Add code.

This commit is contained in:
Alexander Schaefer
2019-07-25 10:28:19 +02:00
parent 208da3e97c
commit 17877ef198
13 changed files with 1974 additions and 0 deletions

1
poles/__init__.py Normal file
View File

@@ -0,0 +1 @@
from poles import *

68
poles/cluster.py Normal file
View File

@@ -0,0 +1,68 @@
#!/usr/bin/env python
import networkx as nx
import numpy as np
def cluster_boxes(boxes):
graph = nx.Graph()
for i in range(boxes.shape[0]):
ioverlap = np.where(np.logical_and(
np.all(boxes[i, :2] <= boxes[i+1:, 2:], axis=1),
np.all(boxes[i, 2:] >= boxes[i+1:, :2], axis=1)))[0] + i + 1
if ioverlap.size > 0:
ebunch = np.stack(
[i * np.ones(ioverlap.size, dtype=np.int), ioverlap]).T
graph.add_edges_from(ebunch)
else:
graph.add_node(i)
return nx.connected_components(graph)
if __name__ == '__main__':
boxes = np.array([[0, 0, 5, 6],
[1, 1, 3, 3],
[2, 2, 4, 4],
[4, 5, 6, 7],
[8, 1, 10, 4],
[9, 3, 11, 5],
[11, 2, 13, 4]])
clusters = list(cluster_boxes(boxes))
print(clusters)
boxes = np.array([[14.79661574, 21.21601612, 15.30176893, 21.72116931],
[18.48462587, 7.41137572, 19.03767023, 7.96442009],
[2.69673224, 9.59842375, 3.32057219, 10.22226371]])
clusters = list(cluster_boxes(boxes))
print(clusters)
boxes = np.array([[6.81938108, 18.65041178, 7.52721282, 19.35824351],
[10.47957221, 4.74881386, 10.97182461, 5.24106625],
[13.85465225, 10.67964592, 14.85465225, 11.67964592],
[ 7.64280886, 18.18693742, 8.34956098, 18.89368953],
[ 8.59207879, 18.34769795, 9.21301121, 18.96863037],
[12.26176147, 4.42352969, 12.86341253, 5.02518075],
[ 9.15 , 18.63943225, 9.75556467, 19.24499692],
[14.10533103, 5.69170303, 14.68470125, 6.27107324],
[ 9.97261293, 19.30506776, 10.55050568, 19.88296051],
[10.80585378, 19.7812637 , 11.28636705, 20.26177698],
[24.60318075, 11.85 , 25.01565066, 12.26246991],
[14.78231664, 6.11960893, 15.29557712, 6.63286942],
[11.95292709, 20.39982668, 12.55003767, 20.99693726],
[17.46145317, 7.17423254, 17.89978823, 7.6125676 ],
[14.79661574, 21.21601612, 15.30176893, 21.72116931],
[18.48462587, 7.41137572, 19.03767023, 7.96442009],
[ 2.69673224, 9.59842375, 3.32057219, 10.22226371]])
import matplotlib.pyplot as plt
import matplotlib.patches as pat
fig = plt.figure()
ax = fig.add_subplot(111, aspect='equal')
for b in boxes:
ax.add_patch(pat.Rectangle(b[:2], b[2]-b[0], b[3]-b[1]))
plt.xlim([0, 30])
plt.ylim([0, 30])
plt.show()
clusters = list(cluster_boxes(boxes))
print(clusters)

21
poles/cuboid.py Normal file
View File

@@ -0,0 +1,21 @@
#!/usr/bin/env python
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
def cuboid(ax, lower, upper):
xl, yl, zl = lower
xu, yu, zu = upper
faces = np.array([
[[[xl,xu],[xl,xu]], [[yl,yl],[yl,yl]], [[zl,zl],[zu,zu]]],
[[[xl,xu],[xl,xu]], [[yu,yu],[yu,yu]], [[zl,zl],[zu,zu]]],
[[[xl,xl],[xl,xl]], [[yl,yu],[yl,yu]], [[zl,zl],[zu,zu]]],
[[[xu,xu],[xu,xu]], [[yl,yu],[yl,yu]], [[zl,zl],[zu,zu]]],
[[[xl,xu],[xl,xu]], [[yl,yl],[yu,yu]], [[zl,zl],[zl,zl]]],
[[[xl,xu],[xl,xu]], [[yl,yl],[yu,yu]], [[zu,zu],[zu,zu]]]
])
for face in faces:
ax.plot_surface(face[0], face[1], face[2], alpha=0.5, color='b')
ax.plot_wireframe(face[0], face[1], face[2], color='k')

160
poles/kittidrives.py Normal file
View File

@@ -0,0 +1,160 @@
#!/usr/bin/env python
drives = [
{'date': '2011_09_26', 'drive': '0002'},
{'date': '2011_09_26', 'drive': '0005'},
{'date': '2011_09_26', 'drive': '0009'},
{'date': '2011_09_26', 'drive': '0011'},
{'date': '2011_09_26', 'drive': '0001'},
{'date': '2011_09_26', 'drive': '0013'},
{'date': '2011_09_26', 'drive': '0014'},
{'date': '2011_09_26', 'drive': '0015'},
{'date': '2011_09_26', 'drive': '0017'},
{'date': '2011_09_26', 'drive': '0018'},
{'date': '2011_09_26', 'drive': '0019'},
{'date': '2011_09_26', 'drive': '0020'},
{'date': '2011_09_26', 'drive': '0022'},
{'date': '2011_09_26', 'drive': '0023'},
{'date': '2011_09_26', 'drive': '0027'},
{'date': '2011_09_26', 'drive': '0028'},
{'date': '2011_09_26', 'drive': '0029'},
{'date': '2011_09_26', 'drive': '0032'},
{'date': '2011_09_26', 'drive': '0035'},
{'date': '2011_09_26', 'drive': '0036'},
{'date': '2011_09_26', 'drive': '0039'},
{'date': '2011_09_26', 'drive': '0046'},
{'date': '2011_09_26', 'drive': '0048'},
{'date': '2011_09_26', 'drive': '0051'},
{'date': '2011_09_26', 'drive': '0052'},
{'date': '2011_09_26', 'drive': '0056'},
{'date': '2011_09_26', 'drive': '0057'},
{'date': '2011_09_26', 'drive': '0059'},
{'date': '2011_09_26', 'drive': '0060'},
{'date': '2011_09_26', 'drive': '0061'},
{'date': '2011_09_26', 'drive': '0064'},
{'date': '2011_09_26', 'drive': '0070'},
{'date': '2011_09_26', 'drive': '0079'},
{'date': '2011_09_26', 'drive': '0084'},
{'date': '2011_09_26', 'drive': '0086'},
{'date': '2011_09_26', 'drive': '0087'},
{'date': '2011_09_26', 'drive': '0091'},
{'date': '2011_09_26', 'drive': '0093'},
{'date': '2011_09_26', 'drive': '0095'},
{'date': '2011_09_26', 'drive': '0096'},
{'date': '2011_09_26', 'drive': '0101'},
{'date': '2011_09_26', 'drive': '0104'},
{'date': '2011_09_26', 'drive': '0106'},
{'date': '2011_09_26', 'drive': '0113'},
{'date': '2011_09_26', 'drive': '0117'},
{'date': '2011_09_26', 'drive': '0119'},
{'date': '2011_09_28', 'drive': '0001'},
{'date': '2011_09_28', 'drive': '0002'},
{'date': '2011_09_28', 'drive': '0016'},
{'date': '2011_09_28', 'drive': '0021'},
{'date': '2011_09_28', 'drive': '0034'},
{'date': '2011_09_28', 'drive': '0035'},
{'date': '2011_09_28', 'drive': '0037'},
{'date': '2011_09_28', 'drive': '0038'},
{'date': '2011_09_28', 'drive': '0039'},
{'date': '2011_09_28', 'drive': '0043'},
{'date': '2011_09_28', 'drive': '0045'},
{'date': '2011_09_28', 'drive': '0047'},
{'date': '2011_09_28', 'drive': '0053'},
{'date': '2011_09_28', 'drive': '0054'},
{'date': '2011_09_28', 'drive': '0057'},
{'date': '2011_09_28', 'drive': '0065'},
{'date': '2011_09_28', 'drive': '0066'},
{'date': '2011_09_28', 'drive': '0068'},
{'date': '2011_09_28', 'drive': '0070'},
{'date': '2011_09_28', 'drive': '0071'},
{'date': '2011_09_28', 'drive': '0075'},
{'date': '2011_09_28', 'drive': '0077'},
{'date': '2011_09_28', 'drive': '0078'},
{'date': '2011_09_28', 'drive': '0080'},
{'date': '2011_09_28', 'drive': '0082'},
{'date': '2011_09_28', 'drive': '0086'},
{'date': '2011_09_28', 'drive': '0087'},
{'date': '2011_09_28', 'drive': '0089'},
{'date': '2011_09_28', 'drive': '0090'},
{'date': '2011_09_28', 'drive': '0094'},
{'date': '2011_09_28', 'drive': '0095'},
{'date': '2011_09_28', 'drive': '0096'},
{'date': '2011_09_28', 'drive': '0098'},
{'date': '2011_09_28', 'drive': '0100'},
{'date': '2011_09_28', 'drive': '0102'},
{'date': '2011_09_28', 'drive': '0103'},
{'date': '2011_09_28', 'drive': '0104'},
{'date': '2011_09_28', 'drive': '0106'},
{'date': '2011_09_28', 'drive': '0108'},
{'date': '2011_09_28', 'drive': '0110'},
{'date': '2011_09_28', 'drive': '0113'},
{'date': '2011_09_28', 'drive': '0117'},
{'date': '2011_09_28', 'drive': '0119'},
{'date': '2011_09_28', 'drive': '0121'},
{'date': '2011_09_28', 'drive': '0122'},
{'date': '2011_09_28', 'drive': '0125'},
{'date': '2011_09_28', 'drive': '0126'},
{'date': '2011_09_28', 'drive': '0128'},
{'date': '2011_09_28', 'drive': '0132'},
{'date': '2011_09_28', 'drive': '0134'},
{'date': '2011_09_28', 'drive': '0135'},
{'date': '2011_09_28', 'drive': '0136'},
{'date': '2011_09_28', 'drive': '0138'},
{'date': '2011_09_28', 'drive': '0141'},
{'date': '2011_09_28', 'drive': '0143'},
{'date': '2011_09_28', 'drive': '0145'},
{'date': '2011_09_28', 'drive': '0146'},
{'date': '2011_09_28', 'drive': '0149'},
{'date': '2011_09_28', 'drive': '0153'},
{'date': '2011_09_28', 'drive': '0154'},
{'date': '2011_09_28', 'drive': '0155'},
{'date': '2011_09_28', 'drive': '0156'},
{'date': '2011_09_28', 'drive': '0160'},
{'date': '2011_09_28', 'drive': '0161'},
{'date': '2011_09_28', 'drive': '0162'},
{'date': '2011_09_28', 'drive': '0165'},
{'date': '2011_09_28', 'drive': '0166'},
{'date': '2011_09_28', 'drive': '0167'},
{'date': '2011_09_28', 'drive': '0168'},
{'date': '2011_09_28', 'drive': '0171'},
{'date': '2011_09_28', 'drive': '0174'},
{'date': '2011_09_28', 'drive': '0177'},
{'date': '2011_09_28', 'drive': '0179'},
{'date': '2011_09_28', 'drive': '0183'},
{'date': '2011_09_28', 'drive': '0184'},
{'date': '2011_09_28', 'drive': '0185'},
{'date': '2011_09_28', 'drive': '0186'},
{'date': '2011_09_28', 'drive': '0187'},
{'date': '2011_09_28', 'drive': '0191'},
{'date': '2011_09_28', 'drive': '0192'},
{'date': '2011_09_28', 'drive': '0195'},
{'date': '2011_09_28', 'drive': '0198'},
{'date': '2011_09_28', 'drive': '0199'},
{'date': '2011_09_28', 'drive': '0201'},
{'date': '2011_09_28', 'drive': '0204'},
{'date': '2011_09_28', 'drive': '0205'},
{'date': '2011_09_28', 'drive': '0208'},
{'date': '2011_09_28', 'drive': '0209'},
{'date': '2011_09_28', 'drive': '0214'},
{'date': '2011_09_28', 'drive': '0216'},
{'date': '2011_09_28', 'drive': '0220'},
{'date': '2011_09_28', 'drive': '0222'},
{'date': '2011_09_28', 'drive': '0225'},
{'date': '2011_09_29', 'drive': '0004'},
{'date': '2011_09_29', 'drive': '0026'},
{'date': '2011_09_29', 'drive': '0071'},
{'date': '2011_09_29', 'drive': '0108'},
{'date': '2011_09_30', 'drive': '0016'},
{'date': '2011_09_30', 'drive': '0018'},
{'date': '2011_09_30', 'drive': '0020'},
{'date': '2011_09_30', 'drive': '0027'},
{'date': '2011_09_30', 'drive': '0028'},
{'date': '2011_09_30', 'drive': '0033'},
{'date': '2011_09_30', 'drive': '0034'},
{'date': '2011_09_30', 'drive': '0072'},
{'date': '2011_10_03', 'drive': '0027'},
{'date': '2011_10_03', 'drive': '0034'},
{'date': '2011_10_03', 'drive': '0042'},
{'date': '2011_10_03', 'drive': '0047'},
{'date': '2011_10_03', 'drive': '0058'}
]

