Add Gitignore, Folder Renaming, Add Velodyne Data Handlers

- Add gitignore so downloaded data, vscode files, and pycache are not included
- Move downloader.py to src/dataset/data folder
- Rename src/dataset/dataManipulation to src/dataset/data_manip
- Rename src/dataset/ManageDataset to src/dataset/read_dataset
- Remove gps.csv and read_gps.py from visualization folder
- Add read_vel_hits.py and read_vel_sync.py (with python 3 fixes) for reading velodyne data
- Add point_cloud_vis.py to create map of entire dataset pointclouds
This commit is contained in:
Sravan Balaji
2020-04-22 17:37:56 -04:00
parent 07c813b9c8
commit 6b4790abc9
22 changed files with 341 additions and 46507 deletions

4
.gitignore vendored Normal file
View File

@@ -0,0 +1,4 @@
src/dataset/data/*
!src/dataset/data/downloader.py
.vscode
__pycache__/

View File

@@ -0,0 +1,89 @@
# !/usr/bin/python
#
# Example code to go through the velodyne_hits.bin
# file and read timestamps, number of hits, and the
# hits in each packet.
#
#
# To call:
#
# python read_vel_hits.py velodyne.bin
#
import sys
import struct
def convert(x_s, y_s, z_s):
scaling = 0.005 # 5 mm
offset = -100.0
x = x_s * scaling + offset
y = y_s * scaling + offset
z = z_s * scaling + offset
return x, y, z
def verify_magic(s):
magic = 44444
m = struct.unpack('<HHHH', s)
return len(m)>=4 and m[0] == magic and m[1] == magic and m[2] == magic and m[3] == magic
def main(args):
if len(sys.argv) < 2:
print("Please specify input bin file")
return 1
f_bin = open(sys.argv[1], "rb")
total_hits = 0
first_utime = -1
last_utime = -1
while True:
magic = f_bin.read(8)
if magic == '': # eof
break
if not verify_magic(magic):
print("Could not verify magic")
num_hits = struct.unpack('<I', f_bin.read(4))[0]
utime = struct.unpack('<Q', f_bin.read(8))[0]
padding = f_bin.read(4) # padding
print("Have %d hits for utime %ld" % (num_hits, utime))
total_hits += num_hits
if first_utime == -1:
first_utime = utime
last_utime = utime
for i in range(num_hits):
x = struct.unpack('<H', f_bin.read(2))[0]
y = struct.unpack('<H', f_bin.read(2))[0]
z = struct.unpack('<H', f_bin.read(2))[0]
i = struct.unpack('B', f_bin.read(1))[0]
l = struct.unpack('B', f_bin.read(1))[0]
x, y, z = convert(x, y, z)
s = "%5.3f, %5.3f, %5.3f, %d, %d" % (x, y, z, i, l)
print(s)
raw_input("Press enter to continue...")
f_bin.close()
print("Read %d total hits from %ld to %ld" % (total_hits, first_utime, last_utime))
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))

