polex/poles/ncltpoles.py
Sravan Balaji 93ac62b154 Fix Errors & Parameterize File Paths
- Update gitignore to exclude vscode files
- Parameterize hardcoded file paths
- Comment out references to pgf image and latex dependency
- Allow pickle in numpy.load
- Add TODO comments for where settings need to be changed
- Explicitly set visualization to False
- Change pytorch device from cuda to cpu
2020-04-30 19:58:05 -04:00

528 lines
21 KiB
Python

#!/usr/bin/env python
import copy
import datetime
import multiprocessing
import os
import shutil
import matplotlib.patches
import matplotlib.pyplot as plt
import numpy as np
import open3d as o3
import progressbar
import scipy.interpolate
import scipy.special
import cluster
import mapping
import ndshow
import particlefilter
import poles
import pynclt
import util
import sys
# plt.rcParams['text.latex.preamble']=[r'\usepackage{lmodern}']
# params = {'text.usetex': True,
# 'font.size': 16,
# 'font.family': 'lmodern',
# 'text.latex.unicode': True}
# TODO: UPDATE THIS!
localization_name_start = 'localization_3_6_7_2020-04'
mapextent = np.array([30.0, 30.0, 5.0])
mapsize = np.full(3, 0.2)
mapshape = np.array(mapextent / mapsize, dtype=np.int)
mapinterval = 1.5
mapdistance = 1.5
remapdistance = 10.0
n_mapdetections = 3
n_locdetections = 2
n_localmaps = 3
poles.minscore = 0.6
poles.minheight = 1.0
poles.freelength = 0.5
poles.polesides = range(1, 7+1)
T_mc_r = pynclt.T_w_o
T_r_mc = util.invert_ht(T_mc_r)
T_m_mc = np.identity(4)
T_m_mc[:3, 3] = np.hstack([0.5 * mapextent[:2], 0.5])
T_mc_m = util.invert_ht(T_m_mc)
T_m_r = T_m_mc.dot(T_mc_r)
T_r_m = util.invert_ht(T_m_r)
def get_globalmapname():
return 'globalmap_{:.0f}_{:.0f}_{:.0f}'.format(
n_mapdetections, 10 * poles.minscore, poles.polesides[-1])
def get_locfileprefix():
return 'localization_{:.0f}_{:.0f}_{:.0f}'.format(
n_mapdetections, 10 * poles.minscore, poles.polesides[-1])
def get_localmapfile():
return 'localmaps_{:.0f}_{:.0f}.npz'.format(
10 * poles.minscore, poles.polesides[-1])
def get_evalfile():
return 'evaluation_{:.0f}_{:.0f}.npz'.format(
10 * poles.minscore, poles.polesides[-1])
def get_map_indices(session):
distance = np.hstack([0.0, np.cumsum(np.linalg.norm(
np.diff(session.T_w_r_gt_velo[:, :3, 3], axis=0), axis=1))])
istart = []
imid = []
iend = []
i = 0
j = 0
k = 0
for id, d in enumerate(distance):
if d >= i * mapinterval:
istart.append(id)
i += 1
if d >= j * mapinterval + 0.5 * mapdistance:
imid.append(id)
j += 1
if d > k * mapinterval + mapdistance:
iend.append(id)
k += 1
return istart[:len(iend)], imid[:len(iend)], iend
def save_global_map():
globalmappos = np.empty([0, 2])
mapfactors = np.full(len(pynclt.sessions), np.nan)
poleparams = np.empty([0, 6])
for isession, s in enumerate(pynclt.sessions):
print(s)
session = pynclt.session(s)
istart, imid, iend = get_map_indices(session)
localmappos = session.T_w_r_gt_velo[imid, :2, 3]