372
poles/kittipoles.py Normal file
View File

@@ -0,0 +1,372 @@
#!/usr/bin/env python
import datetime
import os
import arrow
import matplotlib.pyplot as plt
import numpy as np
import open3d as o3
import progressbar
import scipy.interpolate
import cluster
import kittiwrapper
import mapping
import particlefilter
import poles
import util
dataset = kittiwrapper.kittiwrapper('/mnt/data/datasets/kitti')
mapextent = np.array([30.0, 30.0, 3.0])
mapsize = np.full(3, 0.1)
mapshape = np.array(mapextent / mapsize, dtype=np.int)
mapinterval = 3.0
mapdistance = 5.0
poles.polesides = range(1, 11)
T_mc_cam0 = np.identity(4)
T_mc_cam0[:3, :3] \
= [[0.0, 0.0, 1.0], [-1.0, 0.0, 0.0], [0.0, -1.0, 0.0]]
T_cam0_mc = util.invert_ht(T_mc_cam0)
T_m_mc = np.identity(4)
T_m_mc[:3, 3] = np.hstack([0.5 * mapextent[:2], 2.0])
T_mc_m = util.invert_ht(T_m_mc)
T_cam0_m = T_cam0_mc.dot(T_mc_m)
globalmapfile = 'globalmap_3.npz'
localmapfile = 'localmaps_3.npz'
locfileprefix = 'localization'
evalfile = 'evaluation.npz'
def get_map_indices(sequence):
distance = np.hstack([0.0, np.cumsum(np.linalg.norm(
np.diff(sequence.poses[:, :3, 3], axis=0), axis=1))])
istart = []
imid = []
iend = []
i = 0
j = 0
k = 0
for id, d in enumerate(distance):
if d >= i * mapinterval:
istart.append(id)
i += 1
if d >= j * mapinterval + 0.5 * mapdistance:
imid.append(id)
j += 1
if d > k * mapinterval + mapdistance:
iend.append(id)
k += 1
return istart, imid, iend
def save_local_maps(seq):
print(seq)
sequence = dataset.sequence(seq)
seqdir = os.path.join('kitti', '{:03d}'.format(seq))
util.makedirs(seqdir)
istart, imid, iend = get_map_indices(sequence)
maps = []
with progressbar.ProgressBar(max_value=len(iend)) as bar:
for i in range(len(iend)):
scans = []
for idx, val in enumerate(range(istart[i], iend[i])):
velo = sequence.get_velo(val)
scan = o3.PointCloud()
scan.points = o3.Vector3dVector(velo[:, :3])
scan.colors = o3.Vector3dVector(
util.intensity2color(velo[:, 3]))
scans.append(scan)
T_m_w = T_m_mc.dot(T_mc_cam0).dot(
util.invert_ht(sequence.poses[imid[i]]))
T_w_velo = np.matmul(
sequence.poses[istart[i]:iend[i]], sequence.calib.T_cam0_velo)
T_m_velo = np.matmul(T_m_w, T_w_velo)
occupancymap = mapping.occupancymap(
scans, T_m_velo, mapshape, mapsize)
poleparams = poles.detect_poles(occupancymap, mapsize)
# accuscan = o3.PointCloud()
# for j in range(len(scans)):
# scans[j].transform(T_w_velo[j])
# accuscan.points.extend(scans[j].points)
# o3.draw_geometries([accuscan])
# import ndshow
# ndshow.matshow(occupancymap.transpose([2, 0, 1]))
map = {'poleparams': poleparams,
'istart': istart[i], 'imid': imid[i], 'iend': iend[i]}
maps.append(map)
bar.update(i)
np.savez(os.path.join(seqdir, localmapfile), maps=maps)
def view_local_maps(seq):
sequence = dataset.sequence(seq)
seqdir = os.path.join('kitti', '{:03d}'.format(seq))
with np.load(os.path.join(seqdir, localmapfile)) as data:
for i, map in enumerate(data['maps']):
T_w_m = sequence.poses[map['imid']].dot(T_cam0_mc).dot(T_mc_m)
mapboundsvis = util.create_wire_box(mapextent, [0.0, 0.0, 1.0])
mapboundsvis.transform(T_w_m)
polemap = []
for poleparams in map['poleparams']:
x, y, zs, ze, a, _ = poleparams
pole = util.create_wire_box(
[a, a, ze - zs], color=[1.0, 1.0, 0.0])
T_m_p = np.identity(4)
T_m_p[:3, 3] = [x - 0.5 * a, y - 0.5 * a, zs]
pole.transform(T_w_m.dot(T_m_p))
polemap.append(pole)
accucloud = o3.PointCloud()
for j in range(map['istart'], map['iend']):
velo = sequence.get_velo(j)
cloud = o3.PointCloud()
cloud.points = o3.Vector3dVector(velo[:, :3])
cloud.colors = o3.Vector3dVector(
util.intensity2color(velo[:, 3]))
cloud.transform(
sequence.poses[j].dot(sequence.calib.T_cam0_velo))
accucloud.points.extend(cloud.points)
accucloud.colors.extend(cloud.colors)
o3.draw_geometries([accucloud, mapboundsvis] + polemap)
def save_global_map(seq):
sequence = dataset.sequence(seq)
seqdir = os.path.join('kitti', '{:03d}'.format(seq))
util.makedirs(seqdir)
istart, imid, iend = get_map_indices(sequence)
poleparams = np.empty([0, 6])
with np.load(os.path.join(seqdir, localmapfile)) as data:
for i, map in enumerate(data['maps']):
T_w_m = sequence.poses[map['imid']].dot(T_cam0_mc).dot(T_mc_m)
localpoleparams = map['poleparams']
h = np.diff(localpoleparams[:, 2:4], axis=1).squeeze()
npoles = localpoleparams.shape[0]
polepos_m = np.hstack(
[localpoleparams[:, :3], np.ones([npoles, 1])]).T
polepos_w = np.matmul(T_w_m, polepos_m)[:3].T
localpoleparams[:, :3] = polepos_w
localpoleparams[:, 3] = polepos_w[:, 2] + h
poleparams = np.vstack([poleparams, localpoleparams])
xy = poleparams[:, :2]
a = poleparams[:, [4]]
boxes = np.hstack([xy - 0.5 * a, xy + 0.5 * a])
clustermeans = np.zeros([0, 5])
clustercovs = np.zeros([0, 5, 5])
clusterviz = []
for ci in cluster.cluster_boxes(boxes):
ci = list(ci)
if len(ci) < 1:
continue
clustermeans = np.vstack([clustermeans, np.average(
poleparams[ci, :-1], axis=0, weights=poleparams[ci, -1])])
np.savez(os.path.join(seqdir, globalmapfile), polemeans=clustermeans,
polecovs=clustercovs)
def view_global_map(seq):
seqdir = '{:03d}'.format(seq)
with np.load(os.path.join('kitti', seqdir, globalmapfile)) as data:
xy = data['polemeans'][:, :2]
plt.scatter(xy[:, 0], xy[:, 1], s=5, c='b', marker='s')
plt.show()
def localize(seq, visualize=False):
print(seq)
sequence = dataset.sequence(seq)
seqdir = os.path.join('kitti', '{:03d}'.format(seq))
mapdata = np.load(os.path.join(seqdir, globalmapfile))
polemap = mapdata['polemeans']
polemap = np.hstack([polemap[:, :2], np.diff(polemap[:, 2:4], axis=1)])
locdata = np.load(os.path.join(seqdir, localmapfile))['maps']
T_velo_cam0 = util.invert_ht(sequence.calib.T_cam0_velo)
T_w_velo_gt = np.matmul(sequence.poses, sequence.calib.T_cam0_velo)
i = 0
polecov = 1.0
filter = particlefilter.particlefilter(
2000, T_w_velo_gt[i], 3.0, np.radians(5.0), polemap, polecov)
filter.minneff = 0.5
filter.estimatetype = 'best'
if visualize:
plt.ion()
figure = plt.figure()
nplots = 2
mapaxes = figure.add_subplot(nplots, 1, 1)
mapaxes.set_aspect('equal')
mapaxes.scatter(polemap[:, 0], polemap[:, 1], s=5, c='b', marker='s')
mapaxes.plot(T_w_velo_gt[:, 0, 3], T_w_velo_gt[:, 1, 3], 'g')
particles = mapaxes.scatter([], [], s=1, c='r')
arrow = mapaxes.arrow(0.0, 0.0, 3.0, 0.0, length_includes_head=True,
head_width=2.1, head_length=3.0, color='k')
arrowdata = np.hstack(
[arrow.get_xy(), np.zeros([8, 1]), np.ones([8, 1])]).T
locpoles = mapaxes.scatter([], [], s=30, c='k', marker='x')
viewoffset = 25.0
weightaxes = figure.add_subplot(nplots, 1, 2)
gridsize = 50
offset = 10.0
visfilter = particlefilter.particlefilter(gridsize**2,
np.identity(4), 0.0, 0.0, polemap, polecov)
gridcoord = np.linspace(-offset, offset, gridsize)
x, y = np.meshgrid(gridcoord, gridcoord)
dxy = np.hstack([x.reshape([-1, 1]), y.reshape([-1, 1])])
weightimage = weightaxes.matshow(np.zeros([gridsize, gridsize]),
extent=(-offset, offset, -offset, offset))
# histaxes = figure.add_subplot(nplots, 1, 3)
imap = 0
while locdata[imap]['imid'] < i:
imap += 1
T_w_velo_est = np.full(T_w_velo_gt.shape, np.nan)
T_w_velo_est[i] = filter.estimate_pose()
i += 1
with progressbar.ProgressBar(max_value=T_w_velo_est.shape[0] - i) as bar:
while i < T_w_velo_est.shape[0]:
relodo = util.ht2xyp(
util.invert_ht(T_w_velo_gt[i-1]).dot(T_w_velo_gt[i]))
relodocov = np.diag((0.02 * relodo)**2)
relodo = np.random.multivariate_normal(relodo, relodocov)
filter.update_motion(relodo, relodocov)
T_w_velo_est[i] = filter.estimate_pose()
if imap < locdata.size and i >= locdata[imap]['iend']:
T_w_cam0_mid = sequence.poses[locdata[imap]['imid']]
T_w_cam0_now = sequence.poses[i]
T_cam0_now_cam0_mid \
= util.invert_ht(T_w_cam0_now).dot(T_w_cam0_mid)
poleparams = locdata[imap]['poleparams']
npoles = poleparams.shape[0]
h = np.diff(poleparams[:, 2:4], axis=1)
polepos_m_mid = np.hstack([poleparams[:, :2],
np.zeros([npoles, 1]), np.ones([npoles, 1])]).T
polepos_velo_now = T_velo_cam0.dot(T_cam0_now_cam0_mid).dot(
T_cam0_m).dot(polepos_m_mid)
poleparams = np.hstack([polepos_velo_now[:2].T, h])
filter.update_measurement(poleparams[:, :2])
T_w_velo_est[i] = filter.estimate_pose()
if visualize:
polepos_w = T_w_velo_est[i].dot(polepos_velo_now)
locpoles.set_offsets(polepos_w[:2].T)
particleposes = np.tile(T_w_velo_gt[i], [gridsize**2, 1, 1])
particleposes[:, :2, 3] += dxy
visfilter.particles = particleposes
visfilter.weights[:] = 1.0 / visfilter.count
visfilter.update_measurement(poleparams[:, :2], resample=False)
weightimage.set_array(np.flipud(
visfilter.weights.reshape([gridsize, gridsize])))
weightimage.autoscale()
imap += 1
if visualize:
particles.set_offsets(filter.particles[:, :2, 3])
arrow.set_xy(T_w_velo_est[i].dot(arrowdata)[:2].T)
x, y = T_w_velo_est[i, :2, 3]
mapaxes.set_xlim(left=x - viewoffset, right=x + viewoffset)
mapaxes.set_ylim(bottom=y - viewoffset, top=y + viewoffset)
# histaxes.cla()
# histaxes.hist(filter.weights,
# bins=50, range=(0.0, np.max(filter.weights)))
figure.canvas.draw_idle()
figure.canvas.flush_events()
bar.update(i)
i += 1
filename = os.path.join(seqdir, locfileprefix \
+ datetime.datetime.now().strftime('_%Y-%m-%d_%H-%M-%S.npz'))
np.savez(filename, T_w_velo_est=T_w_velo_est)
def evaluate(seq):
sequence = dataset.sequence(seq)
T_w_velo_gt = np.matmul(sequence.poses, sequence.calib.T_cam0_velo)
T_w_velo_gt = np.array([util.project_xy(ht) for ht in T_w_velo_gt])
seqdir = os.path.join('kitti', '{:03d}'.format(seq))
mapdata = np.load(os.path.join(seqdir, globalmapfile))
polemap = mapdata['polemeans']
plt.scatter(polemap[:, 0], polemap[:, 1], s=1, c='b')
plt.plot(T_w_velo_gt[:, 0, 3], T_w_velo_gt[:, 1, 3], color=(0.5, 0.5, 0.5))
cumdist = np.hstack([0.0, np.cumsum(np.linalg.norm(np.diff(
T_w_velo_gt[:, :2, 3], axis=0), axis=1))])
timestamps = np.array([arrow.get(timestamp).float_timestamp \
for timestamp in sequence.timestamps])
t_eval = scipy.interpolate.interp1d(
cumdist, timestamps)(np.arange(0.0, cumdist[-1], 1.0))
n = t_eval.size
T_w_velo_gt_interp = np.empty([n, 4, 4])
iodo = 1
for ieval in range(n):
while timestamps[iodo] < t_eval[ieval]:
iodo += 1
T_w_velo_gt_interp[ieval] = util.interpolate_ht(
T_w_velo_gt[iodo-1:iodo+1], timestamps[iodo-1:iodo+1],
t_eval[ieval])
files = [file for file in os.listdir(seqdir) \
if os.path.basename(file).startswith(locfileprefix)]
poserror = np.full([n, len(files)], np.nan)
laterror = np.full([n, len(files)], np.nan)
lonerror = np.full([n, len(files)], np.nan)
angerror = np.full([n, len(files)], np.nan)
T_gt_est = np.full([n, 4, 4], np.nan)
for ifile in range(len(files)):
T_w_velo_est = np.load(
os.path.join(seqdir, files[ifile]))['T_w_velo_est']
iodo = 1
for ieval in range(n):
while timestamps[iodo] < t_eval[ieval]:
iodo += 1
T_w_velo_est_interp = util.interpolate_ht(
T_w_velo_est[iodo-1:iodo+1], timestamps[iodo-1:iodo+1],
t_eval[ieval])
T_gt_est[ieval] = util.invert_ht(T_w_velo_gt_interp[ieval]).dot(
T_w_velo_est_interp)
lonerror[:, ifile] = T_gt_est[:, 0, 3]
laterror[:, ifile] = T_gt_est[:, 1, 3]
poserror[:, ifile] = np.linalg.norm(T_gt_est[:, :2, 3], axis=1)
angerror[:, ifile] = util.ht2xyp(T_gt_est)[:, 2]
plt.plot(T_w_velo_est[:, 0, 3], T_w_velo_est[:, 1, 3], 'r')
angerror = np.degrees(angerror)
lonstd = np.std(lonerror, axis=0)
latstd = np.std(laterror, axis=0)
angstd = np.std(angerror, axis=0)
angerror = np.abs(angerror)
laterror = np.mean(np.abs(laterror), axis=0)
lonerror = np.mean(np.abs(lonerror), axis=0)
posrmse = np.sqrt(np.mean(poserror ** 2, axis=0))
angrmse = np.sqrt(np.mean(angerror ** 2, axis=0))
poserror = np.mean(poserror, axis=0)
angerror = np.mean(angerror, axis=0)
plt.savefig(os.path.join(seqdir, 'trajectory_est.svg'))
np.savez(os.path.join(seqdir, evalfile),
poserror=poserror, angerror=angerror, posrmse=posrmse, angrmse=angrmse,
laterror=laterror, latstd=latstd, lonerror=lonerror, lonstd=lonstd)
print('poserror: {}\nposrmse: {}\n'
'laterror: {}\nlatstd: {}\n'
'lonerror: {}\nlonstd: {}\n'
'angerror: {}\nangstd: {}\nangrmse: {}'.format(
np.mean(poserror), np.mean(posrmse),
np.mean(laterror), np.mean(latstd),
np.mean(lonerror), np.mean(lonstd),
np.mean(angerror), np.mean(angstd), np.mean(angrmse)))
if __name__ == '__main__':
save_local_maps(13)
save_global_map(13)
localize(13, visualize=True)
evaluate(13)

28
poles/kittiwrapper.py Normal file
View File

@@ -0,0 +1,28 @@
#!/usr/bin/env python
import os
import numpy
import pykitti
import kittidrives
import util
class kittiwrapper:
def __init__(self, datadir):
self.ododir = os.path.join(datadir, 'odometry')
self.rawdir = os.path.join(datadir, 'raw_data')
def sequence(self, i):
if 0 <= i < 11:
sequence = pykitti.odometry(self.ododir, '{:02d}'.format(i))
sequence.poses = numpy.array(sequence.poses)
else:
drive = kittidrives.drives[i - 11]
sequence = pykitti.raw(self.rawdir, drive['date'], drive['drive'])
T_imu_cam0 = util.invert_ht(sequence.calib.T_cam0_imu)
sequence.poses = numpy.array(
[numpy.matmul(oxts.T_w_imu, T_imu_cam0) \
for oxts in sequence.oxts])
return sequence

