Added PeCoffLoaderGetMachineType to the PeCoffGetEntryPointLibrary Class. Document to be updated. Added the PeCoffLoaderImageReadFromMemory() and PeCoffLoaderRelocateImageForRuntime () to the PcCoffLib. Updated EfiImage.h and removed EFI_IMAGE_OPTIONAL_HEADER and EFI_IMAGE_NT_HEADERS as they were replaced with checking the MachineType. PeCoffLib – Added checks for MachineType so the PeCoff lib can load any PE32 or PE32+ image. The relocations are still limited to IA32, X64, IPF, and EBC. I also added a re-relocator function to remove PeLoader Code from Runtime Lib. Even though there is only one instance of the re-relocator I wanted to get all the PeCoff loader code together. Replaced DEBUG_CODE() macro with DEBUG_CODE_START() and DEBUG_CODE_END() so you can debug through the DEBUG_CODE() macros. Also removed PE/COFF code and replaced with library usage. I also updated the IO Instrinsic lib to use _ReadWriteBarrior() to help with sync problems git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@1103 6f19259b-4bc3-4df7-8a09-765794883524
		
			
				
	
	
		
			4601 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4601 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*++
 | |
| 
 | |
| Copyright (c) 2006, Intel Corporation                                                         
 | |
| All rights reserved. This program and the accompanying materials                          
 | |
| are licensed and made available under the terms and conditions of the BSD License         
 | |
| which accompanies this distribution.  The full text of the license may be found at        
 | |
| http://opensource.org/licenses/bsd-license.php                                            
 | |
|                                                                                           
 | |
| THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,                     
 | |
| WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.             
 | |
| 
 | |
| Module Name:
 | |
| 
 | |
|   EbcExecute.c
 | |
| 
 | |
| Abstract:
 | |
| 
 | |
|   Contains code that implements the virtual machine.
 | |
| 
 | |
| --*/
 | |
| 
 | |
| #include "EbcInt.h"
 | |
| #include "EbcExecute.h"
 | |
| 
 | |
| //
 | |
| // VM major/minor version
 | |
| //
 | |
| #define VM_MAJOR_VERSION  1
 | |
| #define VM_MINOR_VERSION  0
 | |
| 
 | |
| //
 | |
| // Define some useful data size constants to allow switch statements based on
 | |
| // size of operands or data.
 | |
| //
 | |
| #define DATA_SIZE_INVALID 0
 | |
| #define DATA_SIZE_8       1
 | |
| #define DATA_SIZE_16      2
 | |
| #define DATA_SIZE_32      4
 | |
| #define DATA_SIZE_64      8
 | |
| #define DATA_SIZE_N       48  // 4 or 8
 | |
| //
 | |
| // Structure we'll use to dispatch opcodes to execute functions.
 | |
| //
 | |
| typedef struct {
 | |
|   EFI_STATUS (*ExecuteFunction) (IN VM_CONTEXT * VmPtr);
 | |
| }
 | |
| VM_TABLE_ENTRY;
 | |
| 
 | |
| typedef
 | |
| UINT64
 | |
| (*DATA_MANIP_EXEC_FUNCTION) (
 | |
|   IN VM_CONTEXT * VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| INT16
 | |
| VmReadIndex16 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     CodeOffset
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| INT32
 | |
| VmReadIndex32 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     CodeOffset
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| INT64
 | |
| VmReadIndex64 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     CodeOffset
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT8
 | |
| VmReadMem8 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINTN      Addr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT16
 | |
| VmReadMem16 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINTN      Addr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT32
 | |
| VmReadMem32 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINTN      Addr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| VmReadMem64 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINTN      Addr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINTN
 | |
| VmReadMemN (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINTN      Addr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| VmWriteMem8 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   UINTN         Addr,
 | |
|   IN UINT8      Data
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| VmWriteMem16 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   UINTN         Addr,
 | |
|   IN UINT16     Data
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| VmWriteMem32 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   UINTN         Addr,
 | |
|   IN UINT32     Data
 | |
|   );
 | |
| 
 | |
| EFI_STATUS
 | |
| VmWriteMemN (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   UINTN         Addr,
 | |
|   IN UINTN      Data
 | |
