DDR3 support for AMD Fam10.

Signed-off-by: Zheng Bao <zheng.bao@amd.com>
Acked-by: Stefan Reinauer <stepan@coresystems.de>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@5481 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
This commit is contained in:
Zheng Bao
2010-04-23 17:32:48 +00:00
committed by Stefan Reinauer
parent fe6c2cda6e
commit eb75f652d3
31 changed files with 12095 additions and 4 deletions

View File

@@ -996,7 +996,11 @@ struct mem_info { // pernode
u8 rsv[1];
} __attribute__((packed));
#else
#include "../amdmct/mct/mct_d.h"
#if (CONFIG_DIMM_SUPPORT & 0x000F)==0x0005 /* AMD_FAM10_DDR3 */
#include "../amdmct/mct_ddr3/mct_d.h"
#else
#include "../amdmct/mct/mct_d.h"
#endif
#endif
struct link_pair_t {

View File

@@ -30,6 +30,54 @@ static void print_t(const char *strval)
printk(BIOS_DEBUG, "%s", strval);
#endif
}
#if (CONFIG_DIMM_SUPPORT & 0x000F)==0x0005 /* AMD_FAM10_DDR3 */
#include "amdfam10.h"
#include "../amdmct/wrappers/mcti.h"
#include "../amdmct/amddefs.h"
#include "../amdmct/mct_ddr3/mwlc_d.h"
#include "../amdmct/mct_ddr3/mct_d.h"
#include "../amdmct/mct_ddr3/mct_d_gcc.h"
#include "../amdmct/wrappers/mcti_d.c"
#include "../amdmct/mct_ddr3/mct_d.c"
#include "../amdmct/mct_ddr3/mctmtr_d.c"
#include "../amdmct/mct_ddr3/mctcsi_d.c"
#include "../amdmct/mct_ddr3/mctecc_d.c"
#include "../amdmct/mct_ddr3/mctdqs_d.c"
#include "../amdmct/mct_ddr3/mctsrc.c"
#include "../amdmct/mct_ddr3/mctsdi.c"
#include "../amdmct/mct_ddr3/mctproc.c"
#include "../amdmct/mct_ddr3/mctprob.c"
#include "../amdmct/mct_ddr3/mcthwl.c"
#include "../amdmct/mct_ddr3/mctwl.c"
#include "../amdmct/mct_ddr3/mport_d.c"
#include "../amdmct/mct_ddr3/mutilc_d.c"
#include "../amdmct/mct_ddr3/modtrdim.c"
#include "../amdmct/mct_ddr3/mhwlc_d.c"
#include "../amdmct/mct_ddr3/mctrci.c"
#include "../amdmct/mct_ddr3/mctsrc1p.c"
#include "../amdmct/mct_ddr3/mcttmrl.c"
#include "../amdmct/mct_ddr3/mcthdi.c"
#include "../amdmct/mct_ddr3/mctndi_d.c"
#include "../amdmct/mct_ddr3/mctchi_d.c"
#if CONFIG_CPU_SOCKET_TYPE == 0x10
//TODO: S1G1?
#elif CONFIG_CPU_SOCKET_TYPE == 0x11
//AM3
#include "../amdmct/mct_ddr3/mctardk5.c"
#elif CONFIG_CPU_SOCKET_TYPE == 0x12
//F (1207), Fr2, G (1207)
#include "../amdmct/mct_ddr3/mctardk6.c"
#elif CONFIG_CPU_SOCKET_TYPE == 0x13
//ASB2
#include "../amdmct/mct_ddr3/mctardk5.c"
#endif
#else /* DDR2 */
#include "amdfam10.h"
#include "../amdmct/wrappers/mcti.h"
#include "../amdmct/amddefs.h"
@@ -65,6 +113,8 @@ static void print_t(const char *strval)
#include "../amdmct/mct/mct_fd.c"
#endif /* DDR2 */
int mctRead_SPD(u32 smaddr, u32 reg)
{
return spd_read_byte(smaddr, reg);
@@ -141,9 +191,15 @@ u32 mctGetLogicalCPUID(u32 Node)
case 0x10042:
ret = AMD_RB_C2;
break;
case 0x10043:
ret = AMD_RB_C3;
break;
case 0x10062:
ret = AMD_DA_C2;
break;
case 0x10063:
ret = AMD_DA_C3;
break;
case 0x10080:
ret = AMD_HY_D0;
break;

View File

@@ -43,6 +43,8 @@
#define AMD_RB_C2 0x01000000 /* Shanghai C2 */
#define AMD_DA_C2 0x02000000 /* XXXX C2 */
#define AMD_HY_D0 0x04000000 /* Istanbul D0 */
#define AMD_RB_C3 0x08000000 /* ??? C3 */
#define AMD_DA_C3 0x10000000 /* XXXX C3 */
/*
* Groups - Create as many as you wish, from the above public values
@@ -60,8 +62,11 @@
#define AMD_DR_LT_B3 (AMD_DR_B0 | AMD_DR_B1 | AMD_DR_B2 | AMD_DR_BA)
#define AMD_DR_GT_B0 (AMD_DR_ALL & ~(AMD_DR_B0))
#define AMD_DR_ALL (AMD_DR_Bx)
#define AMD_FAM10_ALL (AMD_DR_ALL | AMD_RB_C2 | AMD_HY_D0)
#define AMD_FAM10_ALL (AMD_DR_ALL | AMD_RB_C2 | AMD_HY_D0 | AMD_DA_C3 | AMD_DA_C2)
#define AMD_FAM10_GT_B0 (AMD_FAM10_ALL & ~(AMD_DR_B0))
#define AMD_DR_Cx (AMD_RB_C2 | AMD_DA_C2 | AMD_RB_C3 | AMD_DA_C3)
#define AMD_DR_Dx (AMD_HY_D0)
/*
* Public Platforms - USE THESE VERSIONS TO MAKE COMPARE WITH CPUPLATFORMTYPE RETURN VALUE

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,794 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Description: Include file for all generic DDR 3 MCT files.
*/
#ifndef MCT_D_H
#define MCT_D_H
/*===========================================================================
CPU - K8/FAM10
===========================================================================*/
#define PT_L1 0 /* CPU Package Type */
#define PT_M2 1
#define PT_S1 2
#define PT_GR 3
#define PT_AS 4
#define PT_C3 5
#define J_MIN 0 /* j loop constraint. 1=CL 2.0 T*/
#define J_MAX 5 /* j loop constraint. 5=CL 7.0 T*/
#define K_MIN 1 /* k loop constraint. 1=200 Mhz*/
#define K_MAX 5 /* k loop constraint. 5=533 Mhz*/
#define CL_DEF 2 /* Default value for failsafe operation. 2=CL 4.0 T*/
#define T_DEF 1 /* Default value for failsafe operation. 1=5ns (cycle time)*/
#define BSCRate 1 /* reg bit field=rate of dram scrubber for ecc*/
/* memory initialization (ecc and check-bits).*/
/* 1=40 ns/64 bytes.*/
#define FirstPass 1 /* First pass through RcvEn training*/
#define SecondPass 2 /* Second pass through Rcven training*/
#define RCVREN_MARGIN 6 /* number of DLL taps to delay beyond first passing position*/
#define MAXASYNCLATCTL_2 2 /* Max Async Latency Control value*/
#define MAXASYNCLATCTL_3 3 /* Max Async Latency Control value*/
#define DQS_FAIL 1
#define DQS_PASS 0
#define DQS_WRITEDIR 1
#define DQS_READDIR 0
#define MIN_DQS_WNDW 3
#define secPassOffset 6
#define Pass1MemClkDly 0x20 /* Add 1/2 Memlock delay */
#define MAX_RD_LAT 0x3FF
#define MIN_FENCE 14
#define MAX_FENCE 20
#define MIN_DQS_WR_FENCE 14
#define MAX_DQS_WR_FENCE 20
#define FenceTrnFinDlySeed 19
#define EarlyArbEn 19
#define PA_HOST(Node) ((((0x18+Node) << 3)+0) << 12) /* Node 0 Host Bus function PCI Address bits [15:0]*/
#define PA_MAP(Node) ((((0x18+Node) << 3)+1) << 12) /* Node 0 MAP function PCI Address bits [15:0]*/
#define PA_DCT(Node) ((((0x18+Node) << 3)+2) << 12) /* Node 0 DCT function PCI Address bits [15:0]*/
/* #define PA_EXT_DCT (((00 << 3)+4) << 8) */ /*Node 0 DCT extended configuration registers*/
/* #define PA_DCTADDL (((00 << 3)+2) << 8) */ /*Node x DCT function, Additional Registers PCI Address bits [15:0]*/
/* #define PA_EXT_DCTADDL (((00 << 3)+5) << 8) */ /*Node x DCT function, Additional Registers PCI Address bits [15:0]*/
#define PA_NBMISC(Node) ((((0x18+Node) << 3)+3) << 12) /*Node 0 Misc PCI Address bits [15:0]*/
/* #define PA_NBDEVOP (((00 << 3)+3) << 8) */ /*Node 0 Misc PCI Address bits [15:0]*/
#define DCC_EN 1 /* X:2:0x94[19]*/
#define ILD_Lmt 3 /* X:2:0x94[18:16]*/
#define EncodedTSPD 0x00191709 /* encodes which SPD byte to get T from*/
/* versus CL X, CL X-.5, and CL X-1*/
#define Bias_TrpT 5 /* bias to convert bus clocks to bit field value*/
#define Bias_TrrdT 4
#define Bias_TrcdT 5
#define Bias_TrasT 15
#define Bias_TrcT 11
#define Bias_TrtpT 4
#define Bias_TwrT 4
#define Bias_TwtrT 4
#define Bias_TfawT 14
#define Min_TrpT 5 /* min programmable value in busclocks */
#define Max_TrpT 12 /* max programmable value in busclocks */
#define Min_TrrdT 4
#define Max_TrrdT 7
#define Min_TrcdT 5
#define Max_TrcdT 12
#define Min_TrasT 15
#define Max_TrasT 30
#define Min_TrcT 11
#define Max_TrcT 42
#define Min_TrtpT 4
#define Max_TrtpT 7
#define Min_TwrT 5
#define Max_TwrT 12
#define Min_TwtrT 4
#define Max_TwtrT 7
#define Min_TfawT 16
#define Max_TfawT 32
/*common register bit names*/
#define DramHoleValid 0 /* func 1, offset F0h, bit 0*/
#define DramMemHoistValid 1 /* func 1, offset F0h, bit 1*/
#define CSEnable 0 /* func 2, offset 40h-5C, bit 0*/
#define Spare 1 /* func 2, offset 40h-5C, bit 1*/
#define TestFail 2 /* func 2, offset 40h-5C, bit 2*/
#define DqsRcvEnTrain 18 /* func 2, offset 78h, bit 18*/
#define EnDramInit 31 /* func 2, offset 7Ch, bit 31*/
#define DisAutoRefresh 18 /* func 2, offset 8Ch, bit 18*/
#define InitDram 0 /* func 2, offset 90h, bit 0*/
#define BurstLength32 10 /* func 2, offset 90h, bit 10*/
#define Width128 11 /* func 2, offset 90h, bit 11*/
#define X4Dimm 12 /* func 2, offset 90h, bit 12*/
#define UnBuffDimm 16 /* func 2, offset 90h, bit 16*/
#define DimmEcEn 19 /* func 2, offset 90h, bit 19*/
#define MemClkFreqVal 3 /* func 2, offset 94h, bit 3*/
#define RDqsEn 12 /* func 2, offset 94h, bit 12*/
#define DisDramInterface 14 /* func 2, offset 94h, bit 14*/
#define DctAccessWrite 30 /* func 2, offset 98h, bit 30*/
#define DctAccessDone 31 /* func 2, offset 98h, bit 31*/
#define MemClrStatus 0 /* func 2, offset A0h, bit 0*/
#define PwrSavingsEn 10 /* func 2, offset A0h, bit 10*/
#define Mod64BitMux 4 /* func 2, offset A0h, bit 4*/
#define DisableJitter 1 /* func 2, offset A0h, bit 1*/
#define MemClrDis 1 /* func 3, offset F8h, FNC 4, bit 1*/
#define SyncOnUcEccEn 2 /* func 3, offset 44h, bit 2*/
#define Dr_MemClrStatus 10 /* func 3, offset 110h, bit 10*/
#define MemClrBusy 9 /* func 3, offset 110h, bit 9*/
#define DctGangEn 4 /* func 3, offset 110h, bit 4*/
#define MemClrInit 3 /* func 3, offset 110h, bit 3*/
#define SendZQCmd 29 /* func 2, offset 7Ch, bit 29 */
#define AssertCke 28 /* func 2, offset 7Ch, bit 28*/
#define DeassertMemRstX 27 /* func 2, offset 7Ch, bit 27*/
#define SendMrsCmd 26 /* func 2, offset 7Ch, bit 26*/
#define SendAutoRefresh 25 /* func 2, offset 7Ch, bit 25*/
#define SendPchgAll 24 /* func 2, offset 7Ch, bit 24*/
#define DisDqsBar 6 /* func 2, offset 90h, bit 6*/
#define DramEnabled 8 /* func 2, offset 110h, bit 8*/
#define LegacyBiosMode 9 /* func 2, offset 94h, bit 9*/
#define PrefDramTrainMode 28 /* func 2, offset 11Ch, bit 28*/
#define FlushWr 30 /* func 2, offset 11Ch, bit 30*/
#define DisAutoComp 30 /* func 2, offset 9Ch, Index 8, bit 30*/
#define DqsRcvTrEn 13 /* func 2, offset 9Ch, Index 8, bit 13*/
#define ForceAutoPchg 23 /* func 2, offset 90h, bit 23*/
#define ClLinesToNbDis 15 /* Bu_CFG2, bit 15*/
#define WbEnhWsbDis_D (48-32)
#define PhyFenceTrEn 3 /* func 2, offset 9Ch, Index 8, bit 3 */
#define ParEn 8 /* func 2, offset 90h, bit 8 */
#define DcqArbBypassEn 19 /* func 2, offset 94h, bit 19 */
#define ActiveCmdAtRst 1 /* func 2, offset A8H, bit 1 */
#define FlushWrOnStpGnt 29 /* func 2, offset 11Ch, bit 29 */
#define BankSwizzleMode 22 /* func 2, offset 94h, bit 22 */
#define ChSetupSync 15 /* func 2, offset 78h, bit 15 */
#define Ddr3Mode 8 /* func 2, offset 94h, bit 8 */
#define EnterSelfRef 17 /* func 2, offset 90h, bit 17 */
#define onDimmMirror 3 /* func 2, offset 5C:40h, bit 3 */
#define OdtSwizzle 6 /* func 2, offset A8h, bit 6 */
#define FreqChgInProg 21 /* func 2, offset 94h, bit 21 */
#define ExitSelfRef 1 /* func 2, offset 90h, bit 1 */
#define SubMemclkRegDly 5 /* func 2, offset A8h, bit 5 */
#define Ddr3FourSocketCh 2 /* func 2, offset A8h, bit 2 */
#define SendControlWord 30 /* func 2, offset 7Ch, bit 30 */
/*=============================================================================
SW Initialization
============================================================================*/
#define DLL_Enable 1
#define OCD_Default 2
#define OCD_Exit 3
/*=============================================================================
Jedec DDR II
=============================================================================*/
#define SPD_ByteUse 0
#define SPD_TYPE 2 /*SPD byte read location*/
#define JED_DDRSDRAM 0x07 /*Jedec defined bit field*/
#define JED_DDR2SDRAM 0x08 /*Jedec defined bit field*/
#define JED_DDR3SDRAM 0x0B /* Jedec defined bit field*/
#define SPD_DIMMTYPE 3
#define SPD_ATTRIB 21
#define JED_DIFCKMSK 0x20 /*Differential Clock Input*/
#define JED_REGADCMSK 0x11 /*Registered Address/Control*/
#define JED_PROBEMSK 0x40 /*Analysis Probe installed*/
#define JED_RDIMM 0x1 /* RDIMM */
#define JED_MiniRDIMM 0x5 /* Mini-RDIMM */
#define SPD_Density 4 /* Bank address bits,SDRAM capacity */
#define SPD_Addressing 5 /* Row/Column address bits */
#define SPD_Organization 7 /* rank#,Device width */
#define SPD_BusWidth 8 /* ECC, Bus width */
#define JED_ECC 8 /* ECC capability */
#define SPD_MTBDividend 10
#define SPD_MTBDivisor 11
#define SPD_tCKmin 12
#define SPD_CASLow 14
#define SPD_CASHigh 15
#define SPD_tAAmin 16
#define SPD_DEVATTRIB 22
#define SPD_EDCTYPE 11
#define JED_ADRCPAR 0x04
#define SPD_tWRmin 17
#define SPD_tRCDmin 18
#define SPD_tRRDmin 19
#define SPD_tRPmin 20
#define SPD_Upper_tRAS_tRC 21
#define SPD_tRASmin 22
#define SPD_tRCmin 23
#define SPD_tWTRmin 26
#define SPD_tRTPmin 27
#define SPD_Upper_tFAW 28
#define SPD_tFAWmin 29
#define SPD_RefRawCard 62
#define SPD_AddressMirror 63
#define SPD_RegManufactureID_L 65 /* not used */
#define SPD_RegManufactureID_H 66 /* not used */
#define SPD_RegManRevID 67 /* not used */
#define SPD_byte_126 126
#define SPD_byte_127 127
#define SPD_ROWSZ 3
#define SPD_COLSZ 4
#define SPD_LBANKS 17 /*number of [logical] banks on each device*/
#define SPD_DMBANKS 5 /*number of physical banks on dimm*/
#define SPDPLBit 4 /* Dram package bit*/
#define SPD_BANKSZ 31 /*capacity of physical bank*/
#define SPD_DEVWIDTH 13
#define SPD_CASLAT 18
#define SPD_TRP 27
#define SPD_TRRD 28
#define SPD_TRCD 29
#define SPD_TRAS 30
#define SPD_TWR 36
#define SPD_TWTR 37
#define SPD_TRTP 38
#define SPD_TRCRFC 40
#define SPD_TRC 41
#define SPD_TRFC 42
#define SPD_MANDATEYR 93 /*Module Manufacturing Year (BCD)*/
#define SPD_MANDATEWK 94 /*Module Manufacturing Week (BCD)*/
/*-----------------------------
Jdec DDR II related equates
-----------------------------*/
#define MYEAR06 6 /* Manufacturing Year BCD encoding of 2006 - 06d*/
#define MWEEK24 0x24 /* Manufacturing Week BCD encoding of June - 24d*/
/*=============================================================================
Macros
=============================================================================*/
#define _2GB_RJ8 (2<<(30-8))
#define _4GB_RJ8 (4<<(30-8))
#define _4GB_RJ4 (4<<(30-4))
#define BigPagex8_RJ8 (1<<(17+3-8)) /*128KB * 8 >> 8 */
/*=============================================================================
Global MCT Status Structure
=============================================================================*/
struct MCTStatStruc {
u32 GStatus; /* Global Status bitfield*/
u32 HoleBase; /* If not zero, BASE[39:8] (system address)
of sub 4GB dram hole for HW remapping.*/
u32 Sub4GCacheTop; /* If not zero, the 32-bit top of cacheable memory.*/
u32 SysLimit; /* LIMIT[39:8] (system address)*/
};
/*=============================================================================
Global MCT Configuration Status Word (GStatus)
=============================================================================*/
/*These should begin at bit 0 of GStatus[31:0]*/
#define GSB_MTRRshort 0 /* Ran out of MTRRs while mapping memory*/
#define GSB_ECCDIMMs 1 /* All banks of all Nodes are ECC capable*/
#define GSB_DramECCDis 2 /* Dram ECC requested but not enabled.*/
#define GSB_SoftHole 3 /* A Node Base gap was created*/
#define GSB_HWHole 4 /* A HW dram remap was created*/
#define GSB_NodeIntlv 5 /* Node Memory interleaving was enabled*/
#define GSB_SpIntRemapHole 16 /* Special condition for Node Interleave and HW remapping*/
#define GSB_EnDIMMSpareNW 17 /* Indicates that DIMM Spare can be used without a warm reset */
/* NOTE: This is a local bit used by memory code */
/*===============================================================================
Local DCT Status structure (a structure for each DCT)
===============================================================================*/
#include "mwlc_d.h" /* I have to */
struct DCTStatStruc { /* A per Node structure*/
/* DCTStatStruct_F - start */
u8 Node_ID; /* Node ID of current controller*/
u8 ErrCode; /* Current error condition of Node
0= no error
1= Variance Error, DCT is running but not in an optimal configuration.
2= Stop Error, DCT is NOT running
3= Fatal Error, DCT/MCT initialization has been halted.*/
u32 ErrStatus; /* Error Status bit Field */
u32 Status; /* Status bit Field*/
u8 DIMMAddr[8]; /* SPD address of DIMM controlled by MA0_CS_L[0,1]*/
/* SPD address of..MB0_CS_L[0,1]*/
/* SPD address of..MA1_CS_L[0,1]*/
/* SPD address of..MB1_CS_L[0,1]*/
/* SPD address of..MA2_CS_L[0,1]*/
/* SPD address of..MB2_CS_L[0,1]*/
/* SPD address of..MA3_CS_L[0,1]*/
/* SPD address of..MB3_CS_L[0,1]*/
u16 DIMMPresent; /*For each bit n 0..7, 1=DIMM n is present.
DIMM# Select Signal
0 MA0_CS_L[0,1]
1 MB0_CS_L[0,1]
2 MA1_CS_L[0,1]
3 MB1_CS_L[0,1]
4 MA2_CS_L[0,1]
5 MB2_CS_L[0,1]
6 MA3_CS_L[0,1]
7 MB3_CS_L[0,1]*/
u16 DIMMValid; /* For each bit n 0..7, 1=DIMM n is valid and is/will be configured*/
u16 DIMMMismatch; /* For each bit n 0..7, 1=DIMM n is mismatched, channel B is always considered the mismatch */
u16 DIMMSPDCSE; /* For each bit n 0..7, 1=DIMM n SPD checksum error*/
u16 DimmECCPresent; /* For each bit n 0..7, 1=DIMM n is ECC capable.*/
u16 DimmPARPresent; /* For each bit n 0..7, 1=DIMM n is ADR/CMD Parity capable.*/
u16 Dimmx4Present; /* For each bit n 0..7, 1=DIMM n contains x4 data devices.*/
u16 Dimmx8Present; /* For each bit n 0..7, 1=DIMM n contains x8 data devices.*/
u16 Dimmx16Present; /* For each bit n 0..7, 1=DIMM n contains x16 data devices.*/
u16 DIMM2Kpage; /* For each bit n 0..7, 1=DIMM n contains 1K page devices.*/
u8 MAload[2]; /* Number of devices loading MAA bus*/
/* Number of devices loading MAB bus*/
u8 MAdimms[2]; /*Number of DIMMs loading CH A*/
/* Number of DIMMs loading CH B*/
u8 DATAload[2]; /*Number of ranks loading CH A DATA*/
/* Number of ranks loading CH B DATA*/
u8 DIMMAutoSpeed; /*Max valid Mfg. Speed of DIMMs
1=200Mhz
2=266Mhz
3=333Mhz
4=400Mhz
5=533Mhz*/
u8 DIMMCASL; /* Min valid Mfg. CL bitfield
0=2.0
1=3.0
2=4.0
3=5.0
4=6.0 */
u16 DIMMTrcd; /* Minimax Trcd*40 (ns) of DIMMs*/
u16 DIMMTrp; /* Minimax Trp*40 (ns) of DIMMs*/
u16 DIMMTrtp; /* Minimax Trtp*40 (ns) of DIMMs*/
u16 DIMMTras; /* Minimax Tras*40 (ns) of DIMMs*/
u16 DIMMTrc; /* Minimax Trc*40 (ns) of DIMMs*/
u16 DIMMTwr; /* Minimax Twr*40 (ns) of DIMMs*/
u16 DIMMTrrd; /* Minimax Trrd*40 (ns) of DIMMs*/
u16 DIMMTwtr; /* Minimax Twtr*40 (ns) of DIMMs*/
u8 Speed; /* Bus Speed (to set Controller)
1=200Mhz
2=266Mhz
3=333Mhz
4=400Mhz */
u8 CASL; /* CAS latency DCT setting
0=2.0
1=3.0
2=4.0
3=5.0
4=6.0 */
u8 Trcd; /* DCT Trcd (busclocks) */
u8 Trp; /* DCT Trp (busclocks) */
u8 Trtp; /* DCT Trtp (busclocks) */
u8 Tras; /* DCT Tras (busclocks) */
u8 Trc; /* DCT Trc (busclocks) */
u8 Twr; /* DCT Twr (busclocks) */
u8 Trrd; /* DCT Trrd (busclocks) */
u8 Twtr; /* DCT Twtr (busclocks) */
u8 Trfc[4]; /* DCT Logical DIMM0 Trfc
0=75ns (for 256Mb devs)
1=105ns (for 512Mb devs)
2=127.5ns (for 1Gb devs)
3=195ns (for 2Gb devs)
4=327.5ns (for 4Gb devs) */
/* DCT Logical DIMM1 Trfc (see Trfc0 for format) */
/* DCT Logical DIMM2 Trfc (see Trfc0 for format) */
/* DCT Logical DIMM3 Trfc (see Trfc0 for format) */
u16 CSPresent; /* For each bit n 0..7, 1=Chip-select n is present */
u16 CSTestFail; /* For each bit n 0..7, 1=Chip-select n is present but disabled */
u32 DCTSysBase; /* BASE[39:8] (system address) of this Node's DCTs. */
u32 DCTHoleBase; /* If not zero, BASE[39:8] (system address) of dram hole for HW remapping. Dram hole exists on this Node's DCTs. */
u32 DCTSysLimit; /* LIMIT[39:8] (system address) of this Node's DCTs */
u16 PresetmaxFreq; /* Maximum OEM defined DDR frequency
200=200Mhz (DDR400)
266=266Mhz (DDR533)
333=333Mhz (DDR667)
400=400Mhz (DDR800) */
u8 _2Tmode; /* 1T or 2T CMD mode (slow access mode)
1=1T
2=2T */
u8 TrwtTO; /* DCT TrwtTO (busclocks)*/
u8 Twrrd; /* DCT Twrrd (busclocks)*/
u8 Twrwr; /* DCT Twrwr (busclocks)*/
u8 Trdrd; /* DCT Trdrd (busclocks)*/
u32 CH_ODC_CTL[2]; /* Output Driver Strength (see BKDG FN2:Offset 9Ch, index 00h*/
u32 CH_ADDR_TMG[2]; /* Address Bus Timing (see BKDG FN2:Offset 9Ch, index 04h*/
/* Output Driver Strength (see BKDG FN2:Offset 9Ch, index 20h*/
/* Address Bus Timing (see BKDG FN2:Offset 9Ch, index 24h*/
u16 CH_EccDQSLike[2]; /* CHA DQS ECC byte like...*/
u8 CH_EccDQSScale[2]; /* CHA DQS ECC byte scale*/
/* CHA DQS ECC byte like...*/
/* CHA DQS ECC byte scale*/
u8 MaxAsyncLat; /* Max Asynchronous Latency (ns)*/
/* NOTE: Not used in Barcelona - u8 CH_D_RCVRDLY[2][4]; */
/* CHA DIMM 0 - 4 Receiver Enable Delay*/
/* CHB DIMM 0 - 4 Receiver Enable Delay */
/* NOTE: Not used in Barcelona - u8 CH_D_B_DQS[2][2][8]; */
/* CHA Byte 0-7 Write DQS Delay */
/* CHA Byte 0-7 Read DQS Delay */
/* CHB Byte 0-7 Write DQS Delay */
/* CHB Byte 0-7 Read DQS Delay */
u32 PtrPatternBufA; /* Ptr on stack to aligned DQS testing pattern*/
u32 PtrPatternBufB; /* Ptr on stack to aligned DQS testing pattern*/
u8 Channel; /* Current Channel (0= CH A, 1=CH B)*/
u8 ByteLane; /* Current Byte Lane (0..7)*/
u8 Direction; /* Current DQS-DQ training write direction (0=read, 1=write)*/
u8 Pattern; /* Current pattern*/
u8 DQSDelay; /* Current DQS delay value*/
u32 TrainErrors; /* Current Training Errors*/
u32 AMC_TSC_DeltaLo; /* Time Stamp Counter measurement of AMC, Low dword*/
u32 AMC_TSC_DeltaHi; /* Time Stamp Counter measurement of AMC, High dword*/
/* NOTE: Not used in Barcelona - */
u8 CH_D_DIR_MaxMin_B_Dly[2][2][2][8];
/* CH A byte lane 0 - 7 minimum filtered window passing DQS delay value*/
/* CH A byte lane 0 - 7 maximum filtered window passing DQS delay value*/
/* CH B byte lane 0 - 7 minimum filtered window passing DQS delay value*/
/* CH B byte lane 0 - 7 maximum filtered window passing DQS delay value*/
/* CH A byte lane 0 - 7 minimum filtered window passing DQS delay value*/
/* CH A byte lane 0 - 7 maximum filtered window passing DQS delay value*/
/* CH B byte lane 0 - 7 minimum filtered window passing DQS delay value*/
/* CH B byte lane 0 - 7 maximum filtered window passing DQS delay value*/
u32 LogicalCPUID; /* The logical CPUID of the node*/
u16 HostBiosSrvc1; /* Word sized general purpose field for use by host BIOS. Scratch space.*/
u32 HostBiosSrvc2; /* Dword sized general purpose field for use by host BIOS. Scratch space.*/
u16 DimmQRPresent; /* QuadRank DIMM present?*/
u16 DimmTrainFail; /* Bitmap showing which dimms failed training*/
u16 CSTrainFail; /* Bitmap showing which chipselects failed training*/
u16 DimmYr06; /* Bitmap indicating which Dimms have a manufactur's year code <= 2006*/
u16 DimmWk2406; /* Bitmap indicating which Dimms have a manufactur's week code <= 24 of 2006 (June)*/
u16 DimmDRPresent; /* Bitmap indicating that Dual Rank Dimms are present*/
u16 DimmPlPresent; /* Bitmap indicating that Planar (1) or Stacked (0) Dimms are present.*/
u16 ChannelTrainFai; /* Bitmap showing the chanel informaiton about failed Chip Selects
0 in any bit field indicates Channel 0
1 in any bit field indicates Channel 1 */
u16 DIMMTfaw; /* Minimax Tfaw*16 (ns) of DIMMs */
u8 Tfaw; /* DCT Tfaw (busclocks) */
u16 CSUsrTestFail; /* Chip selects excluded by user */
/* DCTStatStruct_F - end */
u16 CH_MaxRdLat[2]; /* Max Read Latency (ns) for DCT 0*/
/* Max Read Latency (ns) for DCT 1*/
u8 CH_D_DIR_B_DQS[2][4][2][9]; /* [A/B] [DIMM1-4] [R/W] [DQS] */
/* CHA DIMM0 Byte 0 - 7 and Check Write DQS Delay*/
/* CHA DIMM0 Byte 0 - 7 and Check Read DQS Delay*/
/* CHA DIMM1 Byte 0 - 7 and Check Write DQS Delay*/
/* CHA DIMM1 Byte 0 - 7 and Check Read DQS Delay*/
/* CHB DIMM0 Byte 0 - 7 and Check Write DQS Delay*/
/* CHB DIMM0 Byte 0 - 7 and Check Read DQS Delay*/
/* CHB DIMM1 Byte 0 - 7 and Check Write DQS Delay*/
/* CHB DIMM1 Byte 0 - 7 and Check Read DQS Delay*/
u8 CH_D_B_TxDqs[2][4][9]; /* [A/B] [DIMM1-4] [DQS] */
/* CHA DIMM0 Byte 0 - 7 TxDqs */
/* CHA DIMM0 Byte 0 - 7 TxDqs */
/* CHA DIMM1 Byte 0 - 7 TxDqs */
/* CHA DIMM1 Byte 0 - 7 TxDqs */
/* CHB DIMM0 Byte 0 - 7 TxDqs */
/* CHB DIMM0 Byte 0 - 7 TxDqs */
/* CHB DIMM1 Byte 0 - 7 TxDqs */
/* CHB DIMM1 Byte 0 - 7 TxDqs */
u8 CH_D_B_RCVRDLY[2][4][8]; /* [A/B] [DIMM0-3] [DQS] */
/* CHA DIMM 0 Receiver Enable Delay*/
/* CHA DIMM 1 Receiver Enable Delay*/
/* CHA DIMM 2 Receiver Enable Delay*/
/* CHA DIMM 3 Receiver Enable Delay*/
/* CHB DIMM 0 Receiver Enable Delay*/
/* CHB DIMM 1 Receiver Enable Delay*/
/* CHB DIMM 2 Receiver Enable Delay*/
/* CHB DIMM 3 Receiver Enable Delay*/
u8 CH_D_BC_RCVRDLY[2][4];
/* CHA DIMM 0 - 4 Check Byte Receiver Enable Delay*/
/* CHB DIMM 0 - 4 Check Byte Receiver Enable Delay*/
u8 DIMMValidDCT[2]; /* DIMM# in DCT0*/
/* DIMM# in DCT1*/
u16 CSPresent_DCT[2]; /* DCT# CS mapping */
u16 MirrPresU_NumRegR; /* Address mapping from edge connect to DIMM present for unbuffered dimm
Number of registers on the dimm for registered dimm */
u8 MaxDCTs; /* Max number of DCTs in system*/
/* NOTE: removed u8 DCT. Use ->dev_ for pci R/W; */ /*DCT pointer*/
u8 GangedMode; /* Ganged mode enabled, 0 = disabled, 1 = enabled*/
u8 DRPresent; /* Family 10 present flag, 0 = n0t Fam10, 1 = Fam10*/
u32 NodeSysLimit; /* BASE[39:8],for DCT0+DCT1 system address*/
u8 WrDatGrossH;
u8 DqsRcvEnGrossL;
/* NOTE: Not used - u8 NodeSpeed */ /* Bus Speed (to set Controller) */
/* 1=200Mhz */
/* 2=266Mhz */
/* 3=333Mhz */
/* NOTE: Not used - u8 NodeCASL */ /* CAS latency DCT setting */
/* 0=2.0 */
/* 1=3.0 */
/* 2=4.0 */
/* 3=5.0 */
/* 4=6.0 */
u8 TrwtWB;
u8 CurrRcvrCHADelay; /* for keep current RcvrEnDly of chA*/
u16 T1000; /* get the T1000 figure (cycle time (ns)*1K)*/
u8 DqsRcvEn_Pass; /* for TrainRcvrEn byte lane pass flag*/
u8 DqsRcvEn_Saved; /* for TrainRcvrEn byte lane saved flag*/
u8 SeedPass1Remainder; /* for Phy assisted DQS receiver enable training*/
/* for second pass - Second pass should never run for Fam10*/
/* NOTE: Not used for Barcelona - u8 CH_D_B_RCVRDLY_1[2][4][8]; */ /* CHA DIMM 0 Receiver Enable Delay */
/* CHA DIMM 1 Receiver Enable Delay*/
/* CHA DIMM 2 Receiver Enable Delay*/
/* CHA DIMM 3 Receiver Enable Delay*/
/* CHB DIMM 0 Receiver Enable Delay*/
/* CHB DIMM 1 Receiver Enable Delay*/
/* CHB DIMM 2 Receiver Enable Delay*/
/* CHB DIMM 3 Receiver Enable Delay*/
u8 ClToNB_flag; /* is used to restore ClLinesToNbDis bit after memory */
u32 NodeSysBase; /* for channel interleave usage */
/* New for LB Support */
u8 NodePresent;
u32 dev_host;
u32 dev_map;
u32 dev_dct;
u32 dev_nbmisc;
u8 TargetFreq;
u8 TargetCASL;
u8 CtrlWrd3;
u8 CtrlWrd4;
u8 CtrlWrd5;
u8 DqsRdWrPos_Saved;
u8 DqsRcvEnGrossMax;
u8 DqsRcvEnGrossMin;
u8 WrDatGrossMax;
u8 WrDatGrossMin;
u16 RegMan1Present; /* DIMM present bitmap of Register manufacture 1 */
u16 RegMan2Present; /* DIMM present bitmap of Register manufacture 2 */
struct _sMCTStruct *C_MCTPtr;
struct _sDCTStruct *C_DCTPtr[2];
/* struct _sDCTStruct *C_DCT1Ptr; */
struct _sMCTStruct s_C_MCTPtr;
struct _sDCTStruct s_C_DCTPtr[2];
/* struct _sDCTStruct s_C_DCT1Ptr[8]; */
};
/*===============================================================================
Local Error Status Codes (DCTStatStruc.ErrCode)
===============================================================================*/
#define SC_RunningOK 0
#define SC_VarianceErr 1 /* Running non-optimally*/
#define SC_StopError 2 /* Not Running*/
#define SC_FatalErr 3 /* Fatal Error, MCTB has exited immediately*/
/*===============================================================================
Local Error Status (DCTStatStruc.ErrStatus[31:0])
===============================================================================*/
#define SB_NoDimms 0
#define SB_DIMMChkSum 1
#define SB_DimmMismatchM 2 /* dimm module type(buffer) mismatch*/
#define SB_DimmMismatchT 3 /* dimm CL/T mismatch*/
#define SB_DimmMismatchO 4 /* dimm organization mismatch (128-bit)*/
#define SB_NoTrcTrfc 5 /* SPD missing Trc or Trfc info*/
#define SB_NoCycTime 6 /* SPD missing byte 23 or 25*/
#define SB_BkIntDis 7 /* Bank interleave requested but not enabled*/
#define SB_DramECCDis 8 /* Dram ECC requested but not enabled*/
#define SB_SpareDis 9 /* Online spare requested but not enabled*/
#define SB_MinimumMode 10 /* Running in Minimum Mode*/
#define SB_NORCVREN 11 /* No DQS Receiver Enable pass window found*/
#define SB_CHA2BRCVREN 12 /* DQS Rcvr En pass window CHA to CH B too large*/
#define SB_SmallRCVR 13 /* DQS Rcvr En pass window too small (far right of dynamic range)*/
#define SB_NODQSPOS 14 /* No DQS-DQ passing positions*/
#define SB_SMALLDQS 15 /* DQS-DQ passing window too small*/
#define SB_DCBKScrubDis 16 /* DCache scrub requested but not enabled */
/*===============================================================================
Local Configuration Status (DCTStatStruc.Status[31:0])
===============================================================================*/
#define SB_Registered 0 /* All DIMMs are Registered*/
#define SB_ECCDIMMs 1 /* All banks ECC capable*/
#define SB_PARDIMMs 2 /* All banks Addr/CMD Parity capable*/
#define SB_DiagClks 3 /* Jedec ALL slots clock enable diag mode*/
#define SB_128bitmode 4 /* DCT in 128-bit mode operation*/
#define SB_64MuxedMode 5 /* DCT in 64-bit mux'ed mode.*/
#define SB_2TMode 6 /* 2T CMD timing mode is enabled.*/
#define SB_SWNodeHole 7 /* Remapping of Node Base on this Node to create a gap.*/
#define SB_HWHole 8 /* Memory Hole created on this Node using HW remapping.*/
#define SB_Over400MHz 9 /* DCT freq >= 400MHz flag*/
#define SB_DQSPos_Pass2 10 /* Using for TrainDQSPos DIMM0/1, when freq>=400MHz*/
#define SB_DQSRcvLimit 11 /* Using for DQSRcvEnTrain to know we have reached to upper bound.*/
#define SB_ExtConfig 12 /* Indicator the default setting for extend PCI configuration support*/
/*===============================================================================
NVRAM/run-time-configurable Items
===============================================================================*/
/*Platform Configuration*/
#define NV_PACK_TYPE 0 /* CPU Package Type (2-bits)
0=NPT L1
1=NPT M2
2=NPT S1*/
#define NV_MAX_NODES 1 /* Number of Nodes/Sockets (4-bits)*/
#define NV_MAX_DIMMS 2 /* Number of DIMM slots for the specified Node ID (4-bits)*/
#define NV_MAX_MEMCLK 3 /* Maximum platform demonstrated Memclock (10-bits)
200=200Mhz (DDR400)
266=266Mhz (DDR533)
333=333Mhz (DDR667)
400=400Mhz (DDR800)*/
#define NV_ECC_CAP 4 /* Bus ECC capable (1-bits)
0=Platform not capable
1=Platform is capable*/
#define NV_4RANKType 5 /* Quad Rank DIMM slot type (2-bits)
0=Normal
1=R4 (4-Rank Registered DIMMs in AMD server configuration)
2=S4 (Unbuffered SO-DIMMs)*/
#define NV_BYPMAX 6 /* Value to set DcqBypassMax field (See Function 2, Offset 94h, [27:24] of BKDG for field definition).
4=4 times bypass (normal for non-UMA systems)
7=7 times bypass (normal for UMA systems)*/
#define NV_RDWRQBYP 7 /* Value to set RdWrQByp field (See Function 2, Offset A0h, [3:2] of BKDG for field definition).
2=8 times (normal for non-UMA systems)
3=16 times (normal for UMA systems)*/
/*Dram Timing*/
#define NV_MCTUSRTMGMODE 10 /* User Memclock Mode (2-bits)
0=Auto, no user limit
1=Auto, user limit provided in NV_MemCkVal
2=Manual, user value provided in NV_MemCkVal*/
#define NV_MemCkVal 11 /* Memory Clock Value (2-bits)
0=200Mhz
1=266Mhz
2=333Mhz
3=400Mhz*/
/*Dram Configuration*/
#define NV_BankIntlv 20 /* Dram Bank (chip-select) Interleaving (1-bits)
0=disable
1=enable*/
#define NV_AllMemClks 21 /* Turn on All DIMM clocks (1-bits)
0=normal
1=enable all memclocks*/
#define NV_SPDCHK_RESTRT 22 /* SPD Check control bitmap (1-bits)
0=Exit current node init if any DIMM has SPD checksum error
1=Ignore faulty SPD checksums (Note: DIMM cannot be enabled)*/
#define NV_DQSTrainCTL 23 /* DQS Signal Timing Training Control
0=skip DQS training
1=perform DQS training*/
#define NV_NodeIntlv 24 /* Node Memory Interleaving (1-bits)
0=disable
1=enable*/
#define NV_BurstLen32 25 /* BurstLength32 for 64-bit mode (1-bits)
0=disable (normal)
1=enable (4 beat burst when width is 64-bits)*/
/*Dram Power*/
#define NV_CKE_PDEN 30 /* CKE based power down mode (1-bits)
0=disable
1=enable*/
#define NV_CKE_CTL 31 /* CKE based power down control (1-bits)
0=per Channel control
1=per Chip select control*/
#define NV_CLKHZAltVidC3 32 /* Memclock tri-stating during C3 and Alt VID (1-bits)
0=disable
1=enable*/
/*Memory Map/Mgt.*/
#define NV_BottomIO 40 /* Bottom of 32-bit IO space (8-bits)
NV_BottomIO[7:0]=Addr[31:24]*/
#define NV_BottomUMA 41 /* Bottom of shared graphics dram (8-bits)
NV_BottomUMA[7:0]=Addr[31:24]*/
#define NV_MemHole 42 /* Memory Hole Remapping (1-bits)
0=disable
1=enable */
/*ECC*/
#define NV_ECC 50 /* Dram ECC enable*/
#define NV_NBECC 52 /* ECC MCE enable*/
#define NV_ChipKill 53 /* Chip-Kill ECC Mode enable*/
#define NV_ECCRedir 54 /* Dram ECC Redirection enable*/
#define NV_DramBKScrub 55 /* Dram ECC Background Scrubber CTL*/
#define NV_L2BKScrub 56 /* L2 ECC Background Scrubber CTL*/
#define NV_DCBKScrub 57 /* DCache ECC Background Scrubber CTL*/
#define NV_CS_SpareCTL 58 /* Chip Select Spare Control bit 0:
0=disable Spare
1=enable Spare */
/* Chip Select Spare Control bit 1-4:
Reserved, must be zero*/
#define NV_SyncOnUnEccEn 61 /* SyncOnUnEccEn control
0=disable
1=enable*/
#define NV_Unganged 62
#define NV_ChannelIntlv 63 /* Channel Interleaving (3-bits)
xx0b = disable
yy1b = enable with DctSelIntLvAddr set to yyb */
#ifndef MAX_NODES_SUPPORTED
#define MAX_NODES_SUPPORTED 8
#endif
#ifndef MAX_DIMMS_SUPPORTED
#define MAX_DIMMS_SUPPORTED 8
#endif
#ifndef MAX_CS_SUPPORTED
#define MAX_CS_SUPPORTED 8
#endif
#ifndef MCT_DIMM_SPARE_NO_WARM
#define MCT_DIMM_SPARE_NO_WARM 0
#endif
u32 Get_NB32(u32 dev, u32 reg);
void Set_NB32(u32 dev, u32 reg, u32 val);
u32 Get_NB32_index(u32 dev, u32 index_reg, u32 index);
void Set_NB32_index(u32 dev, u32 index_reg, u32 index, u32 data);
u32 Get_NB32_index_wait(u32 dev, u32 index_reg, u32 index);
void Set_NB32_index_wait(u32 dev, u32 index_reg, u32 index, u32 data);
u32 OtherTiming_A_D(struct DCTStatStruc *pDCTstat, u32 val);
void mct_ForceAutoPrecharge_D(struct DCTStatStruc *pDCTstat, u32 dct);
u32 Modify_D3CMP(struct DCTStatStruc *pDCTstat, u32 dct, u32 value);
u8 mct_checkNumberOfDqsRcvEn_1Pass(u8 pass);
u32 SetupDqsPattern_1PassA(u8 Pass);
u32 SetupDqsPattern_1PassB(u8 Pass);
u8 mct_Get_Start_RcvrEnDly_1Pass(u8 Pass);
u8 mct_Average_RcvrEnDly_Pass(struct DCTStatStruc *pDCTstat, u8 RcvrEnDly, u8 RcvrEnDlyLimit, u8 Channel, u8 Receiver, u8 Pass);
void CPUMemTyping_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA);
void UMAMemTyping_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA);
u32 mctGetLogicalCPUID(u32 Node);
u8 ECCInit_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA);
void TrainReceiverEn_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA, u8 Pass);
void mct_TrainDQSPos_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA);
void mctSetEccDQSRcvrEn_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA);
void TrainMaxReadLatency_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA);
void mct_EndDQSTraining_D(struct MCTStatStruc *pMCTstat,struct DCTStatStruc *pDCTstatA);
void mct_SetRcvrEnDly_D(struct DCTStatStruc *pDCTstat, u8 RcvrEnDly, u8 FinalValue, u8 Channel, u8 Receiver, u32 dev, u32 index_reg, u8 Addl_Index, u8 Pass);
void SetEccDQSRcvrEn_D(struct DCTStatStruc *pDCTstat, u8 Channel);
void mctGet_PS_Cfg_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, u32 dct);
void InterleaveBanks_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, u8 dct);
void mct_SetDramConfigHi_D(struct DCTStatStruc *pDCTstat, u32 dct, u32 DramConfigHi);
void mct_DramInit_Hw_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, u8 dct);
void mct_SetClToNB_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat);
void mct_SetWbEnhWsbDis_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat);
void mct_TrainRcvrEn_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, u8 Pass);
void mct_EnableDimmEccEn_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, u8 _DisableDramECC);
u32 procOdtWorkaround(struct DCTStatStruc *pDCTstat, u32 dct, u32 val);
void mct_BeforeDramInit_D(struct DCTStatStruc *pDCTstat, u32 dct);
void mctGet_DIMMAddr(struct DCTStatStruc *pDCTstat, u32 node);
void mctSMBhub_Init(u32 node);
int mctRead_SPD(u32 smaddr, u32 reg);
void InterleaveNodes_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA);
void InterleaveChannels_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA);
void mct_BeforeDQSTrain_Samp_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat);
void phyAssistedMemFnceTraining(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA);
u8 mct_SaveRcvEnDly_D_1Pass(struct DCTStatStruc *pDCTstat, u8 pass);
u8 mct_InitReceiver_D(struct DCTStatStruc *pDCTstat, u8 dct);
void mct_Wait(u32 cycles);
u8 mct_RcvrRankEnabled_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, u8 Channel, u8 ChipSel);
u32 mct_GetRcvrSysAddr_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, u8 channel, u8 receiver, u8 *valid);
void mct_Read1LTestPattern_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, u32 addr);
#endif

