLaser::isReady; // Ready to apply power setting from the UI to OCR
cutter_power_t SpindleLaser::menuPower, // Power set via LCD menu in PWM, PERCENT, or RPM
SpindleLaser::unitPower; // LCD status power in PWM, PERCENT, or RPM
#if ENABLED(MARLIN_DEV_MODE)
cutter_frequency_t SpindleLaser::frequency; // PWM frequency setting; range: 2K - 50K
#if ENABLED(LASER_FEATURE)
cutter_test_pulse_t SpindleLaser::testPulse = 50; // (ms) Test fire pulse default duration
uint8_t SpindleLaser::last_block_power; // = 0 // Track power changes for dynamic inline power
feedRate_t SpindleLaser::feedrate_mm_m = 1500,
SpindleLaser::last_feedrate_mm_m; // = 0 // (mm/min) Track feedrate changes for dynamic power
#endif
bool SpindleLaser::isReadyForUI = false; // Ready to apply power setting from the UI to OCR
CutterMode SpindleLaser::cutter_mode = CUTTER_MODE_STANDARD; // Default is standard mode
constexpr cutter_cpower_t SpindleLaser::power_floor;
cutter_power_t SpindleLaser::menuPower = 0, // Power value via LCD menu in PWM, PERCENT, or RPM based on configured format set by CUTTER_POWER_UNIT.
SpindleLaser::unitPower = 0; // Unit power is in PWM, PERCENT, or RPM based on CUTTER_POWER_UNIT.
cutter_frequency_t SpindleLaser::frequency; // PWM frequency setting; range: 2K - 50K
#define SPINDLE_LASER_PWM_OFF TERN(SPINDLE_LASER_PWM_INVERT, 255, 0)
/**
@@ -58,21 +66,21 @@ cutter_power_t SpindleLaser::menuPower, // Power s
*/
void SpindleLaser::init() {
#if ENABLED(SPINDLE_SERVO)
MOVE_SERVO(SPINDLE_SERVO_NR, SPINDLE_SERVO_MIN);
#else
servo[SPINDLE_SERVO_NR].move(SPINDLE_SERVO_MIN);
#elif PIN_EXISTS(SPINDLE_LASER_ENA)
OUT_WRITE(SPINDLE_LASER_ENA_PIN, !SPINDLE_LASER_ACTIVE_STATE); // Init spindle to off
#endif
#if ENABLED(SPINDLE_CHANGE_DIR)
OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR); // Init rotation to clockwise (M3)
#endif
#if ENABLED(HAL_CAN_SET_PWM_FREQ) && SPINDLE_LASER_FREQUENCY
frequency = SPINDLE_LASER_FREQUENCY;
hal.set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_FREQUENCY);
#endif
#if ENABLED(SPINDLE_LASER_USE_PWM)
SET_PWM(SPINDLE_LASER_PWM_PIN);
hal.set_pwm_duty(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_PWM_OFF); // Set to lowest speed
#endif
#if ENABLED(HAL_CAN_SET_PWM_FREQ) && SPINDLE_LASER_FREQUENCY
hal.set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), SPINDLE_LASER_FREQUENCY);
TERN_(MARLIN_DEV_MODE, frequency = SPINDLE_LASER_FREQUENCY);
#endif
#if ENABLED(AIR_EVACUATION)
OUT_WRITE(AIR_EVACUATION_PIN, !AIR_EVACUATION_ACTIVE); // Init Vacuum/Blower OFF
#endif
@@ -90,52 +98,62 @@ void SpindleLaser::init() {
*/
void SpindleLaser::_set_ocr(const uint8_t ocr) {
#if ENABLED(HAL_CAN_SET_PWM_FREQ) && SPINDLE_LASER_FREQUENCY
hal.set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), TERN(MARLIN_DEV_MODE, frequency, SPINDLE_LASER_FREQUENCY));
hal.set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), frequency);
#endif
hal.set_pwm_duty(pin_t(SPINDLE_LASER_PWM_PIN), ocr ^ SPINDLE_LASER_PWM_OFF);
}
void SpindleLaser::set_ocr(const uint8_t ocr) {
WRITE(SPINDLE_LASER_ENA_PIN, SPINDLE_LASER_ACTIVE_STATE); // Cutter ON
#if PIN_EXISTS(SPINDLE_LASER_ENA)
WRITE(SPINDLE_LASER_ENA_PIN, SPINDLE_LASER_ACTIVE_STATE); // Cutter ON
#endif
_set_ocr(ocr);
}
void SpindleLaser::ocr_off() {
WRITE(SPINDLE_LASER_ENA_PIN, !SPINDLE_LASER_ACTIVE_STATE); // Cutter OFF
#if PIN_EXISTS(SPINDLE_LASER_ENA)
WRITE(SPINDLE_LASER_ENA_PIN, !SPINDLE_LASER_ACTIVE_STATE); // Cutter OFF
#endif
_set_ocr(0);
}
#endif // SPINDLE_LASER_USE_PWM
/**
* Apply power for laser/spindle
* Apply power for Laser or Spindle
*
* Apply cutter power value for PWM, Servo, and on/off pin.
*
* @param opwr Power value. Range 0 to MAX. When 0 disable spindle/laser.
* @param opwr Power value. Range 0 to MAX.
*/
void SpindleLaser::apply_power(const uint8_t opwr) {
if (opwr == last_power_applied) return;
last_power_applied = opwr;
power = opwr;
#if ENABLED(SPINDLE_LASER_USE_PWM)
if (cutter.unitPower == 0 && CUTTER_UNIT_IS(RPM)) {
ocr_off();
isReady = false;
}
else if (ENABLED(CUTTER_POWER_RELATIVE) || enabled()) {
set_ocr(power);
isReady = true;
}
else {
ocr_off();
isReady = false;
}
#elif ENABLED(SPINDLE_SERVO)
MOVE_SERVO(SPINDLE_SERVO_NR, power);
#else
WRITE(SPINDLE_LASER_ENA_PIN, enabled() ? SPINDLE_LASER_ACTIVE_STATE : !SPINDLE_LASER_ACTIVE_STATE);
isReady = true;
#endif
if (enabled() || opwr == 0) { // 0 check allows us to disable where no ENA pin exists
// Test and set the last power used to improve performance
if (opwr == last_power_applied) return;
last_power_applied = opwr;
// Handle PWM driven or just simple on/off
#if ENABLED(SPINDLE_LASER_USE_PWM)
if (CUTTER_UNIT_IS(RPM) && unitPower == 0)
ocr_off();
else if (ENABLED(CUTTER_POWER_RELATIVE) || enabled() || opwr == 0) {
set_ocr(opwr);
isReadyForUI = true;
}
else
ocr_off();
#elif ENABLED(SPINDLE_SERVO)
MOVE_SERVO(SPINDLE_SERVO_NR, power);
#else
WRITE(SPINDLE_LASER_ENA_PIN, enabled() ? SPINDLE_LASER_ACTIVE_STATE : !SPINDLE_LASER_ACTIVE_STATE);
isReadyForUI = true;
#endif
}
else {
#if PIN_EXISTS(SPINDLE_LASER_ENA)
WRITE(SPINDLE_LASER_ENA_PIN, !SPINDLE_LASER_ACTIVE_STATE);
#endif
isReadyForUI = false; // Only used for UI display updates.
TERN_(SPINDLE_LASER_USE_PWM, ocr_off());
}
}
#if ENABLED(SPINDLE_CHANGE_DIR)

