Added ros::spin to depth camera node

This commit is contained in:
Derek Witcpalek
2020-04-25 23:50:36 -04:00
parent 2a85cdee8d
commit 4098662c5d

View File

@@ -23,28 +23,29 @@
ros::Publisher pub;
void depth_camera_callback(const sensor_msgs::PointCloud::ConstPtr & cloud_msg) {
// define camera pose
void depth_camera_callback(const sensor_msgs::PointCloud::ConstPtr &cloud_msg)
{
// define camera pose
float cam_x = 1.0;
float cam_y = 1.2;
float cam_z = 1.4;
// rpy = 0 1.21 0
// convert from PointCloud to PointCloud2
// convert from PointCloud to PointCloud2
sensor_msgs::PointCloud2 cloud2;
sensor_msgs::convertPointCloudToPointCloud2(*cloud_msg, cloud2);
// transform to world frame
sensor_msgs::PointCloud2 worldCloud;
// transform to world frame
sensor_msgs::PointCloud2 worldCloud;
tf::Transform xform;
xform.setOrigin( tf::Vector3(cam_x, cam_y, cam_z) );
xform.setRotation( tf::Quaternion(0, 0.5697, 0, 0.82185) );
pcl_ros::transformPointCloud("world", xform, cloud2, worldCloud);
tf::Transform xform;
xform.setOrigin(tf::Vector3(cam_x, cam_y, cam_z));
xform.setRotation(tf::Quaternion(0, 0.5697, 0, 0.82185));
pcl_ros::transformPointCloud("world", xform, cloud2, worldCloud);
// Container for original & filtered data
pcl::PCLPointCloud2* cloud = new pcl::PCLPointCloud2;
pcl::PCLPointCloud2 *cloud = new pcl::PCLPointCloud2;
pcl::PCLPointCloud2ConstPtr cloudPtr(cloud);
pcl::PCLPointCloud2 cloud_filtered;
@@ -53,19 +54,21 @@ void depth_camera_callback(const sensor_msgs::PointCloud::ConstPtr & cloud_msg)
// Perform the actual filtering
pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
sor.setInputCloud (cloudPtr);
sor.setLeafSize (0.001, 0.001, 0.001);
sor.filter (cloud_filtered);
sor.setInputCloud(cloudPtr);
sor.setLeafSize(0.001, 0.001, 0.001);
sor.filter(cloud_filtered);
pcl::PointCloud<pcl::PointXYZ> point_cloud;
pcl::PointCloud<pcl::PointXYZ>::Ptr point_cloudPtr(new pcl::PointCloud<pcl::PointXYZ>);
pcl::fromPCLPointCloud2( cloud_filtered, point_cloud);
pcl::fromPCLPointCloud2(cloud_filtered, point_cloud);
pcl::copyPointCloud(point_cloud, *point_cloudPtr);
// Filter out points on surface of belt
for (std::size_t i = 0; i < point_cloudPtr->points.size(); i++) {
for (std::size_t i = 0; i < point_cloudPtr->points.size(); i++)
{
//std::cout << point_cloudPtr->points[i].x << ", " << point_cloudPtr->points[i].y << ", " << point_cloudPtr->points[i].z << std::endl;
if (point_cloudPtr->points[i].z < 0.93) {
if (point_cloudPtr->points[i].z < 0.93)
{
point_cloudPtr->points[i].x = 0;
point_cloudPtr->points[i].y = 0;
point_cloudPtr->points[i].z = 0;
@@ -79,172 +82,180 @@ void depth_camera_callback(const sensor_msgs::PointCloud::ConstPtr & cloud_msg)
std::vector<pcl::PointIndices> cluster_indices;
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
ec.setClusterTolerance(0.05); // 5cm
ec.setMinClusterSize(10); //10
ec.setMinClusterSize(10); //10
ec.setMaxClusterSize(99000000);
ec.setSearchMethod(tree);
ec.setInputCloud(point_cloudPtr);
ec.extract(cluster_indices);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr point_cloud_segmented(new pcl::PointCloud<pcl::PointXYZRGB>);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr point_cloud_segmented(new pcl::PointCloud<pcl::PointXYZRGB>);
int j= 0;
int j = 0;
// store index of object cluster
int obj_idx = -1;
for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
// average all points
int s = 0;
float x = 0;
float y = 0;
float z = 0;
for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit) {
// convert
pcl::PointXYZRGB point;
point.x = point_cloudPtr->points[*pit].x;
point.y = point_cloudPtr->points[*pit].y;
point.z = point_cloudPtr->points[*pit].z;
// store index of object cluster
int obj_idx = -1;
// add to running totals
s++;
x += point.x;
y += point.y;
z += point.z;