94
poles/mapping.py Normal file
View File

@@ -0,0 +1,94 @@
#!/usr/bin/env python
import copy
import os
import psutil
import shutil
import subprocess
import numpy as np
import open3d as o3
import scipy.special
import raytracing as rt
tmpdir = 'tmp'
scanformat = 'ply'
occupancythreshold = 0.05
# Scan points are specified with respect to the sensor coordinate frame.
# Poses are specified with respect to the map coordinate frame.
def occupancymap(scans, poses, mapshape, mapsize):
map = rt.gridmap(mapshape, mapsize)
for scan, pose in zip(scans, poses):
scan_map = copy.copy(scan)
scan_map.transform(pose)
points = np.asarray(scan_map.points)
rt.trace3d(np.tile(pose[:3, 3], [points.shape[0], 1]), points, map)
reflectionmap = map.reflectionmap()
reflectivity = reflectionmap[np.isfinite(reflectionmap)]
if reflectivity.size == 0:
occupancymap = np.zeros(map.shape)
else:
mean = np.mean(reflectivity)
var = np.var(reflectivity)
alpha = -mean * ((mean**2.0 - mean) / var + 1.0)
beta = mean - 1.0 + (mean - 2.0 * mean**2.0 + mean**3.0) / var
prior = 1.0 - scipy.special.betainc(alpha, beta, occupancythreshold)
occupancymap = 1.0 - scipy.special.betainc(
map.hits + alpha, map.misses + beta, occupancythreshold)
return occupancymap
# Scan points are specified with respect to the sensor coordinate frame.
def export(scans, poses, dir):
scannames = []
if os.path.exists(dir):
shutil.rmtree(dir)
os.mkdir(dir)
for i in range(len(scans)):
scanname = 'scan{:03d}'.format(i)
scannames.append(scanname)
o3.write_point_cloud(
os.path.join(dir, scanname + '.' + scanformat), scans[i])
rlconversion = np.array([1, -1, 1])
trans = poses[i, :3, 3] * rlconversion
rot = np.degrees(t3.euler.mat2euler(poses[i, :3, :3])) * -rlconversion
pose = np.vstack([trans, rot])
np.savetxt(
os.path.join(dir, scanname + '.pose'), pose, delimiter=' ')
process = subprocess.Popen(['pose2frames', '.'], cwd=dir)
if process.wait() != 0:
raise Exception('Module \"pose2frames\" failed.')
# Scan points are specified with respect to the sensor coordinate frame.
def detect_dynamic_points(scans, poses):
export(scans, poses, tmpdir)
maskdir = 'mask'
process = subprocess.Popen(['peopleremover',
'-f', scanformat,
'--voxel-size', '0.02',
'--fuzz', '0.1',
'--min-cluster-size', '5',
'--maxrange-method', 'normals',
'--maskdir', maskdir,
'-j', '{}'.format(psutil.cpu_count()),
'.'], cwd=tmpdir)
if process.wait() != 0:
raise Exception('Module \"peopleremover\" failed.')
dynamic = []
for i in range(len(scans)):
scanname = 'scan{:03d}'.format(i)
maskfilename = os.path.join(tmpdir, maskdir, scanname + '.mask')
dynamic.append(np.loadtxt(maskfilename, dtype=np.bool))
return dynamic