View File

@@ -34,87 +34,98 @@
#include "../libs/buzzer.h"
#endif
#if ENABLED(LASER_POWER_INLINE)
#include "../module/planner.h"
#endif
// Inline laser power
#include "../module/planner.h"
#define PCT_TO_PWM(X) ((X) * 255 / 100)
#define PCT_TO_SERVO(X) ((X) * 180 / 100)
// #define _MAP(N,S1,S2,D1,D2) ((N)*_MAX((D2)-(D1),0)/_MAX((S2)-(S1),1)+(D1))
// Laser/Cutter operation mode
enum CutterMode : int8_t {
CUTTER_MODE_ERROR = -1,
CUTTER_MODE_STANDARD, // M3 power is applied directly and waits for planner moves to sync.
CUTTER_MODE_CONTINUOUS, // M3 or G1/2/3 move power is controlled within planner blocks, set with 'M3 I', cleared with 'M5 I'.
CUTTER_MODE_DYNAMIC // M4 laser power is proportional to the feed rate, set with 'M4 I', cleared with 'M5 I'.
};
class SpindleLaser {
public:
static const inline uint8_t pct_to_ocr(const_float_t pct) { return uint8_t(PCT_TO_PWM(pct)); }
static CutterMode cutter_mode;
static constexpr uint8_t pct_to_ocr(const_float_t pct) { return uint8_t(PCT_TO_PWM(pct)); }
// cpower = configured values (e.g., SPEED_POWER_MAX)
// Convert configured power range to a percentage
static const inline uint8_t cpwr_to_pct(const cutter_cpower_t cpwr) {
constexpr cutter_cpower_t power_floor = TERN(CUTTER_POWER_RELATIVE, SPEED_POWER_MIN, 0),
power_range = SPEED_POWER_MAX - power_floor;
return cpwr ? round(100.0f * (cpwr - power_floor) / power_range) : 0;
static constexpr cutter_cpower_t power_floor = TERN(CUTTER_POWER_RELATIVE, SPEED_POWER_MIN, 0);
static constexpr uint8_t cpwr_to_pct(const cutter_cpower_t cpwr) {
return cpwr ? round(100.0f * (cpwr - power_floor) / (SPEED_POWER_MAX - power_floor)) : 0;
}
// Convert a cpower (e.g., SPEED_POWER_STARTUP) to unit power (upwr, upower),
// which can be PWM, Percent, Servo angle, or RPM (rel/abs).
static const inline cutter_power_t cpwr_to_upwr(const cutter_cpower_t cpwr) { // STARTUP power to Unit power
const cutter_power_t upwr = (
// Convert config defines from RPM to %, angle or PWM when in Spindle mode
// and convert from PERCENT to PWM when in Laser mode
static constexpr cutter_power_t cpwr_to_upwr(const cutter_cpower_t cpwr) { // STARTUP power to Unit power
return (
#if ENABLED(SPINDLE_FEATURE)
// Spindle configured values are in RPM
// Spindle configured define values are in RPM
#if CUTTER_UNIT_IS(RPM)
cpwr // to RPM
#elif CUTTER_UNIT_IS(PERCENT) // to PCT
cpwr_to_pct(cpwr)
#elif CUTTER_UNIT_IS(SERVO) // to SERVO angle
PCT_TO_SERVO(cpwr_to_pct(cpwr))
#else // to PWM
PCT_TO_PWM(cpwr_to_pct(cpwr))
cpwr // to same
#elif CUTTER_UNIT_IS(PERCENT)
cpwr_to_pct(cpwr) // to Percent
#elif CUTTER_UNIT_IS(SERVO)
PCT_TO_SERVO(cpwr_to_pct(cpwr)) // to SERVO angle
#else
PCT_TO_PWM(cpwr_to_pct(cpwr)) // to PWM
#endif
#else
// Laser configured values are in PCT
// Laser configured define values are in Percent
#if CUTTER_UNIT_IS(PWM255)
PCT_TO_PWM(cpwr)
PCT_TO_PWM(cpwr) // to PWM
#else
cpwr // to RPM/PCT
cpwr // to same
#endif
#endif
);
return upwr;
}
static const cutter_power_t mpower_min() { return cpwr_to_upwr(SPEED_POWER_MIN); }
static const cutter_power_t mpower_max() { return cpwr_to_upwr(SPEED_POWER_MAX); }
static constexpr cutter_power_t mpower_min() { return cpwr_to_upwr(SPEED_POWER_MIN); }
static constexpr cutter_power_t mpower_max() { return cpwr_to_upwr(SPEED_POWER_MAX); }
#if ENABLED(LASER_FEATURE)
static cutter_test_pulse_t testPulse; // Test fire Pulse ms value
static cutter_test_pulse_t testPulse; // (ms) Test fire pulse duration
static uint8_t last_block_power; // Track power changes for dynamic power
static feedRate_t feedrate_mm_m, last_feedrate_mm_m; // (mm/min) Track feedrate changes for dynamic power
static bool laser_feedrate_changed() {
const bool changed = last_feedrate_mm_m != feedrate_mm_m;
if (changed) last_feedrate_mm_m = feedrate_mm_m;
return changed;
}
#endif
static bool isReady; // Ready to apply power setting from the UI to OCR
static bool isReadyForUI; // Ready to apply power setting from the UI to OCR
static bool enable_state;
static uint8_t power,
last_power_applied; // Basic power state tracking
#if ENABLED(MARLIN_DEV_MODE)
static cutter_frequency_t frequency; // Set PWM frequency; range: 2K-50K
#endif
static cutter_frequency_t frequency; // Set PWM frequency; range: 2K-50K
static cutter_power_t menuPower, // Power as set via LCD menu in PWM, Percentage or RPM
unitPower; // Power as displayed status in PWM, Percentage or RPM
static void init();
#if ENABLED(MARLIN_DEV_MODE)
#if ENABLED(HAL_CAN_SET_PWM_FREQ) && SPINDLE_LASER_FREQUENCY
static void refresh_frequency() { hal.set_pwm_frequency(pin_t(SPINDLE_LASER_PWM_PIN), frequency); }
#endif
// Modifying this function should update everywhere
static bool enabled(const cutter_power_t opwr) { return opwr > 0; }
static bool enabled() { return enabled(power); }
static bool enabled() { return enable_state; }
static void apply_power(const uint8_t inpow);
FORCE_INLINE static void refresh() { apply_power(power); }
FORCE_INLINE static void set_power(const uint8_t upwr) { power = upwr; refresh(); }
#if ENABLED(SPINDLE_LASER_USE_PWM)
@@ -125,7 +136,6 @@ public:
public:
static void set_ocr(const uint8_t ocr);
static void ocr_set_power(const uint8_t ocr) { power = ocr; set_ocr(ocr); }
static void ocr_off();
/**
@@ -143,78 +153,76 @@ public:
);
}
/**
* Correct power to configured range
*/
static cutter_power_t power_to_range(const cutter_power_t pwr) {
return power_to_range(pwr, _CUTTER_POWER(CUTTER_POWER_UNIT));
}
static cutter_power_t power_to_range(const cutter_power_t pwr, const uint8_t pwrUnit) {
static constexpr float
min_pct = TERN(CUTTER_POWER_RELATIVE, 0, TERN(SPINDLE_FEATURE, round(100.0f * (SPEED_POWER_MIN) / (SPEED_POWER_MAX)), SPEED_POWER_MIN)),
max_pct = TERN(SPINDLE_FEATURE, 100, SPEED_POWER_MAX);
if (pwr <= 0) return 0;
cutter_power_t upwr;
switch (pwrUnit) {
case _CUTTER_POWER_PWM255:
upwr = cutter_power_t(
(pwr < pct_to_ocr(min_pct)) ? pct_to_ocr(min_pct) // Use minimum if set below
: (pwr > pct_to_ocr(max_pct)) ? pct_to_ocr(max_pct) // Use maximum if set above
: pwr
);
break;
case _CUTTER_POWER_PERCENT:
upwr = cutter_power_t(
(pwr < min_pct) ? min_pct // Use minimum if set below
: (pwr > max_pct) ? max_pct // Use maximum if set above
: pwr // PCT
);
break;
case _CUTTER_POWER_RPM:
upwr = cutter_power_t(
(pwr < SPEED_POWER_MIN) ? SPEED_POWER_MIN // Use minimum if set below
: (pwr > SPEED_POWER_MAX) ? SPEED_POWER_MAX // Use maximum if set above
: pwr // Calculate OCR value
);
break;
default: break;
}
return upwr;
}
#endif // SPINDLE_LASER_USE_PWM
/**
* Enable/Disable spindle/laser
* @param enable true = enable; false = disable
* Correct power to configured range
*/
static void set_enabled(const bool enable) {
uint8_t value = 0;
if (enable) {
#if ENABLED(SPINDLE_LASER_USE_PWM)
if (power)
value = power;
else if (unitPower)
value = upower_to_ocr(cpwr_to_upwr(SPEED_POWER_STARTUP));
#else
value = 255;
#endif
static cutter_power_t power_to_range(const cutter_power_t pwr, const uint8_t pwrUnit=_CUTTER_POWER(CUTTER_POWER_UNIT)) {
static constexpr float
min_pct = TERN(CUTTER_POWER_RELATIVE, 0, TERN(SPINDLE_FEATURE, round(100.0f * (SPEED_POWER_MIN) / (SPEED_POWER_MAX)), SPEED_POWER_MIN)),
max_pct = TERN(SPINDLE_FEATURE, 100, SPEED_POWER_MAX);
if (pwr <= 0) return 0;
cutter_power_t upwr;
switch (pwrUnit) {
case _CUTTER_POWER_PWM255: { // PWM
const uint8_t pmin = pct_to_ocr(min_pct), pmax = pct_to_ocr(max_pct);
upwr = cutter_power_t(constrain(pwr, pmin, pmax));
} break;
case _CUTTER_POWER_PERCENT: // Percent
upwr = cutter_power_t(constrain(pwr, min_pct, max_pct));
break;
case _CUTTER_POWER_RPM: // Calculate OCR value
upwr = cutter_power_t(constrain(pwr, SPEED_POWER_MIN, SPEED_POWER_MAX));
break;
default: break;
}
set_power(value);
return upwr;
}
static void disable() { isReady = false; set_enabled(false); }
/**
* Wait for spindle to spin up or spin down
* Enable Laser or Spindle output.
* It's important to prevent changing the power output value during inline cutter operation.
* Inline power is adjusted in the planner to support LASER_TRAP_POWER and CUTTER_MODE_DYNAMIC mode.
*
* @param on true = state to on; false = state to off.
* This method accepts one of the following control states:
*
* - For CUTTER_MODE_STANDARD the cutter power is either full on/off or ocr-based and it will apply
* SPEED_POWER_STARTUP if no value is assigned.
*
* - For CUTTER_MODE_CONTINUOUS inline and power remains where last set and the cutter output enable flag is set.
*
* - CUTTER_MODE_DYNAMIC is also inline-based and it just sets the enable output flag.
*
* - For CUTTER_MODE_ERROR set the output enable_state flag directly and set power to 0 for any mode.
* This mode allows a global power shutdown action to occur.
*/
static void power_delay(const bool on) {
#if DISABLED(LASER_POWER_INLINE)
safe_delay(on ? SPINDLE_LASER_POWERUP_DELAY : SPINDLE_LASER_POWERDOWN_DELAY);
static void set_enabled(bool enable) {
switch (cutter_mode) {
case CUTTER_MODE_STANDARD:
apply_power(enable ? TERN(SPINDLE_LASER_USE_PWM, (power ?: (unitPower ? upower_to_ocr(cpwr_to_upwr(SPEED_POWER_STARTUP)) : 0)), 255) : 0);
break;
case CUTTER_MODE_CONTINUOUS:
TERN_(LASER_FEATURE, set_inline_enabled(enable));
break;
case CUTTER_MODE_DYNAMIC:
TERN_(LASER_FEATURE, set_inline_enabled(enable));
break;
case CUTTER_MODE_ERROR: // Error mode, no enable and kill power.
enable = false;
apply_power(0);
}
#if SPINDLE_LASER_ENA_PIN
WRITE(SPINDLE_LASER_ENA_PIN, enable ? SPINDLE_LASER_ACTIVE_STATE : !SPINDLE_LASER_ACTIVE_STATE);
#endif
enable_state = enable;
}
static void disable() { isReadyForUI = false; set_enabled(false); }
// Wait for spindle/laser to startup or shutdown
static void power_delay(const bool on) {
safe_delay(on ? SPINDLE_LASER_POWERUP_DELAY : SPINDLE_LASER_POWERDOWN_DELAY);
}
#if ENABLED(SPINDLE_CHANGE_DIR)
@@ -226,122 +234,98 @@ public:
#endif
#if ENABLED(AIR_EVACUATION)
static void air_evac_enable(); // Turn On Cutter Vacuum or Laser Blower motor
static void air_evac_disable(); // Turn Off Cutter Vacuum or Laser Blower motor
static void air_evac_toggle(); // Toggle Cutter Vacuum or Laser Blower motor
static bool air_evac_state() { // Get current state
static void air_evac_enable(); // Turn On Cutter Vacuum or Laser Blower motor
static void air_evac_disable(); // Turn Off Cutter Vacuum or Laser Blower motor
static void air_evac_toggle(); // Toggle Cutter Vacuum or Laser Blower motor
static bool air_evac_state() { // Get current state
return (READ(AIR_EVACUATION_PIN) == AIR_EVACUATION_ACTIVE);
}
#endif
#if ENABLED(AIR_ASSIST)
static void air_assist_enable(); // Turn on air assist
static void air_assist_disable(); // Turn off air assist
static void air_assist_toggle(); // Toggle air assist
static bool air_assist_state() { // Get current state
static void air_assist_enable(); // Turn on air assist
static void air_assist_disable(); // Turn off air assist
static void air_assist_toggle(); // Toggle air assist
static bool air_assist_state() { // Get current state
return (READ(AIR_ASSIST_PIN) == AIR_ASSIST_ACTIVE);
}
#endif
#if HAS_MARLINUI_MENU
static void enable_with_dir(const bool reverse) {
isReady = true;
const uint8_t ocr = TERN(SPINDLE_LASER_USE_PWM, upower_to_ocr(menuPower), 255);
if (menuPower)
power = ocr;
else
menuPower = cpwr_to_upwr(SPEED_POWER_STARTUP);
unitPower = menuPower;
set_reverse(reverse);
set_enabled(true);
}
FORCE_INLINE static void enable_forward() { enable_with_dir(false); }
FORCE_INLINE static void enable_reverse() { enable_with_dir(true); }
FORCE_INLINE static void enable_same_dir() { enable_with_dir(is_reverse()); }
#if ENABLED(SPINDLE_FEATURE)
static void enable_with_dir(const bool reverse) {
isReadyForUI = true;
const uint8_t ocr = TERN(SPINDLE_LASER_USE_PWM, upower_to_ocr(menuPower), 255);
if (menuPower)
power = ocr;
else
menuPower = cpwr_to_upwr(SPEED_POWER_STARTUP);
unitPower = menuPower;
set_reverse(reverse);
set_enabled(true);
}
FORCE_INLINE static void enable_forward() { enable_with_dir(false); }
FORCE_INLINE static void enable_reverse() { enable_with_dir(true); }
FORCE_INLINE static void enable_same_dir() { enable_with_dir(is_reverse()); }
#endif // SPINDLE_FEATURE
#if ENABLED(SPINDLE_LASER_USE_PWM)
static void update_from_mpower() {
if (isReady) power = upower_to_ocr(menuPower);
if (isReadyForUI) power = upower_to_ocr(menuPower);
unitPower = menuPower;
}
#endif
#if ENABLED(LASER_FEATURE)
// Toggle the laser on/off with menuPower. Apply SPEED_POWER_STARTUP if it was 0 on entry.
static void menu_set_enabled(const bool state) {
set_enabled(state);
if (state) {
if (!menuPower) menuPower = cpwr_to_upwr(SPEED_POWER_STARTUP);
power = upower_to_ocr(menuPower);
apply_power(power);
} else
apply_power(0);
}
/**
* Test fire the laser using the testPulse ms duration
* Also fires with any PWM power that was previous set
* If not set defaults to 80% power
*/
static void test_fire_pulse() {
TERN_(HAS_BEEPER, buzzer.tone(30, 3000));
enable_forward(); // Turn Laser on (Spindle speak but same funct)
delay(testPulse); // Delay for time set by user in pulse ms menu screen.
disable(); // Turn laser off
BUZZ(30, 3000);
cutter_mode = CUTTER_MODE_STANDARD; // Menu needs standard mode.
menu_set_enabled(true); // Laser On
delay(testPulse); // Delay for time set by user in pulse ms menu screen.
menu_set_enabled(false); // Laser Off
}
#endif
#endif // LASER_FEATURE
#endif // HAS_MARLINUI_MENU
#if ENABLED(LASER_POWER_INLINE)
/**
* Inline power adds extra fields to the planner block
* to handle laser power and scale to movement speed.
*/
#if ENABLED(LASER_FEATURE)
// Force disengage planner power control
static void inline_disable() {
isReady = false;
unitPower = 0;
planner.laser_inline.status.isPlanned = false;
planner.laser_inline.status.isEnabled = false;
planner.laser_inline.power = 0;
// Dynamic mode rate calculation
static uint8_t calc_dynamic_power() {
if (feedrate_mm_m > 65535) return 255; // Too fast, go always on
uint16_t rate = uint16_t(feedrate_mm_m); // 16 bits from the G-code parser float input
rate >>= 8; // Take the G-code input e.g. F40000 and shift off the lower bits to get an OCR value from 1-255
return uint8_t(rate);
}
// Inline modes of all other functions; all enable planner inline power control
static void set_inline_enabled(const bool enable) {
if (enable)
inline_power(255);
else {
isReady = false;
unitPower = menuPower = 0;
planner.laser_inline.status.isPlanned = false;
TERN(SPINDLE_LASER_USE_PWM, inline_ocr_power, inline_power)(0);
}
}
static void set_inline_enabled(const bool enable) { planner.laser_inline.status.isEnabled = enable; }
// Set the power for subsequent movement blocks
static void inline_power(const cutter_power_t upwr) {
unitPower = menuPower = upwr;
#if ENABLED(SPINDLE_LASER_USE_PWM)
#if ENABLED(SPEED_POWER_RELATIVE) && !CUTTER_UNIT_IS(RPM) // relative mode does not turn laser off at 0, except for RPM
planner.laser_inline.status.isEnabled = true;
planner.laser_inline.power = upower_to_ocr(upwr);
isReady = true;
#else
inline_ocr_power(upower_to_ocr(upwr));
#endif
#else
planner.laser_inline.status.isEnabled = enabled(upwr);
planner.laser_inline.power = upwr;
isReady = enabled(upwr);
#endif
static void inline_power(const cutter_power_t cpwr) {
TERN(SPINDLE_LASER_USE_PWM, power = planner.laser_inline.power = cpwr, planner.laser_inline.power = cpwr > 0 ? 255 : 0);
}
static void inline_direction(const bool) { /* never */ }
#endif // LASER_FEATURE
#if ENABLED(SPINDLE_LASER_USE_PWM)
static void inline_ocr_power(const uint8_t ocrpwr) {
isReady = ocrpwr > 0;
planner.laser_inline.status.isEnabled = ocrpwr > 0;
planner.laser_inline.power = ocrpwr;
}
#endif
#endif // LASER_POWER_INLINE
static void kill() {
TERN_(LASER_POWER_INLINE, inline_disable());
disable();
}
static void kill() { disable(); }
};
extern SpindleLaser cutter;

