mirror of
https://github.com/ME-561-W20-Quadcopter-Project/Quadcopter-Control.git
synced 2025-08-31 21:03:13 +00:00
Merge branch 'NamanLQR' into nonlinear_sim
This commit is contained in:
221
Naman_LQR_Working.m
Normal file
221
Naman_LQR_Working.m
Normal file
@@ -0,0 +1,221 @@
|
||||
% Clear workspace
|
||||
clear all; close all; clc;
|
||||
|
||||
% Parameters source: https://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf
|
||||
g = 9.81; m = 0.468; Ix = 4.856*10^-3;
|
||||
Iy = 4.856*10^-3; Iz = 8.801*10^-3;
|
||||
|
||||
% States:
|
||||
% X1: x X4: x'
|
||||
% X2: y X5: y'
|
||||
% X3: z X6: z'
|
||||
% X7: Pitch angle (x-axis) X10: Pitch rate (x-axis)
|
||||
% X8: Roll angle (y-axis) X11: Roll rate (y-axis)
|
||||
% X9: Yaw angle (z-axis) X12: Yaw rate (z-axis)
|
||||
|
||||
% Inputs: Outputs:
|
||||
% U1: Total Upward Force (along z-axis) Y1: Position along x axis
|
||||
% U2: Pitch Torque (about x-axis) Y2: Position along y axis
|
||||
% U3: Roll Torque (about y-axis) Y3: Position along z axis
|
||||
% U4: Yaw Torque (about z-axis) Y4: Pitch (about x-axis)
|
||||
% Y5: Roll (about y-axis)
|
||||
% Y6: Yaw (about z-axis)
|
||||
|
||||
% State Space Source: https://arxiv.org/ftp/arxiv/papers/1908/1908.07401.pdf
|
||||
% X' = Ax + Bu
|
||||
% Y = Cx
|
||||
|
||||
nStates = 12;
|
||||
nInputs = 4;
|
||||
nOutputs = 6;
|
||||
|
||||
A = [0 0 0 1 0 0 0 0 0 0 0 0;
|
||||
0 0 0 0 1 0 0 0 0 0 0 0;
|
||||
0 0 0 0 0 1 0 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 -g 0 0 0 0;
|
||||
0 0 0 0 0 0 g 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 0 0 1 0 0;
|
||||
0 0 0 0 0 0 0 0 0 0 1 0;
|
||||
0 0 0 0 0 0 0 0 0 0 0 1;
|
||||
0 0 0 0 0 0 0 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 0 0 0 0 0];
|
||||
|
||||
% Note: In paper, 1/m is in wrong spot
|
||||
B = [0 0 0 0;
|
||||
0 0 0 0;
|
||||
0 0 0 0;
|
||||
0 0 0 0;
|
||||
0 0 0 0;
|
||||
1/m 0 0 0;
|
||||
0 0 0 0;
|
||||
0 0 0 0;
|
||||
0 0 0 0;
|
||||
0 1/Ix 0 0;
|
||||
0 0 1/Iy 0;
|
||||
0 0 0 1/Iz];
|
||||
|
||||
C = [1 0 0 0 0 0 0 0 0 0 0 0;
|
||||
0 1 0 0 0 0 0 0 0 0 0 0;
|
||||
0 0 1 0 0 0 0 0 0 0 0 0;
|
||||
0 0 0 0 0 0 1 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 1 0 0 0 0;
|
||||
0 0 0 0 0 0 0 0 1 0 0 0];
|
||||
|
||||
D = zeros(6,4);
|
||||
|
||||
continuous = ss(A, B, C, D);
|
||||
T_s = 0.05;
|
||||
discrete = c2d(continuous, T_s);
|
||||
|
||||
%Check if this works
|
||||
impulse(discrete, 0:T_s:1);
|
||||
|
||||
%We should see that U1 gets us only translation in z, U2 couples Y2 and Y4,
|
||||
%U3 couples Y1 and Y5, and U4 gets us Y6
|
||||
|
||||
%% Define goals
|
||||
%Goal 1: settle at 1m height <2s
|
||||
x_0_up = [0, 0, -1, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]'; %Redefine origin!
|
||||
|
||||
%Goal 2: Stabilize from a 10-degree roll and pitch with <3deg overshoot
|
||||
x_0_pitch = [0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
10, 0, 0, ...
|
||||
0, 0, 0]'; %Pitch of 10 degrees
|
||||
|
||||
x_0_roll = [0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 10, 0, ...
|
||||
0, 0, 0]'; %Roll of 10 degrees
|
||||
|
||||
%Goal 3: Move from position (0,0,0) to within 5 cm of (1,1,1) within 5 seconds.
|
||||
x_0_trans = [-1, -1, -1, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]'; %Redefine origin!
