added ability to detect buildings from one location to another from chatbot including BBB, EECS, Pierpont, the Dude, and FXB

This commit is contained in:
snbenge
2020-04-19 23:32:10 -04:00
parent a030c250c9
commit 2995b6ebdc
8 changed files with 176 additions and 9 deletions

View File

@@ -0,0 +1,28 @@
{"intents": [
{"tag": "Bob and Betty Beyster",
"patterns": ["BBB", "CSE", "CS","Computer Science", "Bob", "Bob and Betty Beyster", "Betty"],
"responses": ["Bob and Betty Beyster"],
"context": [""]
},
{"tag": "Duderstadt",
"patterns": ["Dude", "the Dude", "Duderstadt", "Mujos", "Library", "North Campus Library"],
"responses": ["Duderstadt"],
"context": [""]
},
{"tag": "FXB",
"patterns": ["FXB", "Francois-Xavier Bagnoud", "Aerospace", "Aerospace Engineering", "planes"],
"responses": ["FXB"],
"context": [""]
},
{"tag": "Electrical and Computer Engineering",
"patterns": ["Electrical and Computer Engineering","Electrical", "Electrical Engineering", "Computer Engineering", "Computer", "EECS", "ECE"],
"responses": ["Electrical and Computer Engineering"],
"context": [""]
},
{"tag": "Pierpont Commons",
"patterns": ["Pierpont", "Pierpont Commons", "Commons", "Panda Express"],
"responses": ["Pierpont Commons"],
"context": [""]
}
]
}

Binary file not shown.

View File

@@ -0,0 +1,14 @@
Dude
Computer Science
CSE
FXB
BBB
Aerospace Engineering
Electrical Engineering
EECS
ECE
Pierpont
Duderstadt
Francois-Xavier Bagnoud
Bob and Betty Beyster
Pierpont Commons

BIN
src/semantic/buildings.pkl Normal file

Binary file not shown.

View File

@@ -0,0 +1,5 @@
Duderstadt
Electrical and Computer Engineering
FXB
Pierpont Commons
Bob and Betty Beyster

Binary file not shown.

View File

@@ -9,11 +9,15 @@ import spacy
from keras.models import load_model
model = load_model('chatbot_model.h5')
modelBuilding = load_model('buildings_model.h5')
import json
import random
intents = json.loads(open('intents.json').read())
words = pickle.load(open('words.pkl','rb'))
classes = pickle.load(open('classes.pkl','rb'))
buildingsIntents = json.loads(open('buildingIntents.json').read())
building_words = pickle.load(open('building_words.pkl','rb'))
buildings = pickle.load(open('buildings.pkl','rb'))
def clean_up_sentence(sentence):
# tokenize the pattern - splitting words into array
@@ -24,13 +28,13 @@ def clean_up_sentence(sentence):
# return bag of words array: 0 or 1 for words that exist in sentence
def bag_of_words(sentence, words, show_details=True):
def bag_of_words(sentence, wording, show_details=True):
# tokenizing patterns
sentence_words = clean_up_sentence(sentence)
# bag of words - vocabulary matrix
bag = [0]*len(words)
bag = [0]*len(wording)
for s in sentence_words:
for i,word in enumerate(words):
for i,word in enumerate(wording):
if word == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
@@ -51,18 +55,29 @@ def predict_class(sentence):
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
return return_list
def predict_building(currbuilding):
# filter below threshold predictions
p = bag_of_words(currbuilding, building_words,show_details=False)
res = modelBuilding.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.5
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
# sorting strength probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"buildingIntents": buildings[r[0]], "probability": str(r[1])})
return return_list
def getResponse(ints, intents_json):
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
print("ints")
print(ints)
for i in list_of_intents:
if(i['tag']== tag):
result = random.choice(i['responses'])
break
return result
def getInfo(sentence):
def getBuildingInfo(sentence):
doc = nlp(sentence)
start = 0
end = 0
@@ -101,9 +116,18 @@ def send():
ints = predict_class(msg)
if ints[0]['intent'] == "navigation":
building = getInfo(msgClean)
#TODO: Check if buildings are available
res = "Now navigating to " + building[1] + " from " + building[0]
currbuilding = getBuildingInfo(msgClean)
if currbuilding[0] == 'random location':
currbuilding[0] = buildings[random.randint(0, len(buildings)-1)]
while currbuilding[0] == currbuilding[1]:
currbuilding[1] = buildings[random.randint(0, len(buildings)-1)]
if currbuilding[1] == 'random location':
currbuilding[1] = buildings[random.randint(0, len(buildings)-1)]
while currbuilding[0] == currbuilding[1]:
currbuilding[1] = buildings[random.randint(0, len(buildings)-1)]
fromBuild = predict_building(currbuilding[0])
toBuild = predict_building(currbuilding[1])
res = "Now navigating to " + toBuild[0]['buildingIntents'] + " from " + fromBuild[0]['buildingIntents']
#TODO: START CONVERSION TO GPS COORDINATES
elif ints[0]['intent'] == "exit":
res = getResponse(ints, intents)

