mirror of
https://github.com/Mobile-Robotics-W20-Team-9/UMICH-NCLT-SLAP.git
synced 2025-09-08 20:13:13 +00:00
added ability to detect buildings from one location to another from chatbot including BBB, EECS, Pierpont, the Dude, and FXB
This commit is contained in:
28
src/semantic/buildingIntents.json
Normal file
28
src/semantic/buildingIntents.json
Normal file
@@ -0,0 +1,28 @@
|
||||
{"intents": [
|
||||
{"tag": "Bob and Betty Beyster",
|
||||
"patterns": ["BBB", "CSE", "CS","Computer Science", "Bob", "Bob and Betty Beyster", "Betty"],
|
||||
"responses": ["Bob and Betty Beyster"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "Duderstadt",
|
||||
"patterns": ["Dude", "the Dude", "Duderstadt", "Mujos", "Library", "North Campus Library"],
|
||||
"responses": ["Duderstadt"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "FXB",
|
||||
"patterns": ["FXB", "Francois-Xavier Bagnoud", "Aerospace", "Aerospace Engineering", "planes"],
|
||||
"responses": ["FXB"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "Electrical and Computer Engineering",
|
||||
"patterns": ["Electrical and Computer Engineering","Electrical", "Electrical Engineering", "Computer Engineering", "Computer", "EECS", "ECE"],
|
||||
"responses": ["Electrical and Computer Engineering"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "Pierpont Commons",
|
||||
"patterns": ["Pierpont", "Pierpont Commons", "Commons", "Panda Express"],
|
||||
"responses": ["Pierpont Commons"],
|
||||
"context": [""]
|
||||
}
|
||||
]
|
||||
}
|
BIN
src/semantic/building_words.pkl
Normal file
BIN
src/semantic/building_words.pkl
Normal file
Binary file not shown.
14
src/semantic/building_words.txt
Normal file
14
src/semantic/building_words.txt
Normal file
@@ -0,0 +1,14 @@
|
||||
Dude
|
||||
Computer Science
|
||||
CSE
|
||||
FXB
|
||||
BBB
|
||||
Aerospace Engineering
|
||||
Electrical Engineering
|
||||
EECS
|
||||
ECE
|
||||
Pierpont
|
||||
Duderstadt
|
||||
Francois-Xavier Bagnoud
|
||||
Bob and Betty Beyster
|
||||
Pierpont Commons
|
BIN
src/semantic/buildings.pkl
Normal file
BIN
src/semantic/buildings.pkl
Normal file
Binary file not shown.
5
src/semantic/buildings.txt
Normal file
5
src/semantic/buildings.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
Duderstadt
|
||||
Electrical and Computer Engineering
|
||||
FXB
|
||||
Pierpont Commons
|
||||
Bob and Betty Beyster
|
BIN
src/semantic/buildings_model.h5
Normal file
BIN
src/semantic/buildings_model.h5
Normal file
Binary file not shown.