View File

@@ -0,0 +1,123 @@
# !/usr/bin/python
#
# Example code to read a velodyne_sync/[utime].bin file
# Plots the point cloud using matplotlib. Also converts
# to a CSV if desired.
#
# To call:
#
# python read_vel_sync.py velodyne.bin [out.csv]
#
import sys
import struct
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
def convert(x_s, y_s, z_s):
scaling = 0.005 # 5 mm
offset = -100.0
x = x_s * scaling + offset
y = y_s * scaling + offset
z = z_s * scaling + offset
return x, y, z
def generate_plot(bin_file):
f_bin = None
try:
f_bin = open(bin_file, "rb")
except IOError:
print('Failed to open velodyne file')
return 1
hits = []
while True:
x_str = f_bin.read(2)
if x_str == b'': # eof
break
x = struct.unpack('<H', x_str)[0]
y = struct.unpack('<H', f_bin.read(2))[0]
z = struct.unpack('<H', f_bin.read(2))[0]
i = struct.unpack('B', f_bin.read(1))[0]
l = struct.unpack('B', f_bin.read(1))[0]
x, y, z = convert(x, y, z)
s = "%5.3f, %5.3f, %5.3f, %d, %d" % (x, y, z, i, l)
if f_csv:
f_csv.write('%s\n' % s)
hits += [[x, y, z]]
f_bin.close()
hits = np.asarray(hits)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(hits[:, 0], hits[:, 1], -hits[:, 2], c=-hits[:, 2], s=5, linewidths=0)
plt.show()
return 0
def main(args):
if len(sys.argv) < 2:
print('Please specify velodyne file')
return 1
f_bin = open(sys.argv[1], "rb")
if len(sys.argv) >= 3:
print('Writing to ', sys.argv[2])
f_csv = open(sys.argv[2], "w")
else:
f_csv = None
hits = []
while True:
x_str = f_bin.read(2)
if x_str == b'': # eof
break
x = struct.unpack('<H', x_str)[0]
y = struct.unpack('<H', f_bin.read(2))[0]
z = struct.unpack('<H', f_bin.read(2))[0]
i = struct.unpack('B', f_bin.read(1))[0]
l = struct.unpack('B', f_bin.read(1))[0]
x, y, z = convert(x, y, z)
s = "%5.3f, %5.3f, %5.3f, %d, %d" % (x, y, z, i, l)
if f_csv:
f_csv.write('%s\n' % s)
hits += [[x, y, z]]
f_bin.close()
if f_csv:
f_csv.close()
hits = np.asarray(hits)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(hits[:, 0], hits[:, 1], -hits[:, 2], c=-hits[:, 2], s=5, linewidths=0)
plt.show()
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,125 @@
# !/usr/bin/python
#
# python point_cloud_vis.py \
# /PATH/TO/ground_truth.csv \
# /PATH/TO/velodyne_sync
import sys
import os
import struct
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
class GTPose:
def __init__(self, time, x, y, z, r, p, h):
self.time = time
self.x = x
self.y = y
self.z = z
self.r = r
self.p = p
self.h = h
class PointCloud:
def __init__(self, time):
self.time = time
self.x_list = []
self.y_list = []
self.z_list = []
def add_point(self, x, y, z):
self.time += time
self.x_list += x
self.y_list += y
self.z_list += z
def read_gt(file):
gt = np.loadtxt(file, delimeter=",")
time = gt[:, 0]
x = gt[:, 1]
y = gt[:, 2]
z = gt[:, 3]
r = gt[:, 4]
p = gt[:, 5]
h = gt[:, 6]
return GTPose(time, x, y, z, r, p, h)
def convert(x_s, y_s, z_s):
scaling = 0.005 # 5 mm
offset = -100.0
x = x_s * scaling + offset
y = y_s * scaling + offset
z = z_s * scaling + offset
return x, y, z
def read_vel(file):
time = os.path.splittext(os.path.basename(file))[0]
pc = PointCloud(time)
f_bin = open(file, "rb")
while True:
x_str = f_bin.read(2)
if x_str == b'': # eof
break
x = struct.unpack('<H', x_str)[0]
y = struct.unpack('<H', f_bin.read(2))[0]
z = struct.unpack('<H', f_bin.read(2))[0]
i = struct.unpack('B', f_bin.read(1))[0]
l = struct.unpack('B', f_bin.read(1))[0]
# TODO: Be careful about z being flipped when plotting the velodyne data
x, y, z = convert(x, y, z)
pc.add_point(x, y, -z)
return pc
def r_to_g_frame(gt, pc):
# TODO: Interpolate gt to find corresponding pose for pc
# TODO: Transform pc from robot frame to global frame
pass
def main(args):
if len(sys.argv) != 2:
print("Expecting 2 arguments: ground truth filepath and data folder")
return 1
ground_truth_file = sys.arv[1]
data_path = sys.argv[2]
x = []
y = []
z = []
gt = read_gt(ground_truth_file)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for filename in os.listdir(data_path):
pc = read_vel(ground_truth_file, data_path + '/' + filename)
pc = r_to_g_frame(gt, pc)
x += pc.x_list
y += pc.y_list
z += pc.z_list
ax.scatter(x, y, z, c=z, s=5, linewidths=0)
plt.show()
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))

View File

@@ -1,60 +0,0 @@
# !/usr/bin/python
#
# Example code to read and plot the gps data.
#
# To call:
#
# python read_gps.py gps.csv
#
import sys
import matplotlib.pyplot as plt
import numpy as np
def main(args):
if len(sys.argv) < 2:
print('Please specify gps file')
return 1
gps = np.loadtxt(sys.argv[1], delimiter = ",")
num_sats = gps[:, 2]
lat = gps[:, 3]
lng = gps[:, 4]
alt = gps[:, 5]
lat0 = lat[0]
lng0 = lng[0]
dLat = lat - lat0
dLng = lng - lng0
r = 6400000 # approx. radius of earth (m)
x = r * np.cos(lat0) * np.sin(dLng)
y = r * np.sin(dLat)
plt.figure()
plt.subplot(1, 2, 1)
plt.scatter(x, y, 1, c=alt, linewidth=0)
plt.axis('equal')
plt.title('By altitude')
plt.colorbar()
plt.subplot(1, 2, 2)
plt.scatter(x, y, c=num_sats, linewidth=0)
plt.axis('equal')
plt.title('By number of satellites')
plt.colorbar()
plt.show()
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.scatter(x, y, alt, 'b.')
plt.show()
return 0
if __name__ == '__main__':
sys.exit(main(sys.argv))