521
poles/ncltpoles.py Normal file
View File

@@ -0,0 +1,521 @@
#!/usr/bin/env python
import copy
import datetime
import multiprocessing
import os
import shutil
import matplotlib.patches
import matplotlib.pyplot as plt
import numpy as np
import open3d as o3
import progressbar
import scipy.interpolate
import scipy.special
import cluster
import mapping
import ndshow
import particlefilter
import poles
import pynclt
import util
plt.rcParams['text.latex.preamble']=[r'\usepackage{lmodern}']
params = {'text.usetex': True,
'font.size': 16,
'font.family': 'lmodern',
'text.latex.unicode': True}
mapextent = np.array([30.0, 30.0, 5.0])
mapsize = np.full(3, 0.2)
mapshape = np.array(mapextent / mapsize, dtype=np.int)
mapinterval = 1.5
mapdistance = 1.5
remapdistance = 10.0
n_mapdetections = 3
n_locdetections = 2
n_localmaps = 3
poles.minscore = 0.6
poles.minheight = 1.0
poles.freelength = 0.5
poles.polesides = range(1, 7+1)
T_mc_r = pynclt.T_w_o
T_r_mc = util.invert_ht(T_mc_r)
T_m_mc = np.identity(4)
T_m_mc[:3, 3] = np.hstack([0.5 * mapextent[:2], 0.5])
T_mc_m = util.invert_ht(T_m_mc)
T_m_r = T_m_mc.dot(T_mc_r)
T_r_m = util.invert_ht(T_m_r)
def get_globalmapname():
return 'globalmap_{:.0f}_{:.0f}_{:.0f}'.format(
n_mapdetections, 10 * poles.minscore, poles.polesides[-1])
def get_locfileprefix():
return 'localization_{:.0f}_{:.0f}_{:.0f}'.format(
n_mapdetections, 10 * poles.minscore, poles.polesides[-1])
def get_localmapfile():
return 'localmaps_{:.0f}_{:.0f}.npz'.format(
10 * poles.minscore, poles.polesides[-1])
def get_evalfile():
return 'evaluation_{:.0f}_{:.0f}.npz'.format(
10 * poles.minscore, poles.polesides[-1])
def get_map_indices(session):
distance = np.hstack([0.0, np.cumsum(np.linalg.norm(
np.diff(session.T_w_r_gt_velo[:, :3, 3], axis=0), axis=1))])
istart = []
imid = []
iend = []
i = 0
j = 0
k = 0
for id, d in enumerate(distance):
if d >= i * mapinterval:
istart.append(id)
i += 1
if d >= j * mapinterval + 0.5 * mapdistance:
imid.append(id)
j += 1
if d > k * mapinterval + mapdistance:
iend.append(id)
k += 1
return istart[:len(iend)], imid[:len(iend)], iend
def save_global_map():
globalmappos = np.empty([0, 2])
mapfactors = np.full(len(pynclt.sessions), np.nan)
poleparams = np.empty([0, 6])
for isession, s in enumerate(pynclt.sessions):
print(s)
session = pynclt.session(s)
istart, imid, iend = get_map_indices(session)
localmappos = session.T_w_r_gt_velo[imid, :2, 3]
if globalmappos.size == 0:
imaps = range(localmappos.shape[0])
else:
imaps = []
for imap in range(localmappos.shape[0]):
distance = np.linalg.norm(
localmappos[imap] - globalmappos, axis=1).min()
if distance > remapdistance:
imaps.append(imap)
globalmappos = np.vstack([globalmappos, localmappos[imaps]])
mapfactors[isession] = np.true_divide(len(imaps), len(imid))
with progressbar.ProgressBar(max_value=len(imaps)) as bar:
for iimap, imap in enumerate(imaps):
scans = []
for iscan in range(istart[imap], iend[imap]):
xyz, _ = session.get_velo(iscan)
scan = o3.PointCloud()
scan.points = o3.Vector3dVector(xyz)
scans.append(scan)
T_w_mc = np.identity(4)
T_w_mc[:3, 3] = session.T_w_r_gt_velo[imid[imap], :3, 3]
T_w_m = T_w_mc.dot(T_mc_m)
T_m_w = util.invert_ht(T_w_m)
T_m_r = np.matmul(
T_m_w, session.T_w_r_gt_velo[istart[imap]:iend[imap]])
occupancymap = mapping.occupancymap(
scans, T_m_r, mapshape, mapsize)
localpoleparams = poles.detect_poles(occupancymap, mapsize)
localpoleparams[:, :2] += T_w_m[:2, 3]
poleparams = np.vstack([poleparams, localpoleparams])
bar.update(iimap)
xy = poleparams[:, :2]
a = poleparams[:, [4]]
boxes = np.hstack([xy - 0.5 * a, xy + 0.5 * a])
clustermeans = np.empty([0, 5])
scores = []
for ci in cluster.cluster_boxes(boxes):
ci = list(ci)
if len(ci) < n_mapdetections:
continue
clustermeans = np.vstack([clustermeans, np.average(
poleparams[ci, :-1], axis=0, weights=poleparams[ci, -1])])
scores.append(np.mean(poleparams[ci, -1]))
clustermeans = np.hstack([clustermeans, np.array(scores).reshape([-1, 1])])
globalmapfile = os.path.join('nclt', get_globalmapname() + '.npz')
np.savez(globalmapfile,
polemeans=clustermeans, mapfactors=mapfactors, mappos=globalmappos)
plot_global_map(globalmapfile)
def plot_global_map(globalmapfile):
data = np.load(globalmapfile)
x, y = data['polemeans'][:, :2].T
plt.clf()
plt.rcParams.update(params)
plt.scatter(x, y, s=1, c='b', marker='.')
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.savefig(globalmapfile[:-4] + '.svg')
plt.savefig(globalmapfile[:-4] + '.pgf')
print(data['mapfactors'])
def save_local_maps(sessionname, visualize=False):
print(sessionname)
session = pynclt.session(sessionname)
util.makedirs(session.dir)
istart, imid, iend = get_map_indices(session)
maps = []
with progressbar.ProgressBar(max_value=len(iend)) as bar:
for i in range(len(iend)):
scans = []
for idx, val in enumerate(range(istart[i], iend[i])):
xyz, _ = session.get_velo(val)
scan = o3.PointCloud()
scan.points = o3.Vector3dVector(xyz)
scans.append(scan)
T_w_mc = util.project_xy(
session.T_w_r_odo_velo[imid[i]].dot(T_r_mc))
T_w_m = T_w_mc.dot(T_mc_m)
T_m_w = util.invert_ht(T_w_m)
T_w_r = session.T_w_r_odo_velo[istart[i]:iend[i]]
T_m_r = np.matmul(T_m_w, T_w_r)
occupancymap = mapping.occupancymap(scans, T_m_r, mapshape, mapsize)
poleparams = poles.detect_poles(occupancymap, mapsize)
if visualize:
cloud = o3.PointCloud()
for T, scan in zip(T_w_r, scans):
s = copy.copy(scan)
s.transform(T)
cloud.points.extend(s.points)
mapboundsvis = util.create_wire_box(mapextent, [0.0, 0.0, 1.0])
mapboundsvis.transform(T_w_m)
polevis = []
for j in range(poleparams.shape[0]):
x, y, zs, ze, a = poleparams[j, :5]
pole = util.create_wire_box(
[a, a, ze - zs], color=[1.0, 1.0, 0.0])
T_m_p = np.identity(4)
T_m_p[:3, 3] = [x - 0.5 * a, y - 0.5 * a, zs]
pole.transform(T_w_m.dot(T_m_p))
polevis.append(pole)
o3.draw_geometries(polevis + [cloud, mapboundsvis])
map = {'poleparams': poleparams, 'T_w_m': T_w_m,
'istart': istart[i], 'imid': imid[i], 'iend': iend[i]}
maps.append(map)
bar.update(i)
np.savez(os.path.join(session.dir, get_localmapfile()), maps=maps)
def view_local_maps(sessionname):
sessiondir = os.path.join('nclt', sessionname)
session = pynclt.session(sessionname)
maps = np.load(os.path.join(sessiondir, get_localmapfile()))['maps']
for i, map in enumerate(maps):
print('Map #{}'.format(i))
mapboundsvis = util.create_wire_box(mapextent, [0.0, 0.0, 1.0])
mapboundsvis.transform(map['T_w_m'])
polevis = []
for poleparams in map['poleparams']:
x, y, zs, ze, a = poleparams[:5]
pole = util.create_wire_box(
[a, a, ze - zs], color=[1.0, 1.0, 0.0])
T_m_p = np.identity(4)
T_m_p[:3, 3] = [x - 0.5 * a, y - 0.5 * a, zs]
pole.transform(map['T_w_m'].dot(T_m_p))
polevis.append(pole)
accucloud = o3.PointCloud()
for j in range(map['istart'], map['iend']):
points, intensities = session.get_velo(j)
cloud = o3.PointCloud()
cloud.points = o3.Vector3dVector(points)
cloud.colors = o3.Vector3dVector(
util.intensity2color(intensities / 255.0))
cloud.transform(session.T_w_r_odo_velo[j])
accucloud.points.extend(cloud.points)
accucloud.colors.extend(cloud.colors)
o3.draw_geometries([accucloud, mapboundsvis] + polevis)
def evaluate_matches():
mapdata = np.load(os.path.join('nclt', get_globalmapname() + '.npz'))
polemap = mapdata['polemeans'][:, :2]
kdtree = scipy.spatial.cKDTree(polemap[:, :2], leafsize=10)
maxdist = 0.5
n_matches = np.zeros(len(pynclt.sessions))
n_all = np.zeros(len(pynclt.sessions))
for i, sessionname in enumerate(pynclt.sessions):
sessiondir = os.path.join('nclt', sessionname)
session = pynclt.session(sessionname)
maps = np.load(os.path.join(sessiondir, get_localmapfile()))['maps']
for map in maps:
n = map['poleparams'].shape[0]
n_all[i] += n
polepos_m = np.hstack(
[map['poleparams'][:, :2], np.zeros([n, 1]), np.ones([n, 1])]).T
T_w_m = session.T_w_r_gt_velo[map['imid']].dot(T_r_m)
polepos_w = T_w_m.dot(polepos_m)
plt.scatter(polemap[:, 0], polemap[:, 1], color='k')
plt.scatter(polepos_w[0,:], polepos_w[1,:], color='r')
plt.show()
dist, _ = kdtree.query(
polepos_w[:2].T, k=1, distance_upper_bound=maxdist)
n_matches[i] += np.sum(np.isfinite(dist))
print('{}: {}'.format(
sessionname, np.true_divide(n_matches[i], n_all[i])))
def localize(sessionname, visualize=False):
print(sessionname)
mapdata = np.load(os.path.join('nclt', get_globalmapname() + '.npz'))
polemap = mapdata['polemeans'][:, :2]
polevar = 1.50
session = pynclt.session(sessionname)