View File

@@ -0,0 +1,370 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
static inline void _WRMSR(u32 addr, u32 lo, u32 hi)
{
__asm__ volatile (
"wrmsr"
:
:"c"(addr),"a"(lo), "d" (hi)
);
}
static inline void _RDMSR(u32 addr, u32 *lo, u32 *hi)
{
__asm__ volatile (
"rdmsr"
:"=a"(*lo), "=d" (*hi)
:"c"(addr)
);
}
static inline void _RDTSC(u32 *lo, u32 *hi)
{
__asm__ volatile (
"rdtsc"
: "=a" (*lo), "=d"(*hi)
);
}
static inline void _cpu_id(u32 addr, u32 *val)
{
__asm__ volatile(
"cpuid"
: "=a" (val[0]),
"=b" (val[1]),
"=c" (val[2]),
"=d" (val[3])
: "0" (addr));
}
static u32 bsr(u32 x)
{
u8 i;
u32 ret = 0;
for(i=31; i>0; i--) {
if(x & (1<<i)) {
ret = i;
break;
}
}
return ret;
}
static u32 bsf(u32 x)
{
u8 i;
u32 ret = 32;
for(i=0; i<32; i++) {
if(x & (1<<i)) {
ret = i;
break;
}
}
return ret;
}
#define _MFENCE asm volatile ( "mfence")
#define _SFENCE asm volatile ( "sfence" )
/* prevent speculative execution of following instructions */
#define _EXECFENCE asm volatile ("outb %al, $0xed")
static inline u32 read_cr4(void)
{
u32 cr4;
__asm__ volatile ("movl %%cr4, %0" : "=r" (cr4));
return cr4;
}
static inline void write_cr4(u32 cr4)
{
__asm__ volatile ("movl %0, %%cr4" : : "r" (cr4));
}
u32 SetUpperFSbase(u32 addr_hi);
static void proc_CLFLUSH(u32 addr_hi)
{
SetUpperFSbase(addr_hi);
__asm__ volatile (
/* clflush fs:[eax] */
"outb %%al, $0xed\n\t" /* _EXECFENCE */
"clflush %%fs:(%0)\n\t"
"mfence\n\t"
::"a" (addr_hi<<8)
);
}
static void WriteLNTestPattern(u32 addr_lo, u8 *buf_a, u32 line_num)
{
__asm__ volatile (
/*prevent speculative execution of following instructions*/
/* FIXME: needed ? */
"outb %%al, $0xed\n\t" /* _EXECFENCE */
"1:\n\t"
"movdqa (%3), %%xmm0\n\t"
"movntdq %%xmm0, %%fs:(%0)\n\t" /* xmm0 is 128 bit */
"addl %1, %0\n\t"
"addl %1, %3\n\t"
"loop 1b\n\t"
"mfence\n\t"
:: "a" (addr_lo), "d" (16), "c" (line_num * 4), "b"(buf_a)
);
}
static u32 read32_fs(u32 addr_lo)
{
u32 value;
__asm__ volatile (
"outb %%al, $0xed\n\t" /* _EXECFENCE */
"movl %%fs:(%1), %0\n\t"
:"=b"(value): "a" (addr_lo)
);
return value;
}
#ifdef UNUSED_CODE
static u8 read8_fs(u32 addr_lo)
{
u8 byte;
__asm__ volatile (
"outb %%al, $0xed\n\t" /* _EXECFENCE */
"movb %%fs:(%1), %b0\n\t"
"mfence\n\t"
:"=b"(byte): "a" (addr_lo)
);
return byte;
}
#endif
static void FlushDQSTestPattern_L9(u32 addr_lo)
{
__asm__ volatile (
"outb %%al, $0xed\n\t" /* _EXECFENCE */
"clflush %%fs:-128(%%ecx)\n\t"
"clflush %%fs:-64(%%ecx)\n\t"
"clflush %%fs:(%%ecx)\n\t"
"clflush %%fs:64(%%ecx)\n\t"
"clflush %%fs:-128(%%eax)\n\t"
"clflush %%fs:-64(%%eax)\n\t"
"clflush %%fs:(%%eax)\n\t"
"clflush %%fs:64(%%eax)\n\t"
"clflush %%fs:-128(%%ebx)\n\t"
:: "b" (addr_lo+128+8*64), "c"(addr_lo+128),
"a"(addr_lo+128+4*64)
);
}
static __attribute__((noinline)) void FlushDQSTestPattern_L18(u32 addr_lo)
{
__asm__ volatile (
"outb %%al, $0xed\n\t" /* _EXECFENCE */
"clflush %%fs:-128(%%eax)\n\t"
"clflush %%fs:-64(%%eax)\n\t"
"clflush %%fs:(%%eax)\n\t"
"clflush %%fs:64(%%eax)\n\t"
"clflush %%fs:-128(%%edi)\n\t"
"clflush %%fs:-64(%%edi)\n\t"
"clflush %%fs:(%%edi)\n\t"
"clflush %%fs:64(%%edi)\n\t"
"clflush %%fs:-128(%%ebx)\n\t"
"clflush %%fs:-64(%%ebx)\n\t"
"clflush %%fs:(%%ebx)\n\t"
"clflush %%fs:64(%%ebx)\n\t"
"clflush %%fs:-128(%%ecx)\n\t"
"clflush %%fs:-64(%%ecx)\n\t"
"clflush %%fs:(%%ecx)\n\t"
"clflush %%fs:64(%%ecx)\n\t"
"clflush %%fs:-128(%%edx)\n\t"
"clflush %%fs:-64(%%edx)\n\t"
:: "b" (addr_lo+128+8*64), "c" (addr_lo+128+12*64),
"d" (addr_lo +128+16*64), "a"(addr_lo+128),
"D"(addr_lo+128+4*64)
);
}
static void ReadL18TestPattern(u32 addr_lo)
{
/* set fs and use fs prefix to access the mem */
__asm__ volatile (
"outb %%al, $0xed\n\t" /* _EXECFENCE */
"movl %%fs:-128(%%esi), %%eax\n\t" /* TestAddr cache line */
"movl %%fs:-64(%%esi), %%eax\n\t" /* +1 */
"movl %%fs:(%%esi), %%eax\n\t" /* +2 */
"movl %%fs:64(%%esi), %%eax\n\t" /* +3 */
"movl %%fs:-128(%%edi), %%eax\n\t" /* +4 */
"movl %%fs:-64(%%edi), %%eax\n\t" /* +5 */
"movl %%fs:(%%edi), %%eax\n\t" /* +6 */
"movl %%fs:64(%%edi), %%eax\n\t" /* +7 */
"movl %%fs:-128(%%ebx), %%eax\n\t" /* +8 */
"movl %%fs:-64(%%ebx), %%eax\n\t" /* +9 */
"movl %%fs:(%%ebx), %%eax\n\t" /* +10 */
"movl %%fs:64(%%ebx), %%eax\n\t" /* +11 */
"movl %%fs:-128(%%ecx), %%eax\n\t" /* +12 */
"movl %%fs:-64(%%ecx), %%eax\n\t" /* +13 */
"movl %%fs:(%%ecx), %%eax\n\t" /* +14 */
"movl %%fs:64(%%ecx), %%eax\n\t" /* +15 */
"movl %%fs:-128(%%edx), %%eax\n\t" /* +16 */
"movl %%fs:-64(%%edx), %%eax\n\t" /* +17 */
"mfence\n\t"
:: "a"(0), "b" (addr_lo+128+8*64), "c" (addr_lo+128+12*64),
"d" (addr_lo +128+16*64), "S"(addr_lo+128),
"D"(addr_lo+128+4*64)
);
}
static void ReadL9TestPattern(u32 addr_lo)
{
/* set fs and use fs prefix to access the mem */
__asm__ volatile (
"outb %%al, $0xed\n\t" /* _EXECFENCE */
"movl %%fs:-128(%%ecx), %%eax\n\t" /* TestAddr cache line */
"movl %%fs:-64(%%ecx), %%eax\n\t" /* +1 */
"movl %%fs:(%%ecx), %%eax\n\t" /* +2 */
"movl %%fs:64(%%ecx), %%eax\n\t" /* +3 */
"movl %%fs:-128(%%edx), %%eax\n\t" /* +4 */
"movl %%fs:-64(%%edx), %%eax\n\t" /* +5 */
"movl %%fs:(%%edx), %%eax\n\t" /* +6 */
"movl %%fs:64(%%edx), %%eax\n\t" /* +7 */
"movl %%fs:-128(%%ebx), %%eax\n\t" /* +8 */
"mfence\n\t"
:: "a"(0), "b" (addr_lo+128+8*64), "c"(addr_lo+128),
"d"(addr_lo+128+4*64)
);
}
static void ReadMaxRdLat1CLTestPattern_D(u32 addr)
{
SetUpperFSbase(addr);
__asm__ volatile (
"outb %%al, $0xed\n\t" /* _EXECFENCE */
"movl %%fs:-128(%%esi), %%eax\n\t" /* TestAddr cache line */
"movl %%fs:-64(%%esi), %%eax\n\t" /* +1 */
"movl %%fs:(%%esi), %%eax\n\t" /* +2 */
"mfence\n\t"
:: "a"(0), "S"((addr<<8)+128)
);
}
static void WriteMaxRdLat1CLTestPattern_D(u32 buf, u32 addr)
{
SetUpperFSbase(addr);
__asm__ volatile (
"outb %%al, $0xed\n\t" /* _EXECFENCE */
"1:\n\t"
"movdqa (%3), %%xmm0\n\t"
"movntdq %%xmm0, %%fs:(%0)\n\t" /* xmm0 is 128 bit */
"addl %1, %0\n\t"
"addl %1, %3\n\t"
"loop 1b\n\t"
"mfence\n\t"
:: "a" (addr<<8), "d" (16), "c" (3 * 4), "b"(buf)
);
}
static void FlushMaxRdLatTestPattern_D(u32 addr)
{
/* Flush a pattern of 72 bit times (per DQ) from cache.
* This procedure is used to ensure cache miss on the next read training.
*/
SetUpperFSbase(addr);
__asm__ volatile (
"outb %%al, $0xed\n\t" /* _EXECFENCE */
"clflush %%fs:-128(%%esi)\n\t" /* TestAddr cache line */
"clflush %%fs:-64(%%esi)\n\t" /* +1 */
"clflush %%fs:(%%esi)\n\t" /* +2 */
"mfence\n\t"
:: "S"((addr<<8)+128)
);
}
static u32 stream_to_int(u8 *p)
{
int i;
u32 val;
u32 valx;
val = 0;
for(i=3; i>=0; i--) {
val <<= 8;
valx = *(p+i);
val |= valx;
}
return val;
}
#ifdef UNUSED_CODE
static void oemSet_NB32(u32 addr, u32 val, u8 *valid)
{
}
static u32 oemGet_NB32(u32 addr, u8 *valid)
{
*valid = 0;
return 0xffffffff;
}
#endif
static u8 oemNodePresent_D(u8 Node, u8 *ret)
{
*ret = 0;
return 0;
}