View File

@@ -0,0 +1,96 @@
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import SGD
import random
import nltk
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
import json
import pickle
building_words=[]
buildings = []
documents = []
ignore_letters = ['!', '?', ',', '.']
buildingIntents_file = open('buildingIntents.json').read()
buildingIntents = json.loads(buildingIntents_file)
# download nltk resources
nltk.download('punkt')
nltk.download('wordnet')
for intent in buildingIntents['intents']:
for pattern in intent['patterns']:
#tokenize each word
word = nltk.word_tokenize(pattern)
building_words.extend(word)
#add documents in the corpus
documents.append((word, intent['tag']))
# add to our buildings list
if intent['tag'] not in buildings:
buildings.append(intent['tag'])
print(documents)
# lemmaztize and lower each word and remove duplicates
building_words = [lemmatizer.lemmatize(w.lower()) for w in building_words if w not in ignore_letters]
building_words = sorted(list(set(building_words)))
# sort buildings
buildings = sorted(list(set(buildings)))
# documents = combination between patterns and buildingIntents
print (len(documents), "documents")
# buildings = buildingIntents
print (len(buildings), "buildings", buildings)
# building_words = all building_words, vocabulary
print (len(building_words), "unique lemmatized building_words", building_words)
pickle.dump(building_words,open('building_words.pkl','wb'))
pickle.dump(buildings,open('buildings.pkl','wb'))
# create our training data
training = []
# create an empty array for our output
output_empty = [0] * len(buildings)
# training set, bag of building_words for each sentence
for doc in documents:
# initialize our bag of building_words
bag = []
# list of tokenized building_words for the pattern
pattern_building_words = doc[0]
# lemmatize each word - create base word, in attempt to represent related building_words
pattern_building_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_building_words]
# create our bag of building_words array with 1, if word match found in current pattern
for word in building_words:
bag.append(1) if word in pattern_building_words else bag.append(0)
# output is a '0' for each tag and '1' for current tag (for each pattern)
output_row = list(output_empty)
output_row[buildings.index(doc[1])] = 1
training.append([bag, output_row])
# shuffle our features and turn into np.array
random.shuffle(training)
training = np.array(training)
# create train and test lists. X - patterns, Y - buildingIntents
train_x = list(training[:,0])
train_y = list(training[:,1])
print("Buildings Training data created")
# Create model - 3 layers. First layer 128 neurons, second layer 64 neurons and 3rd output layer contains number of neurons
# equal to number of buildingIntents to predict output intent with softmax
model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
# Compile model. Stochastic gradient descent with Nesterov accelerated gradient gives good results for this model
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
#fitting and saving the model
hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)
model.save('buildings_model.h5', hist)
print("building model created")