locdata = np.load(os.path.join(session.dir, get_localmapfile()))['maps']
polepos_m = []
polepos_w = []
for i in range(len(locdata)):
n = locdata[i]['poleparams'].shape[0]
pad = np.hstack([np.zeros([n, 1]), np.ones([n, 1])])
polepos_m.append(np.hstack([locdata[i]['poleparams'][:, :2], pad]).T)
polepos_w.append(locdata[i]['T_w_m'].dot(polepos_m[i]))
istart = 0
# igps = np.searchsorted(session.t_gps, session.t_relodo[istart]) + [-4, 1]
# igps = np.clip(igps, 0, session.gps.shape[0] - 1)
# T_w_r_start = pynclt.T_w_o
# T_w_r_start[:2, 3] = np.mean(session.gps[igps], axis=0)
T_w_r_start = util.project_xy(
session.get_T_w_r_gt(session.t_relodo[istart]).dot(T_r_mc)).dot(T_mc_r)
filter = particlefilter.particlefilter(5000,
T_w_r_start, 2.5, np.radians(5.0), polemap, polevar, T_w_o=T_mc_r)
filter.estimatetype = 'best'
filter.minneff = 0.5
if visualize:
plt.ion()
figure = plt.figure()
nplots = 1
mapaxes = figure.add_subplot(nplots, 1, 1)
mapaxes.set_aspect('equal')
mapaxes.scatter(polemap[:, 0], polemap[:, 1], s=5, c='b', marker='s')
x_gt, y_gt = session.T_w_r_gt[::20, :2, 3].T
mapaxes.plot(x_gt, y_gt, 'g')
particles = mapaxes.scatter([], [], s=1, c='r')
arrow = mapaxes.arrow(0.0, 0.0, 1.0, 0.0, length_includes_head=True,
head_width=0.7, head_length=1.0, color='k')
arrowdata = np.hstack(
[arrow.get_xy(), np.zeros([8, 1]), np.ones([8, 1])]).T
locpoles = mapaxes.scatter([], [], s=30, c='k', marker='x')
viewoffset = 25.0
# weightaxes = figure.add_subplot(nplots, 1, 2)
# gridsize = 50
# offset = 5.0
# visfilter = particlefilter.particlefilter(gridsize**2,
# np.identity(4), 0.0, 0.0, polemap,
# polevar, T_w_o=pynclt.T_w_o)
# gridcoord = np.linspace(-offset, offset, gridsize)
# x, y = np.meshgrid(gridcoord, gridcoord)
# dxy = np.hstack([x.reshape([-1, 1]), y.reshape([-1, 1])])
# weightimage = weightaxes.matshow(np.zeros([gridsize, gridsize]),
# extent=(-offset, offset, -offset, offset))
# histaxes = figure.add_subplot(nplots, 1, 3)
imap = 0
while imap < locdata.shape[0] - 1 and \
session.t_velo[locdata[imap]['iend']] < session.t_relodo[istart]:
imap += 1
T_w_r_est = np.full([session.t_relodo.size, 4, 4], np.nan)
with progressbar.ProgressBar(max_value=session.t_relodo.size) as bar:
for i in range(istart, session.t_relodo.size):
relodocov = np.empty([3, 3])
relodocov[:2, :2] = session.relodocov[i, :2, :2]
relodocov[:, 2] = session.relodocov[i, [0, 1, 5], 5]
relodocov[2, :] = session.relodocov[i, 5, [0, 1, 5]]
filter.update_motion(session.relodo[i], relodocov * 2.0**2)
T_w_r_est[i] = filter.estimate_pose()
t_now = session.t_relodo[i]
if imap < locdata.shape[0]:
t_end = session.t_velo[locdata[imap]['iend']]
if t_now >= t_end:
imaps = range(imap, np.clip(imap-n_localmaps, -1, None), -1)
xy = np.hstack([polepos_w[j][:2] for j in imaps]).T
a = np.vstack([ld['poleparams'][:, [4]] \
for ld in locdata[imaps]])
boxes = np.hstack([xy - 0.5 * a, xy + 0.5 * a])
ipoles = set(range(polepos_w[imap].shape[1]))
iactive = set()
for ci in cluster.cluster_boxes(boxes):
if len(ci) >= n_locdetections:
iactive |= set(ipoles) & ci
iactive = list(iactive)
# print('{}.'.format(
# len(iactive) - polepos_w[imap].shape[1]))
if iactive:
t_mid = session.t_velo[locdata[imap]['imid']]
T_w_r_mid = util.project_xy(session.get_T_w_r_odo(
t_mid).dot(T_r_mc)).dot(T_mc_r)
T_w_r_now = util.project_xy(session.get_T_w_r_odo(
t_now).dot(T_r_mc)).dot(T_mc_r)
T_r_now_r_mid = util.invert_ht(T_w_r_now).dot(T_w_r_mid)
polepos_r_now = T_r_now_r_mid.dot(T_r_m).dot(
polepos_m[imap][:, iactive])
filter.update_measurement(polepos_r_now[:2].T)
T_w_r_est[i] = filter.estimate_pose()
if visualize:
polepos_w_est = T_w_r_est[i].dot(polepos_r_now)
locpoles.set_offsets(polepos_w_est[:2].T)
# T_w_r_gt_now = session.get_T_w_r_gt(t_now)
# T_w_r_gt_now = np.tile(
# T_w_r_gt_now, [gridsize**2, 1, 1])
# T_w_r_gt_now[:, :2, 3] += dxy
# visfilter.particles = T_w_r_gt_now
# visfilter.weights[:] = 1.0 / visfilter.count
# visfilter.update_measurement(
# polepos_r_now[:2].T, resample=False)
# weightimage.set_array(np.flipud(
# visfilter.weights.reshape(
# [gridsize, gridsize])))
# weightimage.autoscale()
imap += 1
if visualize:
particles.set_offsets(filter.particles[:, :2, 3])
arrow.set_xy(T_w_r_est[i].dot(arrowdata)[:2].T)
x, y = T_w_r_est[i, :2, 3]
mapaxes.set_xlim(left=x - viewoffset, right=x + viewoffset)
mapaxes.set_ylim(bottom=y - viewoffset, top=y + viewoffset)
# histaxes.cla()
# histaxes.hist(filter.weights,
# bins=50, range=(0.0, np.max(filter.weights)))
figure.canvas.draw_idle()
figure.canvas.flush_events()
bar.update(i)
filename = os.path.join(session.dir, get_locfileprefix() \
+ datetime.datetime.now().strftime('_%Y-%m-%d_%H-%M-%S.npz'))
np.savez(filename, T_w_r_est=T_w_r_est)
def plot_trajectories():
trajectorydir = os.path.join(
pynclt.resultdir, 'trajectories_est_{:.0f}_{:.0f}_{:.0f}'.format(
n_mapdetections, 10 * poles.minscore, poles.polesides[-1]))
pgfdir = os.path.join(trajectorydir, 'pgf')
util.makedirs(trajectorydir)
util.makedirs(pgfdir)
mapdata = np.load(os.path.join('nclt', get_globalmapname() + '.npz'))
polemap = mapdata['polemeans']
plt.rcParams.update(params)
for sessionname in pynclt.sessions:
try:
session = pynclt.session(sessionname)
files = [file for file \
in os.listdir(os.path.join(pynclt.resultdir, sessionname)) \
if file.startswith('localization_3_6_7_2019-07')]
# if file.startswith(get_locfileprefix())]
for file in files:
T_w_r_est = np.load(os.path.join(
pynclt.resultdir, sessionname, file))['T_w_r_est']
plt.clf()
plt.scatter(polemap[:, 0], polemap[:, 1],
s=1, c='b', marker='.')
plt.plot(session.T_w_r_gt[::20, 0, 3],
session.T_w_r_gt[::20, 1, 3], color=(0.5, 0.5, 0.5))
plt.plot(T_w_r_est[::20, 0, 3], T_w_r_est[::20, 1, 3], 'r')
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.gcf().subplots_adjust(
bottom=0.13, top=0.98, left=0.145, right=0.98)
filename = sessionname + file[18:-4]
plt.savefig(os.path.join(trajectorydir, filename + '.svg'))
plt.savefig(os.path.join(pgfdir, filename + '.pgf'))
except:
pass
def evaluate():
stats = []
for sessionname in pynclt.sessions:
files = [file for file \
in os.listdir(os.path.join(pynclt.resultdir, sessionname)) \
if file.startswith('localization_3_6_7_2019-07')]
# if file.startswith(get_locfileprefix())]
files.sort()
session = pynclt.session(sessionname)
cumdist = np.hstack([0.0, np.cumsum(np.linalg.norm(np.diff(
session.T_w_r_gt[:, :3, 3], axis=0), axis=1))])
t_eval = scipy.interpolate.interp1d(
cumdist, session.t_gt)(np.arange(0.0, cumdist[-1], 1.0))
T_w_r_gt = np.stack([util.project_xy(
session.get_T_w_r_gt(t).dot(T_r_mc)).dot(T_mc_r) \
for t in t_eval])
T_gt_est = []
for file in files:
T_w_r_est = np.load(os.path.join(
pynclt.resultdir, sessionname, file))['T_w_r_est']
T_w_r_est_interp = np.empty([len(t_eval), 4, 4])
iodo = 1
for ieval in range(len(t_eval)):
while session.t_relodo[iodo] < t_eval[ieval]:
iodo += 1
T_w_r_est_interp[ieval] = util.interpolate_ht(
T_w_r_est[iodo-1:iodo+1],
session.t_relodo[iodo-1:iodo+1], t_eval[ieval])
T_gt_est.append(
np.matmul(util.invert_ht(T_w_r_gt), T_w_r_est_interp))
T_gt_est = np.stack(T_gt_est)
lonerror = np.mean(np.mean(np.abs(T_gt_est[..., 0, 3]), axis=-1))
laterror = np.mean(np.mean(np.abs(T_gt_est[..., 1, 3]), axis=-1))
poserrors = np.linalg.norm(T_gt_est[..., :2, 3], axis=-1)
poserror = np.mean(np.mean(poserrors, axis=-1))
posrmse = np.mean(np.sqrt(np.mean(poserrors**2, axis=-1)))
angerrors = np.degrees(np.abs(
np.array([util.ht2xyp(T)[:, 2] for T in T_gt_est])))
angerror = np.mean(np.mean(angerrors, axis=-1))
angrmse = np.mean(np.sqrt(np.mean(angerrors**2, axis=-1)))
stats.append({'session': sessionname, 'lonerror': lonerror,
'laterror': laterror, 'poserror': poserror, 'posrmse': posrmse,
'angerror': angerror, 'angrmse': angrmse, 'T_gt_est': T_gt_est})
np.savez(os.path.join(pynclt.resultdir, get_evalfile()), stats=stats)
mapdata = np.load(os.path.join('nclt', get_globalmapname() + '.npz'))
print('session \t f\te_pos \trmse_pos \te_ang \te_rmse')
row = '{session} \t{f} \t{poserror} \t{posrmse} \t{angerror} \t{angrmse}'
for i, stat in enumerate(stats):
print(row.format(
session=stat['session'],
f=mapdata['mapfactors'][i] * 100.0,
poserror=stat['poserror'],
posrmse=stat['posrmse'],
angerror=stat['angerror'],
angrmse=stat['angrmse']))
if __name__ == '__main__':
poles.minscore = 0.6
poles.polesides = range(1, 7+1)
save_global_map()
session = '2012-01-08'
save_local_maps(session)
localize(session)
plot_trajectories()
evaluate()