@@ -9,11 +9,15 @@ import spacy
|
||||
|
||||
from keras.models import load_model
|
||||
model = load_model('chatbot_model.h5')
|
||||
modelBuilding = load_model('buildings_model.h5')
|
||||
import json
|
||||
import random
|
||||
intents = json.loads(open('intents.json').read())
|
||||
words = pickle.load(open('words.pkl','rb'))
|
||||
classes = pickle.load(open('classes.pkl','rb'))
|
||||
buildingsIntents = json.loads(open('buildingIntents.json').read())
|
||||
building_words = pickle.load(open('building_words.pkl','rb'))
|
||||
buildings = pickle.load(open('buildings.pkl','rb'))
|
||||
|
||||
def clean_up_sentence(sentence):
|
||||
# tokenize the pattern - splitting words into array
|
||||
@@ -24,13 +28,13 @@ def clean_up_sentence(sentence):
|
||||
|
||||
|
||||
# return bag of words array: 0 or 1 for words that exist in sentence
|
||||
def bag_of_words(sentence, words, show_details=True):
|
||||
def bag_of_words(sentence, wording, show_details=True):
|
||||
# tokenizing patterns
|
||||
sentence_words = clean_up_sentence(sentence)
|
||||
# bag of words - vocabulary matrix
|
||||
bag = [0]*len(words)
|
||||
bag = [0]*len(wording)
|
||||
for s in sentence_words:
|
||||
for i,word in enumerate(words):
|
||||
for i,word in enumerate(wording):
|
||||
if word == s:
|
||||
# assign 1 if current word is in the vocabulary position
|
||||
bag[i] = 1
|
||||
@@ -51,18 +55,29 @@ def predict_class(sentence):
|
||||
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
|
||||
return return_list
|
||||
|
||||
def predict_building(currbuilding):
|
||||
# filter below threshold predictions
|
||||
p = bag_of_words(currbuilding, building_words,show_details=False)
|
||||
res = modelBuilding.predict(np.array([p]))[0]
|
||||
ERROR_THRESHOLD = 0.5
|
||||
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
|
||||
# sorting strength probability
|
||||
results.sort(key=lambda x: x[1], reverse=True)
|
||||
return_list = []
|
||||
for r in results:
|
||||
return_list.append({"buildingIntents": buildings[r[0]], "probability": str(r[1])})
|
||||
return return_list
|
||||
|
||||
def getResponse(ints, intents_json):
|
||||
tag = ints[0]['intent']
|
||||
list_of_intents = intents_json['intents']
|
||||
print("ints")
|
||||
print(ints)
|
||||
for i in list_of_intents:
|
||||
if(i['tag']== tag):
|
||||
result = random.choice(i['responses'])
|
||||
break
|
||||
return result
|
||||
|
||||
def getInfo(sentence):
|
||||
def getBuildingInfo(sentence):
|
||||
doc = nlp(sentence)
|
||||
start = 0
|
||||
end = 0
|
||||
@@ -101,9 +116,18 @@ def send():
|
||||
|
||||
ints = predict_class(msg)
|
||||
if ints[0]['intent'] == "navigation":
|
||||
building = getInfo(msgClean)
|
||||
#TODO: Check if buildings are available
|
||||
res = "Now navigating to " + building[1] + " from " + building[0]
|
||||
currbuilding = getBuildingInfo(msgClean)
|
||||
if currbuilding[0] == 'random location':
|
||||
currbuilding[0] = buildings[random.randint(0, len(buildings)-1)]
|
||||
while currbuilding[0] == currbuilding[1]:
|
||||
currbuilding[1] = buildings[random.randint(0, len(buildings)-1)]
|
||||
if currbuilding[1] == 'random location':
|
||||
currbuilding[1] = buildings[random.randint(0, len(buildings)-1)]
|
||||
while currbuilding[0] == currbuilding[1]:
|
||||
currbuilding[1] = buildings[random.randint(0, len(buildings)-1)]
|
||||
fromBuild = predict_building(currbuilding[0])
|
||||
toBuild = predict_building(currbuilding[1])
|
||||
res = "Now navigating to " + toBuild[0]['buildingIntents'] + " from " + fromBuild[0]['buildingIntents']
|
||||
#TODO: START CONVERSION TO GPS COORDINATES
|
||||
elif ints[0]['intent'] == "exit":
|
||||
res = getResponse(ints, intents)
|
||||
|
96
src/semantic/train_buildings.py
Normal file
96
src/semantic/train_buildings.py
Normal file
@@ -0,0 +1,96 @@
|
||||
import numpy as np
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Dense, Activation, Dropout
|
||||
from keras.optimizers import SGD
|
||||
import random
|
||||
|
||||
import nltk
|
||||
from nltk.stem import WordNetLemmatizer
|
||||
lemmatizer = WordNetLemmatizer()
|
||||
import json
|
||||
import pickle
|
||||
|
||||
building_words=[]
|
||||
buildings = []
|
||||
documents = []
|
||||
ignore_letters = ['!', '?', ',', '.']