if globalmappos.size == 0:
imaps = range(localmappos.shape[0])
else:
imaps = []
for imap in range(localmappos.shape[0]):
distance = np.linalg.norm(
localmappos[imap] - globalmappos, axis=1).min()
if distance > remapdistance:
imaps.append(imap)
globalmappos = np.vstack([globalmappos, localmappos[imaps]])
mapfactors[isession] = np.true_divide(len(imaps), len(imid))
with progressbar.ProgressBar(max_value=len(imaps)) as bar:
for iimap, imap in enumerate(imaps):
scans = []
for iscan in range(istart[imap], iend[imap]):
xyz, _ = session.get_velo(iscan)
scan = o3.PointCloud()
scan.points = o3.Vector3dVector(xyz)
scans.append(scan)
T_w_mc = np.identity(4)
T_w_mc[:3, 3] = session.T_w_r_gt_velo[imid[imap], :3, 3]
T_w_m = T_w_mc.dot(T_mc_m)
T_m_w = util.invert_ht(T_w_m)
T_m_r = np.matmul(
T_m_w, session.T_w_r_gt_velo[istart[imap]:iend[imap]])
occupancymap = mapping.occupancymap(
scans, T_m_r, mapshape, mapsize)
localpoleparams = poles.detect_poles(occupancymap, mapsize)
localpoleparams[:, :2] += T_w_m[:2, 3]
poleparams = np.vstack([poleparams, localpoleparams])
bar.update(iimap)
xy = poleparams[:, :2]
a = poleparams[:, [4]]
boxes = np.hstack([xy - 0.5 * a, xy + 0.5 * a])
clustermeans = np.empty([0, 5])
scores = []
for ci in cluster.cluster_boxes(boxes):
ci = list(ci)
if len(ci) < n_mapdetections:
continue
clustermeans = np.vstack([clustermeans, np.average(
poleparams[ci, :-1], axis=0, weights=poleparams[ci, -1])])
scores.append(np.mean(poleparams[ci, -1]))
clustermeans = np.hstack([clustermeans, np.array(scores).reshape([-1, 1])])
globalmapfile = os.path.join(pynclt.resultdir, get_globalmapname() + '.npz')
np.savez(globalmapfile,
polemeans=clustermeans, mapfactors=mapfactors, mappos=globalmappos)
plot_global_map(globalmapfile)
def plot_global_map(globalmapfile):
data = np.load(globalmapfile)
x, y = data['polemeans'][:, :2].T
plt.clf()
# plt.rcParams.update(params)
plt.scatter(x, y, s=1, c='b', marker='.')
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.savefig(globalmapfile[:-4] + '.svg')
# plt.savefig(globalmapfile[:-4] + '.pgf')
print(data['mapfactors'])
def save_local_maps(sessionname, visualize=False):
print(sessionname)
session = pynclt.session(sessionname)
util.makedirs(session.dir)
istart, imid, iend = get_map_indices(session)
maps = []
with progressbar.ProgressBar(max_value=len(iend)) as bar:
for i in range(len(iend)):
scans = []
for idx, val in enumerate(range(istart[i], iend[i])):
xyz, _ = session.get_velo(val)
scan = o3.PointCloud()
scan.points = o3.Vector3dVector(xyz)
scans.append(scan)
T_w_mc = util.project_xy(
session.T_w_r_odo_velo[imid[i]].dot(T_r_mc))
T_w_m = T_w_mc.dot(T_mc_m)
T_m_w = util.invert_ht(T_w_m)
T_w_r = session.T_w_r_odo_velo[istart[i]:iend[i]]
T_m_r = np.matmul(T_m_w, T_w_r)
occupancymap = mapping.occupancymap(scans, T_m_r, mapshape, mapsize)
poleparams = poles.detect_poles(occupancymap, mapsize)
if visualize:
cloud = o3.PointCloud()
for T, scan in zip(T_w_r, scans):
s = copy.copy(scan)
s.transform(T)
cloud.points.extend(s.points)
mapboundsvis = util.create_wire_box(mapextent, [0.0, 0.0, 1.0])
mapboundsvis.transform(T_w_m)
polevis = []
for j in range(poleparams.shape[0]):
x, y, zs, ze, a = poleparams[j, :5]
pole = util.create_wire_box(
[a, a, ze - zs], color=[1.0, 1.0, 0.0])
T_m_p = np.identity(4)
T_m_p[:3, 3] = [x - 0.5 * a, y - 0.5 * a, zs]
pole.transform(T_w_m.dot(T_m_p))
polevis.append(pole)
o3.draw_geometries(polevis + [cloud, mapboundsvis])
map = {'poleparams': poleparams, 'T_w_m': T_w_m,
'istart': istart[i], 'imid': imid[i], 'iend': iend[i]}
maps.append(map)
bar.update(i)
np.savez(os.path.join(session.dir, get_localmapfile()), maps=maps)
def view_local_maps(sessionname):
sessiondir = os.path.join(pynclt.resultdir, sessionname)
session = pynclt.session(sessionname)
maps = np.load(os.path.join(sessiondir, get_localmapfile()))['maps']
for i, map in enumerate(maps):
print('Map #{}'.format(i))
mapboundsvis = util.create_wire_box(mapextent, [0.0, 0.0, 1.0])
mapboundsvis.transform(map['T_w_m'])
polevis = []
for poleparams in map['poleparams']:
x, y, zs, ze, a = poleparams[:5]
pole = util.create_wire_box(
[a, a, ze - zs], color=[1.0, 1.0, 0.0])
T_m_p = np.identity(4)
T_m_p[:3, 3] = [x - 0.5 * a, y - 0.5 * a, zs]
pole.transform(map['T_w_m'].dot(T_m_p))
polevis.append(pole)
accucloud = o3.PointCloud()
for j in range(map['istart'], map['iend']):
points, intensities = session.get_velo(j)
cloud = o3.PointCloud()
cloud.points = o3.Vector3dVector(points)
cloud.colors = o3.Vector3dVector(
util.intensity2color(intensities / 255.0))
cloud.transform(session.T_w_r_odo_velo[j])
accucloud.points.extend(cloud.points)
accucloud.colors.extend(cloud.colors)
o3.draw_geometries([accucloud, mapboundsvis] + polevis)
def evaluate_matches():
mapdata = np.load(os.path.join(pynclt.resultdir, get_globalmapname() + '.npz'))
polemap = mapdata['polemeans'][:, :2]
kdtree = scipy.spatial.cKDTree(polemap[:, :2], leafsize=10)
maxdist = 0.5
n_matches = np.zeros(len(pynclt.sessions))
n_all = np.zeros(len(pynclt.sessions))
for i, sessionname in enumerate(pynclt.sessions):
sessiondir = os.path.join(pynclt.resultdir, sessionname)
session = pynclt.session(sessionname)
maps = np.load(os.path.join(sessiondir, get_localmapfile()))['maps']
for map in maps:
n = map['poleparams'].shape[0]
n_all[i] += n
polepos_m = np.hstack(
[map['poleparams'][:, :2], np.zeros([n, 1]), np.ones([n, 1])]).T
T_w_m = session.T_w_r_gt_velo[map['imid']].dot(T_r_m)
polepos_w = T_w_m.dot(polepos_m)
plt.scatter(polemap[:, 0], polemap[:, 1], color='k')
plt.scatter(polepos_w[0,:], polepos_w[1,:], color='r')
plt.show()
dist, _ = kdtree.query(
polepos_w[:2].T, k=1, distance_upper_bound=maxdist)
n_matches[i] += np.sum(np.isfinite(dist))
print('{}: {}'.format(
sessionname, np.true_divide(n_matches[i], n_all[i])))