View File

@@ -0,0 +1,87 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
static void Get_ChannelPS_Cfg0_D(u8 MAAdimms, u8 Speed, u8 MAAload,
u32 *AddrTmgCTL, u32 *ODC_CTL,
u8 *CMDmode);
void mctGet_PS_Cfg_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u32 dct)
{
Get_ChannelPS_Cfg0_D(pDCTstat->MAdimms[dct], pDCTstat->Speed,
pDCTstat->MAload[dct],
&(pDCTstat->CH_ADDR_TMG[dct]), &(pDCTstat->CH_ODC_CTL[dct]),
&pDCTstat->_2Tmode);
pDCTstat->CH_EccDQSLike[0] = 0x0403;
pDCTstat->CH_EccDQSScale[0] = 0x70;
pDCTstat->CH_EccDQSLike[1] = 0x0403;
pDCTstat->CH_EccDQSScale[1] = 0x70;
pDCTstat->CH_ODC_CTL[dct] |= 0x20000000; /* 60ohms */
}
/*
* In: MAAdimms - number of DIMMs on the channel
* : Speed - Speed (see DCTStatstruc.Speed for definition)
* : MAAload - number of address bus loads on the channel
* Out: AddrTmgCTL - Address Timing Control Register Value
* : ODC_CTL - Output Driver Compensation Control Register Value
* : CMDmode - CMD mode
*/
static void Get_ChannelPS_Cfg0_D( u8 MAAdimms, u8 Speed, u8 MAAload,
u32 *AddrTmgCTL, u32 *ODC_CTL,
u8 *CMDmode)
{
*AddrTmgCTL = 0;
*ODC_CTL = 0;
*CMDmode = 1;
if(MAAdimms == 1) {
if(MAAload >= 16) {
if(Speed == 4)
*AddrTmgCTL = 0x003B0000;
else if (Speed == 5)
*AddrTmgCTL = 0x00380000;
else if (Speed == 6)
*AddrTmgCTL = 0x00360000;
else
*AddrTmgCTL = 0x00340000;
} else {
*AddrTmgCTL = 0x00000000;
}
*ODC_CTL = 0x00113222;
*CMDmode = 1;
} else /* if(MAAdimms == 0) */ {
if(Speed == 4) {
*CMDmode = 1;
*AddrTmgCTL = 0x00390039;
} else if(Speed == 5) {
*CMDmode = 1;
*AddrTmgCTL = 0x00350037;
} else if(Speed == 6) {
*CMDmode = 2;
*AddrTmgCTL = 0x00000035;
} else {
*CMDmode = 2;
*AddrTmgCTL = 0x00000033;
}
*ODC_CTL = 0x00223323;
}
}

View File

@@ -0,0 +1,118 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* The socket type F (1207), Fr2, G (1207) are not tested.
*/
static void Get_ChannelPS_Cfg0_D(u8 MAAdimms, u8 Speed, u8 MAAload,
u8 DATAAload, u32 *AddrTmgCTL, u32 *ODC_CTL,
u8 *CMDmode);
void mctGet_PS_Cfg_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u32 dct)
{
Get_ChannelPS_Cfg0_D(pDCTstat->MAdimms[dct], pDCTstat->Speed,
pDCTstat->MAload[dct], pDCTstat->DATAload[dct],
&(pDCTstat->CH_ADDR_TMG[dct]), &(pDCTstat->CH_ODC_CTL[dct]),
&pDCTstat->_2Tmode);
if (pDCTstat->GangedMode == 1 && dct == 0)
Get_ChannelPS_Cfg0_D(pDCTstat->MAdimms[1], pDCTstat->Speed,
pDCTstat->MAload[1], pDCTstat->DATAload[1],
&(pDCTstat->CH_ADDR_TMG[1]), &(pDCTstat->CH_ODC_CTL[1]),
&pDCTstat->_2Tmode);
pDCTstat->CH_EccDQSLike[0] = 0x0302;
pDCTstat->CH_EccDQSLike[1] = 0x0302;
}
/*
* In: MAAdimms - number of DIMMs on the channel
* : Speed - Speed (see DCTStatstruc.Speed for definition)
* : MAAload - number of address bus loads on the channel
* : DATAAload - number of ranks on the channel
* Out: AddrTmgCTL - Address Timing Control Register Value
* : ODC_CTL - Output Driver Compensation Control Register Value
* : CMDmode - CMD mode
*/
static void Get_ChannelPS_Cfg0_D( u8 MAAdimms, u8 Speed, u8 MAAload,
u8 DATAAload, u32 *AddrTmgCTL, u32 *ODC_CTL,
u8 *CMDmode)
{
*AddrTmgCTL = 0;
*ODC_CTL = 0;
*CMDmode = 1;
if (mctGet_NVbits(NV_MAX_DIMMS) == 4) {
if(Speed == 4) {
*AddrTmgCTL = 0x00000000;
} else if (Speed == 5) {
*AddrTmgCTL = 0x003C3C3C;
if (MAAdimms > 1)
*AddrTmgCTL = 0x003A3C3A;
} else if (Speed == 6) {
if (MAAdimms == 1)
*AddrTmgCTL = 0x003A3A3A;
else
*AddrTmgCTL = 0x00383A38;
} else {
if (MAAdimms == 1)
*AddrTmgCTL = 0x00373937;
else
*AddrTmgCTL = 0x00353935;
}
}
else {
if(Speed == 4) {
*AddrTmgCTL = 0x00000000;
if (MAAdimms == 3)
*AddrTmgCTL = 0x00380038;
} else if (Speed == 5) {
if (MAAdimms == 1)
*AddrTmgCTL = 0x003C3C3C;
else if (MAAdimms == 2)
*AddrTmgCTL = 0x003A3C3A;
else
*AddrTmgCTL = 0x00373C37;
} else if (Speed == 6) {
if (MAAdimms == 1)
*AddrTmgCTL = 0x003A3A3A;
else if (MAAdimms == 2)
*AddrTmgCTL = 0x00383A38;
else
*AddrTmgCTL = 0x00343A34;
} else {
if (MAAdimms == 1)
*AddrTmgCTL = 0x00393939;
else if (MAAdimms == 2)
*AddrTmgCTL = 0x00363936;
else
*AddrTmgCTL = 0x00303930;
}
}
if ((MAAdimms == 1) && (MAAload < 4))
*ODC_CTL = 0x20113222;
else
*ODC_CTL = 0x20223222;
*CMDmode = 1;
}

View File

@@ -0,0 +1,122 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
void InterleaveChannels_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstatA)
{
u8 Node;
u32 DramBase, DctSelBase;
u8 DctSelIntLvAddr, DctSelHi;
u8 HoleValid = 0;
u32 HoleSize, HoleBase = 0;
u32 val, tmp;
u32 dct0_size, dct1_size;
struct DCTStatStruc *pDCTstat;
/* HoleValid - indicates whether the current Node contains hole.
* HoleSize - indicates whether there is IO hole in the whole system
* memory.
*/
/* call back to wrapper not needed ManualChannelInterleave_D(); */
/* call back - DctSelIntLvAddr = mctGet_NVbits(NV_ChannelIntlv);*/ /* override interleave */
/* Manually set: typ=5, otherwise typ=7. */
DctSelIntLvAddr = mctGet_NVbits(NV_ChannelIntlv); /* typ=5: Hash*: exclusive OR of address bits[20:16, 6]. */
if (DctSelIntLvAddr & 1) {
DctSelIntLvAddr >>= 1;
HoleSize = 0;
if ((pMCTstat->GStatus & (1 << GSB_SoftHole)) ||
(pMCTstat->GStatus & (1 << GSB_HWHole))) {
if (pMCTstat->HoleBase) {
HoleBase = pMCTstat->HoleBase >> 8;
HoleSize = HoleBase & 0xFFFF0000;
HoleSize |= ((~HoleBase) + 1) & 0xFFFF;
}
}
Node = 0;
while (Node < MAX_NODES_SUPPORTED) {
pDCTstat = pDCTstatA + Node;
val = Get_NB32(pDCTstat->dev_map, 0xF0);
if (val & (1 << DramHoleValid))
HoleValid = 1;
if (!pDCTstat->GangedMode && pDCTstat->DIMMValidDCT[0] && pDCTstat->DIMMValidDCT[1]) {
DramBase = pDCTstat->NodeSysBase >> 8;
dct1_size = ((pDCTstat->NodeSysLimit) + 2) >> 8;
dct0_size = Get_NB32(pDCTstat->dev_dct, 0x114);
if (dct0_size >= 0x10000) {
dct0_size -= HoleSize;
}
dct0_size -= DramBase;
dct1_size -= dct0_size;
DctSelHi = 0x05; /* DctSelHiRngEn = 1, DctSelHi = 0 */
if (dct1_size == dct0_size) {
dct1_size = 0;
DctSelHi = 0x04; /* DctSelHiRngEn = 0 */
} else if (dct1_size > dct0_size ) {
dct1_size = dct0_size;
DctSelHi = 0x07; /* DctSelHiRngEn = 1, DctSelHi = 1 */
}
dct0_size = dct1_size;
dct0_size += DramBase;
dct0_size += dct1_size;
if (dct0_size >= HoleBase) /* if DctSelBaseAddr > HoleBase */
dct0_size += HoleSize;
DctSelBase = dct0_size;
if (dct1_size == 0)
dct0_size = 0;
dct0_size -= dct1_size; /* DctSelBaseOffset = DctSelBaseAddr - Interleaved region */
Set_NB32(pDCTstat->dev_dct, 0x114, dct0_size);
if (dct1_size == 0)
dct1_size = DctSelBase;
val = Get_NB32(pDCTstat->dev_dct, 0x110);
val &= 0x7F8;
val |= dct1_size;
val |= DctSelHi;
val |= (DctSelIntLvAddr << 6) & 0xFF;
Set_NB32(pDCTstat->dev_dct, 0x110, val);
if (HoleValid) {
tmp = DramBase;
val = DctSelBase;
if (val < HoleBase) { /* DctSelBaseAddr < DramHoleBase */
val -= DramBase;
val >>= 1;
tmp += val;
}
tmp += HoleSize;
val = Get_NB32(pDCTstat->dev_map, 0xF0); /* DramHoleOffset */
val &= 0xFFFF007F;
val |= (tmp & ~0xFFFF007F);
Set_NB32(pDCTstat->dev_map, 0xF0, val);
}
}
printk(BIOS_DEBUG, "InterleaveChannels_D: Node %x\n", Node);
printk(BIOS_DEBUG, "InterleaveChannels_D: Status %x\n", pDCTstat->Status);
printk(BIOS_DEBUG, "InterleaveChannels_D: ErrStatus %x\n", pDCTstat->ErrStatus);
printk(BIOS_DEBUG, "InterleaveChannels_D: ErrCode %x\n", pDCTstat->ErrCode);
Node++;
}
}
printk(BIOS_DEBUG, "InterleaveChannels_D: Done\n\n");
}

View File

@@ -0,0 +1,143 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* Low swap bit vs bank size encoding (physical, not logical address bit)
* ;To calculate the number by hand, add the number of Bank address bits
* ;(2 or 3) to the number of column address bits, plus 3 (the logical
* ;page size), and subtract 8.
*/
static const u8 Tab_int_D[] = {6,7,7,8,8,8,8,8,9,9,8,9};
void InterleaveBanks_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct)
{
u8 ChipSel, EnChipSels;
u32 AddrLoMask, AddrHiMask;
u32 AddrLoMaskN, AddrHiMaskN, MemSize = 0;
u8 DoIntlv, _CsIntCap;
u32 BitDelta, BankEncd = 0;
u32 dev;
u32 reg;
u32 reg_off;
u32 val;
u32 val_lo, val_hi;
DoIntlv = mctGet_NVbits(NV_BankIntlv);
_CsIntCap = 0;
EnChipSels = 0;
dev = pDCTstat->dev_dct;
reg_off = 0x100 * dct;
ChipSel = 0; /* Find out if current configuration is capable */
while (DoIntlv && (ChipSel < MAX_CS_SUPPORTED)) {
reg = 0x40+(ChipSel<<2) + reg_off; /* Dram CS Base 0 */
val = Get_NB32(dev, reg);
if ( val & (1<<CSEnable)) {
EnChipSels++;
reg = 0x60+((ChipSel>>1)<<2)+reg_off; /*Dram CS Mask 0 */
val = Get_NB32(dev, reg);
val >>= 19;
val &= 0x3ff;
val++;
if (EnChipSels == 1)
MemSize = val;
else
/*If mask sizes not same then skip */
if (val != MemSize)
break;
reg = 0x80 + reg_off; /*Dram Bank Addressing */
val = Get_NB32(dev, reg);
val >>= (ChipSel>>1)<<2;
val &= 0x0f;
if(EnChipSels == 1)
BankEncd = val;
else
/*If number of Rows/Columns not equal, skip */
if (val != BankEncd)
break;
}
ChipSel++;
}
if (ChipSel == MAX_CS_SUPPORTED) {
if ((EnChipSels == 2) || (EnChipSels == 4) || (EnChipSels == 8))
_CsIntCap = 1;
}
if (DoIntlv) {
if(!_CsIntCap) {
pDCTstat->ErrStatus |= 1<<SB_BkIntDis;
DoIntlv = 0;
}
}
if(DoIntlv) {
val = Tab_int_D[BankEncd];
if (pDCTstat->Status & (1<<SB_128bitmode))
val++;
AddrLoMask = (EnChipSels - 1) << val;
AddrLoMaskN = ~AddrLoMask;
val = bsf(MemSize) + 19;
AddrHiMask = (EnChipSels -1) << val;
AddrHiMaskN = ~AddrHiMask;
BitDelta = bsf(AddrHiMask) - bsf(AddrLoMask);
for (ChipSel = 0; ChipSel < MAX_CS_SUPPORTED; ChipSel++) {
reg = 0x40+(ChipSel<<2) + reg_off; /*Dram CS Base 0 */
val = Get_NB32(dev, reg);
if (val & 3) {
val_lo = val & AddrLoMask;
val_hi = val & AddrHiMask;
val &= AddrLoMaskN;
val &= AddrHiMaskN;
val_lo <<= BitDelta;
val_hi >>= BitDelta;
val |= val_lo;
val |= val_hi;
Set_NB32(dev, reg, val);
if(ChipSel & 1)
continue;
reg = 0x60 + ((ChipSel>>1)<<2) + reg_off; /*Dram CS Mask 0 */
val = Get_NB32(dev, reg);
val_lo = val & AddrLoMask;
val_hi = val & AddrHiMask;
val &= AddrLoMaskN;
val &= AddrHiMaskN;
val_lo <<= BitDelta;
val_hi >>= BitDelta;
val |= val_lo;
val |= val_hi;
Set_NB32(dev, reg, val);
}
}
} /* DoIntlv */
/* dump_pci_device(PCI_DEV(0, 0x18+pDCTstat->Node_ID, 2)); */
printk(BIOS_DEBUG, "InterleaveBanks_D: Status %x\n", pDCTstat->Status);
printk(BIOS_DEBUG, "InterleaveBanks_D: ErrStatus %x\n", pDCTstat->ErrStatus);
printk(BIOS_DEBUG, "InterleaveBanks_D: ErrCode %x\n", pDCTstat->ErrCode);
printk(BIOS_DEBUG, "InterleaveBanks_D: Done\n\n");
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,268 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "mct_d.h"
static void setSyncOnUnEccEn_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstatA);
static u8 isDramECCEn_D(struct DCTStatStruc *pDCTstat);
/* Initialize ECC modes of Integrated Dram+Memory Controllers of a network of
* Hammer processors. Use Dram background scrubber to fast initialize ECC bits
* of all dram.
*
* Notes:
*
* Order that items are set:
* 1. eccen bit in NB
* 2. Scrub Base
* 3. Temp Node Base
* 4. Temp Node Limit
* 5. Redir bit in NB
* 6. Scrub CTL
*
* Conditions for setting background scrubber.
* 1. node is present
* 2. node has dram functioning (WE=RE=1)
* 3. all eccdimms (or bit 17 of offset 90,fn 2)
* 4. no chip-select gap exists
*
* The dram background scrubber is used under very controlled circumstances to
* initialize all the ECC bits on the DIMMs of the entire dram address map
* (including hidden or lost dram and dram above 4GB). We will turn the scrub
* rate up to maximum, which should clear 4GB of dram in about 2.7 seconds.
* We will activate the scrubbers of all nodes with ecc dram and let them run in
* parallel, thereby reducing even further the time required to condition dram.
* Finally, we will go through each node and either disable background scrubber,
* or set the scrub rate to the user setup specified rate.
*
* To allow the NB to scrub, we need to wait a time period long enough to
* guarantee that the NB scrubs the entire dram on its node. Do do this, we
* simply sample the scrub ADDR once, for an initial value, then we sample and poll until the polled value of scrub ADDR
* has wrapped around at least once: Scrub ADDRi+1 < Scrub ADDRi. Since we let all
* Nodes run in parallel, we need to gaurantee that all nodes have wrapped. To do
* this efficiently, we need only to sample one of the nodes, the node with the
* largest ammount of dram populated is the one which will take the longest amount
* of time (the scrub rate is set to max, the same rate, on all nodes). So,
* during setup of scrub Base, we determine how much memory and which node has
* the largest memory installed.
*
* Scrubbing should not ordinarily be enabled on a Node with a chip-select gap
* (aka SW memhole, cs hoisting, etc..).To init ECC memory on this node, the
* scrubber is used in two steps. First, the Dram Limit for the node is adjusted
* down to the bottom of the gap, and that ECC dram is initialized. Second, the
* orignal Limit is restored, the Scrub base is set to 4GB, and scrubber is
* allowed to run until the Scrub Addr wraps around to zero.
*/
u8 ECCInit_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA)
{
u8 Node;
u8 AllECC;
u16 OB_NBECC;
u32 curBase;
u16 OB_ECCRedir;
u32 LDramECC;
u32 OF_ScrubCTL;
u16 OB_ChipKill;
u8 MemClrECC;
u32 dev;
u32 reg;
u32 val;
u16 nvbits;
mctHookBeforeECC();
/* Construct these booleans, based on setup options, for easy handling
later in this procedure */
OB_NBECC = mctGet_NVbits(NV_NBECC); /* MCA ECC (MCE) enable bit */
OB_ECCRedir = mctGet_NVbits(NV_ECCRedir); /* ECC Redirection */
OB_ChipKill = mctGet_NVbits(NV_ChipKill); /* ECC Chip-kill mode */
OF_ScrubCTL = 0; /* Scrub CTL for Dcache, L2, and dram */
nvbits = mctGet_NVbits(NV_DCBKScrub);
/* mct_AdjustScrub_D(pDCTstatA, &nvbits); */ /* Need not adjust */
OF_ScrubCTL |= (u32) nvbits << 16;
nvbits = mctGet_NVbits(NV_L2BKScrub);
OF_ScrubCTL |= (u32) nvbits << 8;
nvbits = mctGet_NVbits(NV_DramBKScrub);
OF_ScrubCTL |= nvbits;
AllECC = 1;
MemClrECC = 0;
for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
struct DCTStatStruc *pDCTstat;
pDCTstat = pDCTstatA + Node;
LDramECC = 0;
if (NodePresent_D(Node)) { /*If Node is present */
dev = pDCTstat->dev_map;
reg = 0x40+(Node << 3); /* Dram Base Node 0 + index */
val = Get_NB32(dev, reg);
/* WE/RE is checked */
if((val & 3)==3) { /* Node has dram populated */
/* Negate 'all nodes/dimms ECC' flag if non ecc
memory populated */
if( pDCTstat->Status & (1<<SB_ECCDIMMs)) {
LDramECC = isDramECCEn_D(pDCTstat);
if(pDCTstat->ErrCode != SC_RunningOK) {
pDCTstat->Status &= ~(1 << SB_ECCDIMMs);
if (OB_NBECC) {
pDCTstat->ErrStatus |= (1 << SB_DramECCDis);
}
AllECC = 0;
LDramECC =0;
}
} else {
AllECC = 0;
}
if(LDramECC) { /* if ECC is enabled on this dram */
if (OB_NBECC) {
mct_EnableDatIntlv_D(pMCTstat, pDCTstat);
dev = pDCTstat->dev_nbmisc;
reg =0x44; /* MCA NB Configuration */
val = Get_NB32(dev, reg);
val |= 1 << 22; /* EccEn */
Set_NB32(dev, reg, val);
DCTMemClr_Init_D(pMCTstat, pDCTstat);
MemClrECC = 1;
}
} /* this node has ECC enabled dram */
} else {
LDramECC = 0;
} /* Node has Dram */
if (MemClrECC) {
MCTMemClrSync_D(pMCTstat, pDCTstatA);
}
} /* if Node present */
}
if(AllECC)
pMCTstat->GStatus |= 1<<GSB_ECCDIMMs;
else
pMCTstat->GStatus &= ~(1<<GSB_ECCDIMMs);
/* Program the Dram BKScrub CTL to the proper (user selected) value.*/
/* Reset MC4_STS. */
for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
struct DCTStatStruc *pDCTstat;
pDCTstat = pDCTstatA + Node;
LDramECC = 0;
if (NodePresent_D(Node)) { /* If Node is present */
reg = 0x40+(Node<<3); /* Dram Base Node 0 + index */
val = Get_NB32(pDCTstat->dev_map, reg);
curBase = val & 0xffff0000;
/*WE/RE is checked because memory config may have been */
if((val & 3)==3) { /* Node has dram populated */
if (isDramECCEn_D(pDCTstat)) { /* if ECC is enabled on this dram */
dev = pDCTstat->dev_nbmisc;
val = curBase << 8;
if(OB_ECCRedir) {
val |= (1<<0); /* enable redirection */
}
Set_NB32(dev, 0x5C, val); /* Dram Scrub Addr Low */
val = curBase>>24;
Set_NB32(dev, 0x60, val); /* Dram Scrub Addr High */
Set_NB32(dev, 0x58, OF_ScrubCTL); /*Scrub Control */
/* Divisor should not be set deeper than
* divide by 16 when Dcache scrubber or
* L2 scrubber is enabled.
*/
if ((OF_ScrubCTL & (0x1F << 16)) || (OF_ScrubCTL & (0x1F << 8))) {
val = Get_NB32(dev, 0x84);
if ((val & 0xE0000000) > 0x80000000) { /* Get F3x84h[31:29]ClkDivisor for C1 */
val &= 0x1FFFFFFF; /* If ClkDivisor is deeper than divide-by-16 */
val |= 0x80000000; /* set it to divide-by-16 */
Set_NB32(dev, 0x84, val);
}
}
} /* this node has ECC enabled dram */
} /*Node has Dram */
} /*if Node present */
}
if(mctGet_NVbits(NV_SyncOnUnEccEn))
setSyncOnUnEccEn_D(pMCTstat, pDCTstatA);
mctHookAfterECC();
return MemClrECC;
}
static void setSyncOnUnEccEn_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstatA)
{
u32 Node;
u32 reg;
u32 dev;
u32 val;
for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
struct DCTStatStruc *pDCTstat;
pDCTstat = pDCTstatA + Node;
if (NodePresent_D(Node)) { /* If Node is present*/
reg = 0x40+(Node<<3); /* Dram Base Node 0 + index*/
val = Get_NB32(pDCTstat->dev_map, reg);
/*WE/RE is checked because memory config may have been*/
if((val & 3)==3) { /* Node has dram populated*/
if( isDramECCEn_D(pDCTstat)) {
/*if ECC is enabled on this dram*/
dev = pDCTstat->dev_nbmisc;
reg = 0x44; /* MCA NB Configuration*/
val = Get_NB32(dev, reg);
val |= (1<<SyncOnUcEccEn);
Set_NB32(dev, reg, val);
}
} /* Node has Dram*/
} /* if Node present*/
}
}
static u8 isDramECCEn_D(struct DCTStatStruc *pDCTstat)
{
u32 reg;
u32 val;
u8 i;
u32 dev = pDCTstat->dev_dct;
u8 ch_end;
u8 isDimmECCEn = 0;
if(pDCTstat->GangedMode) {
ch_end = 1;
} else {
ch_end = 2;
}
for(i=0; i<ch_end; i++) {
if(pDCTstat->DIMMValidDCT[i] > 0){
reg = 0x90 + i * 0x100; /* Dram Config Low */
val = Get_NB32(dev, reg);
if(val & (1<<DimmEcEn)) {
/* set local flag 'dram ecc capable' */
isDimmECCEn = 1;
break;
}
}
}
return isDimmECCEn;
}