|
||||
|
||||
%Define Q and R for the cost function. Begin with nominal ones for all.
|
||||
Q = diag([1000, 1000, 1000, ... % x, y, z
|
||||
1, 1, 100, ... % x', y', z'
|
||||
100, 100, 1, ... % roll, pitch, yaw
|
||||
1, 1, 1]); % roll', pitch', yaw'
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
%% Finite-Time Horizon LQR for Goal 1
|
||||
|
||||
%Calculate number of timesteps.
|
||||
tSpan = 0:T_s:2;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
%Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
|
||||
%Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_up, K, discrete.A, discrete.B);
|
||||
xlqr(3,:) = xlqr(3,:) + 1;
|
||||
%Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
|
||||
%% Finite-Time Horizon LQR for Goal 2
|
||||
|
||||
%Calculate number of timesteps.
|
||||
tSpan = 0:T_s:2;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
%Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
|
||||
%Pitch Goal
|
||||
%Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_pitch, K, discrete.A, discrete.B);
|
||||
|
||||
%Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
|
||||
%Roll Goal
|
||||
%Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_roll, K, discrete.A, discrete.B);
|
||||
|
||||
%Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
|
||||
%% Finite-Time Horizon For Goal 3
|
||||
|
||||
%Calculate number of timesteps.
|
||||
tSpan = 0:T_s:5;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
%Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
|
||||
%Pitch Goal
|
||||
%Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_trans, K, discrete.A, discrete.B);
|
||||
xlqr(1:3,:) = xlqr(1:3,:) + 1;
|
||||
|
||||
%Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
|
||||
%% Helper Functions
|
||||
|
||||
function [K, P] = LQR_LTI(A, B, Q, R, nSteps)
|
||||
%Set P up
|
||||
P = zeros(size(Q, 1), size(Q, 2), nSteps);
|
||||
%Initial value of P
|
||||
P(:, :, nSteps) = 1/2 * Q;
|
||||
%Set K up, initial K is 0, so this is fine.
|
||||
K = zeros(length(R), length(Q), nSteps);
|
||||
|
||||
for i = nSteps-1:-1:1
|
||||
P_ = P(:,:, i+1);
|
||||
|
||||
K(:, :, i) = ( 1/2 * R + B' * P_ * B )^(-1) * B' * P_ * A;
|
||||
P(:, :, i) = A' * P_ * ( A - B * K(:, :, i) ) + Q * 1/2;
|
||||
end
|
||||
end
|
||||
|
||||
function [ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0, K, A, B)
|
||||
%Set up for propagation
|
||||
ulqr = zeros(nInputs, nSteps);
|
||||
xlqr = zeros(nStates, nSteps);
|
||||
xlqr(:, 1) = x_0;
|
||||
|
||||
for i = 1:(nSteps - 1)
|
||||
ulqr(:,i) = K(:,:,i) * xlqr(:,i);
|
||||
xlqr(:,i+1) = (A*xlqr(:, i) - B*ulqr(:, i));
|
||||
end
|
||||
end
|
||||
|
||||
function plot_states(xlqr, tSpan)
|
||||
figure();
|
||||
subplot(1, 2, 1);
|
||||
plot(tSpan, xlqr(1, :), '-r', 'LineWidth', 2);
|
||||
hold on;
|
||||
plot(tSpan, xlqr(2, :), '-g');
|
||||
plot(tSpan, xlqr(3, :), '-b');
|
||||
plot(tSpan, xlqr(4, :), '--r');
|
||||
plot(tSpan, xlqr(5, :), '--g');
|
||||
plot(tSpan, xlqr(6, :), '--b');
|
||||
legend('x', 'y', 'z', 'x`', 'y`', 'z`');
|
||||
title("Translations(-) and Velocities (--)");
|
||||
xlabel("Time(s)");
|
||||
ylabel("Displacement (m)");
|
||||
|
||||
subplot(1, 2, 2);
|
||||
plot(tSpan, xlqr(7, :), '-r');
|
||||
hold on;
|
||||
plot(tSpan, xlqr(8, :), '-g');
|
||||
plot(tSpan, xlqr(9, :), '-b');
|
||||
plot(tSpan, xlqr(10, :), '--r');
|
||||
plot(tSpan, xlqr(11, :), '--g');
|
||||
plot(tSpan, xlqr(12, :), '--b');
|
||||
legend('Pitch (about x)', 'Roll (about y)', 'Yaw (about z)', 'Pitch Rate', 'Roll Rate', 'Yaw Rate');
|
||||
title("Angular Displacements(-) and Velocities(--)");
|
||||
xlabel("Time(s)");
|
||||
ylabel("Displacement (deg)");
|
||||
end
|
Reference in New Issue
Block a user