for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it)
{
// average all points
int s = 0;
float x = 0;
float y = 0;
float z = 0;
for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit)
{
// convert
pcl::PointXYZRGB point;
point.x = point_cloudPtr->points[*pit].x;
point.y = point_cloudPtr->points[*pit].y;
point.z = point_cloudPtr->points[*pit].z;
if (j == 0) //Red #FF0000 (255,0,0)
{
point.r = 0;
point.g = 0;
point.b = 255;
}
else if (j == 1) //Lime #00FF00 (0,255,0)
{
point.r = 0;
point.g = 255;
point.b = 0;
}
else if (j == 2) // Blue #0000FF (0,0,255)
{
point.r = 255;
point.g = 0;
point.b = 0;
}
else
{
if (j % 2 == 0)
{
point.r = 255 * j / (cluster_indices.size());
point.g = 128;
point.b = 50;
}
else
{
point.r = 0;
point.g = 255 * j / (cluster_indices.size());
point.b = 128;
}
}
point_cloud_segmented->push_back(point);
}
// calculate center of cluster
x /= s;
y /= s;
z /= s;
// add to running totals
s++;
x += point.x;
y += point.y;
z += point.z;
// print cluster center
std::cout << "cluster at: " << x << ", " << y << ", " << z << std::endl;
if (j == 0) //Red #FF0000 (255,0,0)
{
point.r = 0;
point.g = 0;
point.b = 255;
}
else if (j == 1) //Lime #00FF00 (0,255,0)
{
point.r = 0;
point.g = 255;
point.b = 0;
}
else if (j == 2) // Blue #0000FF (0,0,255)
{
point.r = 255;
point.g = 0;
point.b = 0;
}
else
{
if (j % 2 == 0)
{
point.r = 255 * j / (cluster_indices.size());
point.g = 128;
point.b = 50;
}
else
{
point.r = 0;
point.g = 255 * j / (cluster_indices.size());
point.b = 128;
}
}
point_cloud_segmented->push_back(point);
}
// calculate center of cluster
x /= s;
y /= s;
z /= s;
// check if center is within box
if (x < 1.25 && x > 1.15 && y < cam_y + .05 && y > cam_y - .05) {
// object detected
std::cout << "object in position" << std::endl;
obj_idx = j;
}
// print cluster center
std::cout << "cluster at: " << x << ", " << y << ", " << z << std::endl;
j++;
}
// check if center is within box
if (x < 1.25 && x > 1.15 && y < cam_y + .05 && y > cam_y - .05)
{
// object detected
std::cout << "object in position" << std::endl;
obj_idx = j;
}
// identify surfaces of object cluster
if (obj_idx != -1) {
// create new cloud containing only object cluster
pcl::PointCloud<pcl::PointXYZ> obj_cloud;
std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin() + obj_idx;
for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit) {
pcl::PointXYZ point;
point.x = point_cloudPtr->points[*pit].x;
point.y = point_cloudPtr->points[*pit].y;
point.z = point_cloudPtr->points[*pit].z;
obj_cloud.push_back(point);
}
j++;
}
std::cout << "object cluster size: " << obj_cloud.points.size() << std::endl;
// identify surfaces of object cluster
if (obj_idx != -1)
{
// create new cloud containing only object cluster
pcl::PointCloud<pcl::PointXYZ> obj_cloud;
std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin() + obj_idx;
for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit)
{
pcl::PointXYZ point;
point.x = point_cloudPtr->points[*pit].x;
point.y = point_cloudPtr->points[*pit].y;
point.z = point_cloudPtr->points[*pit].z;
obj_cloud.push_back(point);
}
// create 3D bounding box.
float xmin = 10.0;
float ymin = 10.0;
float zmin = 0.92;
float xmax = 0;
float ymax = 0;
float zmax = 0;
std::cout << "object cluster size: " << obj_cloud.points.size() << std::endl;
for (int i = 0; i < obj_cloud.points.size(); ++i) {
xmin = xmin < obj_cloud.points[i].x ? xmin : obj_cloud.points[i].x;
ymin = ymin < obj_cloud.points[i].y ? ymin : obj_cloud.points[i].y;
//zmin = zmin < obj_cloud.points[i].z ? zmin : obj_cloud.points[i].z;
xmax = xmax > obj_cloud.points[i].x ? xmax : obj_cloud.points[i].x;
ymax = ymax > obj_cloud.points[i].y ? ymax : obj_cloud.points[i].y;
zmax = zmax > obj_cloud.points[i].z ? zmax : obj_cloud.points[i].z;
}
// create 3D bounding box.