View File

@@ -0,0 +1,32 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
void mct_DramInit_Hw_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct)
{
u32 val;
u32 reg;
u32 dev = pDCTstat->dev_dct;
/*flag for selecting HW/SW DRAM Init HW DRAM Init */
reg = 0x90 + 0x100 * dct; /*DRAM Configuration Low */
val = Get_NB32(dev, reg);
val |= (1<<InitDram);
Set_NB32(dev, reg, val);
}

View File

@@ -0,0 +1,217 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
static void SetTargetFreq(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat);
static void AgesaHwWlPhase1(sMCTStruct *pMCTData,
sDCTStruct *pDCTData, u8 dimm, u8 pass);
static void EnableZQcalibration(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat);
static void DisableZQcalibration(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat);
static void PrepareC_MCT(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat);
static void PrepareC_DCT(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, u8 dct);
static void MultiplyDelay(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, u8 dct);
static void Restore_OnDimmMirror(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat);
static void Clear_OnDimmMirror(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat);
static void SetEccWrDQS_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat)
{
u8 ByteLane, DimmNum, OddByte, Addl_Index, Channel;
u8 EccRef1, EccRef2, EccDQSScale;
u32 val;
u16 word;
for (Channel = 0; Channel < 2; Channel ++) {
for (DimmNum = 0; DimmNum < C_MAX_DIMMS; DimmNum ++) { /* we use DimmNum instead of DimmNumx3 */
for (ByteLane = 0; ByteLane < 9; ByteLane ++) {
/* Get RxEn initial value from WrDqs */
if (ByteLane & 1)
OddByte = 1;
else
OddByte = 0;
if (ByteLane < 2)
Addl_Index = 0x30;
else if (ByteLane < 4)
Addl_Index = 0x31;
else if (ByteLane < 6)
Addl_Index = 0x40;
else if (ByteLane < 8)
Addl_Index = 0x41;
else
Addl_Index = 0x32;
Addl_Index += DimmNum * 3;
val = Get_NB32_index_wait(pDCTstat->dev_dct, Channel * 0x100 + 0x98, Addl_Index);
if (OddByte)
val >>= 16;
/* Save WrDqs to stack for later usage */
pDCTstat->CH_D_B_TxDqs[Channel][DimmNum][ByteLane] = val & 0xFF;
EccDQSScale = pDCTstat->CH_EccDQSScale[Channel];
word = pDCTstat->CH_EccDQSLike[Channel];
if ((word & 0xFF) == ByteLane) EccRef1 = val & 0xFF;
if (((word >> 8) & 0xFF) == ByteLane) EccRef2 = val & 0xFF;
}
}
}
}
static void EnableAutoRefresh_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat)
{
u32 val;
val = Get_NB32(pDCTstat->dev_dct, 0x8C);
val &= ~(1 << DisAutoRefresh);
Set_NB32(pDCTstat->dev_dct, 0x8C, val);
val = Get_NB32(pDCTstat->dev_dct, 0x8C + 0x100);
val &= ~(1 << DisAutoRefresh);
Set_NB32(pDCTstat->dev_dct, 0x8C + 0x100, val);
}
static void DisableAutoRefresh_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
u32 val;
val = Get_NB32(pDCTstat->dev_dct, 0x8C);
val |= 1 << DisAutoRefresh;
Set_NB32(pDCTstat->dev_dct, 0x8C, val);
val = Get_NB32(pDCTstat->dev_dct, 0x8C + 0x100);
val |= 1 << DisAutoRefresh;
Set_NB32(pDCTstat->dev_dct, 0x8C + 0x100, val);
}
static void PhyWLPass1(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct)
{
u8 dimm;
u16 DIMMValid;
void *DCTPtr;
dct &= 1;
DCTPtr = (void *)(pDCTstat->C_DCTPtr[dct]);
pDCTstat->DIMMValid = pDCTstat->DIMMValidDCT[dct];
pDCTstat->CSPresent = pDCTstat->CSPresent_DCT[dct];
if (pDCTstat->GangedMode & 1)
pDCTstat->CSPresent = pDCTstat->CSPresent_DCT[0];
if (pDCTstat->DIMMValid) {
DIMMValid = pDCTstat->DIMMValid;
PrepareC_DCT(pMCTstat, pDCTstat, dct);
for (dimm = 0; dimm < MAX_DIMMS_SUPPORTED; dimm ++) {
if (DIMMValid & (1 << (dimm << 1)))
AgesaHwWlPhase1(pDCTstat->C_MCTPtr, DCTPtr, dimm, FirstPass);
}
}
}
static void PhyWLPass2(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct)
{
u8 dimm;
u16 DIMMValid;
void *DCTPtr;
dct &= 1;
DCTPtr = (void *)&(pDCTstat->C_DCTPtr[dct]); /* todo: */
pDCTstat->DIMMValid = pDCTstat->DIMMValidDCT[dct];
pDCTstat->CSPresent = pDCTstat->CSPresent_DCT[dct];
if (pDCTstat->GangedMode & 1)
pDCTstat->CSPresent = pDCTstat->CSPresent_DCT[0];
if (pDCTstat->DIMMValid) {
DIMMValid = pDCTstat->DIMMValid;
PrepareC_DCT(pMCTstat, pDCTstat, dct);
pDCTstat->Speed = pDCTstat->DIMMAutoSpeed = pDCTstat->TargetFreq;
pDCTstat->CASL = pDCTstat->DIMMCASL = pDCTstat->TargetCASL;
SPD2ndTiming(pMCTstat, pDCTstat, dct);
ProgDramMRSReg_D(pMCTstat, pDCTstat, dct);
PlatformSpec_D(pMCTstat, pDCTstat, dct);
fenceDynTraining_D(pMCTstat, pDCTstat, dct);
Restore_OnDimmMirror(pMCTstat, pDCTstat);
StartupDCT_D(pMCTstat, pDCTstat, dct);
Clear_OnDimmMirror(pMCTstat, pDCTstat);
SetDllSpeedUp_D(pMCTstat, pDCTstat, dct);
DisableAutoRefresh_D(pMCTstat, pDCTstat);
MultiplyDelay(pMCTstat, pDCTstat, dct);
for (dimm = 0; dimm < MAX_DIMMS_SUPPORTED; dimm ++) {
if (DIMMValid & (1 << (dimm << 1)))
AgesaHwWlPhase1(pDCTstat->C_MCTPtr, pDCTstat->C_DCTPtr[dct], dimm, SecondPass);
}
}
}
static void WriteLevelization_HW(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
pDCTstat->C_MCTPtr = &(pDCTstat->s_C_MCTPtr);
pDCTstat->C_DCTPtr[0] = &(pDCTstat->s_C_DCTPtr[0]);
pDCTstat->C_DCTPtr[1] = &(pDCTstat->s_C_DCTPtr[1]);
/* Disable auto refresh by configuring F2x[1, 0]8C[DisAutoRefresh] = 1 */
DisableAutoRefresh_D(pMCTstat, pDCTstat);
/* Disable ZQ calibration short command by F2x[1,0]94[ZqcsInterval]=00b */
DisableZQcalibration(pMCTstat, pDCTstat);
PrepareC_MCT(pMCTstat, pDCTstat);
if (pDCTstat->GangedMode & (1 << 0)) {
pDCTstat->DIMMValidDCT[1] = pDCTstat->DIMMValidDCT[0];
}
PhyWLPass1(pMCTstat, pDCTstat, 0);
PhyWLPass1(pMCTstat, pDCTstat, 1);
if (pDCTstat->TargetFreq > 4) {
/* 8.Prepare the memory subsystem for the target MEMCLK frequency.
* Note: BIOS must program both DCTs to the same frequency.
*/
SetTargetFreq(pMCTstat, pDCTstat);
PhyWLPass2(pMCTstat, pDCTstat, 0);
PhyWLPass2(pMCTstat, pDCTstat, 1);
}
SetEccWrDQS_D(pMCTstat, pDCTstat);
EnableAutoRefresh_D(pMCTstat, pDCTstat);
EnableZQcalibration(pMCTstat, pDCTstat);
}
void mct_WriteLevelization_HW(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstatA)
{
u8 Node;
for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
struct DCTStatStruc *pDCTstat;
pDCTstat = pDCTstatA + Node;
if (pDCTstat->NodePresent) {
mctSMBhub_Init(Node);
Clear_OnDimmMirror(pMCTstat, pDCTstat);
WriteLevelization_HW(pMCTstat, pDCTstat);
Restore_OnDimmMirror(pMCTstat, pDCTstat);
}
}
}

View File

@@ -0,0 +1,252 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "mct_d.h"
static void SetMTRRrangeWB_D(u32 Base, u32 *pLimit, u32 *pMtrrAddr);
static void SetMTRRrange_D(u32 Base, u32 *pLimit, u32 *pMtrrAddr, u16 MtrrType);
void CPUMemTyping_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstatA)
{
/* BSP only. Set the fixed MTRRs for common legacy ranges.
* Set TOP_MEM and TOM2.
* Set some variable MTRRs with WB Uncacheable type.
*/
u32 Bottom32bIO, Bottom40bIO, Cache32bTOP;
u32 val;
u32 addr;
u32 lo, hi;
/* Set temporary top of memory from Node structure data.
* Adjust temp top of memory down to accomodate 32-bit IO space.
* Bottom40bIO=top of memory, right justified 8 bits
* (defines dram versus IO space type)
* Bottom32bIO=sub 4GB top of memory, right justified 8 bits
* (defines dram versus IO space type)
* Cache32bTOP=sub 4GB top of WB cacheable memory,
* right justified 8 bits
*/
val = mctGet_NVbits(NV_BottomIO);
if(val == 0)
val++;
Bottom32bIO = val << (24-8);
val = pMCTstat->SysLimit + 1;
if(val <= _4GB_RJ8) {
Bottom40bIO = 0;
if(Bottom32bIO >= val)
Bottom32bIO = val;
} else {
Bottom40bIO = val;
}
Cache32bTOP = Bottom32bIO;
/*======================================================================
Set default values for CPU registers
======================================================================*/
/* NOTE : For coreboot, we don't need to set mtrr enables here because
they are still enable from cache_as_ram.inc */
addr = 0x250;
lo = 0x1E1E1E1E;
hi = lo;
_WRMSR(addr, lo, hi); /* 0 - 512K = WB Mem */
addr = 0x258;
_WRMSR(addr, lo, hi); /* 512K - 640K = WB Mem */
/*======================================================================
Set variable MTRR values
======================================================================*/
/* NOTE: for coreboot change from 0x200 to 0x204: coreboot is using
0x200, 0x201 for [1M, CONFIG_TOP_MEM)
0x202, 0x203 for ROM Caching
*/
addr = 0x204; /* MTRR phys base 2*/
/* use TOP_MEM as limit*/
/* Limit=TOP_MEM|TOM2*/
/* Base=0*/
printk(BIOS_DEBUG, "\t CPUMemTyping: Cache32bTOP:%x\n", Cache32bTOP);
SetMTRRrangeWB_D(0, &Cache32bTOP, &addr);
/* Base */
/* Limit */
/* MtrrAddr */
if(addr == -1) /* ran out of MTRRs?*/
pMCTstat->GStatus |= 1<<GSB_MTRRshort;
pMCTstat->Sub4GCacheTop = Cache32bTOP<<8;
/*======================================================================
Set TOP_MEM and TOM2 CPU registers
======================================================================*/
addr = TOP_MEM;
lo = Bottom32bIO<<8;
hi = Bottom32bIO>>24;
_WRMSR(addr, lo, hi);
printk(BIOS_DEBUG, "\t CPUMemTyping: Bottom32bIO:%x\n", Bottom32bIO);
printk(BIOS_DEBUG, "\t CPUMemTyping: Bottom40bIO:%x\n", Bottom40bIO);
if(Bottom40bIO) {
hi = Bottom40bIO >> 24;
lo = Bottom40bIO << 8;
addr += 3; /* TOM2 */
_WRMSR(addr, lo, hi);
}
addr = 0xC0010010; /* SYS_CFG */
_RDMSR(addr, &lo, &hi);
if(Bottom40bIO) {
lo |= (1<<21); /* MtrrTom2En=1 */
lo |= (1<<22); /* Tom2ForceMemTypeWB */
} else {
lo &= ~(1<<21); /* MtrrTom2En=0 */
lo &= ~(1<<22); /* Tom2ForceMemTypeWB */
}
_WRMSR(addr, lo, hi);
}
static void SetMTRRrangeWB_D(u32 Base, u32 *pLimit, u32 *pMtrrAddr)
{
/*set WB type*/
SetMTRRrange_D(Base, pLimit, pMtrrAddr, 6);
}
static void SetMTRRrange_D(u32 Base, u32 *pLimit, u32 *pMtrrAddr, u16 MtrrType)
{
/* Program MTRRs to describe given range as given cache type.
* Use MTRR pairs starting with the given MTRRphys Base address,
* and use as many as is required up to (excluding) MSR 020C, which
* is reserved for OS.
*
* "Limit" in the context of this procedure is not the numerically
* correct limit, but rather the Last address+1, for purposes of coding
* efficiency and readability. Size of a region is then Limit-Base.
*
* 1. Size of each range must be a power of two
* 2. Each range must be naturally aligned (Base is same as size)
*
* There are two code paths: the ascending path and descending path
* (analogous to bsf and bsr), where the next limit is a funtion of the
* next set bit in a forward or backward sequence of bits (as a function
* of the Limit). We start with the ascending path, to ensure that
* regions are naturally aligned, then we switch to the descending path
* to maximize MTRR usage efficiency. Base=0 is a special case where we
* start with the descending path. Correct Mask for region is
* 2comp(Size-1)-1, which is 2comp(Limit-Base-1)-1
*/
u32 curBase, curLimit, curSize;
u32 val, valx;
u32 addr;
val = curBase = Base;
curLimit = *pLimit;
addr = *pMtrrAddr;
while((addr >= 0x200) && (addr < 0x20C) && (val < *pLimit)) {
/* start with "ascending" code path */
/* alignment (largest block size)*/
valx = 1 << bsf(curBase);
curSize = valx;
/* largest legal limit, given current non-zero range Base*/
valx += curBase;
if((curBase == 0) || (*pLimit < valx)) {
/* flop direction to "descending" code path*/
valx = 1<<bsr(*pLimit - curBase);
curSize = valx;
valx += curBase;
}
curLimit = valx; /*eax=curBase, edx=curLimit*/
valx = val>>24;
val <<= 8;
/* now program the MTRR */
val |= MtrrType; /* set cache type (UC or WB)*/
_WRMSR(addr, val, valx); /* prog. MTRR with current region Base*/
val = ((~(curSize - 1))+1) - 1; /* Size-1*/ /*Mask=2comp(Size-1)-1*/
valx = (val >> 24) | (0xff00); /* GH have 48 bits addr */
val <<= 8;
val |= ( 1 << 11); /* set MTRR valid*/
addr++;
_WRMSR(addr, val, valx); /* prog. MTRR with current region Mask*/
val = curLimit;
curBase = val; /* next Base = current Limit (loop exit)*/
addr++; /* next MTRR pair addr */
}
if(val < *pLimit) {
*pLimit = val;
addr = -1;
}
*pMtrrAddr = addr;
}
void UMAMemTyping_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA)
{
/* UMA memory size may need splitting the MTRR configuration into two
Before training use NB_BottomIO or the physical memory size to set the MTRRs.
After training, add UMAMemTyping function to reconfigure the MTRRs based on
NV_BottomUMA (for UMA systems only).
This two-step process allows all memory to be cached for training
*/
u32 Bottom32bIO, Cache32bTOP;
u32 val;
u32 addr;
u32 lo, hi;
/*======================================================================
* Adjust temp top of memory down to accomodate UMA memory start
*======================================================================*/
/* Bottom32bIO=sub 4GB top of memory, right justified 8 bits
* (defines dram versus IO space type)
* Cache32bTOP=sub 4GB top of WB cacheable memory, right justified 8 bits */
Bottom32bIO = pMCTstat->Sub4GCacheTop >> 8;
val = mctGet_NVbits(NV_BottomUMA);
if (val == 0)
val++;
val <<= (24-8);
if (val < Bottom32bIO) {
Cache32bTOP = val;
pMCTstat->Sub4GCacheTop = val;
/*======================================================================
* Clear variable MTRR values
*======================================================================*/
addr = 0x200;
lo = 0;
hi = lo;
while( addr < 0x20C) {
_WRMSR(addr, lo, hi); /* prog. MTRR with current region Mask */
addr++; /* next MTRR pair addr */
}
/*======================================================================
* Set variable MTRR values
*======================================================================*/
printk(BIOS_DEBUG, "\t UMAMemTyping_D: Cache32bTOP:%x\n", Cache32bTOP);
SetMTRRrangeWB_D(0, &Cache32bTOP, &addr);
if(addr == -1) /* ran out of MTRRs?*/
pMCTstat->GStatus |= 1<<GSB_MTRRshort;
}
}

View File

@@ -0,0 +1,230 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
void InterleaveNodes_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstatA)
{
/* Applies Node memory interleaving if enabled and if all criteria are met. */
u8 Node;
u32 Base;
u32 MemSize, MemSize0 = 0;
u32 Dct0MemSize = 0, DctSelBase, DctSelBaseOffset;
u8 Nodes;
u8 NodesWmem;
u8 DoIntlv;
u8 _NdIntCap;
u8 _SWHole;
u32 HWHoleSz;
u32 DramHoleAddrReg;
u32 HoleBase;
u32 dev0;
u32 reg0;
u32 val;
u8 i;
struct DCTStatStruc *pDCTstat;
DoIntlv = mctGet_NVbits(NV_NodeIntlv);
_NdIntCap = 0;
HWHoleSz = 0; /*For HW remapping, NOT Node hoisting. */
pDCTstat = pDCTstatA + 0;
dev0 = pDCTstat->dev_host;
Nodes = ((Get_NB32(dev0, 0x60) >> 4) & 0x7) + 1;
dev0 = pDCTstat->dev_map;
reg0 = 0x40;
NodesWmem = 0;
Node = 0;
while (DoIntlv && (Node < Nodes)) {
pDCTstat = pDCTstatA + Node;
if (pMCTstat->GStatus & (1 << GSB_SpIntRemapHole)) {
pMCTstat->GStatus |= 1 << GSB_HWHole;
_SWHole = 0;
} else if (pDCTstat->Status & (1 << SB_SWNodeHole)) {
_SWHole = 1;
} else {
_SWHole = 0;
}
if(!_SWHole) {
Base = Get_NB32(dev0, reg0);
if (Base & 1) {
NodesWmem++;
Base &= 0xFFFF0000; /* Base[39:8] */
if (pDCTstat->Status & (1 << SB_HWHole )) {
/* to get true amount of dram,
* subtract out memory hole if HW dram remapping */
DramHoleAddrReg = Get_NB32(pDCTstat->dev_map, 0xF0);
HWHoleSz = DramHoleAddrReg >> 16;
HWHoleSz = (((~HWHoleSz) + 1) & 0xFF);
HWHoleSz <<= 24-8;
}
/* check to see if the amount of memory on each channel
* are the same on all nodes */
DctSelBase = Get_NB32(pDCTstat->dev_dct, 0x114);
if(DctSelBase) {
DctSelBase <<= 8;
if ( pDCTstat->Status & (1 << SB_HWHole)) {
if (DctSelBase >= 0x1000000) {
DctSelBase -= HWHoleSz;
}
}
DctSelBaseOffset -= Base;
if (Node == 0) {
Dct0MemSize = DctSelBase;
} else if (DctSelBase != Dct0MemSize) {
break;
}
}
MemSize = Get_NB32(dev0, reg0 + 4);
MemSize &= 0xFFFF0000;
MemSize += 0x00010000;
MemSize -= Base;
if ( pDCTstat->Status & (1 << SB_HWHole)) {
MemSize -= HWHoleSz;
}
if (Node == 0) {
MemSize0 = MemSize;
} else if (MemSize0 != MemSize) {
break;
}
} else {
break;
}
} else {
break;
}
Node++;
reg0 += 8;
}
if (Node == Nodes) {
/* if all nodes have memory and no Node had SW memhole */
if (Nodes == 2 || Nodes == 4 || Nodes == 8)
_NdIntCap = 1;
}
if (!_NdIntCap)
DoIntlv = 0;
if (pMCTstat->GStatus & 1 << (GSB_SpIntRemapHole)) {
HWHoleSz = pMCTstat->HoleBase;
if (HWHoleSz == 0) {
HWHoleSz = mctGet_NVbits(NV_BottomIO) & 0xFF;
HWHoleSz <<= 24-8;
}
HWHoleSz = ((~HWHoleSz) + 1) & 0x00FF0000;
}
if (DoIntlv) {
MCTMemClr_D(pMCTstat,pDCTstatA);
/* Program Interleaving enabled on Node 0 map only.*/
MemSize0 <<= bsf(Nodes); /* MemSize=MemSize*2 (or 4, or 8) */
Dct0MemSize <<= bsf(Nodes);
MemSize0 += HWHoleSz;
Base = ((Nodes - 1) << 8) | 3;
reg0 = 0x40;
Node = 0;
while(Node < Nodes) {
Set_NB32(dev0, reg0, Base);
MemSize = MemSize0;
MemSize--;
MemSize &= 0xFFFF0000;
MemSize |= Node << 8; /* set IntlvSel[2:0] field */
MemSize |= Node; /* set DstNode[2:0] field */
Set_NB32(dev0, reg0 + 4, MemSize0);
reg0 += 8;
Node++;
}
/* set base/limit to F1x120/124 per Node */
Node = 0;
while(Node < Nodes) {
pDCTstat = pDCTstatA + Node;
pDCTstat->NodeSysBase = 0;
MemSize = MemSize0;
MemSize -= HWHoleSz;
MemSize--;
pDCTstat->NodeSysLimit = MemSize;
Set_NB32(pDCTstat->dev_map, 0x120, Node << 21);
MemSize = MemSize0;
MemSize--;
MemSize >>= 19;
val = Base;
val &= 0x700;
val <<= 13;
val |= MemSize;
Set_NB32(pDCTstat->dev_map, 0x124, val);
if (pMCTstat->GStatus & (1 << GSB_HWHole)) {
HoleBase = pMCTstat->HoleBase;
if (Dct0MemSize >= HoleBase) {
val = HWHoleSz;
if( Node == 0) {
val += Dct0MemSize;
}
} else {
val = HWHoleSz + Dct0MemSize;
}
val >>= 8; /* DramHoleOffset */
HoleBase <<= 8; /* DramHoleBase */
val |= HoleBase;
val |= 1 << DramMemHoistValid;
val |= 1 << DramHoleValid;
Set_NB32(pDCTstat->dev_map, 0xF0, val);
}
Set_NB32(pDCTstat->dev_dct, 0x114, Dct0MemSize >> 8); /* DctSelBaseOffset */
val = Get_NB32(pDCTstat->dev_dct, 0x110);
val &= 0x7FF;
val |= Dct0MemSize >> 8;
Set_NB32(pDCTstat->dev_dct, 0x110, val); /* DctSelBaseAddr */
printk(BIOS_DEBUG, "InterleaveNodes: DRAM Controller Select Low Register = %x\n", val);
Node++;
}
/* Copy Node 0 into other Nodes' CSRs */
Node = 1;
while (Node < Nodes) {
pDCTstat = pDCTstatA + Node;
for (i = 0x40; i <= 0x80; i++) {
val = Get_NB32(dev0, i);
Set_NB32(pDCTstat->dev_map, i, val);
}
val = Get_NB32(dev0, 0xF0);
Set_NB32(pDCTstat->dev_map, 0xF0, val);
Node++;
}
pMCTstat->GStatus = (1 << GSB_NodeIntlv);
}
printk(BIOS_DEBUG, "InterleaveNodes_D: Status %x\n", pDCTstat->Status);
printk(BIOS_DEBUG, "InterleaveNodes_D: ErrStatus %x\n", pDCTstat->ErrStatus);
printk(BIOS_DEBUG, "InterleaveNodes_D: ErrCode %x\n", pDCTstat->ErrCode);
printk(BIOS_DEBUG, "InterleaveNodes_D: Done\n\n");
}

View File

@@ -0,0 +1,37 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
void mct_BeforeDQSTrainSamp(struct DCTStatStruc *pDCTstat)
{
u32 val;
if (pDCTstat->LogicalCPUID & AMD_DR_Bx) {
Set_NB32(pDCTstat->dev_dct, 0x98, 0x0D004007);
val = Get_NB32(pDCTstat->dev_dct, 0x9C);
val |= 0x3FF;
Set_NB32(pDCTstat->dev_dct, 0x9C, val);
Set_NB32(pDCTstat->dev_dct, 0x98, 0x4D0F4F07);
Set_NB32(pDCTstat->dev_dct, 0x198, 0x0D004007);
val = Get_NB32(pDCTstat->dev_dct, 0x19C);
val |= 0x3FF;
Set_NB32(pDCTstat->dev_dct, 0x19C, val);
Set_NB32(pDCTstat->dev_dct, 0x198, 0x4D0F4F07);
}
}

View File

@@ -0,0 +1,45 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
u32 mct_SetDramConfigMisc2(struct DCTStatStruc *pDCTstat, u8 dct, u32 misc2)
{
u32 val;
if (pDCTstat->LogicalCPUID & (AMD_DR_Dx | AMD_DR_Cx)) {
if (pDCTstat->Status & (1 << SB_Registered)) {
misc2 |= 1 << SubMemclkRegDly;
if (mctGet_NVbits(NV_MAX_DIMMS) == 8)
misc2 |= 1 << Ddr3FourSocketCh;
else
misc2 &= ~(1 << Ddr3FourSocketCh);
}
if (pDCTstat->LogicalCPUID & AMD_DR_Cx)
misc2 |= 1 << OdtSwizzle;
val = Get_NB32(pDCTstat->dev_dct, dct * 0x100 + 0x78);
val &= 7;
val = ((~val) & 0xFF) + 1;
val += 6;
val &= 0xFF;
misc2 &= 0xFFF8FFFF;
misc2 |= val << 16; /* DataTxFifoWrDly */
}
return misc2;
}