|   );
 | |
| 
 | |
| EFI_STATUS
 | |
| VmWriteMem64 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   UINTN         Addr,
 | |
|   IN UINT64     Data
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT16
 | |
| VmReadCode16 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT32
 | |
| VmReadCode32 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| VmReadCode64 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| INT8
 | |
| VmReadImmed8 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| INT16
 | |
| VmReadImmed16 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| INT32
 | |
| VmReadImmed32 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| INT64
 | |
| VmReadImmed64 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINTN
 | |
| ConvertStackAddr (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINTN        Addr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteDataManip (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN BOOLEAN      IsSignedOperation
 | |
|   );
 | |
| 
 | |
| //
 | |
| // Functions that execute VM opcodes
 | |
| //
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteBREAK (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteJMP (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteJMP8 (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteCALL (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteRET (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteCMP (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteCMPI (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVxx (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVI (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVIn (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVREL (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecutePUSHn (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecutePUSH (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecutePOPn (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecutePOP (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteSignedDataManip (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteUnsignedDataManip (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteLOADSP (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteSTORESP (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVsnd (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVsnw (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   );
 | |
| 
 | |
| //
 | |
| // Data manipulation subfunctions
 | |
| //
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteNOT (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteNEG (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteADD (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteSUB (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteMUL (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteMULU (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteDIV (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteDIVU (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteMOD (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteMODU (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteAND (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteOR (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteXOR (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteSHL (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteSHR (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteASHR (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteEXTNDB (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteEXTNDW (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteEXTNDD (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT64     Op1,
 | |
|   IN UINT64     Op2
 | |
|   );
 | |
| 
 | |
| //
 | |
| // Once we retrieve the operands for the data manipulation instructions,
 | |
| // call these functions to perform the operation.
 | |
| //
 | |
| static CONST DATA_MANIP_EXEC_FUNCTION mDataManipDispatchTable[] = {
 | |
|   ExecuteNOT,
 | |
|   ExecuteNEG,
 | |
|   ExecuteADD,
 | |
|   ExecuteSUB,
 | |
|   ExecuteMUL,
 | |
|   ExecuteMULU,
 | |
|   ExecuteDIV,
 | |
|   ExecuteDIVU,
 | |
|   ExecuteMOD,
 | |
|   ExecuteMODU,
 | |
|   ExecuteAND,
 | |
|   ExecuteOR,
 | |
|   ExecuteXOR,
 | |
|   ExecuteSHL,
 | |
|   ExecuteSHR,
 | |
|   ExecuteASHR,
 | |
|   ExecuteEXTNDB,
 | |
|   ExecuteEXTNDW,
 | |
|   ExecuteEXTNDD,
 | |
| };
 | |
| 
 | |
| static CONST VM_TABLE_ENTRY           mVmOpcodeTable[] = {
 | |
|   { ExecuteBREAK },             // opcode 0x00
 | |
|   { ExecuteJMP },               // opcode 0x01
 | |
|   { ExecuteJMP8 },              // opcode 0x02
 | |
|   { ExecuteCALL },              // opcode 0x03
 | |
|   { ExecuteRET },               // opcode 0x04
 | |
|   { ExecuteCMP },               // opcode 0x05 CMPeq
 | |