81
poles/ndshow.py Normal file
View File

@@ -0,0 +1,81 @@
#!/usr/bin/env python
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
import numpy as np
import torch
def _take(data, index):
slice = data
for i in range(len(index)):
slice = np.take(slice, min(slice.shape[0]-1, index[i]), axis=0)
return slice
def matshow(data, matnames=[], dimnames=[]):
if not isinstance(data, list):
data = [data]
for i in range(len(data)):
if type(data[i]) is torch.Tensor:
data[i] = data[i].numpy()
ndim = max([d.ndim for d in data])
for i in range(len(data)):
while data[i].ndim < ndim:
data[i] = np.expand_dims(data[i], axis=0)
shape = []
for dim in range(ndim - 2):
shape.append(max(d.shape[dim] for d in data))
figure, axes = plt.subplots(
1, len(data), sharex=True, sharey=True, squeeze=False)
for i in range(len(data)):
axes[0,i].imshow(_take(data[i], [0] * (ndim-2)),
vmin=np.amin(data[i]), vmax=np.amax(data[i]),
interpolation=None, origin='lower',
extent=[0.0, data[i].shape[-1], 0.0, data[i].shape[-2]])
for i in range(min(len(data), len(matnames))):
axes[0,i].set_title(matnames[i])
sliders = []
updatefuncs = []
bottom = np.linspace(0.0, 0.1, ndim)[1:-1]
for i in range(len(shape)):
sliderax = plt.axes([0.2, bottom[i], 0.6, 0.02],
facecolor='lightgoldenrodyellow')
if i < len(dimnames):
label = dimnames[i]
else:
label = 'Axis {}'.format(i)
sliders.append(Slider(sliderax, label=label,
valmin=0, valmax=shape[i]-1, valinit=0, valstep=1))
def update(val):
indices = [int(slider.val) for slider in sliders]
for j in range(axes.size):
axes[0,j].images[0].set_array(_take(data[j], indices))
figure.canvas.draw_idle()
updatefuncs.append(update)
sliders[i].on_changed(updatefuncs[i])
plt.show()
if __name__ == '__main__':
matshow(np.random.rand(100, 15, 25, 64, 64))
matshow(np.random.rand(100, 15, 25, 64, 64),
matnames=['Matrix A', 'Matrix B'],
dimnames=['depth', 'height', 'width'])
matshow([np.random.rand(64, 64, 64), np.random.rand(10, 10, 64)])
matshow([np.random.rand(9, 11), np.random.rand(12, 12, 6)],
matnames=['9x11', '12x12x6'])
matshow(np.random.rand(100, 100, 100))

85
poles/particlefilter.py Normal file
View File

@@ -0,0 +1,85 @@
#!/usr/bin/env python
import warnings
import numpy as np
import scipy
import util
class particlefilter:
def __init__(self, count, start, posrange, angrange,
polemeans, polevar, T_w_o=np.identity(4)):
self.p_min = 0.01
self.d_max = np.sqrt(-2.0 * polevar * np.log(
np.sqrt(2.0 * np.pi * polevar) * self.p_min))
self.minneff = 0.5
self.estimatetype = 'best'
self.count = count
r = np.random.uniform(low=0.0, high=posrange, size=[self.count, 1])
angle = np.random.uniform(low=-np.pi, high=np.pi, size=[self.count, 1])
xy = r * np.hstack([np.cos(angle), np.sin(angle)])
dxyp = np.hstack([xy, np.random.uniform(
low=-angrange, high=angrange, size=[self.count, 1])])
self.particles = np.matmul(start, util.xyp2ht(dxyp))
self.weights = np.full(self.count, 1.0 / self.count)
self.polemeans = polemeans
self.poledist = scipy.stats.norm(loc=0.0, scale=np.sqrt(polevar))
self.kdtree = scipy.spatial.cKDTree(polemeans[:, :2], leafsize=3)
self.T_w_o = T_w_o
self.T_o_w = util.invert_ht(self.T_w_o)
@property
def neff(self):
return 1.0 / (np.sum(self.weights**2.0) * self.count)
def update_motion(self, mean, cov):
T_r0_r1 = util.xyp2ht(
np.random.multivariate_normal(mean, cov, self.count))
self.particles = np.matmul(self.particles, T_r0_r1)
def update_measurement(self, poleparams, resample=True):
n = poleparams.shape[0]
polepos_r = np.hstack(
[poleparams[:, :2], np.zeros([n, 1]), np.ones([n, 1])]).T
for i in range(self.count):
polepos_w = self.particles[i].dot(polepos_r)
d, _ = self.kdtree.query(
polepos_w[:2].T, k=1, distance_upper_bound=self.d_max)
self.weights[i] *= np.prod(
self.poledist.pdf(np.clip(d, 0.0, self.d_max)) + 0.1)
self.weights /= np.sum(self.weights)
if resample and self.neff < self.minneff:
self.resample()
def estimate_pose(self):
if self.estimatetype == 'mean':
xyp = util.ht2xyp(np.matmul(self.T_o_w, self.particles))
mean = np.hstack(
[np.average(xyp[:, :2], axis=0, weights=self.weights),
util.average_angles(xyp[:, 2], weights=self.weights)])
return self.T_w_o.dot(util.xyp2ht(mean))
if self.estimatetype == 'max':
return self.particles[np.argmax(self.weights)]
if self.estimatetype == 'best':
i = np.argsort(self.weights)[-int(0.1 * self.count):]
xyp = util.ht2xyp(np.matmul(self.T_o_w, self.particles[i]))
mean = np.hstack(
[np.average(xyp[:, :2], axis=0, weights=self.weights[i]),
util.average_angles(xyp[:, 2], weights=self.weights[i])])
return self.T_w_o.dot(util.xyp2ht(mean))
def resample(self):
cumsum = np.cumsum(self.weights)
pos = np.random.rand() / self.count
idx = np.empty(self.count, dtype=np.int)
ics = 0
for i in range(self.count):
while cumsum[ics] < pos:
ics += 1
idx[i] = ics
pos += 1.0 / self.count
self.particles = self.particles[idx]
self.weights[:] = 1.0 / self.count