View File

@@ -0,0 +1,190 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
static u32 mct_ControlRC(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u32 MrsChipSel, u32 CtrlWordNum)
{
u8 Dimms, DimmNum, MaxDimm, Speed;
u32 val;
DimmNum = MrsChipSel >> 20;
/* assume dct=0; */
/* if (dct == 1) */
/* DimmNum ++; */
/* cl +=8; */
MaxDimm = mctGet_NVbits(NV_MAX_DIMMS);
Speed = pDCTstat->DIMMAutoSpeed;
/* if (dct == 0) */
Dimms = pDCTstat->MAdimms[0];
val = 0;
if (CtrlWordNum == 0)
val |= 1 << 1;
else if (CtrlWordNum == 1) {
if (!((pDCTstat->DimmDRPresent | pDCTstat->DimmQRPresent) & (1 << DimmNum)))
val |= 0xC; /* if single rank, set DBA1 and DBA0 */
}
else if (CtrlWordNum == 2) {
if (MaxDimm == 4) {
if (Speed == 4) {
if (((pDCTstat->DimmQRPresent & (1 << DimmNum)) && (Dimms == 1)) || Dimms == 2)
if (!(pDCTstat->MirrPresU_NumRegR & (1 << DimmNum)))
val |= 1 << 2;
} else {
if (pDCTstat->MirrPresU_NumRegR & (1 << DimmNum))
val |= 2;
}
} else {
if (Dimms > 1)
val |= 2;
}
} else if (CtrlWordNum == 3) {
val = pDCTstat->CtrlWrd3 >> (DimmNum << 2);
} else if (CtrlWordNum == 4) {
val = pDCTstat->CtrlWrd4 >> (DimmNum << 2);
} else if (CtrlWordNum == 5) {
val = pDCTstat->CtrlWrd5 >> (DimmNum << 2);
} else if (CtrlWordNum == 8) {
if (MaxDimm == 4)
if (Speed == 4)
if (pDCTstat->MirrPresU_NumRegR & (1 << DimmNum))
val |= 1 << 2;
} else if (CtrlWordNum == 9) {
val |= 0xD; /* DBA1, DBA0, DA3 = 0 */
}
val &= 0xf;
val = MrsChipSel | ((val >> 2) & 3) << 16 | MrsChipSel | ((val >> 2) & 3);
/* transfer Control word number to address [BA2,A2,A1,A0] */
if (CtrlWordNum > 7) {
val |= 1 << 18;
CtrlWordNum &= 7;
}
val |= CtrlWordNum;
return val;
}
static void mct_SendCtrlWrd(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u32 val)
{
u32 dev = pDCTstat->dev_dct;
val |= Get_NB32(dev, 0x7C) & ~0xFFFFFF;
val |= 1 << SendControlWord;
Set_NB32(dev, 0x7C, val);
do {
val = Get_NB32(dev, 0x7C);
} while (val & (1 << SendControlWord));
}
void mct_DramControlReg_Init_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct)
{
u8 MrsChipSel;
u32 dev = pDCTstat->dev_dct;
u32 val, cw;
mct_Wait(1600);
mct_Wait(1200);
for (MrsChipSel = 0; MrsChipSel < 8; MrsChipSel ++, MrsChipSel ++) {
if (pDCTstat->CSPresent & (1 << MrsChipSel)) {
val = Get_NB32(dev, 0xA8);
val &= ~(0xF << 8);
switch (MrsChipSel) {
case 0:
case 1:
val |= 3 << 8;
case 2:
case 3:
val |= (3 << 2) << 8;
case 4:
case 5:
val |= (3 << 4) << 8;
case 6:
case 7:
val |= (3 << 6) << 8;
}
Set_NB32(dev, 0xA8, val);
for (cw=0; cw <=15; cw ++) {
mct_Wait(1600);
if (!(cw==6 || cw==7)) {
val = mct_ControlRC(pMCTstat, pDCTstat, MrsChipSel << 20, cw);
mct_SendCtrlWrd(pMCTstat, pDCTstat, val);
}
}
}
}
mct_Wait(1200);
}
void FreqChgCtrlWrd(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
u32 SaveSpeed = pDCTstat->DIMMAutoSpeed;
u32 MrsChipSel;
u32 dev = pDCTstat->dev_dct;
u32 val;
pDCTstat->DIMMAutoSpeed = pDCTstat->TargetFreq;
for (MrsChipSel=0; MrsChipSel < 8; MrsChipSel++, MrsChipSel++) {
if (pDCTstat->CSPresent & (1 << MrsChipSel)) {
val = Get_NB32(dev, 0xA8);
val &= ~(0xFF << 8);
val |= (0x3 << MrsChipSel) << 8;
Set_NB32(dev, 0xA8, val);
mct_Wait(1600);
switch (pDCTstat->TargetFreq) {
case 6:
mct_SendCtrlWrd(pMCTstat, pDCTstat, MrsChipSel << 20 | 0x4000A);
break;
case 5:
mct_SendCtrlWrd(pMCTstat, pDCTstat, MrsChipSel << 20 | 0x40012);
break;
case 7:
mct_SendCtrlWrd(pMCTstat, pDCTstat, MrsChipSel << 20 | 0x4001A);
break;
}
mct_Wait(1600);
val = mct_ControlRC(pMCTstat, pDCTstat, MrsChipSel << 20, 2);
mct_SendCtrlWrd(pMCTstat, pDCTstat, val);
mct_Wait(1600);
/* Resend control word 8 */
val = mct_ControlRC(pMCTstat, pDCTstat, MrsChipSel << 20, 8);
mct_SendCtrlWrd(pMCTstat, pDCTstat, val);
mct_Wait(1600);
}
}
pDCTstat->DIMMAutoSpeed = SaveSpeed;
}

View File

@@ -0,0 +1,326 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
static void mct_DramControlReg_Init_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct);
static void mct_DCTAccessDone(struct DCTStatStruc *pDCTstat, u8 dct)
{
u32 reg_off = 0x100 * dct;
u32 dev = pDCTstat->dev_dct;
u32 val;
do {
val = Get_NB32(dev, reg_off + 0x98);
} while (!(val & (1 << DctAccessDone)));
}
static u32 swapAddrBits(struct DCTStatStruc *pDCTstat, u32 MR_register_setting, u8 MrsChipSel, u8 dct)
{
u16 word;
u32 ret;
if (!(pDCTstat->Status & (1 << SB_Registered))) {
word = pDCTstat->MirrPresU_NumRegR;
if (dct == 0) {
word &= 0x55;
word <<= 1;
} else
word &= 0xAA;
if (word & (1 << MrsChipSel)) {
/* A3<->A4,A5<->A6,A7<->A8,BA0<->BA1 */
ret = 0;
if (MR_register_setting & (1 << 3)) ret |= 1 << 4;
if (MR_register_setting & (1 << 4)) ret |= 1 << 3;
if (MR_register_setting & (1 << 5)) ret |= 1 << 6;
if (MR_register_setting & (1 << 6)) ret |= 1 << 5;
if (MR_register_setting & (1 << 7)) ret |= 1 << 8;
if (MR_register_setting & (1 << 8)) ret |= 1 << 7;
if (MR_register_setting & (1 << 16)) ret |= 1 << 17;
if (MR_register_setting & (1 << 17)) ret |= 1 << 16;
MR_register_setting &= ~0x301f8;
MR_register_setting |= ret;
}
}
return MR_register_setting;
}
static void mct_SendMrsCmd(struct DCTStatStruc *pDCTstat, u8 dct, u32 EMRS)
{
u32 reg_off = 0x100 * dct;
u32 dev = pDCTstat->dev_dct;
u32 val;
val = Get_NB32(dev, reg_off + 0x7C);
val &= ~0xFFFFFF;
val |= EMRS;
val |= 1 << SendMrsCmd;
Set_NB32(dev, reg_off + 0x7C, val);
do {
val = Get_NB32(dev, reg_off + 0x7C);
} while (val & (1 << SendMrsCmd));
}
static u32 mct_MR2(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct, u32 MrsChipSel)
{
u32 reg_off = 0x100 * dct;
u32 dev = pDCTstat->dev_dct;
u32 dword, ret;
ret = 0x20000;
ret |= MrsChipSel;
/* program MrsAddress[5:3]=CAS write latency (CWL):
* based on F2x[1,0]84[Tcwl] */
dword = Get_NB32(dev, reg_off + 0x84);
dword = mct_AdjustSPDTimings(pMCTstat, pDCTstat, dword);
ret |= ((dword >> 20) & 7) << 3;
/* program MrsAddress[6]=auto self refresh method (ASR):
based on F2x[1,0]84[ASR]
program MrsAddress[7]=self refresh temperature range (SRT):
based on F2x[1,0]84[ASR and SRT] */
ret |= ((dword >> 18) & 3) << 6;
/* program MrsAddress[10:9]=dynamic termination during writes (RTT_WR)
based on F2x[1,0]84[DramTermDyn] */
ret |= ((dword >> 10) & 3) << 9;
return ret;
}
static u32 mct_MR3(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct, u32 MrsChipSel)
{
u32 reg_off = 0x100 * dct;
u32 dev = pDCTstat->dev_dct;
u32 dword, ret;
ret = 0x30000;
ret |= MrsChipSel;
/* program MrsAddress[1:0]=multi purpose register address location
(MPR Location):based on F2x[1,0]84[MprLoc]
program MrsAddress[2]=multi purpose register
(MPR):based on F2x[1,0]84[MprEn]
*/
dword = Get_NB32(dev, reg_off + 0x84);
ret |= (dword >> 24) & 7;
return ret;
}
static u32 mct_MR1(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct, u32 MrsChipSel)
{
u32 reg_off = 0x100 * dct;
u32 dev = pDCTstat->dev_dct;
u32 dword, ret;
ret = 0x10000;
ret |= MrsChipSel;
/* program MrsAddress[5,1]=output driver impedance control (DIC):
* based on F2x[1,0]84[DrvImpCtrl] */
dword = Get_NB32(dev, reg_off + 0x84);
if (dword & (1 << 3))
ret |= 1 << 5;
if (dword & (1 << 2))
ret |= 1 << 1;
/* program MrsAddress[9,6,2]=nominal termination resistance of ODT (RTT):
based on F2x[1,0]84[DramTerm] */
if (!(pDCTstat->Status & (1 << SB_Registered))) {
if (dword & (1 << 9))
ret |= 1 << 9;
if (dword & (1 << 8))
ret |= 1 << 6;
if (dword & (1 << 7))
ret |= 1 << 2;
} else {
/* TODO: mct_MR1Odt_RDimm */
}
/* program MrsAddress[11]=TDQS: based on F2x[1,0]94[RDqsEn] */
if (Get_NB32(dev, reg_off + 0x94) & (1 << RDqsEn)) {
u8 bit;
/* Set TDQS=1b for x8 DIMM, TDQS=0b for x4 DIMM, when mixed x8 & x4 */
bit = (ret >> 21) << 1;
if ((dct & 1) != 0)
bit ++;
if (pDCTstat->Dimmx8Present & (1 << bit))
ret |= 1 << 11;
}
if (dword & (1 << 13))
ret |= 1 << 12;
return ret;
}
static u32 mct_MR0(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct, u32 MrsChipSel)
{
u32 reg_off = 0x100 * dct;
u32 dev = pDCTstat->dev_dct;
u32 dword, ret, dword2;
ret = 0x00000;
ret |= MrsChipSel;
/* program MrsAddress[1:0]=burst length and control method
(BL):based on F2x[1,0]84[BurstCtrl] */
dword = Get_NB32(dev, reg_off + 0x84);
ret |= dword & 3;
/* program MrsAddress[3]=1 (BT):interleaved */
ret |= 1 << 3;
/* program MrsAddress[6:4,2]=read CAS latency
(CL):based on F2x[1,0]88[Tcl] */
dword2 = Get_NB32(dev, reg_off + 0x88);
ret |= (dword2 & 0xF) << 4; /* F2x88[3:0] to MrsAddress[6:4,2]=xxx0b */
/* program MrsAddress[12]=0 (PPD):slow exit */
if (dword & (1 << 23))
ret |= 1 << 12;
/* program MrsAddress[11:9]=write recovery for auto-precharge
(WR):based on F2x[1,0]84[Twr] */
ret |= ((dword >> 4) & 7) << 9;
/* program MrsAddress[8]=1 (DLL):DLL reset
just issue DLL reset at first time */
ret |= 1 << 8;
return ret;
}
static void mct_SendZQCmd(struct DCTStatStruc *pDCTstat, u8 dct)
{
u32 reg_off = 0x100 * dct;
u32 dev = pDCTstat->dev_dct;
u32 dword;
/*1.Program MrsAddress[10]=1
2.Set SendZQCmd=1
*/
dword = Get_NB32(dev, reg_off + 0x7C);
dword &= ~0xFFFFFF;
dword |= 1 << 10;
dword |= 1 << SendZQCmd;
Set_NB32(dev, reg_off + 0x7C, dword);
/* Wait for SendZQCmd=0 */
do {
dword = Get_NB32(dev, reg_off + 0x7C);
} while (dword & (1 << SendZQCmd));
/* 4.Wait 512 MEMCLKs */
mct_Wait(300);
}
void mct_DramInit_Sw_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct)
{
u8 MrsChipSel;
u32 dword;
u32 reg_off = 0x100 * dct;
u32 dev = pDCTstat->dev_dct;
if (pDCTstat->DIMMAutoSpeed == 4) {
/* 3.Program F2x[1,0]7C[EnDramInit]=1 */
dword = Get_NB32(dev, reg_off + 0x7C);
dword |= 1 << EnDramInit;
Set_NB32(dev, reg_off + 0x7C, dword);
mct_DCTAccessDone(pDCTstat, dct);
/* 4.wait 200us */
mct_Wait(40000);
/* 5.On revision C processors, program F2x[1, 0]7C[DeassertMemRstX] = 1. */
dword = Get_NB32(dev, reg_off + 0x7C);
dword |= 1 << DeassertMemRstX;
Set_NB32(dev, reg_off + 0x7C, dword);
/* 6.wait 500us */
mct_Wait(200000);
/* 7.Program F2x[1,0]7C[AssertCke]=1 */
dword = Get_NB32(dev, reg_off + 0x7C);
dword |= 1 << AssertCke;
Set_NB32(dev, reg_off + 0x7C, dword);
/* 8.wait 360ns */
mct_Wait(80);
/* The following steps are performed with registered DIMMs only and
* must be done for each chip select pair */
if (pDCTstat->Status & (1 << SB_Registered))
mct_DramControlReg_Init_D(pMCTstat, pDCTstat, dct);
}
/* The following steps are performed once for unbuffered DIMMs and once for each
* chip select on registered DIMMs: */
for (MrsChipSel = 0; MrsChipSel < 8; MrsChipSel++) {
if (pDCTstat->CSPresent & (1 << MrsChipSel)) {
u32 EMRS;
/* 13.Send EMRS(2) */
EMRS = mct_MR2(pMCTstat, pDCTstat, dct, MrsChipSel << 20);
EMRS = swapAddrBits(pDCTstat, EMRS, MrsChipSel, dct);
mct_SendMrsCmd(pDCTstat, dct, EMRS);
/* 14.Send EMRS(3). Ordinarily at this time, MrsAddress[2:0]=000b */
EMRS= mct_MR3(pMCTstat, pDCTstat, dct, MrsChipSel << 20);
EMRS = swapAddrBits(pDCTstat, EMRS, MrsChipSel, dct);
mct_SendMrsCmd(pDCTstat, dct, EMRS);
/* 15.Send EMRS(1) */
EMRS= mct_MR1(pMCTstat, pDCTstat, dct, MrsChipSel << 20);
EMRS = swapAddrBits(pDCTstat, EMRS, MrsChipSel, dct);
mct_SendMrsCmd(pDCTstat, dct, EMRS);
/* 16.Send MRS with MrsAddress[8]=1(reset the DLL) */
EMRS= mct_MR0(pMCTstat, pDCTstat, dct, MrsChipSel << 20);
EMRS = swapAddrBits(pDCTstat, EMRS, MrsChipSel, dct);
mct_SendMrsCmd(pDCTstat, dct, EMRS);
if (pDCTstat->DIMMAutoSpeed == 4)
if (!(pDCTstat->Status & (1 << SB_Registered)))
break; /* For UDIMM, only send MR commands once per channel */
}
if (pDCTstat->LogicalCPUID & (AMD_DR_Cx/* | AMD_RB_C0 */)) /* We dont support RB_C0 now. need to be added and tested. */
if (!(pDCTstat->Status & (1 << SB_Registered)))
MrsChipSel ++;
}
mct_Wait(100000);
if (pDCTstat->DIMMAutoSpeed == 4) {
/* 17.Send two ZQCL commands */
mct_SendZQCmd(pDCTstat, dct);
mct_SendZQCmd(pDCTstat, dct);
/* 18.Program F2x[1,0]7C[EnDramInit]=0 */
dword = Get_NB32(dev, reg_off + 0x7C);
dword &= ~(1 << EnDramInit);
Set_NB32(dev, reg_off + 0x7C, dword);
mct_DCTAccessDone(pDCTstat, dct);
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,85 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
u8 mct_checkNumberOfDqsRcvEn_1Pass(u8 pass)
{
u8 ret = 1;
if (pass == SecondPass)
ret = 0;
return ret;
}
u32 SetupDqsPattern_1PassA(u8 pass)
{
return (u32) TestPattern1_D;
}
u32 SetupDqsPattern_1PassB(u8 pass)
{
return (u32) TestPattern0_D;
}
u8 mct_Get_Start_RcvrEnDly_1Pass(u8 pass)
{
return 0;
}
static u8 mct_Average_RcvrEnDly_1Pass(struct DCTStatStruc *pDCTstat, u8 Channel, u8 Receiver,
u8 Pass)
{
u8 i, MaxValue;
u8 *p;
u8 val;
MaxValue = 0;
p = pDCTstat->CH_D_B_RCVRDLY[Channel][Receiver >> 1];
for(i=0; i < 8; i++) {
/* get left value from DCTStatStruc.CHA_D0_B0_RCVRDLY*/
val = p[i];
/* get right value from DCTStatStruc.CHA_D0_B0_RCVRDLY_1*/
val += Pass1MemClkDly;
/* write back the value to stack */
if (val > MaxValue)
MaxValue = val;
p[i] = val;
}
/* pDCTstat->DimmTrainFail &= ~(1<<Receiver+Channel); */
return MaxValue;
}
u8 mct_SaveRcvEnDly_D_1Pass(struct DCTStatStruc *pDCTstat, u8 pass)
{
u8 ret;
ret = 0;
if((pDCTstat->DqsRcvEn_Pass == 0xff) && (pass== FirstPass))
ret = 2;
return ret;
}
u8 mct_Average_RcvrEnDly_Pass(struct DCTStatStruc *pDCTstat,
u8 RcvrEnDly, u8 RcvrEnDlyLimit,
u8 Channel, u8 Receiver, u8 Pass)
{
return mct_Average_RcvrEnDly_1Pass(pDCTstat, Channel, Receiver, Pass);
}

View File

@@ -0,0 +1,129 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
u8 mct_checkNumberOfDqsRcvEn_Pass(u8 pass)
{
return 1;
}
u32 SetupDqsPattern_PassA(u8 Pass)
{
u32 ret;
if(Pass == FirstPass)
ret = (u32) TestPattern1_D;
else
ret = (u32) TestPattern2_D;
return ret;
}
u32 SetupDqsPattern_PassB(u8 Pass)
{
u32 ret;
if(Pass == FirstPass)
ret = (u32) TestPattern0_D;
else
ret = (u32) TestPattern2_D;
return ret;
}
u8 mct_Get_Start_RcvrEnDly_Pass(struct DCTStatStruc *pDCTstat,
u8 Channel, u8 Receiver,
u8 Pass)
{
u8 RcvrEnDly;
if (Pass == FirstPass)
RcvrEnDly = 0;
else {
u8 max = 0;
u8 val;
u8 i;
u8 *p = pDCTstat->CH_D_B_RCVRDLY[Channel][Receiver>>1];
u8 bn;
bn = 8;
for ( i=0;i<bn; i++) {
val = p[i];
if(val > max) {
max = val;
}
}
RcvrEnDly = max;
}
return RcvrEnDly;
}
u8 mct_Average_RcvrEnDly_Pass(struct DCTStatStruc *pDCTstat,
u8 RcvrEnDly, u8 RcvrEnDlyLimit,
u8 Channel, u8 Receiver, u8 Pass)
{
u8 i;
u8 *p;
u8 *p_1;
u8 val;
u8 val_1;
u8 valid = 1;
u8 bn;
bn = 8;
p = pDCTstat->CH_D_B_RCVRDLY[Channel][Receiver>>1];
if (Pass == SecondPass) { /* second pass must average values */
/* FIXME: which byte? */
p_1 = pDCTstat->B_RCVRDLY_1;
/* p_1 = pDCTstat->CH_D_B_RCVRDLY_1[Channel][Receiver>>1]; */
for(i=0; i<bn; i++) {
val = p[i];
/* left edge */
if (val != (RcvrEnDlyLimit - 1)) {
val -= Pass1MemClkDly;
val_1 = p_1[i];
val += val_1;
val >>= 1;
p[i] = val;
} else {
valid = 0;
break;
}
}
if (!valid) {
pDCTstat->ErrStatus |= 1<<SB_NORCVREN;
} else {
pDCTstat->DimmTrainFail &= ~(1<<(Receiver + Channel));
}
} else {
for(i=0; i < bn; i++) {
val = p[i];
/* Add 1/2 Memlock delay */
/* val += Pass1MemClkDly; */
val += 0x5; /* NOTE: middle value with DQSRCVEN_SAVED_GOOD_TIMES */
/* val += 0x02; */
p[i] = val;
pDCTstat->DimmTrainFail &= ~(1<<(Receiver + Channel));
}
}
return RcvrEnDly;
}