|   { ExecuteCMP },               // opcode 0x06 CMPlte
 | |
|   { ExecuteCMP },               // opcode 0x07 CMPgte
 | |
|   { ExecuteCMP },               // opcode 0x08 CMPulte
 | |
|   { ExecuteCMP },               // opcode 0x09 CMPugte
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x0A NOT
 | |
|   { ExecuteSignedDataManip },   // opcode 0x0B NEG
 | |
|   { ExecuteSignedDataManip },   // opcode 0x0C ADD
 | |
|   { ExecuteSignedDataManip },   // opcode 0x0D SUB
 | |
|   { ExecuteSignedDataManip },   // opcode 0x0E MUL
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x0F MULU
 | |
|   { ExecuteSignedDataManip },   // opcode 0x10 DIV
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x11 DIVU
 | |
|   { ExecuteSignedDataManip },   // opcode 0x12 MOD
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x13 MODU
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x14 AND
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x15 OR
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x16 XOR
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x17 SHL
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x18 SHR
 | |
|   { ExecuteSignedDataManip },   // opcode 0x19 ASHR
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x1A EXTNDB
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x1B EXTNDW
 | |
|   { ExecuteUnsignedDataManip }, // opcode 0x1C EXTNDD
 | |
|   { ExecuteMOVxx },             // opcode 0x1D MOVBW
 | |
|   { ExecuteMOVxx },             // opcode 0x1E MOVWW
 | |
|   { ExecuteMOVxx },             // opcode 0x1F MOVDW
 | |
|   { ExecuteMOVxx },             // opcode 0x20 MOVQW
 | |
|   { ExecuteMOVxx },             // opcode 0x21 MOVBD
 | |
|   { ExecuteMOVxx },             // opcode 0x22 MOVWD
 | |
|   { ExecuteMOVxx },             // opcode 0x23 MOVDD
 | |
|   { ExecuteMOVxx },             // opcode 0x24 MOVQD
 | |
|   { ExecuteMOVsnw },            // opcode 0x25 MOVsnw
 | |
|   { ExecuteMOVsnd },            // opcode 0x26 MOVsnd
 | |
|   { NULL },                     // opcode 0x27
 | |
|   { ExecuteMOVxx },             // opcode 0x28 MOVqq
 | |
|   { ExecuteLOADSP },            // opcode 0x29 LOADSP SP1, R2
 | |
|   { ExecuteSTORESP },           // opcode 0x2A STORESP R1, SP2
 | |
|   { ExecutePUSH },              // opcode 0x2B PUSH {@}R1 [imm16]
 | |
|   { ExecutePOP },               // opcode 0x2C POP {@}R1 [imm16]
 | |
|   { ExecuteCMPI },              // opcode 0x2D CMPIEQ
 | |
|   { ExecuteCMPI },              // opcode 0x2E CMPILTE
 | |
|   { ExecuteCMPI },              // opcode 0x2F CMPIGTE
 | |
|   { ExecuteCMPI },              // opcode 0x30 CMPIULTE
 | |
|   { ExecuteCMPI },              // opcode 0x31 CMPIUGTE
 | |
|   { ExecuteMOVxx },             // opcode 0x32 MOVN
 | |
|   { ExecuteMOVxx },             // opcode 0x33 MOVND
 | |
|   { NULL },                     // opcode 0x34
 | |
|   { ExecutePUSHn },             // opcode 0x35
 | |
|   { ExecutePOPn },              // opcode 0x36
 | |
|   { ExecuteMOVI },              // opcode 0x37 - mov immediate data
 | |
|   { ExecuteMOVIn },             // opcode 0x38 - mov immediate natural
 | |
|   { ExecuteMOVREL }             // opcode 0x39 - move data relative to PC
 | |
| };
 | |
| 
 | |
| //
 | |
| // Length of JMP instructions, depending on upper two bits of opcode.
 | |
| //
 | |
| static CONST UINT8                    mJMPLen[] = { 2, 2, 6, 10 };
 | |
| 
 | |
| //
 | |
| // Simple Debugger Protocol GUID
 | |
| //
 | |
| EFI_GUID mEbcSimpleDebuggerProtocolGuid = EFI_EBC_SIMPLE_DEBUGGER_PROTOCOL_GUID;
 | |
| 
 | |
| EFI_STATUS
 | |
| EbcExecuteInstructions (
 | |
|   IN EFI_EBC_VM_TEST_PROTOCOL *This,
 | |
|   IN VM_CONTEXT               *VmPtr,
 | |
|   IN OUT UINTN                *InstructionCount
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Given a pointer to a new VM context, execute one or more instructions. This
 | |
|   function is only used for test purposes via the EBC VM test protocol.
 | |
| 
 | |
| Arguments:
 | |
| 
 | |
|   This              - pointer to protocol interface
 | |
|   VmPtr             - pointer to a VM context
 | |
|   InstructionCount  - how many instructions to execute. 0 if don't count.
 | |
| 
 | |
| Returns:
 | |
| 
 | |
|   EFI_UNSUPPORTED
 | |
|   EFI_SUCCESS
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINTN       ExecFunc;
 | |
|   EFI_STATUS  Status;
 | |
|   UINTN       InstructionsLeft;
 | |
|   UINTN       SavedInstructionCount;
 | |
| 
 | |
|   Status = EFI_SUCCESS;
 | |
| 
 | |
|   if (*InstructionCount == 0) {
 | |
|     InstructionsLeft = 1;
 | |
|   } else {
 | |
|     InstructionsLeft = *InstructionCount;
 | |
|   }
 | |
| 
 | |
|   SavedInstructionCount = *InstructionCount;
 | |
|   *InstructionCount     = 0;
 | |
| 
 | |
|   //
 | |
|   // Index into the opcode table using the opcode byte for this instruction.