View File

@@ -74,12 +74,10 @@ typedef IF<(SPEED_POWER_MAX > 255), uint16_t, uint8_t>::type cutter_cpower_t;
#endif
#endif
typedef uint16_t cutter_frequency_t;
#if ENABLED(LASER_FEATURE)
typedef uint16_t cutter_test_pulse_t;
#define CUTTER_MENU_PULSE_TYPE uint16_3
#endif
#if ENABLED(MARLIN_DEV_MODE)
typedef uint16_t cutter_frequency_t;
#define CUTTER_MENU_FREQUENCY_TYPE uint16_5
#endif

View File

@@ -65,15 +65,18 @@ void stepper_driver_backward_check() {
TEST_BACKWARD(I, 8);
TEST_BACKWARD(J, 9);
TEST_BACKWARD(K, 10);
TEST_BACKWARD(U, 11);
TEST_BACKWARD(V, 12);
TEST_BACKWARD(W, 13);
TEST_BACKWARD(E0, 11);
TEST_BACKWARD(E1, 12);
TEST_BACKWARD(E2, 13);
TEST_BACKWARD(E3, 14);
TEST_BACKWARD(E4, 15);
TEST_BACKWARD(E5, 16);
TEST_BACKWARD(E6, 17);
TEST_BACKWARD(E7, 18);
TEST_BACKWARD(E0, 14);
TEST_BACKWARD(E1, 15);
TEST_BACKWARD(E2, 16);
TEST_BACKWARD(E3, 17);
TEST_BACKWARD(E4, 18);
TEST_BACKWARD(E5, 19);
TEST_BACKWARD(E6, 20);
TEST_BACKWARD(E7, 21);
if (!axis_plug_backward)
WRITE(SAFE_POWER_PIN, HIGH);
@@ -103,15 +106,18 @@ void stepper_driver_backward_report() {
REPORT_BACKWARD(I, 8);
REPORT_BACKWARD(J, 9);
REPORT_BACKWARD(K, 10);
REPORT_BACKWARD(U, 11);
REPORT_BACKWARD(V, 12);
REPORT_BACKWARD(W, 13);
REPORT_BACKWARD(E0, 11);
REPORT_BACKWARD(E1, 12);
REPORT_BACKWARD(E2, 13);
REPORT_BACKWARD(E3, 14);
REPORT_BACKWARD(E4, 15);
REPORT_BACKWARD(E5, 16);
REPORT_BACKWARD(E6, 17);
REPORT_BACKWARD(E7, 18);
REPORT_BACKWARD(E0, 14);
REPORT_BACKWARD(E1, 15);
REPORT_BACKWARD(E2, 16);
REPORT_BACKWARD(E3, 17);
REPORT_BACKWARD(E4, 18);
REPORT_BACKWARD(E5, 19);
REPORT_BACKWARD(E6, 20);
REPORT_BACKWARD(E7, 21);
}
#endif // HAS_DRIVER_SAFE_POWER_PROTECT

View File

@@ -33,17 +33,12 @@
#include "../gcode/gcode.h"
#if ENABLED(TMC_DEBUG)
#include "../module/planner.h"
#include "../libs/hex_print.h"
#if ENABLED(MONITOR_DRIVER_STATUS)
static uint16_t report_tmc_status_interval; // = 0
#endif
#endif
#if HAS_MARLINUI_MENU
#include "../module/stepper.h"
#endif
/**
* Check for over temperature or short to ground error flags.
* Report and log warning of overtemperature condition.
@@ -429,6 +424,18 @@
if (monitor_tmc_driver(stepperK, need_update_error_counters, need_debug_reporting))
step_current_down(stepperK);
#endif
#if AXIS_IS_TMC(U)
if (monitor_tmc_driver(stepperU, need_update_error_counters, need_debug_reporting))
step_current_down(stepperU);
#endif
#if AXIS_IS_TMC(V)
if (monitor_tmc_driver(stepperV, need_update_error_counters, need_debug_reporting))
step_current_down(stepperV);
#endif
#if AXIS_IS_TMC(W)
if (monitor_tmc_driver(stepperW, need_update_error_counters, need_debug_reporting))
step_current_down(stepperW);
#endif
#if AXIS_IS_TMC(E0)
(void)monitor_tmc_driver(stepperE0, need_update_error_counters, need_debug_reporting);
@@ -809,6 +816,15 @@
#if AXIS_IS_TMC(K)
if (k) tmc_status(stepperK, n);
#endif
#if AXIS_IS_TMC(U)
if (u) tmc_status(stepperU, n);
#endif
#if AXIS_IS_TMC(V)
if (v) tmc_status(stepperV, n);
#endif
#if AXIS_IS_TMC(W)
if (w) tmc_status(stepperW, n);
#endif
if (TERN0(HAS_EXTRUDERS, e)) {
#if AXIS_IS_TMC(E0)
@@ -883,6 +899,15 @@
#if AXIS_IS_TMC(K)
if (k) tmc_parse_drv_status(stepperK, n);
#endif
#if AXIS_IS_TMC(U)
if (u) tmc_parse_drv_status(stepperU, n);
#endif
#if AXIS_IS_TMC(V)
if (v) tmc_parse_drv_status(stepperV, n);
#endif
#if AXIS_IS_TMC(W)
if (w) tmc_parse_drv_status(stepperW, n);
#endif
if (TERN0(HAS_EXTRUDERS, e)) {
#if AXIS_IS_TMC(E0)
@@ -1088,6 +1113,15 @@
#if AXIS_IS_TMC(K)
if (k) tmc_get_registers(stepperK, n);
#endif
#if AXIS_IS_TMC(U)
if (u) tmc_get_registers(stepperU, n);
#endif
#if AXIS_IS_TMC(V)
if (v) tmc_get_registers(stepperV, n);
#endif
#if AXIS_IS_TMC(W)
if (w) tmc_get_registers(stepperW, n);
#endif
if (TERN0(HAS_EXTRUDERS, e)) {
#if AXIS_IS_TMC(E0)
@@ -1244,6 +1278,15 @@ void test_tmc_connection(LOGICAL_AXIS_ARGS(const bool)) {
#if AXIS_IS_TMC(K)
if (k) axis_connection += test_connection(stepperK);
#endif
#if AXIS_IS_TMC(U)
if (u) axis_connection += test_connection(stepperU);
#endif
#if AXIS_IS_TMC(V)
if (v) axis_connection += test_connection(stepperV);
#endif
#if AXIS_IS_TMC(W)
if (w) axis_connection += test_connection(stepperW);
#endif
if (TERN0(HAS_EXTRUDERS, e)) {
#if AXIS_IS_TMC(E0)
@@ -1313,6 +1356,15 @@ void test_tmc_connection(LOGICAL_AXIS_ARGS(const bool)) {
#if AXIS_HAS_SPI(K)
SET_CS_PIN(K);
#endif
#if AXIS_HAS_SPI(U)
SET_CS_PIN(U);
#endif
#if AXIS_HAS_SPI(V)
SET_CS_PIN(V);
#endif
#if AXIS_HAS_SPI(W)
SET_CS_PIN(W);
#endif
#if AXIS_HAS_SPI(E0)
SET_CS_PIN(E0);
#endif

View File

@@ -348,7 +348,7 @@ void test_tmc_connection(LOGICAL_AXIS_DECL(const bool, true));
#if USE_SENSORLESS
// Track enabled status of stealthChop and only re-enable where applicable
struct sensorless_t { bool LINEAR_AXIS_ARGS(), x2, y2, z2, z3, z4; };
struct sensorless_t { bool NUM_AXIS_ARGS(), x2, y2, z2, z3, z4; };
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
extern millis_t sg_guard_period;

View File

@@ -107,7 +107,6 @@
#include "../../MarlinCore.h"
#include "../../module/planner.h"
#include "../../module/stepper.h"
#include "../../module/motion.h"
#include "../../module/tool_change.h"
#include "../../module/temperature.h"
@@ -306,7 +305,7 @@ typedef struct {
LIMIT(e.x, X_MIN_POS + 1, X_MAX_POS - 1);
#endif
if (position_is_reachable(s.x, s.y) && position_is_reachable(e.x, e.y))
if (position_is_reachable(s) && position_is_reachable(e))
print_line_from_here_to_there(s, e);
}
}