134
poles/poles.py Normal file
View File

@@ -0,0 +1,134 @@
#!/usr/bin/env python
import numpy as np
import scipy.stats
import skimage.feature
import skimage.measure
import torch
device = torch.device('cuda')
polesides = range(1, 5+1)
minscore = 0.6
minheight = 1.0
freelength = 0.2
dstop = 1.0e-3
normstd = 0.2
def detect_poles(occupancymap, mapsize):
f = int(np.round(freelength / mapsize[0]))
polemapshape = occupancymap.shape - np.array([2*f, 2*f, 0])
ogm = torch.tensor(
occupancymap, device=device).permute([2, 0, 1]).unsqueeze(1)
accuscores = torch.zeros(
tuple(np.hstack([len(polesides), polemapshape[[2, 0, 1]]])),
dtype=torch.float64, device=device)
for ia, a in enumerate(polesides):
af = a + 2 * f
xmax = torch.nn.functional.max_pool2d(
ogm, kernel_size=[af, f], stride=1)
xmax = torch.max(xmax[..., :-a-f], xmax[..., a+f:])
ymax = torch.nn.functional.max_pool2d(
ogm, kernel_size=[f, af], stride=1)
ymax = torch.max(ymax[..., :-a-f, :], ymax[..., a+f:, :])
kernel = torch.ones([1, 1, a, a], dtype=torch.float64, device=device) \
/ (a**2)
score = (torch.nn.functional.conv2d(ogm[..., f:-f, f:-f], kernel) \
- torch.max(xmax, ymax)).squeeze()
accuscores[ia] = torch.nn.functional.max_pool2d(
torch.nn.functional.pad(score, [a-1] * 4, 'constant', -1.0),
kernel_size=a, stride=1) / 2.0 + 0.5
accuscore = torch.max(accuscores, 0)[0]
h = torch.zeros(
tuple(polemapshape[:2]), dtype=torch.uint8, device=device)
hmax = h.clone()
z = h.clone()
zmax = z.clone()
for im, m in enumerate(accuscore):
ispole = m >= minscore
h += ispole
ih = h > hmax
hmax[ih] = h[ih]
zmax[ih] = z[ih]
h[ispole == False] = 0
z[ispole == False] = im + 1
accuscores = accuscores.cpu().numpy()
accuscore = accuscore.cpu().numpy()
hmax = hmax.cpu().numpy()
zmax = zmax.cpu().numpy()
ix, iy = np.where(hmax >= minheight / mapsize[2])
poleness = np.zeros(polemapshape[:2])
if ix.size > 0:
for iix, iiy in zip(ix, iy):
h = hmax[iix, iiy]
z = zmax[iix, iiy]
poleness[iix, iiy] = np.mean(accuscore[z:z+h, iix, iiy])
peaks = skimage.feature.peak_local_max(
poleness, min_distance=f, exclude_border=False, indices=False)
label = skimage.measure.label(peaks, neighbors=8, background=False)
regions = skimage.measure.regionprops(label, coordinates='rc')
centroids = np.array([r.centroid for r in regions]) + 0.5
normdist = scipy.stats.norm(0.0, normstd / mapsize[0])
cellcoords = np.meshgrid(
range(polemapshape[0]), range(polemapshape[1]), indexing='ij')
cellcoords = np.stack(cellcoords, axis=2).astype(np.float) + 0.5
poleparams = np.empty([centroids.shape[0], 6])
optcentroids = centroids.copy()
for ic in range(optcentroids.shape[0]):
lastcentroid = np.full(2, np.inf)
while np.linalg.norm(lastcentroid - optcentroids[ic]) \
> dstop / mapsize[0]:
lastcentroid = optcentroids[ic]
d = np.linalg.norm(cellcoords - optcentroids[ic], axis=2)
weights = np.tile(np.expand_dims(poleness * normdist.pdf(d), 2),
[1, 1, 2])
optcentroids[ic] = np.average(
cellcoords, weights=weights, axis=(0, 1))
ix, iy = np.floor(optcentroids[ic]).astype(np.int)
if hmax[ix, iy] < minheight / mapsize[2]:
optcentroids[ic] = centroids[ic]
ix, iy = np.floor(centroids[ic]).astype(np.int)
h = hmax[ix, iy]
z = zmax[ix, iy]
zstart = 0.0
if z > 0:
zstart = mapsize[2] * (np.interp(minscore,
accuscore[z-1:z+1, ix, iy], [z-1, z]) + 0.5)
zend = occupancymap.shape[2] * mapsize[2]
if z + h < polemapshape[2]:
zend = mapsize[2] * (np.interp(minscore,
accuscore[z+h-1:z+h+1, ix, iy], [z+h-1, z+h]) + 0.5)
sideweights = np.mean(accuscores[:, z:z+h, ix, iy], axis=1)
sidelength = np.average(polesides, weights=sideweights) * mapsize[0]
score = np.mean(np.average(
accuscores[:, z:z+h, ix, iy], weights=sideweights, axis=0))
x, y = mapsize[:2] * (optcentroids[ic] + f)
poleparams[ic] = [x, y, zstart, zend, sidelength, score]
poleparams = poleparams[np.flip(np.argsort(poleparams[:, -1]), axis=0), :]
ip = 0
while ip < poleparams.shape[0]:
d = np.linalg.norm(poleparams[ip, :2] - poleparams[ip+1:, :2], axis=1) \
- 0.5 * (poleparams[ip, 4] + poleparams[ip+1:, 4])
poleparams = np.delete(
poleparams, np.where(d < freelength)[0] + ip + 1, axis=0)
ip += 1
return poleparams