View File

@@ -0,0 +1,399 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Description: Max Read Latency Training feature for DDR 3 MCT
*/
static u8 CompareMaxRdLatTestPattern_D(u32 pattern_buf, u32 addr);
static u32 GetMaxRdLatTestAddr_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 Channel,
u8 *MaxRcvrEnDly, u8 *valid);
u8 mct_GetStartMaxRdLat_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 Channel,
u8 DQSRcvEnDly, u32 *Margin);
static void maxRdLatencyTrain_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat);
static void mct_setMaxRdLatTrnVal_D(struct DCTStatStruc *pDCTstat, u8 Channel,
u16 MaxRdLatVal);
/*Warning: These must be located so they do not cross a logical 16-bit
segment boundary!*/
static const u32 TestMaxRdLAtPattern_D[] = {
0x6E0E3FAC, 0x0C3CFF52,
0x4A688181, 0x49C5B613,
0x7C780BA6, 0x5C1650E3,
0x0C4F9D76, 0x0C6753E6,
0x205535A5, 0xBABFB6CA,
0x610E6E5F, 0x0C5F1C87,
0x488493CE, 0x14C9C383,
0xF5B9A5CD, 0x9CE8F615,
0xAAD714B5, 0xC38F1B4C,
0x72ED647C, 0x669F7562,
0x5233F802, 0x4A898B30,
0x10A40617, 0x3326B465,
0x55386E04, 0xC807E3D3,
0xAB49E193, 0x14B4E63A,
0x67DF2495, 0xEA517C45,
0x7624CE51, 0xF8140C51,
0x4824BD23, 0xB61DD0C9,
0x072BCFBE, 0xE8F3807D,
0x919EA373, 0x25E30C47,
0xFEB12958, 0x4DA80A5A,
0xE9A0DDF8, 0x792B0076,
0xE81C73DC, 0xF025B496,
0x1DB7E627, 0x808594FE,
0x82668268, 0x655C7783,
};
static u32 SetupMaxRdPattern(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat,
u32 *buffer)
{
/* 1. Copy the alpha and Beta patterns from ROM to Cache,
* aligning on 16 byte boundary
* 2. Set the ptr to Cacheable copy in DCTStatstruc.PtrPatternBufA
* for Alpha
* 3. Set the ptr to Cacheable copy in DCTStatstruc.PtrPatternBufB
* for Beta
*/
u32 *buf;
u8 i;
buf = (u32 *)(((u32)buffer + 0x10) & (0xfffffff0));
for(i = 0; i < (16 * 3); i++) {
buf[i] = TestMaxRdLAtPattern_D[i];
}
return (u32)buf;
}
void TrainMaxReadLatency_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstatA)
{
u8 Node;
for(Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
struct DCTStatStruc *pDCTstat;
pDCTstat = pDCTstatA + Node;
if(!pDCTstat->NodePresent)
break;
if(pDCTstat->DCTSysLimit)
maxRdLatencyTrain_D(pMCTstat, pDCTstat);
}
}
static void maxRdLatencyTrain_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
u8 Channel;
u32 TestAddr0;
u8 _DisableDramECC = 0, _Wrap32Dis = 0, _SSE2 = 0;
u16 MaxRdLatDly;
u8 RcvrEnDly = 0;
u32 PatternBuffer[60]; /* FIXME: why not 48 + 4 */
u32 Margin;
u32 addr;
u32 cr4;
u32 lo, hi;
u8 valid;
u32 pattern_buf;
cr4 = read_cr4();
if(cr4 & (1<<9)) { /* save the old value */
_SSE2 = 1;
}
cr4 |= (1<<9); /* OSFXSR enable SSE2 */
write_cr4(cr4);
addr = HWCR;
_RDMSR(addr, &lo, &hi);
if(lo & (1<<17)) { /* save the old value */
_Wrap32Dis = 1;
}
lo |= (1<<17); /* HWCR.wrap32dis */
lo &= ~(1<<15); /* SSEDIS */
/* Setting wrap32dis allows 64-bit memory references in
real mode */
_WRMSR(addr, lo, hi);
_DisableDramECC = mct_DisableDimmEccEn_D(pMCTstat, pDCTstat);
pattern_buf = SetupMaxRdPattern(pMCTstat, pDCTstat, PatternBuffer);
for (Channel = 0; Channel < 2; Channel++) {
print_debug_dqs("\tMaxRdLatencyTrain51: Channel ",Channel, 1);
pDCTstat->Channel = Channel;
if( (pDCTstat->Status & (1 << SB_128bitmode)) && Channel)
break; /*if ganged mode, skip DCT 1 */
TestAddr0 = GetMaxRdLatTestAddr_D(pMCTstat, pDCTstat, Channel, &RcvrEnDly, &valid);
if(!valid) /* Address not supported on current CS */
continue;
/* rank 1 of DIMM, testpattern 0 */
WriteMaxRdLat1CLTestPattern_D(pattern_buf, TestAddr0);
MaxRdLatDly = mct_GetStartMaxRdLat_D(pMCTstat, pDCTstat, Channel, RcvrEnDly, &Margin);
print_debug_dqs("\tMaxRdLatencyTrain52: MaxRdLatDly start ", MaxRdLatDly, 2);
print_debug_dqs("\tMaxRdLatencyTrain52: MaxRdLatDly Margin ", Margin, 2);
while(MaxRdLatDly < MAX_RD_LAT) { /* sweep Delay value here */
mct_setMaxRdLatTrnVal_D(pDCTstat, Channel, MaxRdLatDly);
ReadMaxRdLat1CLTestPattern_D(TestAddr0);
if( CompareMaxRdLatTestPattern_D(pattern_buf, TestAddr0) == DQS_PASS)
break;
SetTargetWTIO_D(TestAddr0);
FlushMaxRdLatTestPattern_D(TestAddr0);
ResetTargetWTIO_D();
MaxRdLatDly++;
}
print_debug_dqs("\tMaxRdLatencyTrain53: MaxRdLatDly end ", MaxRdLatDly, 2);
mct_setMaxRdLatTrnVal_D(pDCTstat, Channel, MaxRdLatDly + Margin);
}
if(_DisableDramECC) {
mct_EnableDimmEccEn_D(pMCTstat, pDCTstat, _DisableDramECC);
}
if(!_Wrap32Dis) {
addr = HWCR;
_RDMSR(addr, &lo, &hi);
lo &= ~(1<<17); /* restore HWCR.wrap32dis */
_WRMSR(addr, lo, hi);
}
if(!_SSE2){
cr4 = read_cr4();
cr4 &= ~(1<<9); /* restore cr4.OSFXSR */
write_cr4(cr4);
}
#if DQS_TRAIN_DEBUG > 0
{
u8 Channel;
print_debug("maxRdLatencyTrain: CH_MaxRdLat:\n");
for(Channel = 0; Channel<2; Channel++) {
print_debug("Channel:"); print_debug_hex8(Channel);
print_debug(": ");
print_debug_hex8( pDCTstat->CH_MaxRdLat[Channel] );
print_debug("\n");
}
}
#endif
}
static void mct_setMaxRdLatTrnVal_D(struct DCTStatStruc *pDCTstat,
u8 Channel, u16 MaxRdLatVal)
{
u8 i;
u32 reg;
u32 dev;
u32 val;
if (pDCTstat->GangedMode) {
Channel = 0; /* for safe */
for (i=0; i<2; i++)
pDCTstat->CH_MaxRdLat[i] = MaxRdLatVal;
} else {
pDCTstat->CH_MaxRdLat[Channel] = MaxRdLatVal;
}
dev = pDCTstat->dev_dct;
reg = 0x78 + Channel * 0x100;
val = Get_NB32(dev, reg);
val &= ~(0x3ff<<22);
val |= MaxRdLatVal<<22;
/* program MaxRdLatency to correspond with current delay */
Set_NB32(dev, reg, val);
}
static u8 CompareMaxRdLatTestPattern_D(u32 pattern_buf, u32 addr)
{
/* Compare only the first beat of data. Since target addrs are cache
* line aligned, the Channel parameter is used to determine which cache
* QW to compare.
*/
u32 *test_buf = (u32 *)pattern_buf;
u32 addr_lo;
u32 val, val_test;
int i;
u8 ret = DQS_PASS;
SetUpperFSbase(addr);
addr_lo = addr<<8;
_EXECFENCE;
for (i=0; i<(16*3); i++) {
val = read32_fs(addr_lo);
val_test = test_buf[i];
print_debug_dqs_pair("\t\t\t\t\t\ttest_buf = ", (u32)test_buf, " value = ", val_test, 5);
print_debug_dqs_pair("\t\t\t\t\t\ttaddr_lo = ", addr_lo, " value = ", val, 5);
if(val != val_test) {
ret = DQS_FAIL;
break;
}
addr_lo += 4;
}
return ret;
}
static u32 GetMaxRdLatTestAddr_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat,
u8 Channel, u8 *MaxRcvrEnDly,
u8 *valid)
{
u8 Max = 0;
u8 Channel_Max = 0;
u8 d;
u8 d_Max = 0;
u8 Byte;
u32 TestAddr0 = 0;
u8 ch, ch_start, ch_end;
u8 bn;
bn = 8;
if(pDCTstat->Status & (1 << SB_128bitmode)) {
ch_start = 0;
ch_end = 2;
} else {
ch_start = Channel;
ch_end = Channel + 1;
}
*valid = 0;
for(ch = ch_start; ch < ch_end; ch++) {
for(d=0; d<4; d++) {
for(Byte = 0; Byte<bn; Byte++) {
u8 tmp;
tmp = pDCTstat->CH_D_B_RCVRDLY[ch][d][Byte];
if(tmp>Max) {
Max = tmp;
Channel_Max = Channel;
d_Max = d;
}
}
}
}
if(mct_RcvrRankEnabled_D(pMCTstat, pDCTstat, Channel_Max, d_Max << 1)) {
TestAddr0 = mct_GetMCTSysAddr_D(pMCTstat, pDCTstat, Channel_Max, d_Max << 1, valid);
}
if(*valid)
*MaxRcvrEnDly = Max;
return TestAddr0;
}
u8 mct_GetStartMaxRdLat_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat,
u8 Channel, u8 DQSRcvEnDly, u32 *Margin)
{
u32 SubTotal;
u32 val;
u32 valx;
u32 valxx;
u32 index_reg;
u32 reg_off;
u32 dev;
if(pDCTstat->GangedMode)
Channel = 0;
index_reg = 0x98 + 0x100 * Channel;
reg_off = 0x100 * Channel;
dev = pDCTstat->dev_dct;
/* Multiply the CAS Latency by two to get a number of 1/2 MEMCLKs units.*/
val = Get_NB32(dev, 0x88 + reg_off);
SubTotal = ((val & 0x0f) + 1) << 1; /* SubTotal is 1/2 Memclk unit */
/* If registered DIMMs are being used then add 1 MEMCLK to the sub-total*/
val = Get_NB32(dev, 0x90 + reg_off);
if(!(val & (1 << UnBuffDimm)))
SubTotal += 2;
/*If the address prelaunch is setup for 1/2 MEMCLKs then add 1,
* else add 2 to the sub-total. if (AddrCmdSetup || CsOdtSetup
* || CkeSetup) then K := K + 2; */
val = Get_NB32_index_wait(dev, index_reg, 0x04);
if(!(val & 0x00202020))
SubTotal += 1;
else
SubTotal += 2;
/* If the F2x[1, 0]78[RdPtrInit] field is 4, 5, 6 or 7 MEMCLKs,
* then add 4, 3, 2, or 1 MEMCLKs, respectively to the sub-total. */
val = Get_NB32(dev, 0x78 + reg_off);
SubTotal += 8 - (val & 0x0f);
/* Convert bits 7-5 (also referred to as the course delay) of the current
* (or worst case) DQS receiver enable delay to 1/2 MEMCLKs units,
* rounding up, and add this to the sub-total. */
SubTotal += DQSRcvEnDly >> 5; /*BOZO-no rounding up */
SubTotal <<= 1; /*scale 1/2 MemClk to 1/4 MemClk */
/* Convert the sub-total (in 1/2 MEMCLKs) to northbridge clocks (NCLKs)
* as follows (assuming DDR400 and assuming that no P-state or link speed
* changes have occurred). */
/*New formula:
SubTotal *= 3*(Fn2xD4[NBFid]+4)/(3+Fn2x94[MemClkFreq])/2 */
val = Get_NB32(dev, 0x94 + reg_off);
/* SubTotal div 4 to scale 1/4 MemClk back to MemClk */
val &= 7;
if (val >= 3) {
val <<= 1;
} else
val += 3;
valx = (val) << 2; /* SubTotal div 4 to scale 1/4 MemClk back to MemClk */
val = Get_NB32(pDCTstat->dev_nbmisc, 0xD4);
val = ((val & 0x1f) + 4 ) * 3;
/* Calculate 1 MemClk + 1 NCLK delay in NCLKs for margin */
valxx = val << 2;
valxx /= valx;
if (valxx % valx)
valxx++; /* round up */
valxx++; /* add 1NCLK */
*Margin = valxx; /* one MemClk delay in NCLKs and one additional NCLK */
val *= SubTotal;
val /= valx;
if (val % valx)
val++; /* round up */
return val;
}

View File

@@ -0,0 +1,382 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
static void FreqChgCtrlWrd(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat);
static void AgesaDelay(u32 msec)
{
mct_Wait(msec*10);
}
void PrepareC_MCT(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
pDCTstat->C_MCTPtr->AgesaDelay = AgesaDelay;
pDCTstat->C_MCTPtr->PlatMaxTotalDimms = mctGet_NVbits(NV_MAX_DIMMS);
pDCTstat->C_MCTPtr->PlatMaxDimmsDct = pDCTstat->C_MCTPtr->PlatMaxTotalDimms >> 1;
}
void PrepareC_DCT(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct)
{
u8 dimm;
u16 DimmValid;
u16 Dimmx8Present;
dct &= 1;
pDCTstat->C_DCTPtr[dct]->DctTrain = dct;
if (dct == 1) {
Dimmx8Present = pDCTstat->Dimmx8Present >> 1;
} else
Dimmx8Present = pDCTstat->Dimmx8Present;
Dimmx8Present &= 0x55;
pDCTstat->C_DCTPtr[dct]->MaxDimmsInstalled = pDCTstat->MAdimms[dct];
DimmValid = pDCTstat->DIMMValidDCT[dct];
pDCTstat->C_DCTPtr[dct]->NodeId = pDCTstat->Node_ID;
pDCTstat->C_DCTPtr[dct]->LogicalCPUID = pDCTstat->LogicalCPUID;
for (dimm = 0; dimm < MAX_DIMMS; dimm++) {
if (DimmValid & (1 << dimm))
pDCTstat->C_DCTPtr[dct]->DimmPresent[dimm] = 1;
if (Dimmx8Present & (1 << dimm))
pDCTstat->C_DCTPtr[dct]->DimmX8Present[dimm] = 1;
}
if (pDCTstat->GangedMode & (1 << 0))
pDCTstat->C_DCTPtr[dct]->CurrDct = 0;
else
pDCTstat->C_DCTPtr[dct]->CurrDct = dct;
pDCTstat->C_DCTPtr[dct]->DctCSPresent = pDCTstat->CSPresent_DCT[dct];
if (!(pDCTstat->GangedMode & (1 << 0)) && (dct == 1))
pDCTstat->C_DCTPtr[dct]->DctCSPresent = pDCTstat->CSPresent_DCT[0];
if (pDCTstat->Status & (1 << SB_Registered)) {
pDCTstat->C_DCTPtr[dct]->Status[DCT_STATUS_REGISTERED] = 1;
pDCTstat->C_DCTPtr[dct]->Status[DCT_STATUS_OnDimmMirror] = 0;
} else {
if (pDCTstat->MirrPresU_NumRegR > 0)
pDCTstat->C_DCTPtr[dct]->Status[DCT_STATUS_OnDimmMirror] = 1;
pDCTstat->C_DCTPtr[dct]->Status[DCT_STATUS_REGISTERED] = 0;
}
pDCTstat->C_DCTPtr[dct]->RegMan1Present = pDCTstat->RegMan1Present;
for (dimm = 0; dimm < MAX_TOTAL_DIMMS; dimm++) {
u8 DimmRanks;
if (DimmValid & (1 << dimm)) {
DimmRanks = 1;
if (pDCTstat->DimmDRPresent & (1 << (dimm+dct)))
DimmRanks = 2;
else if (pDCTstat->DimmQRPresent & (1 << (dimm+dct)))
DimmRanks = 4;
} else
DimmRanks = 0;
pDCTstat->C_DCTPtr[dct]->DimmRanks[dimm] = DimmRanks;
}
}
void EnableZQcalibration(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat)
{
u32 val;
val = Get_NB32(pDCTstat->dev_dct, 0x94);
val |= 1 << 11;
Set_NB32(pDCTstat->dev_dct, 0x94, val);
val = Get_NB32(pDCTstat->dev_dct, 0x94 + 0x100);
val |= 1 << 11;
Set_NB32(pDCTstat->dev_dct, 0x94 + 0x100, val);
}
void DisableZQcalibration(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
u32 val;
val = Get_NB32(pDCTstat->dev_dct, 0x94);
val &= ~(1 << 11);
val &= ~(1 << 10);
Set_NB32(pDCTstat->dev_dct, 0x94, val);
val = Get_NB32(pDCTstat->dev_dct, 0x94 + 0x100);
val &= ~(1 << 11);
val &= ~(1 << 10);
Set_NB32(pDCTstat->dev_dct, 0x94 + 0x100, val);
}
static void EnterSelfRefresh(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
u8 DCT0Present, DCT1Present;
u32 val;
DCT0Present = pDCTstat->DIMMValidDCT[0];
if (pDCTstat->GangedMode)
DCT1Present = 0;
else
DCT1Present = pDCTstat->DIMMValidDCT[1];
/* Program F2x[1, 0]90[EnterSelfRefresh]=1. */
if (DCT0Present) {
val = Get_NB32(pDCTstat->dev_dct, 0x90);
val |= 1 << EnterSelfRef;
Set_NB32(pDCTstat->dev_dct, 0x90, val);
}
if (DCT1Present) {
val = Get_NB32(pDCTstat->dev_dct, 0x90 + 0x100);
val |= 1 << EnterSelfRef;
Set_NB32(pDCTstat->dev_dct, 0x90 + 0x100, val);
}
/* Wait until the hardware resets F2x[1, 0]90[EnterSelfRefresh]=0. */
if (DCT0Present)
do {
val = Get_NB32(pDCTstat->dev_dct, 0x90);
} while (val & (1 <<EnterSelfRef));
if (DCT1Present)
do {
val = Get_NB32(pDCTstat->dev_dct, 0x90 + 0x100);
} while (val & (1 <<EnterSelfRef));
}
/*
* Change memclk for write levelization pass 2
*/
static void ChangeMemClk(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
u8 DCT0Present, DCT1Present;
u32 val;
DCT0Present = pDCTstat->DIMMValidDCT[0];
if (pDCTstat->GangedMode)
DCT1Present = 0;
else
DCT1Present = pDCTstat->DIMMValidDCT[1];
/* Program F2x[1, 0]90[EnterSelfRefresh]=1. */
if (DCT0Present) {
val = Get_NB32_index_wait(pDCTstat->dev_dct, 0x98, 8);
val |= 1 << DisAutoComp;
Set_NB32_index_wait(pDCTstat->dev_dct, 0x98, 8, val);
}
if (DCT1Present) {
val = Get_NB32_index_wait(pDCTstat->dev_dct, 0x98 + 0x100, 8);
val |= 1 << DisAutoComp;
Set_NB32_index_wait(pDCTstat->dev_dct, 0x98 + 0x100, 8, val);
}
/* Program F2x[1, 0]94[MemClkFreqVal] = 0. */
if (DCT0Present) {
val = Get_NB32(pDCTstat->dev_dct, 0x94);
val &= ~(1 << MemClkFreqVal);
Set_NB32(pDCTstat->dev_dct, 0x94, val);
}
if (DCT1Present) {
val = Get_NB32(pDCTstat->dev_dct, 0x94 + 0x100);
val &= ~(1 << MemClkFreqVal);
Set_NB32(pDCTstat->dev_dct, 0x94 + 0x100, val);
}
/* Program F2x[1, 0]94[MemClkFreq] to specify the target MEMCLK frequency. */
if (DCT0Present) {
val = Get_NB32(pDCTstat->dev_dct, 0x94);
val &= 0xFFFFFFF8;
val |= pDCTstat->TargetFreq - 1;
Set_NB32(pDCTstat->dev_dct, 0x94, val);
}
if (DCT1Present) {
val = Get_NB32(pDCTstat->dev_dct, 0x94 + 0x100);
val &= 0xFFFFFFF8;
val |= pDCTstat->TargetFreq - 1;
Set_NB32(pDCTstat->dev_dct, 0x94 + 0x100, val);
}
/* Program F2x[1, 0]94[MemClkFreqVal] = 1. */
if (DCT0Present) {
val = Get_NB32(pDCTstat->dev_dct, 0x94);
val |= 1 << MemClkFreqVal;
Set_NB32(pDCTstat->dev_dct, 0x94, val);
}
if (DCT1Present) {
val = Get_NB32(pDCTstat->dev_dct, 0x94 + 0x100);
val |= 1 << MemClkFreqVal;
Set_NB32(pDCTstat->dev_dct, 0x94 + 0x100, val);
}
/* Wait until F2x[1, 0]94[FreqChgInProg]=0. */
if (DCT0Present)
do {
val = Get_NB32(pDCTstat->dev_dct, 0x94);
} while (val & (1 << FreqChgInProg));
if (DCT1Present)
do {
val = Get_NB32(pDCTstat->dev_dct, 0x94 + 0x100);
} while (val & (1 << FreqChgInProg));
/* Program F2x[1, 0]94[MemClkFreqVal] = 0. */
if (DCT0Present) {
val = Get_NB32_index_wait(pDCTstat->dev_dct, 0x98, 8);
val &= ~(1 << DisAutoComp);
Set_NB32_index_wait(pDCTstat->dev_dct, 0x98, 8, val);
}
if (DCT1Present) {
val = Get_NB32_index_wait(pDCTstat->dev_dct, 0x98 + 0x100, 8);
val &= ~(1 << DisAutoComp);
Set_NB32_index_wait(pDCTstat->dev_dct, 0x98 + 0x100, 8, val);
}
}
/* Multiply the previously saved delay values in Pass 1, step #5 by
(target frequency)/400 to find the gross and fine delay initialization
values at the target frequency.
*/
void MultiplyDelay(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u8 dct)
{
u16 index;
u8 Multiplier;
u8 gross, fine;
u16 total;
Multiplier = pDCTstat->TargetFreq;
for (index=0; index < MAX_BYTE_LANES*MAX_LDIMMS; index ++) {
gross = pDCTstat->C_DCTPtr[dct]->WLGrossDelay[index];
fine = pDCTstat->C_DCTPtr[dct]->WLFineDelay[index];
total = gross << 5 | fine;
total *= Multiplier;
if (total % 3)
total = total / 3 + 1;
else
total = total / 3;
pDCTstat->C_DCTPtr[dct]->WLGrossDelay[index] = (total & 0xFF) >> 5;
pDCTstat->C_DCTPtr[dct]->WLFineDelay[index] = total & 0x1F;
}
}
/*
* the DRAM controller to bring the DRAMs out of self refresh mode.
*/
static void ExitSelfRefresh(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
u8 DCT0Present, DCT1Present;
u32 val;
DCT0Present = pDCTstat->DIMMValidDCT[0];
if (pDCTstat->GangedMode)
DCT1Present = 0;
else
DCT1Present = pDCTstat->DIMMValidDCT[1];
/* Program F2x[1, 0]90[ExitSelfRef]=1 for both DCTs. */
if (DCT0Present) {
val = Get_NB32(pDCTstat->dev_dct, 0x90);
val |= 1 << ExitSelfRef;
Set_NB32(pDCTstat->dev_dct, 0x90, val);
}
if (DCT1Present) {
val = Get_NB32(pDCTstat->dev_dct, 0x90 + 0x100);
val |= 1 << ExitSelfRef;
Set_NB32(pDCTstat->dev_dct, 0x90 + 0x100, val);
}
/* Wait until the hardware resets F2x[1, 0]90[ExitSelfRef]=0. */
if (DCT0Present)
do {
val = Get_NB32(pDCTstat->dev_dct, 0x90);
} while (val & (1 << ExitSelfRef));
if (DCT1Present)
do {
val = Get_NB32(pDCTstat->dev_dct, 0x90 + 0x100);
} while (val & (1 << ExitSelfRef));
}
void SetTargetFreq(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
/* Program F2x[1,0]90[EnterSelfRefresh]=1.
* Wait until the hardware resets F2x[1,0]90[EnterSelfRefresh]=0.
*/
EnterSelfRefresh(pMCTstat, pDCTstat);
/*
* Program F2x[1,0]9C_x08[DisAutoComp]=1
* Program F2x[1,0]94[MemClkFreqVal] = 0.
* Program F2x[1,0]94[MemClkFreq] to specify the target MEMCLK frequency.
* Program F2x[1,0]94[MemClkFreqVal] = 1.
* Wait until F2x[1,0]94[FreqChgInProg]=0.
* Program F2x[1,0]9C_x08[DisAutoComp]=0
*/
ChangeMemClk(pMCTstat, pDCTstat);
/* Program F2x[1,0]90[ExitSelfRef]=1 for both DCTs.
* Wait until the hardware resets F2x[1, 0]90[ExitSelfRef]=0.
*/
ExitSelfRefresh(pMCTstat, pDCTstat);
/* wait for 500 MCLKs after ExitSelfRef, 500*2.5ns=1250ns */
mct_Wait(250);
if (pDCTstat->Status & (1 << SB_Registered)) {
/* TODO: Assuming the dct==0. The agesa here is confusing. */
FreqChgCtrlWrd(pMCTstat, pDCTstat);
}
}
static void Modify_OnDimmMirror(struct DCTStatStruc *pDCTstat, u8 dct, u8 set)
{
u32 val;
u32 reg_off = dct * 0x100 + 0x44;
while (reg_off < 0x60) {
val = Get_NB32(pDCTstat->dev_dct, reg_off);
if (val & (1 << CSEnable))
set ? (val |= 1 << onDimmMirror) : (val &= ~(1<<onDimmMirror));
Set_NB32(pDCTstat->dev_dct, reg_off, val);
reg_off += 8;
}
}
void Restore_OnDimmMirror(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
if (pDCTstat->LogicalCPUID & (AMD_DR_Bx /* | AMD_RB_C0 */)) { /* We dont support RB-C0 now */
if (pDCTstat->MirrPresU_NumRegR & 0x55)
Modify_OnDimmMirror(pDCTstat, 0, 1); /* dct=0, set */
if (pDCTstat->MirrPresU_NumRegR & 0xAA)
Modify_OnDimmMirror(pDCTstat, 1, 1); /* dct=1, set */
}
}
void Clear_OnDimmMirror(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat)
{
if (pDCTstat->LogicalCPUID & (AMD_DR_Bx /* | AMD_RB_C0 */)) { /* We dont support RB-C0 now */
if (pDCTstat->MirrPresU_NumRegR & 0x55)
Modify_OnDimmMirror(pDCTstat, 0, 0); /* dct=0, clear */
if (pDCTstat->MirrPresU_NumRegR & 0xAA)
Modify_OnDimmMirror(pDCTstat, 1, 0); /* dct=1, clear */
}
}