View File

@@ -32,7 +32,6 @@
#include "../../../feature/bedlevel/bedlevel.h"
#include "../../../module/motion.h"
#include "../../../module/planner.h"
#include "../../../module/stepper.h"
#include "../../../module/probe.h"
#include "../../queue.h"
@@ -453,6 +452,42 @@ G29_TYPE GcodeSuite::G29() {
#endif
}
// Position bed horizontally and Z probe vertically.
#if defined(SAFE_BED_LEVELING_START_X) || defined(SAFE_BED_LEVELING_START_Y) || defined(SAFE_BED_LEVELING_START_Z) \
|| defined(SAFE_BED_LEVELING_START_I) || defined(SAFE_BED_LEVELING_START_J) || defined(SAFE_BED_LEVELING_START_K) \
|| defined(SAFE_BED_LEVELING_START_U) || defined(SAFE_BED_LEVELING_START_V) || defined(SAFE_BED_LEVELING_START_W)
xyze_pos_t safe_position = current_position;
#ifdef SAFE_BED_LEVELING_START_X
safe_position.x = SAFE_BED_LEVELING_START_X;
#endif
#ifdef SAFE_BED_LEVELING_START_Y
safe_position.y = SAFE_BED_LEVELING_START_Y;
#endif
#ifdef SAFE_BED_LEVELING_START_Z
safe_position.z = SAFE_BED_LEVELING_START_Z;
#endif
#ifdef SAFE_BED_LEVELING_START_I
safe_position.i = SAFE_BED_LEVELING_START_I;
#endif
#ifdef SAFE_BED_LEVELING_START_J
safe_position.j = SAFE_BED_LEVELING_START_J;
#endif
#ifdef SAFE_BED_LEVELING_START_K
safe_position.k = SAFE_BED_LEVELING_START_K;
#endif
#ifdef SAFE_BED_LEVELING_START_U
safe_position.u = SAFE_BED_LEVELING_START_U;
#endif
#ifdef SAFE_BED_LEVELING_START_V
safe_position.v = SAFE_BED_LEVELING_START_V;
#endif
#ifdef SAFE_BED_LEVELING_START_W
safe_position.w = SAFE_BED_LEVELING_START_W;
#endif
do_blocking_move_to(safe_position);
#endif
// Disable auto bed leveling during G29.
// Be formal so G29 can be done successively without G28.
if (!no_action) set_bed_leveling_enabled(false);

View File

@@ -36,7 +36,7 @@
#include "../../../libs/buzzer.h"
#include "../../../lcd/marlinui.h"
#include "../../../module/motion.h"
#include "../../../module/stepper.h"
#include "../../../module/planner.h"
#if ENABLED(EXTENSIBLE_UI)
#include "../../../lcd/extui/ui_api.h"
@@ -106,6 +106,43 @@ void GcodeSuite::G29() {
queue.inject(parser.seen_test('N') ? F("G28" TERN(CAN_SET_LEVELING_AFTER_G28, "L0", "") "\nG29S2") : F("G29S2"));
TERN_(EXTENSIBLE_UI, ExtUI::onLevelingStart());
TERN_(DWIN_LCD_PROUI, DWIN_LevelingStart());
// Position bed horizontally and Z probe vertically.
#if defined(SAFE_BED_LEVELING_START_X) || defined(SAFE_BED_LEVELING_START_Y) || defined(SAFE_BED_LEVELING_START_Z) \
|| defined(SAFE_BED_LEVELING_START_I) || defined(SAFE_BED_LEVELING_START_J) || defined(SAFE_BED_LEVELING_START_K) \
|| defined(SAFE_BED_LEVELING_START_U) || defined(SAFE_BED_LEVELING_START_V) || defined(SAFE_BED_LEVELING_START_W)
xyze_pos_t safe_position = current_position;
#ifdef SAFE_BED_LEVELING_START_X
safe_position.x = SAFE_BED_LEVELING_START_X;
#endif
#ifdef SAFE_BED_LEVELING_START_Y
safe_position.y = SAFE_BED_LEVELING_START_Y;
#endif
#ifdef SAFE_BED_LEVELING_START_Z
safe_position.z = SAFE_BED_LEVELING_START_Z;
#endif
#ifdef SAFE_BED_LEVELING_START_I
safe_position.i = SAFE_BED_LEVELING_START_I;
#endif
#ifdef SAFE_BED_LEVELING_START_J
safe_position.j = SAFE_BED_LEVELING_START_J;
#endif
#ifdef SAFE_BED_LEVELING_START_K
safe_position.k = SAFE_BED_LEVELING_START_K;
#endif
#ifdef SAFE_BED_LEVELING_START_U
safe_position.u = SAFE_BED_LEVELING_START_U;
#endif
#ifdef SAFE_BED_LEVELING_START_V
safe_position.v = SAFE_BED_LEVELING_START_V;
#endif
#ifdef SAFE_BED_LEVELING_START_W
safe_position.w = SAFE_BED_LEVELING_START_W;
#endif
do_blocking_move_to(safe_position);
#endif
return;
}
state = MeshNext;

View File

@@ -24,8 +24,9 @@
#include "../gcode.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#include "../../module/planner.h"
#include "../../module/stepper.h" // for various
#if HAS_MULTI_HOTEND
#include "../../module/tool_change.h"
@@ -35,6 +36,10 @@
#include "../../feature/bedlevel/bedlevel.h"
#endif
#if ENABLED(BD_SENSOR)
#include "../../feature/bedlevel/bdl/bdl.h"
#endif
#if ENABLED(SENSORLESS_HOMING)
#include "../../feature/tmc_util.h"
#endif
@@ -55,11 +60,7 @@
#include "../../lcd/e3v2/proui/dwin.h"
#endif
#if HAS_L64XX // set L6470 absolute position registers to counts
#include "../../libs/L64XX/L64XX_Marlin.h"
#endif
#if ENABLED(LASER_MOVE_G28_OFF)
#if ENABLED(LASER_FEATURE)
#include "../../feature/spindle_laser.h"
#endif
@@ -82,7 +83,7 @@
#if ENABLED(SENSORLESS_HOMING)
sensorless_t stealth_states {
LINEAR_AXIS_LIST(
NUM_AXIS_LIST(
TERN0(X_SENSORLESS, tmc_enable_stallguard(stepperX)),
TERN0(Y_SENSORLESS, tmc_enable_stallguard(stepperY)),
false, false, false, false
@@ -169,7 +170,7 @@
motion_state.jerk_state = planner.max_jerk;
planner.max_jerk.set(0, 0 OPTARG(DELTA, 0));
#endif
planner.reset_acceleration_rates();
planner.refresh_acceleration_rates();
return motion_state;
}
@@ -178,7 +179,7 @@
planner.settings.max_acceleration_mm_per_s2[Y_AXIS] = motion_state.acceleration.y;
TERN_(DELTA, planner.settings.max_acceleration_mm_per_s2[Z_AXIS] = motion_state.acceleration.z);
TERN_(HAS_CLASSIC_JERK, planner.max_jerk = motion_state.jerk_state);
planner.reset_acceleration_rates();
planner.refresh_acceleration_rates();
}
#endif // IMPROVE_HOMING_RELIABILITY
@@ -205,7 +206,14 @@ void GcodeSuite::G28() {
DEBUG_SECTION(log_G28, "G28", DEBUGGING(LEVELING));
if (DEBUGGING(LEVELING)) log_machine_info();
TERN_(LASER_MOVE_G28_OFF, cutter.set_inline_enabled(false)); // turn off laser
TERN_(BD_SENSOR, bdl.config_state = 0);
/**
* Set the laser power to false to stop the planner from processing the current power setting.
*/
#if ENABLED(LASER_FEATURE)
planner.laser_inline.status.isPowered = false;
#endif
#if ENABLED(DUAL_X_CARRIAGE)
bool IDEX_saved_duplication_state = extruder_duplication_enabled;
@@ -214,7 +222,7 @@ void GcodeSuite::G28() {
#if ENABLED(MARLIN_DEV_MODE)
if (parser.seen_test('S')) {
LOOP_LINEAR_AXES(a) set_axis_is_at_home((AxisEnum)a);
LOOP_NUM_AXES(a) set_axis_is_at_home((AxisEnum)a);
sync_plan_position();
SERIAL_ECHOLNPGM("Simulated Homing");
report_current_position();
@@ -258,7 +266,7 @@ void GcodeSuite::G28() {
reset_stepper_timeout();
#define HAS_CURRENT_HOME(N) (defined(N##_CURRENT_HOME) && N##_CURRENT_HOME != N##_CURRENT)
#if HAS_CURRENT_HOME(X) || HAS_CURRENT_HOME(X2) || HAS_CURRENT_HOME(Y) || HAS_CURRENT_HOME(Y2) || (ENABLED(DELTA) && HAS_CURRENT_HOME(Z)) || HAS_CURRENT_HOME(I) || HAS_CURRENT_HOME(J) || HAS_CURRENT_HOME(K)
#if HAS_CURRENT_HOME(X) || HAS_CURRENT_HOME(X2) || HAS_CURRENT_HOME(Y) || HAS_CURRENT_HOME(Y2) || (ENABLED(DELTA) && HAS_CURRENT_HOME(Z)) || HAS_CURRENT_HOME(I) || HAS_CURRENT_HOME(J) || HAS_CURRENT_HOME(K) || HAS_CURRENT_HOME(U) || HAS_CURRENT_HOME(V) || HAS_CURRENT_HOME(W)
#define HAS_HOMING_CURRENT 1
#endif
@@ -286,21 +294,6 @@ void GcodeSuite::G28() {
stepperY2.rms_current(Y2_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_Y2), tmc_save_current_Y2, Y2_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(I)
const int16_t tmc_save_current_I = stepperI.getMilliamps();
stepperI.rms_current(I_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_I), tmc_save_current_I, I_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(J)
const int16_t tmc_save_current_J = stepperJ.getMilliamps();
stepperJ.rms_current(J_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_J), tmc_save_current_J, J_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(K)
const int16_t tmc_save_current_K = stepperK.getMilliamps();
stepperK.rms_current(K_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_K), tmc_save_current_K, K_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(Z) && ENABLED(DELTA)
const int16_t tmc_save_current_Z = stepperZ.getMilliamps();
stepperZ.rms_current(Z_CURRENT_HOME);
@@ -321,6 +314,21 @@ void GcodeSuite::G28() {
stepperK.rms_current(K_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_K), tmc_save_current_K, K_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(U)
const int16_t tmc_save_current_U = stepperU.getMilliamps();
stepperU.rms_current(U_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_U), tmc_save_current_U, U_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(V)
const int16_t tmc_save_current_V = stepperV.getMilliamps();
stepperV.rms_current(V_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_V), tmc_save_current_V, V_CURRENT_HOME);
#endif
#if HAS_CURRENT_HOME(W)
const int16_t tmc_save_current_W = stepperW.getMilliamps();
stepperW.rms_current(W_CURRENT_HOME);
if (DEBUGGING(LEVELING)) debug_current(F(STR_W), tmc_save_current_W, W_CURRENT_HOME);
#endif
#if SENSORLESS_STALLGUARD_DELAY
safe_delay(SENSORLESS_STALLGUARD_DELAY); // Short delay needed to settle
#endif
@@ -367,23 +375,28 @@ void GcodeSuite::G28() {
#define _UNSAFE(A) (homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(A##_AXIS))))
const bool homeZ = TERN0(HAS_Z_AXIS, parser.seen_test('Z')),
LINEAR_AXIS_LIST( // Other axes should be homed before Z safe-homing
NUM_AXIS_LIST( // Other axes should be homed before Z safe-homing
needX = _UNSAFE(X), needY = _UNSAFE(Y), needZ = false, // UNUSED
needI = _UNSAFE(I), needJ = _UNSAFE(J), needK = _UNSAFE(K)
needI = _UNSAFE(I), needJ = _UNSAFE(J), needK = _UNSAFE(K),
needU = _UNSAFE(U), needV = _UNSAFE(V), needW = _UNSAFE(W)
),
LINEAR_AXIS_LIST( // Home each axis if needed or flagged
NUM_AXIS_LIST( // Home each axis if needed or flagged
homeX = needX || parser.seen_test('X'),
homeY = needY || parser.seen_test('Y'),
homeZZ = homeZ,
homeI = needI || parser.seen_test(AXIS4_NAME), homeJ = needJ || parser.seen_test(AXIS5_NAME), homeK = needK || parser.seen_test(AXIS6_NAME)
homeI = needI || parser.seen_test(AXIS4_NAME), homeJ = needJ || parser.seen_test(AXIS5_NAME),
homeK = needK || parser.seen_test(AXIS6_NAME), homeU = needU || parser.seen_test(AXIS7_NAME),
homeV = needV || parser.seen_test(AXIS8_NAME), homeW = needW || parser.seen_test(AXIS9_NAME)
),
home_all = LINEAR_AXIS_GANG( // Home-all if all or none are flagged
home_all = NUM_AXIS_GANG( // Home-all if all or none are flagged
homeX == homeX, && homeY == homeX, && homeZ == homeX,
&& homeI == homeX, && homeJ == homeX, && homeK == homeX
&& homeI == homeX, && homeJ == homeX, && homeK == homeX,
&& homeU == homeX, && homeV == homeX, && homeW == homeX
),
LINEAR_AXIS_LIST(
NUM_AXIS_LIST(
doX = home_all || homeX, doY = home_all || homeY, doZ = home_all || homeZ,
doI = home_all || homeI, doJ = home_all || homeJ, doK = home_all || homeK
doI = home_all || homeI, doJ = home_all || homeJ, doK = home_all || homeK,
doU = home_all || homeU, doV = home_all || homeV, doW = home_all || homeW
);
#if HAS_Z_AXIS
@@ -397,7 +410,7 @@ void GcodeSuite::G28() {
const bool seenR = parser.seenval('R');
const float z_homing_height = seenR ? parser.value_linear_units() : Z_HOMING_HEIGHT;
if (z_homing_height && (seenR || LINEAR_AXIS_GANG(doX, || doY, || TERN0(Z_SAFE_HOMING, doZ), || doI, || doJ, || doK))) {
if (z_homing_height && (seenR || NUM_AXIS_GANG(doX, || doY, || TERN0(Z_SAFE_HOMING, doZ), || doI, || doJ, || doK, || doU, || doV, || doW))) {
// Raise Z before homing any other axes and z is not already high enough (never lower z)
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Raise Z (before homing) by ", z_homing_height);
do_z_clearance(z_homing_height);
@@ -437,32 +450,52 @@ void GcodeSuite::G28() {
#endif
}
#if BOTH(FOAMCUTTER_XYUV, HAS_I_AXIS)
// Home I (after X)
if (doI) homeaxis(I_AXIS);
#endif
// Home Y (after X)
if (DISABLED(HOME_Y_BEFORE_X) && doY)
homeaxis(Y_AXIS);
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(saved_motion_state));
// Home Z last if homing towards the bed
#if HAS_Z_AXIS && DISABLED(HOME_Z_FIRST)
if (doZ) {
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
stepper.set_all_z_lock(false);
stepper.set_separate_multi_axis(false);
#endif
#if ENABLED(Z_SAFE_HOMING)
if (TERN1(POWER_LOSS_RECOVERY, !parser.seen_test('H'))) home_z_safely(); else homeaxis(Z_AXIS);
#else
homeaxis(Z_AXIS);
#endif
probe.move_z_after_homing();
}
#if BOTH(FOAMCUTTER_XYUV, HAS_J_AXIS)
// Home J (after Y)
if (doJ) homeaxis(J_AXIS);
#endif
TERN_(HAS_I_AXIS, if (doI) homeaxis(I_AXIS));
TERN_(HAS_J_AXIS, if (doJ) homeaxis(J_AXIS));
TERN_(HAS_K_AXIS, if (doK) homeaxis(K_AXIS));
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(saved_motion_state));
#if ENABLED(FOAMCUTTER_XYUV)
// skip homing of unused Z axis for foamcutters
if (doZ) set_axis_is_at_home(Z_AXIS);
#else
// Home Z last if homing towards the bed
#if HAS_Z_AXIS && DISABLED(HOME_Z_FIRST)
if (doZ) {
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
stepper.set_all_z_lock(false);
stepper.set_separate_multi_axis(false);
#endif
#if ENABLED(Z_SAFE_HOMING)
if (TERN1(POWER_LOSS_RECOVERY, !parser.seen_test('H'))) home_z_safely(); else homeaxis(Z_AXIS);
#else
homeaxis(Z_AXIS);
#endif
probe.move_z_after_homing();
}
#endif
SECONDARY_AXIS_CODE(
if (doI) homeaxis(I_AXIS),
if (doJ) homeaxis(J_AXIS),
if (doK) homeaxis(K_AXIS),
if (doU) homeaxis(U_AXIS),
if (doV) homeaxis(V_AXIS),
if (doW) homeaxis(W_AXIS)
);
#endif
sync_plan_position();
@@ -545,6 +578,15 @@ void GcodeSuite::G28() {
#if HAS_CURRENT_HOME(K)
stepperK.rms_current(tmc_save_current_K);
#endif
#if HAS_CURRENT_HOME(U)
stepperU.rms_current(tmc_save_current_U);
#endif
#if HAS_CURRENT_HOME(V)
stepperV.rms_current(tmc_save_current_V);
#endif
#if HAS_CURRENT_HOME(W)
stepperW.rms_current(tmc_save_current_W);
#endif
#if SENSORLESS_STALLGUARD_DELAY
safe_delay(SENSORLESS_STALLGUARD_DELAY); // Short delay needed to settle
#endif
@@ -562,20 +604,4 @@ void GcodeSuite::G28() {
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(old_grblstate));
#if HAS_L64XX
// Set L6470 absolute position registers to counts
// constexpr *might* move this to PROGMEM.
// If not, this will need a PROGMEM directive and an accessor.
#define _EN_ITEM(N) , E_AXIS
static constexpr AxisEnum L64XX_axis_xref[MAX_L64XX] = {
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS),
X_AXIS, Y_AXIS, Z_AXIS, Z_AXIS, Z_AXIS
REPEAT(E_STEPPERS, _EN_ITEM)
};
#undef _EN_ITEM
for (uint8_t j = 1; j <= L64XX::chain[0]; j++) {
const uint8_t cv = L64XX::chain[j];
L64xxManager.set_param((L64XX_axis_t)cv, L6470_ABS_POS, stepper.position(L64XX_axis_xref[cv]));
}
#endif
}