float xmin = 10.0;
float ymin = 10.0;
float zmin = 0.92;
float xmax = 0;
float ymax = 0;
float zmax = 0;
// determine target pose
float area_top = (ymax - ymin) * (xmax - xmin);
float area_side = (zmax - zmin) * (ymax - ymin);
for (int i = 0; i < obj_cloud.points.size(); ++i)
{
xmin = xmin < obj_cloud.points[i].x ? xmin : obj_cloud.points[i].x;
ymin = ymin < obj_cloud.points[i].y ? ymin : obj_cloud.points[i].y;
//zmin = zmin < obj_cloud.points[i].z ? zmin : obj_cloud.points[i].z;
xmax = xmax > obj_cloud.points[i].x ? xmax : obj_cloud.points[i].x;
ymax = ymax > obj_cloud.points[i].y ? ymax : obj_cloud.points[i].y;
zmax = zmax > obj_cloud.points[i].z ? zmax : obj_cloud.points[i].z;
}
std::cout << "object top area: " << area_top << std:: endl;
std::cout << "object side area: " << area_side << std::endl;
// determine target pose
float area_top = (ymax - ymin) * (xmax - xmin);
float area_side = (zmax - zmin) * (ymax - ymin);
geometry_msgs::Pose pose;
geometry_msgs::Point p;
geometry_msgs::Quaternion q;
std::cout << "object top area: " << area_top << std::endl;
std::cout << "object side area: " << area_side << std::endl;
// pick up from top
if (area_top > .002) {
std::cout << "picking up object from top" << std::endl;
p.x = (xmin + xmax) / 2;
p.y = (ymin + ymax) / 2;
p.z = zmax;
geometry_msgs::Pose pose;
geometry_msgs::Point p;
geometry_msgs::Quaternion q;
// rpy = 0 0 0
q.x = 0;
q.y = 0;
q.z = 0;
q.w = 1;
}
else {
// pick up from front
std::cout << "picking up object from front" << std::endl;
p.x = xmin;
p.y = (ymin + ymax) / 2;
p.z = (zmax + zmin) / 2;
// pick up from top
if (area_top > .002)
{
std::cout << "picking up object from top" << std::endl;
p.x = (xmin + xmax) / 2;
p.y = (ymin + ymax) / 2;
p.z = zmax;
// rpy = -pi/2 0 pi/2
q.x = -0.63;
q.y = 0;
q.z = 0.63;
q.w = 0.44;
}
// rpy = 0 0 0
q.x = 0;
q.y = 0;
q.z = 0;
q.w = 1;
}
else
{
// pick up from front
std::cout << "picking up object from front" << std::endl;
p.x = xmin;
p.y = (ymin + ymax) / 2;
p.z = (zmax + zmin) / 2;
pose.position = p;
pose.orientation = q;
// rpy = -pi/2 0 pi/2
q.x = -0.63;
q.y = 0;
q.z = 0.63;
q.w = 0.44;
}
// publish pose
pub.publish(pose);
pose.position = p;
pose.orientation = q;
// compute normals
}
// publish pose
pub.publish(pose);
// compute normals
}
//std::cerr<< "segmented: " << (int)point_cloud_segmented->size() << "\n";
//std::cerr<< "segmented: " << (int)point_cloud_segmented->size() << "\n";
// Convert to ROS data type
//point_cloud_segmented->header.frame_id = point_cloudPtr->header.frame_id;
//if(point_cloud_segmented->size()) pcl::toPCLPointCloud2(*point_cloud_segmented, cloud_filtered);
@@ -256,20 +267,20 @@ void depth_camera_callback(const sensor_msgs::PointCloud::ConstPtr & cloud_msg)
//pub.publish (output);
}
int main(int argc, char ** argv) {
// TODO: Subscribe to depth camera topic
// Last argument is the default name of the node.
ros::init(argc, argv, "depth_camera_node");
int main(int argc, char **argv)
{
// TODO: Subscribe to depth camera topic
// Last argument is the default name of the node.
ros::init(argc, argv, "depth_camera_node");
ros::NodeHandle node;
ros::Subscriber sub = node.subscribe("/ariac/depth_camera_1", 1, depth_camera_callback);
ros::NodeHandle node;
pub = node.advertise<geometry_msgs::Pose> ("output", 1);
// TODO: When item is in view, work with point cloud to get location (in world frame) for arm to reach to pickup item
ros::Subscriber sub = node.subscribe("/ariac/depth_camera_1", 1, depth_camera_callback);
// TODO: Publish object's current location to topic for RRRobot node to listen to
pub = node.advertise<geometry_msgs::Pose>("output", 1);
ros::spin();
// TODO: When item is in view, work with point cloud to get location (in world frame) for arm to reach to pickup item
// TODO: Publish object's current location to topic for RRRobot node to listen to
}