320
poles/pynclt.py Normal file
View File

@@ -0,0 +1,320 @@
#!/usr/bin/env python
import os
import warnings
import open3d as o3
import matplotlib.pyplot as plt
import numpy as np
import progressbar
import pyquaternion as pq
import transforms3d as t3
import util
T_w_o = np.identity(4)
T_w_o[:3, :3] = [[0, 1, 0], [1, 0, 0], [0, 0, -1]]
T_o_w = util.invert_ht(T_w_o)
eulerdef = 'sxyz'
csvdelimiter = ','
datadir = '/mnt/data/datasets/nclt'
resultdir = 'nclt'
snapshotfile = 'snapshot.npz'
sessionfile = 'sessiondata.npz'
sessions = [
'2012-01-08',
'2012-01-15',
'2012-01-22',
'2012-02-02',
'2012-02-04',
'2012-02-05',
'2012-02-12',
'2012-02-18',
'2012-02-19',
'2012-03-17',
'2012-03-25',
'2012-03-31',
'2012-04-29',
'2012-05-11',
'2012-05-26',
'2012-06-15',
'2012-08-04',
'2012-08-20',
'2012-09-28',
'2012-10-28',
'2012-11-04',
'2012-11-16',
'2012-11-17',
'2012-12-01',
'2013-01-10',
'2013-02-23',
'2013-04-05']
lat0 = np.radians(42.293227)
lon0 = np.radians(-83.709657)
re = 6378135.0
rp = 6356750
rns = (re * rp)**2.0 \
/ ((re * np.cos(lat0))**2.0 + (rp * np.sin(lat0))**2.0)**1.5
rew = re**2.0 / np.sqrt((re * np.cos(lat0))**2.0 + (rp * np.sin(lat0))**2.0)
veloheadertype = np.dtype({
'magic': ('<u8', 0),
'count': ('<u4', 8),
'utime': ('<u8', 12),
'pad': ('V4', 20)})
veloheadersize = 24
velodatatype = np.dtype({
'x': ('<u2', 0),
'y': ('<u2', 2),
'z': ('<u2', 4),
'i': ('u1', 6),
'l': ('u1', 7)})
velodatasize = 8
def load_snapshot(sessionname):
cloud = o3.PointCloud()
trajectory = o3.LineSet()
with np.load(os.path.join(resultdir, sessionname, snapshotfile)) as data:
cloud.points = o3.Vector3dVector(data['points'])
cloud.colors = o3.Vector3dVector(
util.intensity2color(data['intensities'] / 255.0))
trajectory.points = o3.Vector3dVector(data['trajectory'])
lines = np.reshape(range(data['trajectory'].shape[0] - 1), [-1, 1]) \
+ [0, 1]
trajectory.lines = o3.Vector2iVector(lines)
trajectory.colors = o3.Vector3dVector(
np.tile([0.0, 0.5, 0.0], [lines.shape[0], 1]))
return cloud, trajectory
def view_snapshot(sessionname):
cloud, trajectory = load_snapshot(sessionname)
o3.draw_geometries([cloud, trajectory])
def pose2ht(pose):
r, p, y = pose[3:]
return t3.affines.compose(
pose[:3], t3.euler.euler2mat(r, p, y, eulerdef), np.ones(3))
def latlon2xy(latlon):
lat = latlon[:, [0]]
lon = latlon[:, [1]]
return np.hstack([np.sin(lat - lat0) * rns,
np.sin(lon - lon0) * rew * np.cos(lat0)])
def data2xyzi(data):
xyzil = data.view(velodatatype)
xyz = np.hstack(
[xyzil[axis].reshape([-1, 1]) for axis in ['x', 'y', 'z']])
xyz = xyz * 0.005 - 100.0
return xyz, xyzil['i']
def save_trajectories():
trajectorydir = os.path.join(resultdir, 'trajectories_gt')
util.makedirs(trajectorydir)
trajectories = [session(s).T_w_r_gt[::20, :2, 3] for s in sessions]
for i in range(len(trajectories)):
plt.clf()
[plt.plot(t[:, 0], t[:, 1], color=(0.5, 0.5, 0.5)) \
for t in trajectories]
plt.plot(trajectories[i][:, 0], trajectories[i][:, 1], color='y')
plt.savefig(os.path.join(trajectorydir, sessions[i] + '.svg'))
class session:
def __init__(self, session):
self.session = session
self.dir = os.path.join(resultdir, self.session)
try:
data = np.load(os.path.join(self.dir, sessionfile))
self.velofiles = data['velofiles']
self.t_velo = data['t_velo']
self.velorawfile = data['velorawfile']
self.t_rawvelo = data['t_rawvelo']
self.i_rawvelo = data['i_rawvelo']
self.t_gt = data['t_gt']
self.T_w_r_gt = data['T_w_r_gt']
self.T_w_r_gt_velo = data['T_w_r_gt_velo']
self.t_cov_gt = data['t_cov_gt']
self.cov_gt = data['cov_gt']
self.t_odo = data['t_odo']
self.T_w_r_odo = data['T_w_r_odo']
self.T_w_r_odo_velo = data['T_w_r_odo_velo']
self.t_relodo = data['t_relodo']
self.relodo = data['relodo']
self.relodocov = data['relodocov']
self.t_gps = data['t_gps']
self.gps = data['gps']
except:
velodir = os.path.join(datadir, 'velodyne_data',
self.session + '_vel', 'velodyne_sync')
self.velofiles = [os.path.join(velodir, file) \
for file in os.listdir(velodir) \
if os.path.splitext(file)[1] == '.bin']
self.velofiles.sort()
self.t_velo = np.array([
int(os.path.splitext(os.path.basename(velofile))[0]) \
for velofile in self.velofiles])
self.velorawfile = os.path.join(datadir, 'velodyne_data',
self.session + '_vel', 'velodyne_hits.bin')
self.t_rawvelo = []
self.i_rawvelo = []
with open(self.velorawfile, 'rb') as file:
data = np.array(file.read(veloheadersize))
while data:
header = data.view(veloheadertype)
if header['magic'] != 0xad9cad9cad9cad9c:
break
self.t_rawvelo.append(header['utime'])
self.i_rawvelo.append(file.tell() - veloheadersize)
file.seek(header['count'] * velodatasize, os.SEEK_CUR)
data = np.array(file.read(veloheadersize))
self.t_rawvelo = np.array(self.t_rawvelo)
self.i_rawvelo = np.array(self.i_rawvelo)
posefile = os.path.join(
datadir, 'ground_truth', 'groundtruth_' + self.session + '.csv')
posedata = np.genfromtxt(posefile, delimiter=csvdelimiter)
posedata = posedata[np.logical_not(np.any(np.isnan(posedata), 1))]
self.t_gt = posedata[:, 0]
self.T_w_r_gt = np.stack([T_w_o.dot(pose2ht(pose_o_r)) \
for pose_o_r in posedata[:, 1:]])
self.T_w_r_gt_velo = np.stack(
[self.get_T_w_r_gt(t) for t in self.t_velo])
cov_gtfile = os.path.join(
datadir, 'ground_truth_cov', 'cov_' + self.session + '.csv')
cov_gt = np.genfromtxt(cov_gtfile, delimiter=csvdelimiter)
self.t_cov_gt = cov_gt[:, 0]
self.cov_gt = np.stack(
[np.reshape(roc[[
1, 2, 3, 4, 5, 6,
2, 7, 8, 9, 10, 11,
3, 8, 12, 13, 14, 15,
4, 9, 13, 16, 17, 18,
5, 10, 14, 17, 19, 20,
6, 11, 15, 18, 20, 21
]], [6, 6]) for roc in cov_gt])
sensordir = os.path.join(
datadir, 'sensor_data', self.session + '_sen')
odofile = os.path.join(sensordir, 'odometry_mu_100hz.csv')
ododata = np.genfromtxt(odofile, delimiter=csvdelimiter)
self.t_odo = ododata[:, 0]
self.T_w_r_odo = np.stack([T_w_o.dot(pose2ht(pose_o_r)) \
for pose_o_r in ododata[:, 1:]])
self.T_w_r_odo_velo = np.stack(
[self.get_T_w_r_odo(t) for t in self.t_velo])
relodofile = os.path.join(sensordir, 'odometry_mu.csv')
relodo = np.genfromtxt(relodofile, delimiter=csvdelimiter)
self.t_relodo = relodo[:, 0]
self.relodo = relodo[:, [1, 2, 6]]
relodocovfile = os.path.join(sensordir, 'odometry_cov.csv')
relodocov = np.genfromtxt(relodocovfile, delimiter=csvdelimiter)
self.relodocov = np.stack(
[np.reshape(roc[[
1, 2, 3, 4, 5, 6,
2, 7, 8, 9, 10, 11,
3, 8, 12, 13, 14, 15,
4, 9, 13, 16, 17, 18,
5, 10, 14, 17, 19, 20,
6, 11, 15, 18, 20, 21
]], [6, 6]) for roc in relodocov])
gpsfile = os.path.join(sensordir, 'gps.csv')
gps = np.genfromtxt(gpsfile, delimiter=csvdelimiter)[:, [0, 3, 4]]
self.t_gps = gps[:, 0]
self.gps = latlon2xy(gps[:, 1:])
util.makedirs(self.dir)
np.savez(os.path.join(self.dir, sessionfile),
velofiles=self.velofiles,
t_velo=self.t_velo,
velorawfile=self.velorawfile,
t_rawvelo=self.t_rawvelo,
i_rawvelo=self.i_rawvelo,
t_gt=self.t_gt,
T_w_r_gt=self.T_w_r_gt,
T_w_r_gt_velo=self.T_w_r_gt_velo,
t_cov_gt=self.t_cov_gt,
cov_gt=self.cov_gt,
t_odo=self.t_odo,
T_w_r_odo=self.T_w_r_odo,
T_w_r_odo_velo=self.T_w_r_odo_velo,
t_relodo=self.t_relodo,
relodo=self.relodo,
relodocov=self.relodocov,
t_gps=self.t_gps,
gps=self.gps)
def get_velo(self, i):
return data2xyzi(np.fromfile(self.velofiles[i]))
def get_velo_raw(self, i):
with open(self.velorawfile, 'rb') as file:
data = np.array(file.read(veloheadersize))
header = data.view(veloheadertype)
data = np.fromfile(file, count=header['count']).view(velodatatype)
xyz = np.empty([data.shape[0], 3])
intensities = np.empty([data.shape[0], 1])
for i in range(data.shape[0]):
xyz[i], intensities[i] = data2xyzi(data[i])
return xyz, intensities
def get_T_w_r_gt(self, t):
i = np.clip(np.searchsorted(self.t_gt, t), 1, self.t_gt.size - 1) \
+ np.array([-1, 0])
return util.interpolate_ht(self.T_w_r_gt[i], self.t_gt[i], t)
def get_T_w_r_odo(self, t):
i = np.clip(np.searchsorted(self.t_odo, t), 1, self.t_odo.size - 1) \
+ np.array([-1, 0])
return util.interpolate_ht(self.T_w_r_odo[i], self.t_odo[i], t)
def save_snapshot(self):
print(self.session)
naccupoints = int(3e7)
nscans = len(self.velofiles)
nmaxpoints = naccupoints / nscans
accupoints = np.full([naccupoints, 3], np.nan)
accuintensities = np.empty([naccupoints, 1])
ipstart = 0
with progressbar.ProgressBar(max_value=nscans) as bar:
for i in range(nscans):
points, intensities = self.get_velo(i)
npoints = min(points.shape[0], nmaxpoints)
ip = np.random.choice(points.shape[0], npoints, replace=False)
points = np.hstack([points[ip], np.ones([npoints, 1])]).T
points = self.T_w_r_gt_velo[i].dot(points)[:3].T
accupoints[ipstart:ipstart+npoints] = points
intensities = intensities[ip].reshape([-1, 1])
accuintensities[ipstart:ipstart+npoints] = intensities
ipstart += npoints
bar.update(i)
trajectory = self.T_w_r_gt[:, :3, 3]
util.makedirs(self.dir)
np.savez(os.path.join(self.dir, snapshotfile),
points=accupoints, intensities=accuintensities,
trajectory=trajectory)
if __name__ == '__main__':
for s in sessions:
session(s)

89
poles/util.py Normal file
View File

@@ -0,0 +1,89 @@
#!/usr/bin/env python
import os
import numpy as np
import open3d as o3
import transforms3d as t3
import pyquaternion as pq
def invert_ht(ht):
ht = np.tile(ht, [1, 1, 1])
iht = np.tile(np.identity(4), [ht.shape[0], 1, 1])
iht[..., :3, :3] = ht[..., :3, :3].transpose(0, 2, 1)
iht[..., :3, [3]] = -np.matmul(iht[..., :3, :3], ht[..., :3, [3]])
return iht.squeeze()
def create_wire_box(edgelengths, color=[0.0, 0.0, 0.0]):
lineset = o3.LineSet()
x, y, z = edgelengths
lineset.points = o3.Vector3dVector([[0, 0, 0], [x, 0, 0], [0, y, 0],
[x, y, 0], [0, 0, z], [x, 0, z], [0, y, z], [x, y, z]])
lineset.lines = o3.Vector2iVector([[0, 1], [1, 3], [3, 2], [2, 0],
[0, 4], [1, 5], [3, 7], [2, 6],
[4, 5], [5, 7], [7, 6], [6, 4]])
lineset.colors = o3.Vector3dVector(np.tile(color, [len(lineset.lines), 1]))
return lineset
def intensity2color(intensity):
return np.tile(np.reshape(intensity * 0.8, [-1, 1]), [1, 3])
def xyp2ht(xyp):
ht = np.tile(np.identity(4), [xyp.size / 3, 1, 1])
cp = np.cos(xyp[..., 2])
sp = np.sin(xyp[..., 2])
ht[..., :2, 3] = xyp[..., :2]
ht[..., 0, 0] = cp
ht[..., 0, 1] = -sp
ht[..., 1, 0] = sp
ht[..., 1, 1] = cp
return ht.squeeze()
def ht2xyp(ht):
ht = np.tile(ht, [1, 1, 1])
p = np.arctan2(ht[..., 1, 0], ht[..., 0, 0])
return np.hstack([ht[..., :2, 3], np.reshape(p, [-1, 1])]).squeeze()
def interpolate_ht(ht, t, tq):
amount = np.clip((tq - t[0]) / np.diff(t), 0.0, 1.0)
pos = ht[0, :3, 3] + amount * np.diff(ht[:, :3, 3], axis=0).squeeze()
q = [pq.Quaternion(matrix=m) for m in ht]
qq = pq.Quaternion.slerp(q[0], q[1], amount=amount)
return t3.affines.compose(pos, qq.rotation_matrix, np.ones(3))
def project_xy(ht):
htp = np.identity(4)
htp[:2, 0] = ht[:2, 0] / np.linalg.norm(ht[:2, 0])
htp[:2, 1] = [-htp[1, 0], htp[0, 0]]
htp[:2, 3] = ht[:2, 3]
return htp
def xyzi2pc(xyz, intensities=None):
pc = o3.PointCloud()
pc.points = o3.Vector3dVector(xyz)
if intensities is not None:
pc.colors = o3.Vector3dVector(intensity2color(intensities / 255.0))
return pc
def average_angles(angles, weights=None):
if weights is None:
weights = np.ones(angles.shape[0])
x = np.cos(angles) * weights
y = np.sin(angles) * weights
return np.arctan2(np.sum(y), np.sum(x))
def makedirs(dir):
try:
os.makedirs(dir)
except:
pass