Merge branch 'NamanLQR' into nonlinear

This commit is contained in:
Sravan Balaji
2020-04-18 18:13:20 -04:00
2 changed files with 24 additions and 23 deletions

View File

@@ -66,7 +66,7 @@ C = [1 0 0 0 0 0 0 0 0 0 0 0;
D = zeros(6,4);
continuous = ss(A, B, C, D);
T_s = 0.05;
T_s = 0.01;
discrete = c2d(continuous, T_s);
%Check if this works
@@ -76,38 +76,33 @@ impulse(discrete, 0:T_s:1);
%U3 couples Y1 and Y5, and U4 gets us Y6
%% Define goals
% Desired position
x_d = 0;
y_d = 0;
z_d = 0;
%Goal 1: settle at 1m height <2s
x_0_up = [0, 0, -1, ...
0, 0, 0, ...
0, 0, 0, ...
0, 0, 0]'; %Redefine origin!
0, 0, 0, ...
0, 0, 0, ...
0, 0, 0]'; %Redefine origin!
%Goal 2: Stabilize from a 10-degree roll and pitch with <3deg overshoot
x_0_pitch = [0, 0, 0, ...
0, 0, 0, ...
10, 0, 0, ...
0, 0, 0]'; %Pitch of 10 degrees
0, 0, 0, ...
10, 0, 0, ...
0, 0, 0]'; %Pitch of 10 degrees
x_0_roll = [0, 0, 0, ...
0, 0, 0, ...
0, 10, 0, ...
0, 0, 0]'; %Roll of 10 degrees
0, 0, 0, ...
0, 10, 0, ...
0, 0, 0]'; %Roll of 10 degrees
%Goal 3: Move from position (0,0,0) to within 5 cm of (1,1,1) within 5 seconds.
x_0_trans = [-1, -1, -1, ...
0, 0, 0, ...
0, 0, 0, ...
0, 0, 0]'; %Redefine origin!
0, 0, 0, ...
0, 0, 0, ...
0, 0, 0]'; %Redefine origin!
%Define Q and R for the cost function. Begin with nominal ones for all.
Q = diag([1000, 1000, 1000, ... % x, y, z
1, 1, 100, ... % x', y', z'
100, 100, 1, ... % roll, pitch, yaw
200, 200, 1, ... % roll, pitch, yaw
1, 1, 1]); % roll', pitch', yaw'
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
@@ -122,9 +117,12 @@ nSteps = length(tSpan);
%Propagate
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_up, K, discrete.A, discrete.B);
%States are relative to origin, so we need to add the reference to the
%state to get global coordinates
xlqr(3,:) = xlqr(3,:) + 1;
%Plot
plot_states(xlqr, tSpan);
zd = diff(xlqr(6,:))./T_s
%% Finite-Time Horizon LQR for Goal 2
@@ -135,19 +133,22 @@ nSteps = length(tSpan);
%Determine gains
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
%Pitch Goal
%Propagate
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_pitch, K, discrete.A, discrete.B);
%Plot
plot_states(xlqr, tSpan);
%Roll Goal
yd = diff(xlqr(5,:))./T_s
pd = diff(xlqr(7,:))./T_s
%Propagate
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_roll, K, discrete.A, discrete.B);
%Plot
plot_states(xlqr, tSpan);
xd = diff(xlqr(4,:))./T_s
rd = diff(xlqr(8,:))./T_s
%% Finite-Time Horizon For Goal 3
@@ -189,7 +190,7 @@ function [ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0, K, A, B)
ulqr = zeros(nInputs, nSteps);
xlqr = zeros(nStates, nSteps);
xlqr(:, 1) = x_0;
for i = 1:(nSteps - 1)
ulqr(:,i) = K(:,:,i) * xlqr(:,i);
xlqr(:,i+1) = (A*xlqr(:, i) - B*ulqr(:, i));
@@ -203,7 +204,7 @@ function plot_states(xlqr, tSpan)
hold on;
plot(tSpan, xlqr(2, :), '-g');
plot(tSpan, xlqr(3, :), '-b');
plot(tSpan, xlqr(4, :), '--r');
plot(tSpan, xlqr(4, :), '--r', 'LineWidth', 2);
plot(tSpan, xlqr(5, :), '--g');
plot(tSpan, xlqr(6, :), '--b');
legend('x', 'y', 'z', 'x`', 'y`', 'z`');

Binary file not shown.