View File

@@ -27,7 +27,7 @@
#include "../gcode.h"
#include "../../module/delta.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/planner.h"
#include "../../module/endstops.h"
#include "../../lcd/marlinui.h"
@@ -343,7 +343,7 @@ static float auto_tune_a(const float dcr) {
abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
delta_t.reset();
LOOP_LINEAR_AXES(axis) {
LOOP_NUM_AXES(axis) {
delta_t[axis] = diff;
calc_kinematics_diff_probe_points(z_pt, dcr, delta_e, delta_r, delta_t);
delta_t[axis] = 0;
@@ -437,7 +437,7 @@ void GcodeSuite::G33() {
const bool stow_after_each = parser.seen_test('E');
#if HAS_DELTA_SENSORLESS_PROBING
probe.test_sensitivity.set(!parser.seen_test('X'), !parser.seen_test('Y'), !parser.seen_test('Z'));
probe.test_sensitivity = { !parser.seen_test('X'), !parser.seen_test('Y'), !parser.seen_test('Z') };
const bool do_save_offset_adj = parser.seen_test('S');
#endif
@@ -557,7 +557,7 @@ void GcodeSuite::G33() {
case 1:
test_precision = 0.0f; // forced end
LOOP_LINEAR_AXES(axis) e_delta[axis] = +Z4(CEN);
LOOP_NUM_AXES(axis) e_delta[axis] = +Z4(CEN);
break;
case 2:
@@ -605,14 +605,14 @@ void GcodeSuite::G33() {
// Normalize angles to least-squares
if (_angle_results) {
float a_sum = 0.0f;
LOOP_LINEAR_AXES(axis) a_sum += delta_tower_angle_trim[axis];
LOOP_LINEAR_AXES(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f;
LOOP_NUM_AXES(axis) a_sum += delta_tower_angle_trim[axis];
LOOP_NUM_AXES(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f;
}
// adjust delta_height and endstops by the max amount
const float z_temp = _MAX(delta_endstop_adj.a, delta_endstop_adj.b, delta_endstop_adj.c);
delta_height -= z_temp;
LOOP_LINEAR_AXES(axis) delta_endstop_adj[axis] -= z_temp;
LOOP_NUM_AXES(axis) delta_endstop_adj[axis] -= z_temp;
}
recalc_delta_settings();
NOMORE(zero_std_dev_min, zero_std_dev);

View File

@@ -26,9 +26,12 @@
#include "../gcode.h"
#include "../../module/motion.h"
#include "../../module/stepper.h"
#include "../../module/endstops.h"
#if ANY(HAS_MOTOR_CURRENT_SPI, HAS_MOTOR_CURRENT_PWM, HAS_TRINAMIC_CONFIG)
#include "../../module/stepper.h"
#endif
#if HAS_LEVELING
#include "../../feature/bedlevel/bedlevel.h"
#endif
@@ -79,7 +82,7 @@ void GcodeSuite::G34() {
stepper.set_digipot_current(Z_AXIS, target_current);
#elif HAS_MOTOR_CURRENT_PWM
const uint16_t target_current = parser.intval('S', GANTRY_CALIBRATION_CURRENT);
const uint32_t previous_current = stepper.motor_current_setting[Z_AXIS];
const uint32_t previous_current = stepper.motor_current_setting[1]; // Z
stepper.set_digipot_current(1, target_current);
#elif HAS_MOTOR_CURRENT_DAC
const float target_current = parser.floatval('S', GANTRY_CALIBRATION_CURRENT);

View File

@@ -224,13 +224,15 @@ void GcodeSuite::G34() {
// Safe clearance even on an incline
if ((iteration == 0 || i > 0) && z_probe > current_position.z) do_blocking_move_to_z(z_probe);
xy_pos_t &ppos = z_stepper_align.xy[iprobe];
if (DEBUGGING(LEVELING))
DEBUG_ECHOLNPGM_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y);
DEBUG_ECHOLNPGM_P(PSTR("Probing X"), ppos.x, SP_Y_STR, ppos.y);
// Probe a Z height for each stepper.
// Probing sanity check is disabled, as it would trigger even in normal cases because
// current_position.z has been manually altered in the "dirty trick" above.
const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true, false);
const float z_probed_height = probe.probe_at_point(DIFF_TERN(HAS_HOME_OFFSET, ppos, xy_pos_t(home_offset)), raise_after, 0, true, false);
if (isnan(z_probed_height)) {
SERIAL_ECHOLNPGM("Probing failed");
LCD_MESSAGE(MSG_LCD_PROBING_FAILED);