def localize(sessionname, visualize=False):
print(sessionname)
mapdata = np.load(os.path.join(pynclt.resultdir, get_globalmapname() + '.npz'))
polemap = mapdata['polemeans'][:, :2]
polevar = 1.50
session = pynclt.session(sessionname)
locdata = np.load(os.path.join(session.dir, get_localmapfile()), allow_pickle=True)['maps']
polepos_m = []
polepos_w = []
for i in range(len(locdata)):
n = locdata[i]['poleparams'].shape[0]
pad = np.hstack([np.zeros([n, 1]), np.ones([n, 1])])
polepos_m.append(np.hstack([locdata[i]['poleparams'][:, :2], pad]).T)
polepos_w.append(locdata[i]['T_w_m'].dot(polepos_m[i]))
istart = 0
# igps = np.searchsorted(session.t_gps, session.t_relodo[istart]) + [-4, 1]
# igps = np.clip(igps, 0, session.gps.shape[0] - 1)
# T_w_r_start = pynclt.T_w_o
# T_w_r_start[:2, 3] = np.mean(session.gps[igps], axis=0)
T_w_r_start = util.project_xy(
session.get_T_w_r_gt(session.t_relodo[istart]).dot(T_r_mc)).dot(T_mc_r)
filter = particlefilter.particlefilter(5000,
T_w_r_start, 2.5, np.radians(5.0), polemap, polevar, T_w_o=T_mc_r)
filter.estimatetype = 'best'
filter.minneff = 0.5
if visualize:
plt.ion()
figure = plt.figure()
nplots = 1
mapaxes = figure.add_subplot(nplots, 1, 1)
mapaxes.set_aspect('equal')
mapaxes.scatter(polemap[:, 0], polemap[:, 1], s=5, c='b', marker='s')
x_gt, y_gt = session.T_w_r_gt[::20, :2, 3].T
mapaxes.plot(x_gt, y_gt, 'g')
particles = mapaxes.scatter([], [], s=1, c='r')
arrow = mapaxes.arrow(0.0, 0.0, 1.0, 0.0, length_includes_head=True,
head_width=0.7, head_length=1.0, color='k')
arrowdata = np.hstack(
[arrow.get_xy(), np.zeros([8, 1]), np.ones([8, 1])]).T
locpoles = mapaxes.scatter([], [], s=30, c='k', marker='x')
viewoffset = 25.0
# weightaxes = figure.add_subplot(nplots, 1, 2)
# gridsize = 50
# offset = 5.0
# visfilter = particlefilter.particlefilter(gridsize**2,
# np.identity(4), 0.0, 0.0, polemap,
# polevar, T_w_o=pynclt.T_w_o)
# gridcoord = np.linspace(-offset, offset, gridsize)
# x, y = np.meshgrid(gridcoord, gridcoord)
# dxy = np.hstack([x.reshape([-1, 1]), y.reshape([-1, 1])])
# weightimage = weightaxes.matshow(np.zeros([gridsize, gridsize]),
# extent=(-offset, offset, -offset, offset))
# histaxes = figure.add_subplot(nplots, 1, 3)
imap = 0
while imap < locdata.shape[0] - 1 and \
session.t_velo[locdata[imap]['iend']] < session.t_relodo[istart]:
imap += 1
T_w_r_est = np.full([session.t_relodo.size, 4, 4], np.nan)
with progressbar.ProgressBar(max_value=session.t_relodo.size) as bar:
for i in range(istart, session.t_relodo.size):
relodocov = np.empty([3, 3])
relodocov[:2, :2] = session.relodocov[i, :2, :2]
relodocov[:, 2] = session.relodocov[i, [0, 1, 5], 5]
relodocov[2, :] = session.relodocov[i, 5, [0, 1, 5]]
filter.update_motion(session.relodo[i], relodocov * 2.0**2)
T_w_r_est[i] = filter.estimate_pose()
t_now = session.t_relodo[i]
if imap < locdata.shape[0]:
t_end = session.t_velo[locdata[imap]['iend']]
if t_now >= t_end:
imaps = range(imap, np.clip(imap-n_localmaps, -1, None), -1)
xy = np.hstack([polepos_w[j][:2] for j in imaps]).T
a = np.vstack([ld['poleparams'][:, [4]] \
for ld in locdata[imaps]])
boxes = np.hstack([xy - 0.5 * a, xy + 0.5 * a])
ipoles = set(range(polepos_w[imap].shape[1]))
iactive = set()
for ci in cluster.cluster_boxes(boxes):
if len(ci) >= n_locdetections:
iactive |= set(ipoles) & ci
iactive = list(iactive)
# print('{}.'.format(
# len(iactive) - polepos_w[imap].shape[1]))
if iactive:
t_mid = session.t_velo[locdata[imap]['imid']]
T_w_r_mid = util.project_xy(session.get_T_w_r_odo(
t_mid).dot(T_r_mc)).dot(T_mc_r)
T_w_r_now = util.project_xy(session.get_T_w_r_odo(
t_now).dot(T_r_mc)).dot(T_mc_r)
T_r_now_r_mid = util.invert_ht(T_w_r_now).dot(T_w_r_mid)
polepos_r_now = T_r_now_r_mid.dot(T_r_m).dot(
polepos_m[imap][:, iactive])
filter.update_measurement(polepos_r_now[:2].T)
T_w_r_est[i] = filter.estimate_pose()
if visualize:
polepos_w_est = T_w_r_est[i].dot(polepos_r_now)
locpoles.set_offsets(polepos_w_est[:2].T)
# T_w_r_gt_now = session.get_T_w_r_gt(t_now)
# T_w_r_gt_now = np.tile(
# T_w_r_gt_now, [gridsize**2, 1, 1])
# T_w_r_gt_now[:, :2, 3] += dxy
# visfilter.particles = T_w_r_gt_now
# visfilter.weights[:] = 1.0 / visfilter.count
# visfilter.update_measurement(
# polepos_r_now[:2].T, resample=False)
# weightimage.set_array(np.flipud(
# visfilter.weights.reshape(
# [gridsize, gridsize])))
# weightimage.autoscale()
imap += 1
if visualize:
particles.set_offsets(filter.particles[:, :2, 3])
arrow.set_xy(T_w_r_est[i].dot(arrowdata)[:2].T)
x, y = T_w_r_est[i, :2, 3]
mapaxes.set_xlim(left=x - viewoffset, right=x + viewoffset)
mapaxes.set_ylim(bottom=y - viewoffset, top=y + viewoffset)
# histaxes.cla()
# histaxes.hist(filter.weights,
# bins=50, range=(0.0, np.max(filter.weights)))
figure.canvas.draw_idle()
figure.canvas.flush_events()
bar.update(i)
filename = os.path.join(session.dir, get_locfileprefix() \
+ datetime.datetime.now().strftime('_%Y-%m-%d_%H-%M-%S.npz'))
np.savez(filename, T_w_r_est=T_w_r_est)
def plot_trajectories():
trajectorydir = os.path.join(
pynclt.resultdir, 'trajectories_est_{:.0f}_{:.0f}_{:.0f}'.format(
n_mapdetections, 10 * poles.minscore, poles.polesides[-1]))
# pgfdir = os.path.join(trajectorydir, 'pgf')
util.makedirs(trajectorydir)
# util.makedirs(pgfdir)
mapdata = np.load(os.path.join(pynclt.resultdir, get_globalmapname() + '.npz'))
polemap = mapdata['polemeans']
# plt.rcParams.update(params)
for sessionname in pynclt.sessions:
try:
session = pynclt.session(sessionname)
files = [file for file \
in os.listdir(os.path.join(pynclt.resultdir, sessionname)) \
if file.startswith(localization_name_start)]
# if file.startswith(get_locfileprefix())]
for file in files:
T_w_r_est = np.load(os.path.join(
pynclt.resultdir, sessionname, file))['T_w_r_est']
plt.clf()
plt.scatter(polemap[:, 0], polemap[:, 1],
s=1, c='b', marker='.')