View File

@@ -0,0 +1,916 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
*-----------------------------------------------------------------------------
* MODULES USED
*
*-----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* PROTOTYPES OF LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
u32 swapAddrBits_wl(sDCTStruct *pDCTData, u32 MRSValue);
u32 swapBankBits(sDCTStruct *pDCTData, u32 MRSValue);
void prepareDimms(sMCTStruct *pMCTData, sDCTStruct *pDCTData, u8 dimm, BOOL wl);
void programODT(sMCTStruct *pMCTData, sDCTStruct *pDCTData, u8 dimm);
void procConifg(sMCTStruct *pMCTData,sDCTStruct *pDCTData, u8 dimm, u8 pass);
void setWLByteDelay(sDCTStruct *pDCTData, u8 ByteLane, u8 dimm, u8 targetAddr);
void getWLByteDelay(sDCTStruct *pDCTData, u8 ByteLane, u8 dimm);
/*
*-----------------------------------------------------------------------------
* EXPORTED FUNCTIONS
*
*-----------------------------------------------------------------------------
*/
/*-----------------------------------------------------------------------------
* void AgesaHwWlPhase1(SPDStruct *SPDData,MCTStruct *MCTData, DCTStruct *DCTData,
* u8 Dimm, u8 Pass)
*
* Description:
* This function initialized Hardware based write levelization phase 1
*
* Parameters:
* IN OUT *SPDData - Pointer to buffer with information about each DIMMs
* SPD information
* *MCTData - Pointer to buffer with runtime parameters,
* *DCTData - Pointer to buffer with information about each DCT
*
* IN DIMM - Logical DIMM number
* Pass - First or Second Pass
* OUT
*-----------------------------------------------------------------------------
*/
void AgesaHwWlPhase1(sMCTStruct *pMCTData, sDCTStruct *pDCTData,
u8 dimm, u8 pass)
{
u8 ByteLane;
u32 Value, Addr;
u16 Addl_Data_Offset, Addl_Data_Port;
pDCTData->WLPass = pass;
/* 1. Specify the target DIMM that is to be trained by programming
* F2x[1, 0]9C_x08[TrDimmSel].
*/
set_DCT_ADDR_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId, FUN_DCT,
DRAM_ADD_DCT_PHY_CONTROL_REG, TrDimmSelStart,
TrDimmSelEnd,(u32)dimm);
/* 2. Prepare the DIMMs for write levelization using DDR3-defined
* MR commands. */
prepareDimms(pMCTData, pDCTData,dimm, TRUE);
/* 3. After the DIMMs are configured, BIOS waits 40 MEMCLKs to
* satisfy DDR3-defined internal DRAM timing.
*/
pMCTData->AgesaDelay(40);
/* 4. Configure the processor's DDR phy for write levelization training: */
procConifg(pMCTData,pDCTData, dimm, pass);
/* 5. Begin write levelization training:
* Program F2x[1, 0]9C_x08[WrtLevelTrEn]=1. */
if (pDCTData->LogicalCPUID & AMD_DR_Cx)
set_DCT_ADDR_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId, FUN_DCT,
DRAM_ADD_DCT_PHY_CONTROL_REG, WrtLvTrEn, WrtLvTrEn, 1);
else
{
/* Broadcast write to all D3Dbyte chiplet register offset 0xc
* Set bit 0 (wrTrain)
* Program bit 4 to nibble being trained (only matters for x4dimms)
* retain value of 3:2 (Trdimmsel)
* reset bit 5 (FrzPR)
*/
if (pDCTData->DctTrain)
{
Addl_Data_Offset=0x198;
Addl_Data_Port=0x19C;
}
else
{
Addl_Data_Offset=0x98;
Addl_Data_Port=0x9C;
}
Addr=0x0D00000C;
AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Offset), 31, 0, &Addr);
while ((get_Bits(pDCTData,FUN_DCT,pDCTData->NodeId, FUN_DCT, Addl_Data_Offset,
DctAccessDone, DctAccessDone)) == 0);
AmdMemPCIReadBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Port), 31, 0, &Value);
Value = bitTestSet(Value, 0); /* enable WL training */
Value = bitTestReset(Value, 4); /* for x8 only */
Value = bitTestReset(Value, 5); /* for harward WL training */
AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Port), 31, 0, &Value);
Addr=0x4D030F0C;
AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Offset), 31, 0, &Addr);
while ((get_Bits(pDCTData,FUN_DCT,pDCTData->NodeId, FUN_DCT, Addl_Data_Offset,
DctAccessDone, DctAccessDone)) == 0);
}
/* Wait 200 MEMCLKs. If executing pass 2, wait 32 MEMCLKs. */
pMCTData->AgesaDelay(140);
/* Program F2x[1, 0]9C_x08[WrtLevelTrEn]=0. */
set_DCT_ADDR_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId, FUN_DCT,
DRAM_ADD_DCT_PHY_CONTROL_REG, WrtLvTrEn, WrtLvTrEn, 0);
/* Read from registers F2x[1, 0]9C_x[51:50] and F2x[1, 0]9C_x52
* to get the gross and fine delay settings
* for the target DIMM and save these values. */
ByteLane = 0;
while (ByteLane < MAX_BYTE_LANES)
{
getWLByteDelay(pDCTData,ByteLane, dimm);
setWLByteDelay(pDCTData,ByteLane, dimm, 1);
ByteLane++;
}
/* 6. Configure DRAM Phy Control Register so that the phy stops driving
* write levelization ODT. */
set_DCT_ADDR_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId, FUN_DCT,
DRAM_ADD_DCT_PHY_CONTROL_REG, WrLvOdtEn, WrLvOdtEn, 0);
/* Wait 10 MEMCLKs to allow for ODT signal settling. */
pMCTData->AgesaDelay(10);
/* 7. Program the target DIMM back to normal operation by configuring
* the following (See section 2.8.5.4.1.1
* [Phy Assisted Write Levelization] on page 97 pass 1, step #2):
* Configure all ranks of the target DIMM for normal operation.
* Enable the output drivers of all ranks of the target DIMM.
* For a two DIMM system, program the Rtt value for the target DIMM
* to the normal operating termination:
*/
prepareDimms(pMCTData, pDCTData,dimm,FALSE);
}
/*----------------------------------------------------------------------------
* LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
/*-----------------------------------------------------------------------------
* u32 swapAddrBits_wl(sDCTStruct *pDCTData, u32 MRSValue)
*
* Description:
* This function swaps the bits in MSR register value
*
* Parameters:
* IN OUT *DCTData - Pointer to buffer with information about each DCT
* IN u32: MRS value
* OUT u32: sWAPPED BANK BITS
*
* ----------------------------------------------------------------------------
*/
u32 swapAddrBits_wl(sDCTStruct *pDCTData, u32 MRSValue)
{
u32 tempW, tempW1;
tempW1 = get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_INIT, MrsChipSelStart, MrsChipSelEnd);
if (tempW1 & 1)
{
if ((pDCTData->Status[DCT_STATUS_OnDimmMirror]))
{
/* swap A3/A4,A5/A6,A7/A8 */
tempW = MRSValue;
tempW1 = MRSValue;
tempW &= 0x0A8;
tempW1 &= 0x0150;
MRSValue &= 0xFE07;
MRSValue |= (tempW<<1);
MRSValue |= (tempW1>>1);
}
}
return MRSValue;
}
/*-----------------------------------------------------------------------------
* u32 swapBankBits(sDCTStruct *pDCTData, u32 MRSValue)
*
* Description:
* This function swaps the bits in MSR register value
*
* Parameters:
* IN OUT *DCTData - Pointer to buffer with information about each DCT
* IN u32: MRS value
* OUT u32: sWAPPED BANK BITS
*
* ----------------------------------------------------------------------------
*/
u32 swapBankBits(sDCTStruct *pDCTData, u32 MRSValue)
{
u32 tempW, tempW1;
tempW1 = get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_INIT, MrsChipSelStart, MrsChipSelEnd);
if (tempW1 & 1)
{
if ((pDCTData->Status[DCT_STATUS_OnDimmMirror]))
{
/* swap BA0/BA1 */
tempW = MRSValue;
tempW1 = MRSValue;
tempW &= 0x01;
tempW1 &= 0x02;
MRSValue = 0;
MRSValue |= (tempW<<1);
MRSValue |= (tempW1>>1);
}
}
return MRSValue;
}
/*-----------------------------------------------------------------------------
* void prepareDimms(sMCTStruct *pMCTData, sDCTStruct *DCTData, u8 Dimm, BOOL WL)
*
* Description:
* This function prepares DIMMS for training
*
* Parameters:
* IN OUT *DCTData - Pointer to buffer with information about each DCT
* *SPDData - Pointer to buffer with information about each DIMMs
* SPD information
* *MCTData - Pointer to buffer with runtime parameters,
* IN Dimm - Logical DIMM number
* WL - indicates if the routine is used for Write levelization
* training
*
* OUT
*
* ----------------------------------------------------------------------------
*/
void prepareDimms(sMCTStruct *pMCTData, sDCTStruct *pDCTData, u8 dimm, BOOL wl)
{
u32 tempW, tempW1, tempW2, MrsBank;
u8 rank, currDimm, MemClkFreq;
MemClkFreq = get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_CONFIG_HIGH, 0, 2);
/* Configure the DCT to send initialization MR commands to the target DIMM
* ;by programming the F2x[1,0]7C register using the following steps.
*/
rank = 0;
while ((rank < pDCTData->DimmRanks[dimm]) && (rank < 2))
{
/* Program F2x[1, 0]7C[MrsChipSel[2:0]] for the current rank to be trained. */
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId, FUN_DCT,
DRAM_INIT, MrsChipSelStart, MrsChipSelEnd, dimm*2+rank);
/* Program F2x[1, 0]7C[MrsBank[2:0]] for the appropriate internal DRAM
* ;register that defines the required DDR3-defined function for write
* ; levelization.
*/
MrsBank = swapBankBits(pDCTData,1);
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId, FUN_DCT,
DRAM_INIT, MrsBankStart, MrsBankEnd, MrsBank);
/* Program F2x[1, 0]7C[MrsAddress[15:0]] to the required DDR3-defined function
* ; for write levelization.
*/
tempW = 0;/* DLL_DIS = 0, DIC = 0, AL = 0, TDQS = 0 */
/* Set TDQS=1b for x8 DIMM, TDQS=0b for x4 DIMM, when mixed x8 & x4 */
tempW2 = get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_CONFIG_HIGH, RDqsEn, RDqsEn);
if (tempW2)
{
if (pDCTData->DimmX8Present[dimm])
tempW |= 0x800;
}
/* determine Rtt_Nom for WL & Normal mode */
if (pDCTData->Status[DCT_STATUS_REGISTERED]) {
tempW1 = RttNomTargetRegDimm(pMCTData, pDCTData, dimm, wl, MemClkFreq, rank);
} else {
if (wl)
{
if (pDCTData->MaxDimmsInstalled == 1)
{
if ((pDCTData->DimmRanks[dimm] == 2) && (rank == 0))
{
tempW1 = 0x00; /* Rtt_Nom=OFF */
}
else
{
tempW1 = 0x04; /* Rtt_Nom=RZQ/4=60 Ohm */
}
}
else /* 2 Dimms or more per channel */
{
if ((pDCTData->DimmRanks[dimm] == 2) && (rank == 1))
{
tempW1 = 0x00; /* Rtt_Nom=OFF */
}
else
{
if (MemClkFreq == 6) {
tempW1 = 0x04; /* Rtt_Nom=RZQ/4=60 Ohm */
} else {
tempW1 = 0x40;/* Rtt_Nom=RZQ/2=120 Ohm */
}
}
}
}
else { /* 1 or 4 Dimms per channel */
if ((pDCTData->MaxDimmsInstalled == 1) || (pDCTData->MaxDimmsInstalled == 4))
{
tempW1 = 0x04; /* Rtt_Nom=RZQ/4=60 Ohm */
}
else /* 2 or 3 Dimms per channel */
{
if (MemClkFreq < 5) {
tempW1 = 0x0044; /* Rtt_Nom=RZQ/6=40 Ohm */
} else {
tempW1 = 0x0204; /* Rtt_Nom=RZQ/8=30 Ohm */
}
}
}
}
tempW=tempW|tempW1;
/* All ranks of the target DIMM are set to write levelization mode. */
if (wl)
{
tempW1 = bitTestSet(tempW, MRS_Level);
if (rank == 0)
{
/* ?Enable the output driver of the first rank of the target DIMM. */
tempW = tempW1;
}
else
{
/* Disable the output drivers of all other ranks for
* the target DIMM. */
tempW = bitTestSet(tempW1, Qoff);
}
}
/* program MrsAddress[5,1]=output driver impedance control (DIC):
* based on F2x[1,0]84[DrvImpCtrl] */
tempW1 = get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_MRS_REGISTER, DrvImpCtrlStart, DrvImpCtrlEnd);
if (bitTest(tempW1,1))
{tempW = bitTestSet(tempW, 5);}
if (bitTest(tempW1,0))
{tempW = bitTestSet(tempW, 1);}
tempW = swapAddrBits_wl(pDCTData,tempW);
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId, FUN_DCT,
DRAM_INIT, MrsAddressStart, MrsAddressEnd, tempW);
/* Program F2x[1, 0]7C[SendMrsCmd]=1 to initiate the command to
* ;the specified DIMM.
*/
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId, FUN_DCT,
DRAM_INIT, SendMrsCmd, SendMrsCmd, 1);
/* Wait for F2x[1, 0]7C[SendMrsCmd] to be cleared by hardware. */
while ((get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_INIT, SendMrsCmd, SendMrsCmd)) == 0x1)
{
}
/* Program F2x[1, 0]7C[MrsBank[2:0]] for the appropriate internal DRAM
* ;register that defines the required DDR3-defined function for Rtt_WR.
*/
MrsBank = swapBankBits(pDCTData,2);
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId, FUN_DCT,
DRAM_INIT, MrsBankStart, MrsBankEnd, MrsBank);
/* Program F2x[1, 0]7C[MrsAddress[15:0]] to the required DDR3-defined function
* ; for Rtt_WR (DRAMTermDyn).
*/
tempW = 0;/* PASR = 0,*/
/* program MrsAddress[7,6,5:3]=SRT,ASR,CWL,
* based on F2x[1,0]84[19,18,22:20]=,SRT,ASR,Tcwl */
tempW1 = get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_MRS_REGISTER, PCI_MIN_LOW, PCI_MAX_HIGH);
if (bitTest(tempW1,19))
{tempW = bitTestSet(tempW, 7);}
if (bitTest(tempW1,18))
{tempW = bitTestSet(tempW, 6);}
/* tempW=tempW|(((tempW1>>20)&0x7)<<3); */
tempW=tempW|((tempW1&0x00700000)>>17);
/* workaround for DR-B0 */
if ((pDCTData->LogicalCPUID & AMD_DR_Bx) && (pDCTData->Status[DCT_STATUS_REGISTERED]))
tempW+=0x8;
/* determine Rtt_WR for WL & Normal mode */
if (pDCTData->Status[DCT_STATUS_REGISTERED]) {
tempW1 = RttWrRegDimm(pMCTData, pDCTData, dimm, wl, MemClkFreq, rank);
} else {
if (wl)
{
tempW1 = 0x00; /* Rtt_WR=off */
}
else
{
if (pDCTData->MaxDimmsInstalled == 1)
{
tempW1 = 0x00; /* Rtt_WR=off */
}
else
{
if (MemClkFreq == 6) {
tempW1 = 0x200; /* Rtt_WR=RZQ/4=60 Ohm */
} else {
tempW1 = 0x400; /* Rtt_WR=RZQ/2 */
}
}
}
}
tempW=tempW|tempW1;
tempW = swapAddrBits_wl(pDCTData,tempW);
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId, FUN_DCT,
DRAM_INIT, MrsAddressStart, MrsAddressEnd, tempW);
/* Program F2x[1, 0]7C[SendMrsCmd]=1 to initiate the command to
the specified DIMM.*/
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId, FUN_DCT,
DRAM_INIT, SendMrsCmd, SendMrsCmd, 1);
/* Wait for F2x[1, 0]7C[SendMrsCmd] to be cleared by hardware. */
while ((get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_INIT, SendMrsCmd, SendMrsCmd)) == 0x1)
{
}
rank++;
}
/* Configure the non-target DIMM normally. */
currDimm = 0;
while (currDimm < MAX_LDIMMS)
{
if (pDCTData->DimmPresent[currDimm])
{
if (currDimm != dimm)
{
rank = 0;
while ((rank < pDCTData->DimmRanks[currDimm]) && (rank < 2))
{
/* Program F2x[1, 0]7C[MrsChipSel[2:0]] for the current rank
* ;to be trained.
*/
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_INIT, MrsChipSelStart, MrsChipSelEnd, currDimm*2+rank);
/* Program F2x[1, 0]7C[MrsBank[2:0]] for the appropriate internal
* ;DRAM register that defines the required DDR3-defined function
* ; for write levelization.
*/
MrsBank = swapBankBits(pDCTData,1);
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_INIT, MrsBankStart, MrsBankEnd, MrsBank);
/* Program F2x[1, 0]7C[MrsAddress[15:0]] to the required
* ;DDR3-defined function for write levelization.
*/
tempW = 0;/* DLL_DIS = 0, DIC = 0, AL = 0, TDQS = 0, Level=0, Qoff=0 */
/* Set TDQS=1b for x8 DIMM, TDQS=0b for x4 DIMM, when mixed x8 & x4 */
tempW2 = get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_CONFIG_HIGH, RDqsEn, RDqsEn);
if (tempW2)
{
if (pDCTData->DimmX8Present[currDimm])
tempW |= 0x800;
}
/* determine Rtt_Nom for WL & Normal mode */
if (pDCTData->Status[DCT_STATUS_REGISTERED]) {
tempW1 = RttNomNonTargetRegDimm(pMCTData, pDCTData, currDimm, wl, MemClkFreq, rank);
} else {
if (wl)
{
if ((pDCTData->DimmRanks[currDimm] == 2) && (rank == 1))
{
tempW1 = 0x00; /* Rtt_Nom=OFF */
}
else
{
if (MemClkFreq < 5) {
tempW1 = 0x0044;/* Rtt_Nom=RZQ/6=40 Ohm */
} else {
tempW1 = 0x0204;/* Rtt_Nom=RZQ/8=30 Ohm */
}
}
}
else { /* 1 or 4 Dimms per channel */
if ((pDCTData->MaxDimmsInstalled == 4))
{
tempW1 = 0x04; /* Rtt_Nom=RZQ/4=60 Ohm */
}
else { /* 2 or 3 Dimms per channel */
if (MemClkFreq < 5) {
tempW1 = 0x0044; /* Rtt_Nom=RZQ/6=40 Ohm */
} else {
tempW1 = 0x0204; /* Rtt_Nom=RZQ/8=30 Ohm */
}
}
}
}
tempW=tempW|tempW1;
/* program MrsAddress[5,1]=output driver impedance control (DIC):
* based on F2x[1,0]84[DrvImpCtrl] */
tempW1 = get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_MRS_REGISTER, DrvImpCtrlStart, DrvImpCtrlEnd);
if (bitTest(tempW1,1))
{tempW = bitTestSet(tempW, 5);}
if (bitTest(tempW1,0))
{tempW = bitTestSet(tempW, 1);}
tempW = swapAddrBits_wl(pDCTData,tempW);
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_INIT, MrsAddressStart, MrsAddressEnd, tempW);
/* Program F2x[1, 0]7C[SendMrsCmd]=1 to initiate the command
* ; to the specified DIMM.
*/
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_INIT, SendMrsCmd, SendMrsCmd, 1);
/* Wait for F2x[1, 0]7C[SendMrsCmd] to be cleared by hardware. */
while ((get_Bits(pDCTData, pDCTData->CurrDct,
pDCTData->NodeId, FUN_DCT, DRAM_INIT,
SendMrsCmd, SendMrsCmd)) == 1);
/* Program F2x[1, 0]7C[MrsBank[2:0]] for the appropriate internal DRAM
* ;register that defines the required DDR3-defined function for Rtt_WR.
*/
MrsBank = swapBankBits(pDCTData,2);
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId, FUN_DCT,
DRAM_INIT, MrsBankStart, MrsBankEnd, MrsBank);
/* Program F2x[1, 0]7C[MrsAddress[15:0]] to the required DDR3-defined function
* ; for Rtt_WR (DRAMTermDyn).
*/
tempW = 0;/* PASR = 0,*/
/* program MrsAddress[7,6,5:3]=SRT,ASR,CWL,
* based on F2x[1,0]84[19,18,22:20]=,SRT,ASR,Tcwl */
tempW1 = get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_MRS_REGISTER, PCI_MIN_LOW, PCI_MAX_HIGH);
if (bitTest(tempW1,19))
{tempW = bitTestSet(tempW, 7);}
if (bitTest(tempW1,18))
{tempW = bitTestSet(tempW, 6);}
/* tempW=tempW|(((tempW1>>20)&0x7)<<3); */
tempW=tempW|((tempW1&0x00700000)>>17);
/* workaround for DR-B0 */
if ((pDCTData->LogicalCPUID & AMD_DR_Bx) && (pDCTData->Status[DCT_STATUS_REGISTERED]))
tempW+=0x8;
/* determine Rtt_WR for WL & Normal mode */
if (pDCTData->Status[DCT_STATUS_REGISTERED]) {
tempW1 = RttWrRegDimm(pMCTData, pDCTData, currDimm, wl, MemClkFreq, rank);
} else {
if (wl)
{
tempW1 = 0x00; /* Rtt_WR=off */
}
else
{
if (MemClkFreq == 6) {
tempW1 = 0x200; /* Rtt_WR=RZQ/4=60 Ohm */
} else {
tempW1 = 0x400; /* Rtt_WR=RZQ/2 */
}
}
}
tempW=tempW|tempW1;
tempW = swapAddrBits_wl(pDCTData,tempW);
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId, FUN_DCT,
DRAM_INIT, MrsAddressStart, MrsAddressEnd, tempW);
/* Program F2x[1, 0]7C[SendMrsCmd]=1 to initiate the command to
the specified DIMM.*/
set_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId, FUN_DCT,
DRAM_INIT, SendMrsCmd, SendMrsCmd, 1);
/* Wait for F2x[1, 0]7C[SendMrsCmd] to be cleared by hardware. */
while ((get_Bits(pDCTData, pDCTData->CurrDct, pDCTData->NodeId,
FUN_DCT, DRAM_INIT, SendMrsCmd, SendMrsCmd)) == 0x1)
{
}
rank++;
}
}
}
currDimm++;
}
}
/*-----------------------------------------------------------------------------
* void programODT(sMCTStruct *pMCTData, DCTStruct *DCTData, u8 dimm)
*
* Description:
* This function programs the ODT values for the NB
*
* Parameters:
* IN OUT *DCTData - Pointer to buffer with information about each DCT
* IN
* OUT
* ----------------------------------------------------------------------------
*/
void programODT(sMCTStruct *pMCTData, sDCTStruct *pDCTData, u8 dimm)
{
u8 WrLvOdt1=0;
if (pDCTData->Status[DCT_STATUS_REGISTERED] == 0) {
if ((pDCTData->DctCSPresent & 0x05) == 0x05) {
WrLvOdt1 = 0x03;
} else if (bitTest((u32)pDCTData->DctCSPresent,(u8)(dimm*2+1))) {
WrLvOdt1 = (u8)bitTestSet(WrLvOdt1, dimm+2);
} else {
WrLvOdt1 = (u8)bitTestSet(WrLvOdt1, dimm);
}
} else {
WrLvOdt1 = WrLvOdtRegDimm(pMCTData, pDCTData, dimm);
}
set_DCT_ADDR_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId, FUN_DCT,
DRAM_ADD_DCT_PHY_CONTROL_REG, 8, 11, (u32)WrLvOdt1);
}
/*-----------------------------------------------------------------------------
* void procConifg(MCTStruct *MCTData,DCTStruct *DCTData, u8 Dimm, u8 Pass)
*
* Description:
* This function programs the ODT values for the NB
*
* Parameters:
* IN OUT *DCTData - Pointer to buffer with information about each DCT
* *MCTData - Pointer to buffer with runtime parameters,
* IN Dimm - Logical DIMM
* Pass - First of Second Pass
* OUT
* ----------------------------------------------------------------------------
*/
void procConifg(sMCTStruct *pMCTData,sDCTStruct *pDCTData, u8 dimm, u8 pass)
{
u8 ByteLane, Seed_Gross, Seed_Fine;
u32 Value, Addr;
u16 Addl_Data_Offset, Addl_Data_Port;
/* Program F2x[1, 0]9C_x08[WrLvOdt[3:0]] to the proper ODT settings for the
* ;current memory subsystem configuration.
*/
programODT(pMCTData, pDCTData, dimm);
/* Program F2x[1,0]9C_x08[WrLvOdtEn]=1 */
if (pDCTData->LogicalCPUID & AMD_DR_Cx)
set_DCT_ADDR_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId, FUN_DCT,
DRAM_ADD_DCT_PHY_CONTROL_REG, WrLvOdtEn, WrLvOdtEn,(u32) 1);
else
{
/* Program WrLvOdtEn=1 through set bit 12 of D3CSODT reg offset 0 for Rev.B*/
if (pDCTData->DctTrain)
{
Addl_Data_Offset=0x198;
Addl_Data_Port=0x19C;
}
else
{
Addl_Data_Offset=0x98;
Addl_Data_Port=0x9C;
}
Addr=0x0D008000;
AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Offset), 31, 0, &Addr);
while ((get_Bits(pDCTData,FUN_DCT,pDCTData->NodeId, FUN_DCT, Addl_Data_Offset,
DctAccessDone, DctAccessDone)) == 0);
AmdMemPCIReadBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Port), 31, 0, &Value);
Value = bitTestSet(Value, 12);
AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Port), 31, 0, &Value);
Addr=0x4D088F00;
AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+(pDCTData->NodeId),FUN_DCT,Addl_Data_Offset), 31, 0, &Addr);
while ((get_Bits(pDCTData,FUN_DCT,pDCTData->NodeId, FUN_DCT, Addl_Data_Offset,
DctAccessDone, DctAccessDone)) == 0);
}
/* Wait 10 MEMCLKs to allow for ODT signal settling. */
pMCTData->AgesaDelay(10);
ByteLane = 0;
if (pass == 1)
{
if (pDCTData->Status[DCT_STATUS_REGISTERED])
{
if(pDCTData->RegMan1Present & ((1<<(dimm*2+pDCTData->DctTrain))))
{
Seed_Gross = 0x02;
Seed_Fine = 0x16;
}
else
{
Seed_Gross = 0x02;
Seed_Fine = 0x00;
}
}
else
{
Seed_Gross = 0x00;
Seed_Fine = 0x1A;
}
while(ByteLane < MAX_BYTE_LANES)
{
/* Program an initialization value to registers F2x[1, 0]9C_x[51:50] and
* ;F2x[1, 0]9C_x52 to set the gross and fine delay for all the byte lane fields
* ; If the target frequency is different than 400MHz, BIOS must
* execute two training passes for each DIMM.
* For pass 1 at a 400MHz MEMCLK frequency, use an initial total delay value
* ; of 01Fh. This represents a 1UI (UI=.5MEMCLK) delay and is determined
* ;by design.
*/
pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Gross;
pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine;
ByteLane++;
}
}
setWLByteDelay(pDCTData, ByteLane, dimm, 0);
}
/*-----------------------------------------------------------------------------
* void setWLByteDelay(DCTStruct *DCTData, u8 ByteLane, u8 Dimm){
*
* Description:
* This function writes the write levelization byte delay for the Phase
* Recovery control registers
*
* Parameters:
* IN OUT *DCTData - Pointer to buffer with information about each DCT
* IN Dimm - Dimm Number
* DCTData->WLGrossDelay[index+ByteLane] - gross write delay for each
* logical DIMM
* DCTData->WLFineDelay[index+ByteLane] - fine write delay for each
* logical DIMM
* ByteLane - target byte lane to write
* targetAddr - 0: write to DRAM phase recovery control register
* 1: write to DQS write register
* OUT
*
*-----------------------------------------------------------------------------
*/
void setWLByteDelay(sDCTStruct *pDCTData, u8 ByteLane, u8 dimm, u8 targetAddr)
{
u8 fineStartLoc, fineEndLoc, grossStartLoc, grossEndLoc, tempB, index, offsetAddr;
u32 addr, fineDelayValue, grossDelayValue, ValueLow, ValueHigh, EccValue, tempW;
if (targetAddr == 0)
{
index = (u8)(MAX_BYTE_LANES * dimm);
ValueLow = 0;
ValueHigh = 0;
ByteLane = 0;
EccValue = 0;
while (ByteLane < MAX_BYTE_LANES)
{
/* This subtract 0xC workaround might be temporary. */
if ((pDCTData->WLPass==2) && (pDCTData->RegMan1Present & (1<<(dimm*2+pDCTData->DctTrain))))
{
tempW = (pDCTData->WLGrossDelay[index+ByteLane] << 5) | pDCTData->WLFineDelay[index+ByteLane];
tempW -= 0xC;
pDCTData->WLGrossDelay[index+ByteLane] = (u8)(tempW >> 5);
pDCTData->WLFineDelay[index+ByteLane] = (u8)(tempW & 0x1F);
}
grossDelayValue = pDCTData->WLGrossDelay[index+ByteLane];
/* Adjust seed gross delay overflow (greater than 3):
* - Program seed gross delay as 2 (gross is 4 or 6) or 1 (gross is 5).
* - Keep original seed gross delay for later reference.
*/
if(grossDelayValue >= 3)
{
grossDelayValue = (grossDelayValue&1)? 1 : 2;
}
fineDelayValue = pDCTData->WLFineDelay[index+ByteLane];
if (ByteLane < 4)
ValueLow |= ((grossDelayValue << 5) | fineDelayValue) << 8*ByteLane;
else if(ByteLane < 8)
ValueHigh |= ((grossDelayValue << 5) | fineDelayValue) << 8*(ByteLane-4);
else
EccValue = ((grossDelayValue << 5) | fineDelayValue);
ByteLane++;
}
set_DCT_ADDR_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId, FUN_DCT,
DRAM_CONT_ADD_PHASE_REC_CTRL_LOW, 0, 31, (u32)ValueLow);
set_DCT_ADDR_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId, FUN_DCT,
DRAM_CONT_ADD_PHASE_REC_CTRL_HIGH, 0, 31, (u32)ValueHigh);
set_DCT_ADDR_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId, FUN_DCT,
DRAM_CONT_ADD_ECC_PHASE_REC_CTRL, 0, 31, (u32)EccValue);
}
else
{
index = (u8)(MAX_BYTE_LANES * dimm);
grossDelayValue = pDCTData->WLGrossDelay[index+ByteLane];
fineDelayValue = pDCTData->WLFineDelay[index+ByteLane];
tempB = 0;
offsetAddr = (u8)(3 * dimm);
if (ByteLane < 2)
{
tempB = (u8)(16 * ByteLane);
addr = DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_01;
}
else if (ByteLane <4)
{
tempB = (u8)(16 * ByteLane);
addr = DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_01 + 1;
}
else if (ByteLane <6)
{
tempB = (u8)(16 * ByteLane);
addr = DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_45;
}
else if (ByteLane <8)
{
tempB = (u8)(16 * ByteLane);
addr = DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_45 + 1;
}
else
{
tempB = 0;
addr = DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_01 + 2;
}
addr += offsetAddr;
fineStartLoc = (u8)(tempB % 32);
fineEndLoc = (u8)(fineStartLoc + 4);
grossStartLoc = (u8)(fineEndLoc + 1);
grossEndLoc = (u8)(grossStartLoc + 1);
set_DCT_ADDR_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId, FUN_DCT,
(u16)addr, fineStartLoc, fineEndLoc,(u32)fineDelayValue);
set_DCT_ADDR_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId, FUN_DCT,
(u16)addr, grossStartLoc, grossEndLoc, (u32)grossDelayValue);
}
}
/*-----------------------------------------------------------------------------
* void getWLByteDelay(DCTStruct *DCTData, u8 ByteLane, u8 Dimm)
*
* Description:
* This function reads the write levelization byte delay from the Phase
* Recovery control registers
*
* Parameters:
* IN OUT *DCTData - Pointer to buffer with information about each DCT
* IN Dimm - Dimm Number
* ByteLane - target byte lane to read
* OUT
* DCTData->WLGrossDelay[index+ByteLane] - gross write delay for current
* byte for logical DIMM
* DCTData->WLFineDelay[index+ByteLane] - fine write delay for current
* byte for logical DIMM
*
*-----------------------------------------------------------------------------
*/
void getWLByteDelay(sDCTStruct *pDCTData, u8 ByteLane, u8 dimm)
{
u8 fineStartLoc, fineEndLoc, grossStartLoc, grossEndLoc, tempB, tempB1, index;
u32 addr, fine, gross;
tempB = 0;
index = (u8)(MAX_BYTE_LANES*dimm);
if (ByteLane < 4)
{
tempB = (u8)(8 * ByteLane);
addr = DRAM_CONT_ADD_PHASE_REC_CTRL_LOW;
}
else if (ByteLane < 8)
{
tempB1 = (u8)(ByteLane - 4);
tempB = (u8)(8 * tempB1);
addr = DRAM_CONT_ADD_PHASE_REC_CTRL_HIGH;
}
else
{
tempB = 0;
addr = DRAM_CONT_ADD_ECC_PHASE_REC_CTRL;
}
fineStartLoc = tempB;
fineEndLoc = (u8)(fineStartLoc + 4);
grossStartLoc = (u8)(fineEndLoc + 1);
grossEndLoc = (u8)(grossStartLoc + 1);
fine = get_ADD_DCT_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId,
FUN_DCT, (u16)addr, fineStartLoc, fineEndLoc);
gross = get_ADD_DCT_Bits(pDCTData, pDCTData->DctTrain, pDCTData->NodeId,
FUN_DCT, (u16)addr, grossStartLoc, grossEndLoc);
/* Adjust seed gross delay overflow (greater than 3):
* - Adjust the trained gross delay to the original seed gross delay.
*/
if(pDCTData->WLGrossDelay[index+ByteLane] >= 3)
{
gross += pDCTData->WLGrossDelay[index+ByteLane];
if(pDCTData->WLGrossDelay[index+ByteLane] & 1)
gross -= 1;
else
gross -= 2;
}
else if((pDCTData->WLGrossDelay[index+ByteLane] == 0) && (gross == 3))
{
/* If seed gross delay is 0 but PRE result gross delay is 3, it is negative.
* We will then round the negative number to 0.
*/
gross = 0;
fine = 0;
}
pDCTData->WLFineDelay[index+ByteLane] = (u8)fine;
pDCTData->WLGrossDelay[index+ByteLane] = (u8)gross;
}