View File

@@ -85,10 +85,19 @@
#if ALL(HAS_K_AXIS, CALIBRATION_MEASURE_KMIN, CALIBRATION_MEASURE_KMAX)
#define HAS_K_CENTER 1
#endif
#if ALL(HAS_U_AXIS, CALIBRATION_MEASURE_UMIN, CALIBRATION_MEASURE_UMAX)
#define HAS_U_CENTER 1
#endif
#if ALL(HAS_V_AXIS, CALIBRATION_MEASURE_VMIN, CALIBRATION_MEASURE_VMAX)
#define HAS_V_CENTER 1
#endif
#if ALL(HAS_W_AXIS, CALIBRATION_MEASURE_WMIN, CALIBRATION_MEASURE_WMAX)
#define HAS_W_CENTER 1
#endif
enum side_t : uint8_t {
TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES,
LIST_N(DOUBLE(SUB3(LINEAR_AXES)), IMINIMUM, IMAXIMUM, JMINIMUM, JMAXIMUM, KMINIMUM, KMAXIMUM)
LIST_N(DOUBLE(SECONDARY_AXES), IMINIMUM, IMAXIMUM, JMINIMUM, JMAXIMUM, KMINIMUM, KMAXIMUM, UMINIMUM, UMAXIMUM, VMINIMUM, VMAXIMUM, WMINIMUM, WMAXIMUM)
};
static constexpr xyz_pos_t true_center CALIBRATION_OBJECT_CENTER;
@@ -282,6 +291,15 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
#if HAS_K_AXIS && AXIS_CAN_CALIBRATE(K)
_PCASE(K);
#endif
#if HAS_U_AXIS && AXIS_CAN_CALIBRATE(U)
_PCASE(U);
#endif
#if HAS_V_AXIS && AXIS_CAN_CALIBRATE(V)
_PCASE(V);
#endif
#if HAS_W_AXIS && AXIS_CAN_CALIBRATE(W)
_PCASE(W);
#endif
default: return;
}
@@ -335,6 +353,12 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
TERN_(CALIBRATION_MEASURE_JMAX, probe_side(m, uncertainty, JMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_KMIN, probe_side(m, uncertainty, KMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_KMAX, probe_side(m, uncertainty, KMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_UMIN, probe_side(m, uncertainty, UMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_UMAX, probe_side(m, uncertainty, UMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_VMIN, probe_side(m, uncertainty, VMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_VMAX, probe_side(m, uncertainty, VMAXIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_WMIN, probe_side(m, uncertainty, WMINIMUM, probe_top_at_edge));
TERN_(CALIBRATION_MEASURE_WMAX, probe_side(m, uncertainty, WMAXIMUM, probe_top_at_edge));
// Compute the measured center of the calibration object.
TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
@@ -342,6 +366,9 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
TERN_(HAS_I_CENTER, m.obj_center.i = (m.obj_side[IMINIMUM] + m.obj_side[IMAXIMUM]) / 2);
TERN_(HAS_J_CENTER, m.obj_center.j = (m.obj_side[JMINIMUM] + m.obj_side[JMAXIMUM]) / 2);
TERN_(HAS_K_CENTER, m.obj_center.k = (m.obj_side[KMINIMUM] + m.obj_side[KMAXIMUM]) / 2);
TERN_(HAS_U_CENTER, m.obj_center.u = (m.obj_side[UMINIMUM] + m.obj_side[UMAXIMUM]) / 2);
TERN_(HAS_V_CENTER, m.obj_center.v = (m.obj_side[VMINIMUM] + m.obj_side[VMAXIMUM]) / 2);
TERN_(HAS_W_CENTER, m.obj_center.w = (m.obj_side[WMINIMUM] + m.obj_side[WMAXIMUM]) / 2);
// Compute the outside diameter of the nozzle at the height
// at which it makes contact with the calibration object
@@ -352,13 +379,16 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
// The difference between the known and the measured location
// of the calibration object is the positional error
LINEAR_AXIS_CODE(
NUM_AXIS_CODE(
m.pos_error.x = TERN0(HAS_X_CENTER, true_center.x - m.obj_center.x),
m.pos_error.y = TERN0(HAS_Y_CENTER, true_center.y - m.obj_center.y),
m.pos_error.z = true_center.z - m.obj_center.z,
m.pos_error.i = TERN0(HAS_I_CENTER, true_center.i - m.obj_center.i),
m.pos_error.j = TERN0(HAS_J_CENTER, true_center.j - m.obj_center.j),
m.pos_error.k = TERN0(HAS_K_CENTER, true_center.k - m.obj_center.k)
m.pos_error.k = TERN0(HAS_K_CENTER, true_center.k - m.obj_center.k),
m.pos_error.u = TERN0(HAS_U_CENTER, true_center.u - m.obj_center.u),
m.pos_error.v = TERN0(HAS_V_CENTER, true_center.v - m.obj_center.v),
m.pos_error.w = TERN0(HAS_W_CENTER, true_center.w - m.obj_center.w)
);
}
@@ -406,6 +436,30 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
SERIAL_ECHOLNPGM(" " STR_K_MAX ": ", m.obj_side[KMAXIMUM]);
#endif
#endif
#if HAS_U_AXIS
#if ENABLED(CALIBRATION_MEASURE_UMIN)
SERIAL_ECHOLNPGM(" " STR_U_MIN ": ", m.obj_side[UMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_UMAX)
SERIAL_ECHOLNPGM(" " STR_U_MAX ": ", m.obj_side[UMAXIMUM]);
#endif
#endif
#if HAS_V_AXIS
#if ENABLED(CALIBRATION_MEASURE_VMIN)
SERIAL_ECHOLNPGM(" " STR_V_MIN ": ", m.obj_side[VMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_VMAX)
SERIAL_ECHOLNPGM(" " STR_V_MAX ": ", m.obj_side[VMAXIMUM]);
#endif
#endif
#if HAS_W_AXIS
#if ENABLED(CALIBRATION_MEASURE_WMIN)
SERIAL_ECHOLNPGM(" " STR_W_MIN ": ", m.obj_side[WMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_WMAX)
SERIAL_ECHOLNPGM(" " STR_W_MAX ": ", m.obj_side[WMAXIMUM]);
#endif
#endif
SERIAL_EOL();
}
@@ -427,6 +481,15 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
#if HAS_K_CENTER
SERIAL_ECHOLNPGM_P(SP_K_STR, m.obj_center.k);
#endif
#if HAS_U_CENTER
SERIAL_ECHOLNPGM_P(SP_U_STR, m.obj_center.u);
#endif
#if HAS_V_CENTER
SERIAL_ECHOLNPGM_P(SP_V_STR, m.obj_center.v);
#endif
#if HAS_W_CENTER
SERIAL_ECHOLNPGM_P(SP_W_STR, m.obj_center.w);
#endif
SERIAL_EOL();
}
@@ -475,6 +538,30 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
SERIAL_ECHOLNPGM(" " STR_K_MAX ": ", m.backlash[KMAXIMUM]);
#endif
#endif
#if HAS_U_AXIS && AXIS_CAN_CALIBRATE(U)
#if ENABLED(CALIBRATION_MEASURE_UMIN)
SERIAL_ECHOLNPGM(" " STR_U_MIN ": ", m.backlash[UMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_UMAX)
SERIAL_ECHOLNPGM(" " STR_U_MAX ": ", m.backlash[UMAXIMUM]);
#endif
#endif
#if HAS_V_AXIS && AXIS_CAN_CALIBRATE(V)
#if ENABLED(CALIBRATION_MEASURE_VMIN)
SERIAL_ECHOLNPGM(" " STR_V_MIN ": ", m.backlash[VMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_VMAX)
SERIAL_ECHOLNPGM(" " STR_V_MAX ": ", m.backlash[VMAXIMUM]);
#endif
#endif
#if HAS_W_AXIS && AXIS_CAN_CALIBRATE(W)
#if ENABLED(CALIBRATION_MEASURE_WMIN)
SERIAL_ECHOLNPGM(" " STR_W_MIN ": ", m.backlash[WMINIMUM]);
#endif
#if ENABLED(CALIBRATION_MEASURE_WMAX)
SERIAL_ECHOLNPGM(" " STR_W_MAX ": ", m.backlash[WMAXIMUM]);
#endif
#endif
SERIAL_EOL();
}
@@ -498,7 +585,16 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
SERIAL_ECHOLNPGM_P(SP_J_STR, m.pos_error.j);
#endif
#if HAS_K_CENTER && AXIS_CAN_CALIBRATE(K)
SERIAL_ECHOLNPGM_P(SP_Z_STR, m.pos_error.z);
SERIAL_ECHOLNPGM_P(SP_K_STR, m.pos_error.k);
#endif
#if HAS_U_CENTER && AXIS_CAN_CALIBRATE(U)
SERIAL_ECHOLNPGM_P(SP_U_STR, m.pos_error.u);
#endif
#if HAS_V_CENTER && AXIS_CAN_CALIBRATE(V)
SERIAL_ECHOLNPGM_P(SP_V_STR, m.pos_error.v);
#endif
#if HAS_W_CENTER && AXIS_CAN_CALIBRATE(W)
SERIAL_ECHOLNPGM_P(SP_W_STR, m.pos_error.w);
#endif
SERIAL_EOL();
}
@@ -587,6 +683,30 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
backlash.set_distance_mm(K_AXIS, m.backlash[KMAXIMUM]);
#endif
#if HAS_U_CENTER
backlash.distance_mm.u = (m.backlash[UMINIMUM] + m.backlash[UMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_UMIN)
backlash.distance_mm.u = m.backlash[UMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_UMAX)
backlash.distance_mm.u = m.backlash[UMAXIMUM];
#endif
#if HAS_V_CENTER
backlash.distance_mm.v = (m.backlash[VMINIMUM] + m.backlash[VMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_VMIN)
backlash.distance_mm.v = m.backlash[VMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_UMAX)
backlash.distance_mm.v = m.backlash[VMAXIMUM];
#endif
#if HAS_W_CENTER
backlash.distance_mm.w = (m.backlash[WMINIMUM] + m.backlash[WMAXIMUM]) / 2;
#elif ENABLED(CALIBRATION_MEASURE_WMIN)
backlash.distance_mm.w = m.backlash[WMINIMUM];
#elif ENABLED(CALIBRATION_MEASURE_WMAX)
backlash.distance_mm.w = m.backlash[WMAXIMUM];
#endif
#endif // BACKLASH_GCODE
}
@@ -597,9 +717,10 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
// New scope for TEMPORARY_BACKLASH_CORRECTION
TEMPORARY_BACKLASH_CORRECTION(backlash.all_on);
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
const xyz_float_t move = LINEAR_AXIS_ARRAY(
const xyz_float_t move = NUM_AXIS_ARRAY(
AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3,
AXIS_CAN_CALIBRATE(I) * 3, AXIS_CAN_CALIBRATE(J) * 3, AXIS_CAN_CALIBRATE(K) * 3
AXIS_CAN_CALIBRATE(I) * 3, AXIS_CAN_CALIBRATE(J) * 3, AXIS_CAN_CALIBRATE(K) * 3,
AXIS_CAN_CALIBRATE(U) * 3, AXIS_CAN_CALIBRATE(V) * 3, AXIS_CAN_CALIBRATE(W) * 3
);
current_position += move; calibration_move();
current_position -= move; calibration_move();
@@ -650,6 +771,9 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
TERN_(HAS_I_CENTER, update_measurements(m, I_AXIS));
TERN_(HAS_J_CENTER, update_measurements(m, J_AXIS));
TERN_(HAS_K_CENTER, update_measurements(m, K_AXIS));
TERN_(HAS_U_CENTER, update_measurements(m, U_AXIS));
TERN_(HAS_V_CENTER, update_measurements(m, V_AXIS));
TERN_(HAS_W_CENTER, update_measurements(m, W_AXIS));
sync_plan_position();
}