|
||||
buildingIntents_file = open('buildingIntents.json').read()
|
||||
buildingIntents = json.loads(buildingIntents_file)
|
||||
|
||||
# download nltk resources
|
||||
nltk.download('punkt')
|
||||
nltk.download('wordnet')
|
||||
|
||||
for intent in buildingIntents['intents']:
|
||||
for pattern in intent['patterns']:
|
||||
#tokenize each word
|
||||
word = nltk.word_tokenize(pattern)
|
||||
building_words.extend(word)
|
||||
#add documents in the corpus
|
||||
documents.append((word, intent['tag']))
|
||||
# add to our buildings list
|
||||
if intent['tag'] not in buildings:
|
||||
buildings.append(intent['tag'])
|
||||
print(documents)
|
||||
# lemmaztize and lower each word and remove duplicates
|
||||
building_words = [lemmatizer.lemmatize(w.lower()) for w in building_words if w not in ignore_letters]
|
||||
building_words = sorted(list(set(building_words)))
|
||||
# sort buildings
|
||||
buildings = sorted(list(set(buildings)))
|
||||
# documents = combination between patterns and buildingIntents
|
||||
print (len(documents), "documents")
|
||||
# buildings = buildingIntents
|
||||
print (len(buildings), "buildings", buildings)
|
||||
# building_words = all building_words, vocabulary
|
||||
print (len(building_words), "unique lemmatized building_words", building_words)
|
||||
|
||||
pickle.dump(building_words,open('building_words.pkl','wb'))
|
||||
pickle.dump(buildings,open('buildings.pkl','wb'))
|
||||
|
||||
# create our training data
|
||||
training = []
|
||||
# create an empty array for our output
|
||||
output_empty = [0] * len(buildings)
|
||||
# training set, bag of building_words for each sentence
|
||||
for doc in documents:
|
||||
# initialize our bag of building_words
|
||||
bag = []
|
||||
# list of tokenized building_words for the pattern
|
||||
pattern_building_words = doc[0]
|
||||
# lemmatize each word - create base word, in attempt to represent related building_words
|
||||
pattern_building_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_building_words]
|
||||
# create our bag of building_words array with 1, if word match found in current pattern
|
||||
for word in building_words:
|
||||
bag.append(1) if word in pattern_building_words else bag.append(0)
|
||||
|
||||
# output is a '0' for each tag and '1' for current tag (for each pattern)
|
||||
output_row = list(output_empty)
|
||||
output_row[buildings.index(doc[1])] = 1
|
||||
|
||||
training.append([bag, output_row])
|
||||
# shuffle our features and turn into np.array
|
||||
random.shuffle(training)
|
||||
training = np.array(training)
|
||||
# create train and test lists. X - patterns, Y - buildingIntents
|
||||
train_x = list(training[:,0])
|
||||
train_y = list(training[:,1])
|
||||
print("Buildings Training data created")
|
||||
|
||||
# Create model - 3 layers. First layer 128 neurons, second layer 64 neurons and 3rd output layer contains number of neurons
|
||||
# equal to number of buildingIntents to predict output intent with softmax
|
||||
model = Sequential()
|
||||
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
|
||||
model.add(Dropout(0.5))
|
||||
model.add(Dense(64, activation='relu'))
|
||||
model.add(Dropout(0.5))
|
||||
model.add(Dense(len(train_y[0]), activation='softmax'))
|
||||
|
||||
# Compile model. Stochastic gradient descent with Nesterov accelerated gradient gives good results for this model
|
||||
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
|
||||
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
|
||||
|
||||
#fitting and saving the model
|
||||
hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)
|
||||
model.save('buildings_model.h5', hist)
|
||||
|
||||
print("building model created")
|
Reference in New Issue
Block a user