plt.plot(session.T_w_r_gt[::20, 0, 3],
session.T_w_r_gt[::20, 1, 3], color=(0.5, 0.5, 0.5))
plt.plot(T_w_r_est[::20, 0, 3], T_w_r_est[::20, 1, 3], 'r')
plt.xlabel('x [m]')
plt.ylabel('y [m]')
plt.gcf().subplots_adjust(
bottom=0.13, top=0.98, left=0.145, right=0.98)
filename = sessionname + file[18:-4]
plt.savefig(os.path.join(trajectorydir, filename + '.svg'))
# plt.savefig(os.path.join(pgfdir, filename + '.pgf'))
except:
pass
def evaluate():
stats = []
for sessionname in pynclt.sessions:
files = [file for file \
in os.listdir(os.path.join(pynclt.resultdir, sessionname)) \
if file.startswith(localization_name_start)]
# if file.startswith(get_locfileprefix())]
files.sort()
session = pynclt.session(sessionname)
cumdist = np.hstack([0.0, np.cumsum(np.linalg.norm(np.diff(
session.T_w_r_gt[:, :3, 3], axis=0), axis=1))])
t_eval = scipy.interpolate.interp1d(
cumdist, session.t_gt)(np.arange(0.0, cumdist[-1], 1.0))
T_w_r_gt = np.stack([util.project_xy(
session.get_T_w_r_gt(t).dot(T_r_mc)).dot(T_mc_r) \
for t in t_eval])
T_gt_est = []
for file in files:
T_w_r_est = np.load(os.path.join(
pynclt.resultdir, sessionname, file))['T_w_r_est']
T_w_r_est_interp = np.empty([len(t_eval), 4, 4])
iodo = 1
for ieval in range(len(t_eval)):
while session.t_relodo[iodo] < t_eval[ieval]:
iodo += 1
T_w_r_est_interp[ieval] = util.interpolate_ht(
T_w_r_est[iodo-1:iodo+1],
session.t_relodo[iodo-1:iodo+1], t_eval[ieval])
T_gt_est.append(
np.matmul(util.invert_ht(T_w_r_gt), T_w_r_est_interp))
T_gt_est = np.stack(T_gt_est)
lonerror = np.mean(np.mean(np.abs(T_gt_est[..., 0, 3]), axis=-1))
laterror = np.mean(np.mean(np.abs(T_gt_est[..., 1, 3]), axis=-1))
poserrors = np.linalg.norm(T_gt_est[..., :2, 3], axis=-1)
poserror = np.mean(np.mean(poserrors, axis=-1))
posrmse = np.mean(np.sqrt(np.mean(poserrors**2, axis=-1)))
angerrors = np.degrees(np.abs(
np.array([util.ht2xyp(T)[:, 2] for T in T_gt_est])))
angerror = np.mean(np.mean(angerrors, axis=-1))
angrmse = np.mean(np.sqrt(np.mean(angerrors**2, axis=-1)))
stats.append({'session': sessionname, 'lonerror': lonerror,
'laterror': laterror, 'poserror': poserror, 'posrmse': posrmse,
'angerror': angerror, 'angrmse': angrmse, 'T_gt_est': T_gt_est})
np.savez(os.path.join(pynclt.resultdir, get_evalfile()), stats=stats)
mapdata = np.load(os.path.join(pynclt.resultdir, get_globalmapname() + '.npz'))
print('session \t f\te_pos \trmse_pos \te_ang \te_rmse')
row = '{session} \t{f} \t{poserror} \t{posrmse} \t{angerror} \t{angrmse}'
for i, stat in enumerate(stats):
print(row.format(
session=stat['session'],
f=mapdata['mapfactors'][i] * 100.0,
poserror=stat['poserror'],
posrmse=stat['posrmse'],
angerror=stat['angerror'],
angrmse=stat['angrmse']))
if __name__ == '__main__':
poles.minscore = 0.6
poles.polesides = range(1, 7+1)
save_global_map()
# TODO: Change this to the session you want to find trajectory for
session = '2012-01-15'
save_local_maps(session)
# Set visualization to False
localize(session, False)
plot_trajectories()
evaluate()