View File

@@ -47,23 +47,17 @@ void GcodeSuite::M425() {
bool noArgs = true;
auto axis_can_calibrate = [](const uint8_t a) {
#define _CAN_CASE(N) case N##_AXIS: return AXIS_CAN_CALIBRATE(N);
switch (a) {
default: return false;
LINEAR_AXIS_CODE(
case X_AXIS: return AXIS_CAN_CALIBRATE(X),
case Y_AXIS: return AXIS_CAN_CALIBRATE(Y),
case Z_AXIS: return AXIS_CAN_CALIBRATE(Z),
case I_AXIS: return AXIS_CAN_CALIBRATE(I),
case J_AXIS: return AXIS_CAN_CALIBRATE(J),
case K_AXIS: return AXIS_CAN_CALIBRATE(K)
);
MAIN_AXIS_MAP(_CAN_CASE)
}
};
LOOP_LINEAR_AXES(a) {
LOOP_NUM_AXES(a) {
if (axis_can_calibrate(a) && parser.seen(AXIS_CHAR(a))) {
planner.synchronize();
backlash.set_distance_mm(AxisEnum(a), parser.has_value() ? parser.value_linear_units() : backlash.get_measurement(AxisEnum(a)));
backlash.set_distance_mm((AxisEnum)a, parser.has_value() ? parser.value_axis_units((AxisEnum)a) : backlash.get_measurement((AxisEnum)a));
noArgs = false;
}
}
@@ -88,10 +82,8 @@ void GcodeSuite::M425() {
SERIAL_ECHOLNPGM("active:");
SERIAL_ECHOLNPGM(" Correction Amount/Fade-out: F", backlash.get_correction(), " (F1.0 = full, F0.0 = none)");
SERIAL_ECHOPGM(" Backlash Distance (mm): ");
LOOP_LINEAR_AXES(a) if (axis_can_calibrate(a)) {
SERIAL_CHAR(' ', AXIS_CHAR(a));
SERIAL_ECHO(backlash.get_distance_mm(AxisEnum(a)));
SERIAL_EOL();
LOOP_NUM_AXES(a) if (axis_can_calibrate(a)) {
SERIAL_ECHOLNPGM_P((PGM_P)pgm_read_ptr(&SP_AXIS_STR[a]), backlash.get_distance_mm((AxisEnum)a));
}
#ifdef BACKLASH_SMOOTHING_MM
@@ -101,9 +93,8 @@ void GcodeSuite::M425() {
#if ENABLED(MEASURE_BACKLASH_WHEN_PROBING)
SERIAL_ECHOPGM(" Average measured backlash (mm):");
if (backlash.has_any_measurement()) {
LOOP_LINEAR_AXES(a) if (axis_can_calibrate(a) && backlash.has_measurement(AxisEnum(a))) {
SERIAL_CHAR(' ', AXIS_CHAR(a));
SERIAL_ECHO(backlash.get_measurement(AxisEnum(a)));
LOOP_NUM_AXES(a) if (axis_can_calibrate(a) && backlash.has_measurement(AxisEnum(a))) {
SERIAL_ECHOPGM_P((PGM_P)pgm_read_ptr(&SP_AXIS_STR[a]), backlash.get_measurement((AxisEnum)a));
}
}
else
@@ -120,13 +111,16 @@ void GcodeSuite::M425_report(const bool forReplay/*=true*/) {
#ifdef BACKLASH_SMOOTHING_MM
, PSTR(" S"), LINEAR_UNIT(backlash.get_smoothing_mm())
#endif
, LIST_N(DOUBLE(LINEAR_AXES),
, LIST_N(DOUBLE(NUM_AXES),
SP_X_STR, LINEAR_UNIT(backlash.get_distance_mm(X_AXIS)),
SP_Y_STR, LINEAR_UNIT(backlash.get_distance_mm(Y_AXIS)),
SP_Z_STR, LINEAR_UNIT(backlash.get_distance_mm(Z_AXIS)),
SP_I_STR, LINEAR_UNIT(backlash.get_distance_mm(I_AXIS)),
SP_J_STR, LINEAR_UNIT(backlash.get_distance_mm(J_AXIS)),
SP_K_STR, LINEAR_UNIT(backlash.get_distance_mm(K_AXIS))
SP_I_STR, I_AXIS_UNIT(backlash.get_distance_mm(I_AXIS)),
SP_J_STR, J_AXIS_UNIT(backlash.get_distance_mm(J_AXIS)),
SP_K_STR, K_AXIS_UNIT(backlash.get_distance_mm(K_AXIS)),
SP_U_STR, U_AXIS_UNIT(backlash.get_distance_mm(U_AXIS)),
SP_V_STR, V_AXIS_UNIT(backlash.get_distance_mm(V_AXIS)),
SP_W_STR, W_AXIS_UNIT(backlash.get_distance_mm(W_AXIS))
)
);
}

View File

@@ -86,13 +86,13 @@
*
* Parameters:
*
* S[segments-per-second] - Segments-per-second
* S[segments] - Segments-per-second
*
* Without NO_WORKSPACE_OFFSETS:
*
* P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
* T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
* Z[z-offset] - Z offset, added to Z
* P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
* T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
* Z[z-offset] - Z offset, added to Z
*
* A, P, and X are all aliases for the shoulder angle
* B, T, and Y are all aliases for the elbow angle
@@ -152,18 +152,35 @@
*
* Parameters:
*
* S[segments-per-second] - Segments-per-second
* S[segments] - Segments-per-second
* L[left] - Work area minimum X
* R[right] - Work area maximum X
* T[top] - Work area maximum Y
* B[bottom] - Work area minimum Y
* H[length] - Maximum belt length
*/
void GcodeSuite::M665() {
if (parser.seenval('S'))
segments_per_second = parser.value_float();
else
M665_report();
if (!parser.seen_any()) return M665_report();
if (parser.seenval('S')) segments_per_second = parser.value_float();
if (parser.seenval('L')) draw_area_min.x = parser.value_linear_units();
if (parser.seenval('R')) draw_area_max.x = parser.value_linear_units();
if (parser.seenval('T')) draw_area_max.y = parser.value_linear_units();
if (parser.seenval('B')) draw_area_min.y = parser.value_linear_units();
if (parser.seenval('H')) polargraph_max_belt_len = parser.value_linear_units();
draw_area_size.x = draw_area_max.x - draw_area_min.x;
draw_area_size.y = draw_area_max.y - draw_area_min.y;
}
void GcodeSuite::M665_report(const bool forReplay/*=true*/) {
report_heading_etc(forReplay, F(STR_POLARGRAPH_SETTINGS " (" STR_S_SEG_PER_SEC ")"));
SERIAL_ECHOLNPGM(" M665 S", segments_per_second);
report_heading_etc(forReplay, F(STR_POLARGRAPH_SETTINGS));
SERIAL_ECHOLNPGM_P(
PSTR(" M665 S"), LINEAR_UNIT(segments_per_second),
PSTR(" L"), LINEAR_UNIT(draw_area_min.x),
PSTR(" R"), LINEAR_UNIT(draw_area_max.x),
SP_T_STR, LINEAR_UNIT(draw_area_max.y),
SP_B_STR, LINEAR_UNIT(draw_area_min.y),
PSTR(" H"), LINEAR_UNIT(polargraph_max_belt_len)
);
}
#endif

View File

@@ -44,8 +44,8 @@
void GcodeSuite::M666() {
DEBUG_SECTION(log_M666, "M666", DEBUGGING(LEVELING));
bool is_err = false, is_set = false;
LOOP_LINEAR_AXES(i) {
if (parser.seen(AXIS_CHAR(i))) {
LOOP_NUM_AXES(i) {
if (parser.seenval(AXIS_CHAR(i))) {
is_set = true;
const float v = parser.value_linear_units();
if (v > 0)

View File

@@ -122,7 +122,7 @@
* S<percent> : Speed factor percentage.
*/
void GcodeSuite::M201() {
if (!parser.seen("T" LOGICAL_AXES_STRING TERN_(XY_FREQUENCY_LIMIT, "FS")))
if (!parser.seen("T" STR_AXES_LOGICAL TERN_(XY_FREQUENCY_LIMIT, "FS")))
return M201_report();
const int8_t target_extruder = get_target_extruder_from_command();
@@ -134,9 +134,9 @@ void GcodeSuite::M201() {
#endif
LOOP_LOGICAL_AXES(i) {
if (parser.seenval(axis_codes[i])) {
const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i);
planner.set_max_acceleration(a, parser.value_axis_units((AxisEnum)a));
if (parser.seenval(AXIS_CHAR(i))) {
const AxisEnum a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? E_AXIS_N(target_extruder) : (AxisEnum)i), (AxisEnum)i);
planner.set_max_acceleration(a, parser.value_axis_units(a));
}
}
}
@@ -144,13 +144,16 @@ void GcodeSuite::M201() {
void GcodeSuite::M201_report(const bool forReplay/*=true*/) {
report_heading_etc(forReplay, F(STR_MAX_ACCELERATION));
SERIAL_ECHOLNPGM_P(
LIST_N(DOUBLE(LINEAR_AXES),
LIST_N(DOUBLE(NUM_AXES),
PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS]),
SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS]),
SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS]),
SP_I_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[I_AXIS]),
SP_J_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[J_AXIS]),
SP_K_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[K_AXIS])
SP_I_STR, I_AXIS_UNIT(planner.settings.max_acceleration_mm_per_s2[I_AXIS]),
SP_J_STR, J_AXIS_UNIT(planner.settings.max_acceleration_mm_per_s2[J_AXIS]),
SP_K_STR, K_AXIS_UNIT(planner.settings.max_acceleration_mm_per_s2[K_AXIS]),
SP_U_STR, U_AXIS_UNIT(planner.settings.max_acceleration_mm_per_s2[U_AXIS]),
SP_V_STR, V_AXIS_UNIT(planner.settings.max_acceleration_mm_per_s2[V_AXIS]),
SP_W_STR, W_AXIS_UNIT(planner.settings.max_acceleration_mm_per_s2[W_AXIS])
)
#if HAS_EXTRUDERS && DISABLED(DISTINCT_E_FACTORS)
, SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
@@ -173,29 +176,32 @@ void GcodeSuite::M201_report(const bool forReplay/*=true*/) {
* With multiple extruders use T to specify which one.
*/
void GcodeSuite::M203() {
if (!parser.seen("T" LOGICAL_AXES_STRING))
if (!parser.seen("T" STR_AXES_LOGICAL))
return M203_report();
const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return;
LOOP_LOGICAL_AXES(i)
if (parser.seenval(axis_codes[i])) {
const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i);
planner.set_max_feedrate(a, parser.value_axis_units((AxisEnum)a));
if (parser.seenval(AXIS_CHAR(i))) {
const AxisEnum a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? E_AXIS_N(target_extruder) : (AxisEnum)i), (AxisEnum)i);
planner.set_max_feedrate(a, parser.value_axis_units(a));
}
}
void GcodeSuite::M203_report(const bool forReplay/*=true*/) {
report_heading_etc(forReplay, F(STR_MAX_FEEDRATES));
SERIAL_ECHOLNPGM_P(
LIST_N(DOUBLE(LINEAR_AXES),
LIST_N(DOUBLE(NUM_AXES),
PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS]),
SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS]),
SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS]),
SP_I_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[I_AXIS]),
SP_J_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[J_AXIS]),
SP_K_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[K_AXIS])
SP_K_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[K_AXIS]),
SP_U_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[U_AXIS]),
SP_V_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[V_AXIS]),
SP_W_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[W_AXIS])
)
#if HAS_EXTRUDERS && DISABLED(DISTINCT_E_FACTORS)
, SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
@@ -282,9 +288,12 @@ void GcodeSuite::M205() {
if (parser.seenval('X')) planner.set_max_jerk(X_AXIS, parser.value_linear_units()),
if (parser.seenval('Y')) planner.set_max_jerk(Y_AXIS, parser.value_linear_units()),
if ((seenZ = parser.seenval('Z'))) planner.set_max_jerk(Z_AXIS, parser.value_linear_units()),
if (parser.seenval(AXIS4_NAME)) planner.set_max_jerk(I_AXIS, parser.value_linear_units()),
if (parser.seenval(AXIS5_NAME)) planner.set_max_jerk(J_AXIS, parser.value_linear_units()),
if (parser.seenval(AXIS6_NAME)) planner.set_max_jerk(K_AXIS, parser.value_linear_units())
if (parser.seenval(AXIS4_NAME)) planner.set_max_jerk(I_AXIS, parser.TERN(AXIS4_ROTATES, value_float, value_linear_units)()),
if (parser.seenval(AXIS5_NAME)) planner.set_max_jerk(J_AXIS, parser.TERN(AXIS5_ROTATES, value_float, value_linear_units)()),
if (parser.seenval(AXIS6_NAME)) planner.set_max_jerk(K_AXIS, parser.TERN(AXIS6_ROTATES, value_float, value_linear_units)()),
if (parser.seenval(AXIS7_NAME)) planner.set_max_jerk(U_AXIS, parser.TERN(AXIS7_ROTATES, value_float, value_linear_units)()),
if (parser.seenval(AXIS8_NAME)) planner.set_max_jerk(V_AXIS, parser.TERN(AXIS8_ROTATES, value_float, value_linear_units)()),
if (parser.seenval(AXIS9_NAME)) planner.set_max_jerk(W_AXIS, parser.TERN(AXIS9_ROTATES, value_float, value_linear_units)())
);
#if HAS_MESH && DISABLED(LIMITED_JERK_EDITING)
if (seenZ && planner.max_jerk.z <= 0.1f)
@@ -298,9 +307,10 @@ void GcodeSuite::M205_report(const bool forReplay/*=true*/) {
"Advanced (B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
TERN_(HAS_JUNCTION_DEVIATION, " J<junc_dev>")
#if HAS_CLASSIC_JERK
LINEAR_AXIS_GANG(
NUM_AXIS_GANG(
" X<max_jerk>", " Y<max_jerk>", " Z<max_jerk>",
" " STR_I "<max_jerk>", " " STR_J "<max_jerk>", " " STR_K "<max_jerk>"
" " STR_I "<max_jerk>", " " STR_J "<max_jerk>", " " STR_K "<max_jerk>",
" " STR_U "<max_jerk>", " " STR_V "<max_jerk>", " " STR_W "<max_jerk>"
)
#endif
TERN_(HAS_CLASSIC_E_JERK, " E<max_jerk>")
@@ -314,13 +324,16 @@ void GcodeSuite::M205_report(const bool forReplay/*=true*/) {
, PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
#endif
#if HAS_CLASSIC_JERK
, LIST_N(DOUBLE(LINEAR_AXES),
, LIST_N(DOUBLE(NUM_AXES),
SP_X_STR, LINEAR_UNIT(planner.max_jerk.x),
SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y),
SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z),
SP_I_STR, LINEAR_UNIT(planner.max_jerk.i),
SP_J_STR, LINEAR_UNIT(planner.max_jerk.j),
SP_K_STR, LINEAR_UNIT(planner.max_jerk.k)
SP_I_STR, I_AXIS_UNIT(planner.max_jerk.i),
SP_J_STR, J_AXIS_UNIT(planner.max_jerk.j),
SP_K_STR, K_AXIS_UNIT(planner.max_jerk.k),
SP_U_STR, U_AXIS_UNIT(planner.max_jerk.u),
SP_V_STR, V_AXIS_UNIT(planner.max_jerk.v),
SP_W_STR, W_AXIS_UNIT(planner.max_jerk.w)
)
#if HAS_CLASSIC_E_JERK
, SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)