View File

@@ -0,0 +1,270 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* This file contains functions for odt setting on registered DDR3 dimms */
/*
*-----------------------------------------------------------------------------
* MODULES USED
*
*-----------------------------------------------------------------------------
*/
/*----------------------------------------------------------------------------
* PROTOTYPES OF LOCAL FUNCTIONS
*
*----------------------------------------------------------------------------
*/
/*
*-----------------------------------------------------------------------------
* EXPORTED FUNCTIONS
*
*-----------------------------------------------------------------------------
*/
/* -----------------------------------------------------------------------------*/
/**
*
*
* This function set Rtt_Nom for registered DDR3 dimms on targeted dimm.
*
* @param[in] *pDCTData - Pointer to buffer with information about each DCT
* dimm - targeted dimm
* wl - current mode, either write levelization mode or normal mode
* MemClkFreq - current frequency
*
* @return tempW1 - Rtt_Nom
*/
static u32 RttNomTargetRegDimm (sMCTStruct *pMCTData, sDCTStruct *pDCTData, u8 dimm, BOOL wl, u8 MemClkFreq, u8 rank)
{
u32 tempW1;
tempW1 = 0;
if (wl) {
switch (pMCTData->PlatMaxDimmsDct) {
case 2:
/* 2 dimms per channel */
if (pDCTData->MaxDimmsInstalled == 1) {
if ((pDCTData->DimmRanks[dimm] == 2) && (rank == 0)) {
tempW1 = 0x00; /* Rtt_Nom = OFF */
} else if (pDCTData->DimmRanks[dimm] == 4) {
if (rank == 1) {
tempW1 = 0x00; /* Rtt_Nom = OFF on second and forth rank of QR dimm */
} else {
if (MemClkFreq == 6) {
tempW1 = 0x04; /* Rtt_Nom = 60 ohms */
} else {
tempW1 = 0x40; /* Rtt_Nom = 120 ohms */
}
}
} else {
tempW1 = 0x04; /* Rtt_Nom = 60 ohms */
}
} else if (pDCTData->MaxDimmsInstalled == 2) {
if (((pDCTData->DimmRanks[dimm] == 2) || (pDCTData->DimmRanks[dimm] == 4)) && (rank == 1)) {
tempW1 = 0x00; /* Rtt_Nom = OFF */
} else if ((pDCTData->DimmRanks[dimm] == 4) || (pDCTData->DctCSPresent & 0xF0)) {
if (MemClkFreq == 3) {
tempW1 = 0x40; /* Rtt_Nom = 120 ohms */
} else {
tempW1 = 0x04; /* Rtt_Nom = 60 ohms */
}
} else {
if (MemClkFreq == 6) {
tempW1 = 0x04; /* Rtt_Nom = 60 ohms */
} else {
tempW1 = 0x40; /* Rtt_Nom = 120 ohms */
}
}
}
break;
case 3:
/* 3 dimms per channel */
/* QR not supported in this case on L1 package. */
if (pDCTData->MaxDimmsInstalled == 1) {
if ((pDCTData->DimmRanks[dimm] == 2) && (rank == 1)) {
tempW1 = 0x00; /* Rtt_Nom = OFF */
} else {
tempW1 = 0x04; /* Rtt_Nom = 60 ohms */
}
} else {
tempW1 = 0x40; /* Rtt_Nom = 120 ohms */
}
break;
default:
ASSERT (FALSE);
}
} else {
switch (pMCTData->PlatMaxDimmsDct) {
case 2:
/* 2 dimms per channel */
if ((pDCTData->DimmRanks[dimm] == 4) && (rank == 1)) {
tempW1 = 0x00; /* Rtt_Nom = OFF */
} else if ((pDCTData->MaxDimmsInstalled == 1) || (pDCTData->DimmRanks[dimm] == 4)) {
tempW1 = 0x04; /* Rtt_Nom = 60 ohms */
} else {
if (pDCTData->DctCSPresent & 0xF0) {
tempW1 = 0x0204; /* Rtt_Nom = 30 ohms */
} else {
if (MemClkFreq < 5) {
tempW1 = 0x44; /* Rtt_Nom = 40 ohms */
} else {
tempW1 = 0x0204; /* Rtt_Nom = 30 ohms */
}
}
}
break;
case 3:
/* 3 dimms per channel */
/* L1 package does not support QR dimms this case. */
if (rank == 1) {
tempW1 = 0x00; /* Rtt_Nom = OFF */
} else if (pDCTData->MaxDimmsInstalled == 1) {
tempW1 = 0x04; /* Rtt_Nom = 60 ohms */
} else if ((MemClkFreq < 5) || (pDCTData->MaxDimmsInstalled == 3)) {
tempW1 = 0x44; /* Rtt_Nom = 40 ohms */
} else {
tempW1 = 0x0204; /* Rtt_Nom = 30 ohms */
}
break;
default:
ASSERT (FALSE);
}
}
return tempW1;
}
/* -----------------------------------------------------------------------------*/
/**
*
*
* This function set Rtt_Nom for registered DDR3 dimms on non-targeted dimm.
*
* @param[in] *pDCTData - Pointer to buffer with information about each DCT
* dimm - non-targeted dimm
* wl - current mode, either write levelization mode or normal mode
* MemClkFreq - current frequency
*
* @return tempW1 - Rtt_Nom
*/
static u32 RttNomNonTargetRegDimm (sMCTStruct *pMCTData, sDCTStruct *pDCTData, u8 dimm, BOOL wl, u8 MemClkFreq, u8 rank)
{
if ((wl) && (pMCTData->PlatMaxDimmsDct == 2) && (pDCTData->DimmRanks[dimm] == 2) && (rank == 1)) {
return 0x00; /* for non-target dimm during WL, the second rank of a DR dimm need to have Rtt_Nom = OFF */
} else {
return RttNomTargetRegDimm (pMCTData, pDCTData, dimm, FALSE, MemClkFreq, rank); /* otherwise, the same as target dimm in normal mode. */
}
}
/* -----------------------------------------------------------------------------*/
/**
*
*
* This function set Rtt_Wr for registered DDR3 dimms.
*
* @param[in] *pDCTData - Pointer to buffer with information about each DCT
* dimm - targeted dimm
* wl - current mode, either write levelization mode or normal mode
* MemClkFreq - current frequency
*
* @return tempW1 - Rtt_Wr
*/
static u32 RttWrRegDimm (sMCTStruct *pMCTData, sDCTStruct *pDCTData, u8 dimm, BOOL wl, u8 MemClkFreq, u8 rank)
{
u32 tempW1;
tempW1 = 0;
if (wl) {
tempW1 = 0x00; /* Rtt_WR = OFF */
} else {
switch (pMCTData->PlatMaxDimmsDct) {
case 2:
if (pDCTData->MaxDimmsInstalled == 1) {
if (pDCTData->DimmRanks[dimm] != 4) {
tempW1 = 0x00;
} else {
if (MemClkFreq == 6) {
tempW1 = 0x200; /* Rtt_WR = 60 ohms */
} else {
tempW1 = 0x400; /* Rtt_WR = 120 ohms */
}
}
} else {
if ((pDCTData->DimmRanks[dimm] == 4) || (pDCTData->DctCSPresent & 0xF0)) {
if (MemClkFreq == 3) {
tempW1 = 0x400; /* Rtt_WR = 120 ohms */
} else {
tempW1 = 0x200; /* Rtt_WR = 60 ohms */
}
} else {
if (MemClkFreq == 6) {
tempW1 = 0x200; /* Rtt_WR = 60 ohms */
} else {
tempW1 = 0x400; /* Rtt_Nom = 120 ohms */
}
}
}
break;
case 3:
if (pDCTData->MaxDimmsInstalled == 1) {
tempW1 = 0x00; /* Rtt_WR = OFF */
} else {
tempW1 = 0x400; /* Rtt_Nom = 120 ohms */
}
break;
default:
ASSERT (FALSE);
}
}
return tempW1;
}
/* -----------------------------------------------------------------------------*/
/**
*
*
* This function set WrLvOdt for registered DDR3 dimms.
*
* @param[in] *pDCTData - Pointer to buffer with information about each DCT
* dimm - targeted dimm
*
* @return WrLvOdt
*/
static u8 WrLvOdtRegDimm (sMCTStruct *pMCTData, sDCTStruct *pDCTData, u8 dimm)
{
u8 WrLvOdt1, i;
WrLvOdt1 = 0;
i = 0;
while (i < 8) {
if (pDCTData->DctCSPresent & (1 << i)) {
WrLvOdt1 = (u8)bitTestSet(WrLvOdt1, i/2);
}
i += 2;
}
if (pMCTData->PlatMaxDimmsDct == 2) {
if ((pDCTData->DimmRanks[dimm] == 4) && (pDCTData->MaxDimmsInstalled != 1)) {
if (dimm >= 2) {
WrLvOdt1 = (u8)bitTestReset (WrLvOdt1, (dimm - 2));
} else {
WrLvOdt1 = (u8)bitTestReset (WrLvOdt1, (dimm + 2));
}
} else if ((pDCTData->DimmRanks[dimm] == 2) && (pDCTData->MaxDimmsInstalled == 1)) {
/* the case for one DR on a 2 dimms per channel is special */
WrLvOdt1 = 0x8;
}
}
return WrLvOdt1;
}

View File

@@ -0,0 +1,39 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
static void AmdMemPCIRead(SBDFO loc, u32 *Value)
{
/* Convert SBDFO into a CF8 Address */
loc = (loc >> 4 & 0xFFFFFF00) | (loc & 0xFF) | ((loc & 0xF00) << 16) ;
loc |= 0x80000000;
outl(loc, 0xCF8);
*Value = inl(0xCFC);
}
static void AmdMemPCIWrite(SBDFO loc, u32 *Value)
{
/* Convert SBDFO into a CF8 Address */
loc = (loc >> 4 & 0xFFFFFF00) | (loc & 0xFF) | ((loc & 0xF00) << 16) ;
loc |= 0x80000000;
outl(loc, 0xCF8);
outl(*Value, 0xCFC);
}

View File

@@ -0,0 +1,328 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* This file contains functions for common utility functions */
/*
*-----------------------------------------------------------------------------
* MODULES USED
*
*-----------------------------------------------------------------------------
*/
/*
*-----------------------------------------------------------------------------
* EXPORTED FUNCTIONS
*
*-----------------------------------------------------------------------------
*/
static void AmdMemPCIReadBits(SBDFO loc, u8 highbit, u8 lowbit, u32 *pValue)
{
/* ASSERT(highbit < 32 && lowbit < 32 && highbit >= lowbit && (loc & 3) == 0); */
AmdMemPCIRead(loc, pValue);
*pValue = *pValue >> lowbit; /* Shift */
/* A 1<<32 == 1<<0 due to x86 SHL instruction, so skip if that is the case */
if ((highbit-lowbit) != 31)
*pValue &= (((u32)1 << (highbit-lowbit+1))-1);
}
static void AmdMemPCIWriteBits(SBDFO loc, u8 highbit, u8 lowbit, u32 *pValue)
{
u32 temp, mask;
/* ASSERT(highbit < 32 && lowbit < 32 && highbit >= lowbit && (loc & 3) == 0); */
/* A 1<<32 == 1<<0 due to x86 SHL instruction, so skip if that is the case */
if ((highbit-lowbit) != 31)
mask = (((u32)1 << (highbit-lowbit+1))-1);
else
mask = (u32)0xFFFFFFFF;
AmdMemPCIRead(loc, &temp);
temp &= ~(mask << lowbit);
temp |= (*pValue & mask) << lowbit;
AmdMemPCIWrite(loc, &temp);
}
/*-----------------------------------------------------------------------------
* uint 32
* u32 bitTestSet(u32 csMask,u32 tempD)
*
* Description:
* This routine sets a bit in a u32
*
* Parameters:
* IN csMask = Target value in which the bit will be set
* IN tempD = Bit that will be set
* OUT value = Target value with the bit set
*-----------------------------------------------------------------------------
*/
static u32 bitTestSet(u32 csMask,u32 tempD)
{
u32 localTemp;
/* ASSERT(tempD < 32); */
localTemp = 1;
csMask |= localTemp << tempD;
return csMask;
}
/*-----------------------------------------------------------------------------
* uint 32
* u32 bitTestReset(u32 csMask,u32 tempD)
*
* Description:
* This routine re-sets a bit in a u32
*
* Parameters:
* IN csMask = Target value in which the bit will be re-set
* IN tempD = Bit that will be re-set
* OUT value = Target value with the bit re-set
*-----------------------------------------------------------------------------
*/
static u32 bitTestReset(u32 csMask,u32 tempD)
{
u32 temp, localTemp;
/* ASSERT(tempD < 32); */
localTemp = 1;
temp = localTemp << tempD;
temp = ~temp;
csMask &= temp;
return csMask;
}
/*-----------------------------------------------------------------------------
* uint 32
* u32 get_Bits(DCTStruct *DCTData, u8 DCT, u8 Node, u8 func, u16 offset,
* u8 low, u8 high)
*
* Description:
* This routine Gets the PCT bits from the specidfied Node, DCT and PCI address
*
* Parameters:
* IN OUT *DCTData - Pointer to buffer with information about each DCT
* IN DCT - DCT number
* - 1 indicates DCT 1
* - 0 indicates DCT 0
* - 2 both DCTs
* Node - Node number
* Func - PCI Function number
* Offset - PCI register number
* Low - Low bit of the bit field
* High - High bit of the bit field
*
* OUT value = Value read from PCI space
*-----------------------------------------------------------------------------
*/
static u32 get_Bits(sDCTStruct *pDCTData,
u8 dct, u8 node, u8 func,
u16 offset, u8 low, u8 high)
{
u32 temp;
/* ASSERT(node < MAX_NODES); */
if (dct == BOTH_DCTS)
{
/* Registers exist on DCT0 only */
AmdMemPCIReadBits(MAKE_SBDFO(0,0,24+node,func,offset), high, low, &temp);
}
else
{
if (dct == 1)
{
/* Write to dct 1 */
offset += 0x100;
AmdMemPCIReadBits(MAKE_SBDFO(0,0,24+node,func,offset), high, low, &temp);
}
else
{
/* Write to dct 0 */
AmdMemPCIReadBits(MAKE_SBDFO(0,0,24+node,func,offset), high, low, &temp);
}
}
return temp;
}
/*-----------------------------------------------------------------------------
* uint 32
* void set_Bits(DCTStruct *DCTData,u8 DCT,u8 Node,u8 func, u16 offset,
* u8 low, u8 high, u32 value)
*
* Description:
* This routine Sets the PCT bits from the specidfied Node, DCT and PCI address
*
* Parameters:
* IN OUT *DCTData - Pointer to buffer with information about each DCT
* IN DCT - DCT number
* - 1 indicates DCT 1
* - 0 indicates DCT 0
* - 2 both DCTs
* Node - Node number
* Func - PCI Function number
* Offset - PCI register number
* Low - Low bit of the bit field
* High - High bit of the bit field
*
* OUT
*-----------------------------------------------------------------------------
*/
static void set_Bits(sDCTStruct *pDCTData,
u8 dct, u8 node, u8 func,
u16 offset, u8 low, u8 high, u32 value)
{
u32 temp;
temp = value;
if (dct == BOTH_DCTS)
{
/* Registers exist on DCT0 only */
AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+node,func,offset), high, low, &temp);
}
else
{
if (dct == 1)
{
/* Write to dct 1 */
offset += 0x100;
AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+node,func,offset), high, low, &temp);
}
else
{
/* Write to dct 0 */
AmdMemPCIWriteBits(MAKE_SBDFO(0,0,24+node,func,offset), high, low, &temp);
}
}
}
/*-------------------------------------------------
* uint 32
* u32 get_ADD_DCT_Bits(DCTStruct *DCTData,u8 DCT,u8 Node,u8 func,
* u16 offset,u8 low, u8 high)
*
* Description:
* This routine gets the Additional PCT register from Function 2 by specidfied
* Node, DCT and PCI address
*
* Parameters:
* IN OUT *DCTData - Pointer to buffer with information about each DCT
* IN DCT - DCT number
* - 1 indicates DCT 1
* - 0 indicates DCT 0
* - 2 both DCTs
* Node - Node number
* Func - PCI Function number
* Offset - Additional PCI register number
* Low - Low bit of the bit field
* High - High bit of the bit field
*
* OUT
*-------------------------------------------------
*/
static u32 get_ADD_DCT_Bits(sDCTStruct *pDCTData,
u8 dct, u8 node, u8 func,
u16 offset, u8 low, u8 high)
{
u32 tempD;
tempD = offset;
tempD = bitTestReset(tempD,DctAccessWrite);
set_Bits(pDCTData, dct, node, FUN_DCT, DRAM_CONTROLLER_ADD_DATA_OFFSET_REG,
PCI_MIN_LOW, PCI_MAX_HIGH, offset);
while ((get_Bits(pDCTData,dct, node, FUN_DCT, DRAM_CONTROLLER_ADD_DATA_OFFSET_REG,
DctAccessDone, DctAccessDone)) == 0);
return (get_Bits(pDCTData, dct, node, FUN_DCT, DRAM_CONTROLLER_ADD_DATA_PORT_REG,
low, high));
}
/*-------------------------------------------------
* uint 32
* void set_DCT_ADDR_Bits(DCTStruct *DCTData, u8 DCT,u8 Node,u8 func,
* u16 offset,u8 low, u8 high, u32 value)
*
* Description:
* This routine sets the Additional PCT register from Function 2 by specidfied
* Node, DCT and PCI address
*
* Parameters:
* IN OUT *DCTData - Pointer to buffer with information about each DCT
* IN DCT - DCT number
* - 1 indicates DCT 1
* - 0 indicates DCT 0
* - 2 both DCTs
* Node - Node number
* Func - PCI Function number
* Offset - Additional PCI register number
* Low - Low bit of the bit field
* High - High bit of the bit field
*
* OUT
*-------------------------------------------------
*/
static void set_DCT_ADDR_Bits(sDCTStruct *pDCTData,
u8 dct, u8 node, u8 func,
u16 offset, u8 low, u8 high, u32 value)
{
u32 tempD;
set_Bits(pDCTData, dct, node, FUN_DCT, DRAM_CONTROLLER_ADD_DATA_OFFSET_REG,
PCI_MIN_LOW, PCI_MAX_HIGH, offset);
while ((get_Bits(pDCTData,dct, node, FUN_DCT, DRAM_CONTROLLER_ADD_DATA_OFFSET_REG,
DctAccessDone, DctAccessDone)) == 0);
set_Bits(pDCTData, dct, node, FUN_DCT, DRAM_CONTROLLER_ADD_DATA_PORT_REG,
low, high, value);
tempD = offset;
tempD = bitTestSet(tempD,DctAccessWrite);
set_Bits(pDCTData, dct, node, FUN_DCT,DRAM_CONTROLLER_ADD_DATA_OFFSET_REG,
PCI_MIN_LOW, PCI_MAX_HIGH, tempD);
while ((get_Bits(pDCTData,dct, pDCTData->NodeId, FUN_DCT,
DRAM_CONTROLLER_ADD_DATA_OFFSET_REG, DctAccessDone,
DctAccessDone)) == 0);
}
/*-------------------------------------------------
* uint 32
* BOOL bitTest(u32 value, u8 bitLoc)
*
* Description:
* This routine tests the value to determine if the bitLoc is set
*
* Parameters:
* IN Value - value to be tested
* bitLoc - bit location to be tested
* OUT TRUE - bit is set
* FALSE - bit is clear
*-------------------------------------------------
*/
static BOOL bitTest(u32 value, u8 bitLoc)
{
u32 tempD, compD;
tempD = value;
compD = 0;
compD = bitTestSet(compD,bitLoc);
tempD &= compD;
if (compD == tempD)
{
return TRUE;
}
else
{
return FALSE;
}
}

View File

@@ -0,0 +1,139 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2010 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* IBV defined Structure */ /* IBV Specific Options */
#ifndef MWLC_D_H
#define MWLC_D_H
#define MAX_TOTAL_DIMMS 8 /* Maximum Number of DIMMs in systems */
/* (DCT0 + DCT1) */
#define MAX_DIMMS 4 /* Maximum Number of DIMMs on each DCT */
#define MAX_LDIMMS 4 /* Maximum number of Logial DIMMs per DCT */
/*MCT Max variables */
#define MAX_ERRORS 32 /* Maximum number of Errors Reported */
#define MAX_STATUS 32 /* Maximum number of Status variables*/
#define MAX_BYTE_LANES (8+1) /* Maximum number of Byte Lanes - include ECC */
#define C_MAX_DIMMS 4 /* Maximum Number of DIMMs on each DCT */
/* STATUS Definition */
#define DCT_STATUS_REGISTERED 3 /* Registered DIMMs support */
#define DCT_STATUS_OnDimmMirror 24 /* OnDimmMirror support */
/* PCI Defintions */
#define FUN_HT 0 /* Funtion 0 Access */
#define FUN_MAP 1 /* Funtion 1 Access */
#define FUN_DCT 2 /* Funtion 2 Access */
#define FUN_MISC 3 /* Funtion 3 Access */
#define FUN_ADD_DCT 0xF /* Funtion 2 Additional Register Access */
#define BOTH_DCTS 2 /* The access is independent of DCTs */
#define PCI_MIN_LOW 0 /* Lowest possible PCI register location */
#define PCI_MAX_HIGH 31 /* Highest possible PCI register location */
/*Function 2 */
/* #define DRAM_INIT 0x7C */
#define DRAM_MRS_REGISTER 0x84
#define DRAM_CONFIG_HIGH 0x94
#define DRAM_CONTROLLER_ADD_DATA_OFFSET_REG 0x98
#define DRAM_CONTROLLER_ADD_DATA_PORT_REG 0x9C
/*Function 2 Additional DRAM control registers */
#define DRAM_ADD_DCT_PHY_CONTROL_REG 0x8
#define DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_01 0x30
#define DRAM_CONT_ADD_DQS_TIMING_CTRL_BL_45 0x40
#define DRAM_CONT_ADD_PHASE_REC_CTRL_LOW 0x50
#define DRAM_CONT_ADD_PHASE_REC_CTRL_HIGH 0x51
#define DRAM_CONT_ADD_ECC_PHASE_REC_CTRL 0x52
#define DRAM_CONT_ADD_WRITE_LEV_ERROR_REG 0x53
/* CPU Register defintions */
/* Register Bit Location */
#define DctAccessDone 31
#define DctAccessWrite 30
#define RDqsEn 12
#define TrDimmSelStart 4
#define TrDimmSelEnd 5
#define WrLvTrMode 1
#define TrNibbleSel 2
#define WrLvOdtEn 12
#define WrLvErrStart 0
#define WrLvErrEnd 8
#define SendMrsCmd 26
#define Qoff 12
#define MRS_Level 7
#define MrsAddressStart 0
#define MrsAddressEnd 15
#define MrsBankStart 16
#define MrsBankEnd 18
#define MrsChipSelStart 20
#define MrsChipSelEnd 22
#define ASR 18
#define SRT 19
#define DramTermDynStart 10
#define DramTermDynEnd 11
#define WrtLvTrMode 1
#define TrNibbleSel 2
#define TrDimmSelStart 4
#define TrDimmSelEnd 5
#define WrtLvTrEn 0
#define DrvImpCtrlStart 2
#define DrvImpCtrlEnd 3
#define DramTermNbStart 7
#define DramTermNbEnd 9
#define onDimmMirror 3
typedef struct _sMCTStruct
{
u8 PlatMaxTotalDimms; /* IBV defined total number of DIMMs */
/* on a particular node */
u8 PlatMaxDimmsDct; /* IBV defined maximum number of */
/* DIMMs on a DCT */
void (*AgesaDelay)(u32 delayval); /* IBV defined Delay Function */
} sMCTStruct;
/* DCT 0 and DCT 1 Data structure */
typedef struct _sDCTStruct
{
u8 NodeId; /* Node ID */
u8 DctTrain; /* Current DCT being trained */
u8 CurrDct; /* Current DCT number (0 or 1) */
u8 DctCSPresent; /* Current DCT CS mapping */
u8 WLGrossDelay[MAX_BYTE_LANES*MAX_LDIMMS]; /* Write Levelization Gross Delay */
/* per byte Lane Per Logical DIMM*/
u8 WLFineDelay[MAX_BYTE_LANES*MAX_LDIMMS]; /* Write Levelization Fine Delay */
/* per byte Lane Per Logical DIMM*/
u16 RegMan1Present;
u8 DimmPresent[MAX_TOTAL_DIMMS];/* Indicates which DIMMs are present */
/* from Total Number of DIMMs(per Node)*/
u8 DimmX8Present[MAX_TOTAL_DIMMS]; /* Which DIMMs x8 devices */
u8 Status[MAX_STATUS]; /* Status for DCT0 and 1 */
u8 ErrCode[MAX_ERRORS]; /* Major Error codes for DCT0 and 1 */
u8 ErrStatus[MAX_ERRORS]; /* Minor Error codes for DCT0 and 1 */
u8 DimmValid[MAX_TOTAL_DIMMS]; /* Indicates which DIMMs are valid for */
/* Total Number of DIMMs(per Node) */
u8 WLTotalDelay[MAX_BYTE_LANES];/* Write Levelization Toral Delay */
/* per byte lane */
u8 MaxDimmsInstalled; /* Max Dimms Installed for current DCT */
u8 DimmRanks[MAX_TOTAL_DIMMS]; /* Total Number of Ranks(per Dimm) */
u32 LogicalCPUID;
u8 WLPass;
} sDCTStruct;
#endif

View File

@@ -27,8 +27,10 @@ static u16 mctGet_NVbits(u8 index)
case NV_PACK_TYPE:
#if CONFIG_CPU_SOCKET_TYPE == 0x10 /* Socket F */
val = 0;
#elif CONFIG_CPU_SOCKET_TYPE == 0x11 /* AM2r2 */
#elif CONFIG_CPU_SOCKET_TYPE == 0x11 /* AM3 */
val = 1;
#elif CONFIG_CPU_SOCKET_TYPE == 0x13 /* ASB2 */
val = 4;
//#elif SYSTEM_TYPE == MOBILE
// val = 2;
#endif
@@ -400,9 +402,21 @@ static void vErrata350(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTs
static void mctHookBeforeAnyTraining(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA)
{
if (pDCTstatA->LogicalCPUID & (AMD_RB_C2 | AMD_DA_C2)) {
#if (CONFIG_DIMM_SUPPORT & 0x000F)==0x0005 /* AMD_FAM10_DDR3 */
if (pDCTstatA->LogicalCPUID & (AMD_RB_C2 | AMD_DA_C2 | AMD_DA_C3)) {
vErrata350(pMCTstat, pDCTstatA);
}
#endif
}
static u32 mct_AdjustSPDTimings(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstatA, u32 val)
{
if (pDCTstatA->LogicalCPUID & AMD_DR_Bx) {
if (pDCTstatA->Status & (1 << SB_Registered)) {
val ++;
}
}
return val;
}
static void mctHookAfterAnyTraining(void)
@@ -418,3 +432,4 @@ static u8 mctSetNodeBoundary_D(void)
{
return 0;
}