 | |
|   // This gives you the execute function, which we first test for null, then
 | |
|   // call it if it's not null.
 | |
|   //
 | |
|   while (InstructionsLeft != 0) {
 | |
|     ExecFunc = (UINTN) mVmOpcodeTable[(*VmPtr->Ip & 0x3F)].ExecuteFunction;
 | |
|     if (ExecFunc == (UINTN) NULL) {
 | |
|       EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|       return EFI_UNSUPPORTED;
 | |
|     } else {
 | |
|       mVmOpcodeTable[(*VmPtr->Ip & 0x3F)].ExecuteFunction (VmPtr);
 | |
|       *InstructionCount = *InstructionCount + 1;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Decrement counter if applicable
 | |
|     //
 | |
|     if (SavedInstructionCount != 0) {
 | |
|       InstructionsLeft--;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| EFI_STATUS
 | |
| EbcExecute (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute an EBC image from an entry point or from a published protocol.
 | |
| 
 | |
| Arguments:
 | |
| 
 | |
|   VmPtr - pointer to prepared VM context.
 | |
| 
 | |
| Returns:
 | |
| 
 | |
|   Standard EBC status.
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINTN                             ExecFunc;
 | |
|   UINT8                             StackCorrupted;
 | |
|   EFI_STATUS                        Status;
 | |
|   EFI_EBC_SIMPLE_DEBUGGER_PROTOCOL  *EbcSimpleDebugger;
 | |
| 
 | |
|   EbcSimpleDebugger = NULL;
 | |
|   Status            = EFI_SUCCESS;
 | |
|   StackCorrupted    = 0;
 | |
| 
 | |
|   //
 | |
|   // Make sure the magic value has been put on the stack before we got here.
 | |
|   //
 | |
|   if (*VmPtr->StackMagicPtr != (UINTN) VM_STACK_KEY_VALUE) {
 | |
|     StackCorrupted = 1;
 | |
|   }
 | |
| 
 | |
|   VmPtr->FramePtr = (VOID *) ((UINT8 *) (UINTN) VmPtr->R[0] + 8);
 | |
| 
 | |
|   //
 | |
|   // Try to get the debug support for EBC
 | |
|   //
 | |
|   DEBUG_CODE_BEGIN ();
 | |
|     Status = gBS->LocateProtocol (
 | |
|                     &mEbcSimpleDebuggerProtocolGuid,
 | |
|                     NULL,
 | |
|                     (VOID **) &EbcSimpleDebugger
 | |
|                     );
 | |
|     if (EFI_ERROR (Status)) {
 | |
|       EbcSimpleDebugger = NULL;
 | |
|     }
 | |
|   DEBUG_CODE_END ();
 | |
| 
 | |
|   //
 | |
|   // Save the start IP for debug. For example, if we take an exception we
 | |
|   // can print out the location of the exception relative to the entry point,
 | |
|   // which could then be used in a disassembly listing to find the problem.
 | |
|   //
 | |
|   VmPtr->EntryPoint = (VOID *) VmPtr->Ip;
 | |
| 
 | |
|   //
 | |
|   // We'll wait for this flag to know when we're done. The RET
 | |
|   // instruction sets it if it runs out of stack.
 | |
|   //
 | |
|   VmPtr->StopFlags = 0;
 | |
|   while (!(VmPtr->StopFlags & STOPFLAG_APP_DONE)) {
 | |
|     //
 | |
|     // If we've found a simple debugger protocol, call it
 | |
|     //
 | |
|     DEBUG_CODE_BEGIN ();
 | |
|       if (EbcSimpleDebugger != NULL) {
 | |
|         EbcSimpleDebugger->Debugger (EbcSimpleDebugger, VmPtr);
 | |
|       }
 | |
|     DEBUG_CODE_END ();
 | |
| 
 | |
|     //
 | |
|     // Verify the opcode is in range. Otherwise generate an exception.
 | |
|     //
 | |
|     if ((*VmPtr->Ip & OPCODE_M_OPCODE) >= (sizeof (mVmOpcodeTable) / sizeof (mVmOpcodeTable[0]))) {
 | |
|       EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|       Status = EFI_UNSUPPORTED;
 | |
|       goto Done;
 | |
|     }
 | |
|     //
 | |
|     // Use the opcode bits to index into the opcode dispatch table. If the
 | |
|     // function pointer is null then generate an exception.