View File

@@ -50,9 +50,12 @@
* W[linear] 0/1 Enable park & Z Raise
* X[linear] Park X (Requires TOOLCHANGE_PARK)
* Y[linear] Park Y (Requires TOOLCHANGE_PARK)
* I[linear] Park I (Requires TOOLCHANGE_PARK and LINEAR_AXES >= 4)
* J[linear] Park J (Requires TOOLCHANGE_PARK and LINEAR_AXES >= 5)
* K[linear] Park K (Requires TOOLCHANGE_PARK and LINEAR_AXES >= 6)
* I[linear] Park I (Requires TOOLCHANGE_PARK and NUM_AXES >= 4)
* J[linear] Park J (Requires TOOLCHANGE_PARK and NUM_AXES >= 5)
* K[linear] Park K (Requires TOOLCHANGE_PARK and NUM_AXES >= 6)
* C[linear] Park U (Requires TOOLCHANGE_PARK and NUM_AXES >= 7)
* H[linear] Park V (Requires TOOLCHANGE_PARK and NUM_AXES >= 8)
* O[linear] Park W (Requires TOOLCHANGE_PARK and NUM_AXES >= 9)
* Z[linear] Z Raise
* F[speed] Fan Speed 0-255
* D[seconds] Fan time
@@ -95,13 +98,22 @@ void GcodeSuite::M217() {
if (parser.seenval('Y')) { const int16_t v = parser.value_linear_units(); toolchange_settings.change_point.y = constrain(v, Y_MIN_POS, Y_MAX_POS); }
#endif
#if HAS_I_AXIS
if (parser.seenval('I')) { const int16_t v = parser.value_linear_units(); toolchange_settings.change_point.i = constrain(v, I_MIN_POS, I_MAX_POS); }
if (parser.seenval('I')) { const int16_t v = parser.TERN(AXIS4_ROTATES, value_int, value_linear_units)(); toolchange_settings.change_point.i = constrain(v, I_MIN_POS, I_MAX_POS); }
#endif
#if HAS_J_AXIS
if (parser.seenval('J')) { const int16_t v = parser.value_linear_units(); toolchange_settings.change_point.j = constrain(v, J_MIN_POS, J_MAX_POS); }
if (parser.seenval('J')) { const int16_t v = parser.TERN(AXIS5_ROTATES, value_int, value_linear_units)(); toolchange_settings.change_point.j = constrain(v, J_MIN_POS, J_MAX_POS); }
#endif
#if HAS_K_AXIS
if (parser.seenval('K')) { const int16_t v = parser.value_linear_units(); toolchange_settings.change_point.k = constrain(v, K_MIN_POS, K_MAX_POS); }
if (parser.seenval('K')) { const int16_t v = parser.TERN(AXIS6_ROTATES, value_int, value_linear_units)(); toolchange_settings.change_point.k = constrain(v, K_MIN_POS, K_MAX_POS); }
#endif
#if HAS_U_AXIS
if (parser.seenval('C')) { const int16_t v = parser.TERN(AXIS7_ROTATES, value_int, value_linear_units)(); toolchange_settings.change_point.u = constrain(v, U_MIN_POS, U_MAX_POS); }
#endif
#if HAS_V_AXIS
if (parser.seenval('H')) { const int16_t v = parser.TERN(AXIS8_ROTATES, value_int, value_linear_units)(); toolchange_settings.change_point.v = constrain(v, V_MIN_POS, V_MAX_POS); }
#endif
#if HAS_W_AXIS
if (parser.seenval('O')) { const int16_t v = parser.TERN(AXIS9_ROTATES, value_int, value_linear_units)(); toolchange_settings.change_point.w = constrain(v, W_MIN_POS, W_MAX_POS); }
#endif
#endif
@@ -167,24 +179,23 @@ void GcodeSuite::M217_report(const bool forReplay/*=true*/) {
#endif
#if ENABLED(TOOLCHANGE_PARK)
{
SERIAL_ECHOPGM(" W", LINEAR_UNIT(toolchange_settings.enable_park));
SERIAL_ECHOPGM_P(
SP_X_STR, LINEAR_UNIT(toolchange_settings.change_point.x)
#if HAS_Y_AXIS
, SP_Y_STR, LINEAR_UNIT(toolchange_settings.change_point.y)
#endif
#if HAS_I_AXIS
, SP_I_STR, LINEAR_UNIT(toolchange_settings.change_point.i)
#endif
#if HAS_J_AXIS
, SP_J_STR, LINEAR_UNIT(toolchange_settings.change_point.j)
#endif
#if HAS_K_AXIS
, SP_K_STR, LINEAR_UNIT(toolchange_settings.change_point.k)
#if SECONDARY_AXES >= 1
, LIST_N(DOUBLE(SECONDARY_AXES)
, SP_I_STR, I_AXIS_UNIT(toolchange_settings.change_point.i)
, SP_J_STR, J_AXIS_UNIT(toolchange_settings.change_point.j)
, SP_K_STR, K_AXIS_UNIT(toolchange_settings.change_point.k)
, SP_C_STR, U_AXIS_UNIT(toolchange_settings.change_point.u)
, PSTR(" H"), V_AXIS_UNIT(toolchange_settings.change_point.v)
, PSTR(" O"), W_AXIS_UNIT(toolchange_settings.change_point.w)
)
#endif
);
}
#endif
#if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)

View File

@@ -47,8 +47,8 @@ void GcodeSuite::M281() {
return;
}
#endif
if (parser.seen('L')) servo_angles[servo_index][0] = parser.value_int();
if (parser.seen('U')) servo_angles[servo_index][1] = parser.value_int();
if (parser.seenval('L')) servo_angles[servo_index][0] = parser.value_int();
if (parser.seenval('U')) servo_angles[servo_index][1] = parser.value_int();
}
else
SERIAL_ERROR_MSG("Servo ", servo_index, " out of range");

View File

@@ -36,9 +36,9 @@
*/
void GcodeSuite::M304() {
if (!parser.seen("PID")) return M304_report();
if (parser.seen('P')) thermalManager.temp_bed.pid.Kp = parser.value_float();
if (parser.seen('I')) thermalManager.temp_bed.pid.Ki = scalePID_i(parser.value_float());
if (parser.seen('D')) thermalManager.temp_bed.pid.Kd = scalePID_d(parser.value_float());
if (parser.seenval('P')) thermalManager.temp_bed.pid.Kp = parser.value_float();
if (parser.seenval('I')) thermalManager.temp_bed.pid.Ki = scalePID_i(parser.value_float());
if (parser.seenval('D')) thermalManager.temp_bed.pid.Kd = scalePID_d(parser.value_float());
}
void GcodeSuite::M304_report(const bool forReplay/*=true*/) {

View File

@@ -52,19 +52,19 @@ void GcodeSuite::M305() {
if (t_index >= (USER_THERMISTORS) || (do_set && t_index < 0))
SERIAL_ECHO_MSG("!Invalid index. (0 <= P <= ", USER_THERMISTORS - 1, ")");
else if (do_set) {
if (parser.seen('R')) // Pullup resistor value
if (parser.seenval('R')) // Pullup resistor value
if (!thermalManager.set_pull_up_res(t_index, parser.value_float()))
SERIAL_ECHO_MSG("!Invalid series resistance. (0 < R < 1000000)");
if (parser.seen('T')) // Resistance at 25C
if (parser.seenval('T')) // Resistance at 25C
if (!thermalManager.set_res25(t_index, parser.value_float()))
SERIAL_ECHO_MSG("!Invalid 25C resistance. (0 < T < 10000000)");
if (parser.seen('B')) // Beta value
if (parser.seenval('B')) // Beta value
if (!thermalManager.set_beta(t_index, parser.value_float()))
SERIAL_ECHO_MSG("!Invalid beta. (0 < B < 1000000)");
if (parser.seen('C')) // Steinhart-Hart C coefficient
if (parser.seenval('C')) // Steinhart-Hart C coefficient
if (!thermalManager.set_sh_coeff(t_index, parser.value_float()))
SERIAL_ECHO_MSG("!Invalid Steinhart-Hart C coeff. (-0.01 < C < +0.01)");
} // If not setting then report parameters

View File

@@ -198,10 +198,10 @@ inline void servo_probe_test() {
uint8_t i = 0;
SERIAL_ECHOLNPGM(". Deploy & stow 4 times");
do {
MOVE_SERVO(probe_index, servo_angles[Z_PROBE_SERVO_NR][0]); // Deploy
servo[probe_index].move(servo_angles[Z_PROBE_SERVO_NR][0]); // Deploy
safe_delay(500);
deploy_state = READ(PROBE_TEST_PIN);
MOVE_SERVO(probe_index, servo_angles[Z_PROBE_SERVO_NR][1]); // Stow
servo[probe_index].move(servo_angles[Z_PROBE_SERVO_NR][1]); // Stow
safe_delay(500);
stow_state = READ(PROBE_TEST_PIN);
} while (++i < 4);
@@ -226,7 +226,7 @@ inline void servo_probe_test() {
}
// Ask the user for a trigger event and measure the pulse width.
MOVE_SERVO(probe_index, servo_angles[Z_PROBE_SERVO_NR][0]); // Deploy
servo[probe_index].move(servo_angles[Z_PROBE_SERVO_NR][0]); // Deploy
safe_delay(500);
SERIAL_ECHOLNPGM("** Please trigger probe within 30 sec **");
uint16_t probe_counter = 0;
@@ -256,7 +256,7 @@ inline void servo_probe_test() {
}
else SERIAL_ECHOLNPGM("FAIL: Noise detected - please re-run test");
MOVE_SERVO(probe_index, servo_angles[Z_PROBE_SERVO_NR][1]); // Stow
servo[probe_index].move(servo_angles[Z_PROBE_SERVO_NR][1]); // Stow
return;
}
}

Some files were not shown because too many files have changed in this diff Show More