106 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			106 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|   stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
 | |
|   Part of Grbl
 | |
| 
 | |
|   Copyright (c) 2009-2011 Simen Svale Skogsrud
 | |
| 
 | |
|   Grbl is free software: you can redistribute it and/or modify
 | |
|   it under the terms of the GNU General Public License as published by
 | |
|   the Free Software Foundation, either version 3 of the License, or
 | |
|   (at your option) any later version.
 | |
| 
 | |
|   Grbl is distributed in the hope that it will be useful,
 | |
|   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|   GNU General Public License for more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License
 | |
|   along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| 
 | |
| #ifndef stepper_h
 | |
| #define stepper_h 
 | |
| 
 | |
| #include "planner.h"
 | |
| 
 | |
| #if EXTRUDERS > 3
 | |
|   #define WRITE_E_STEP(v) { if(current_block->active_extruder == 3) { WRITE(E3_STEP_PIN, v); } else { if(current_block->active_extruder == 2) { WRITE(E2_STEP_PIN, v); } else { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}}}
 | |
|   #define NORM_E_DIR() { if(current_block->active_extruder == 3) { WRITE(E3_DIR_PIN, !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, !INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}}}
 | |
|   #define REV_E_DIR() { if(current_block->active_extruder == 3) { WRITE(E3_DIR_PIN, INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}}}
 | |
| #elif EXTRUDERS > 2
 | |
|   #define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { WRITE(E2_STEP_PIN, v); } else { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}}
 | |
|   #define NORM_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, !INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}}
 | |
|   #define REV_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}}
 | |
| #elif EXTRUDERS > 1
 | |
|   #ifndef DUAL_X_CARRIAGE
 | |
|     #define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}
 | |
|     #define NORM_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}
 | |
|     #define REV_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}
 | |
|   #else
 | |
|     extern bool extruder_duplication_enabled;
 | |
|     #define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { WRITE(E0_STEP_PIN, v); WRITE(E1_STEP_PIN, v); } else if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}
 | |
|     #define NORM_E_DIR() { if(extruder_duplication_enabled) { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}
 | |
|     #define REV_E_DIR() { if(extruder_duplication_enabled) { WRITE(E0_DIR_PIN, INVERT_E0_DIR); WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}
 | |
|   #endif  
 | |
| #else
 | |
|   #define WRITE_E_STEP(v) WRITE(E0_STEP_PIN, v)
 | |
|   #define NORM_E_DIR() WRITE(E0_DIR_PIN, !INVERT_E0_DIR)
 | |
|   #define REV_E_DIR() WRITE(E0_DIR_PIN, INVERT_E0_DIR)
 | |
| #endif
 | |
| 
 | |
| #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | |
| extern bool abort_on_endstop_hit;
 | |
| #endif
 | |
| 
 | |
| // Initialize and start the stepper motor subsystem
 | |
| void st_init();
 | |
| 
 | |
| // Block until all buffered steps are executed
 | |
| void st_synchronize();
 | |
| 
 | |
| // Set current position in steps
 | |
| void st_set_position(const long &x, const long &y, const long &z, const long &e);
 | |
| void st_set_e_position(const long &e);
 | |
| 
 | |
| // Get current position in steps
 | |
| long st_get_position(uint8_t axis);
 | |
| 
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| // Get current position in mm
 | |
| float st_get_position_mm(uint8_t axis);
 | |
| #endif  //ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
| // The stepper subsystem goes to sleep when it runs out of things to execute. Call this
 | |
| // to notify the subsystem that it is time to go to work.
 | |
| void st_wake_up();
 | |
| 
 | |
|   
 | |
| void checkHitEndstops(); //call from somewhere to create an serial error message with the locations the endstops where hit, in case they were triggered
 | |
| void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homing and before a routine call of checkHitEndstops();
 | |
| 
 | |
| void enable_endstops(bool check); // Enable/disable endstop checking
 | |
| 
 | |
| void checkStepperErrors(); //Print errors detected by the stepper
 | |
| 
 | |
| void finishAndDisableSteppers();
 | |
| 
 | |
| extern block_t *current_block;  // A pointer to the block currently being traced
 | |
| 
 | |
| void quickStop();
 | |
| 
 | |
| void digitalPotWrite(int address, int value);
 | |
| void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2);
 | |
| void microstep_mode(uint8_t driver, uint8_t stepping);
 | |
| void digipot_init();
 | |
| void digipot_current(uint8_t driver, int current);
 | |
| void microstep_init();
 | |
| void microstep_readings();
 | |
| 
 | |
| #ifdef BABYSTEPPING
 | |
|   void babystep(const uint8_t axis,const bool direction); // perform a short step with a single stepper motor, outside of any convention
 | |
| #endif
 | |
|      
 | |
| 
 | |
| 
 | |
| #endif
 |