 | |
|     //
 | |
|     ExecFunc = (UINTN) mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction;
 | |
|     if (ExecFunc == (UINTN) NULL) {
 | |
|       EbcDebugSignalException (EXCEPT_EBC_INVALID_OPCODE, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|       Status = EFI_UNSUPPORTED;
 | |
|       goto Done;
 | |
|     }
 | |
|     //
 | |
|     // The EBC VM is a strongly ordered processor, so perform a fence operation before
 | |
|     // and after each instruction is executed.
 | |
|     //
 | |
|     MemoryFence ();
 | |
| 
 | |
|     mVmOpcodeTable[(*VmPtr->Ip & OPCODE_M_OPCODE)].ExecuteFunction (VmPtr);
 | |
| 
 | |
|     MemoryFence ();
 | |
| 
 | |
|     //
 | |
|     // If the step flag is set, signal an exception and continue. We don't
 | |
|     // clear it here. Assuming the debugger is responsible for clearing it.
 | |
|     //
 | |
|     if (VMFLAG_ISSET (VmPtr, VMFLAGS_STEP)) {
 | |
|       EbcDebugSignalException (EXCEPT_EBC_STEP, EXCEPTION_FLAG_NONE, VmPtr);
 | |
|     }
 | |
|     //
 | |
|     // Make sure stack has not been corrupted. Only report it once though.
 | |
|     //
 | |
|     if (!StackCorrupted && (*VmPtr->StackMagicPtr != (UINTN) VM_STACK_KEY_VALUE)) {
 | |
|       EbcDebugSignalException (EXCEPT_EBC_STACK_FAULT, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|       StackCorrupted = 1;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| Done:
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVxx (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute the MOVxx instructions.
 | |
| 
 | |
| Arguments:
 | |
| 
 | |
|   VmPtr - pointer to a VM context.
 | |
| 
 | |
| Returns:
 | |
| 
 | |
|   EFI_UNSUPPORTED
 | |
|   EFI_SUCCESS
 | |
| 
 | |
| Instruction format:
 | |
|   
 | |
|   MOV[b|w|d|q|n]{w|d} {@}R1 {Index16|32}, {@}R2 {Index16|32}
 | |
|   MOVqq {@}R1 {Index64}, {@}R2 {Index64}
 | |
| 
 | |
|   Copies contents of [R2] -> [R1], zero extending where required.
 | |
| 
 | |
|   First character indicates the size of the move.
 | |
|   Second character indicates the size of the index(s).
 | |
| 
 | |
|   Invalid to have R1 direct with index.
 | |
|   
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   OpcMasked;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   UINT8   MoveSize;
 | |
|   INT16   Index16;
 | |
|   INT32   Index32;
 | |
|   INT64   Index64Op1;
 | |
|   INT64   Index64Op2;
 | |
|   UINT64  Data64;
 | |
|   UINT64  DataMask;
 | |
|   UINTN   Source;
 | |
| 
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   OpcMasked = (UINT8) (Opcode & OPCODE_M_OPCODE);
 | |
| 
 | |
|   //
 | |
|   // Get the operands byte so we can get R1 and R2
 | |
|   //
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Assume no indexes
 | |
|   //
 | |
|   Index64Op1  = 0;
 | |
|   Index64Op2  = 0;
 | |
|   Data64      = 0;
 | |
| 
 | |
|   //
 | |
|   // Determine if we have an index/immediate data. Base instruction size
 | |
|   // is 2 (opcode + operands). Add to this size each index specified.
 | |
|   //
 | |
|   Size = 2;
 | |
|   if (Opcode & (OPCODE_M_IMMED_OP1 | OPCODE_M_IMMED_OP2)) {
 | |
|     //
 | |
|     // Determine size of the index from the opcode. Then get it.
 | |
|     //
 | |
|     if ((OpcMasked <= OPCODE_MOVQW) || (OpcMasked == OPCODE_MOVNW)) {
 | |
|       //
 | |
|       // MOVBW, MOVWW, MOVDW, MOVQW, and MOVNW have 16-bit immediate index.
 | |
|       // Get one or both index values.
 | |
|       //
 | |
|       if (Opcode & OPCODE_M_IMMED_OP1) {
 | |
|         Index16     = VmReadIndex16 (VmPtr, 2);
 | |
|         Index64Op1  = (INT64) Index16;
 | |
|         Size += sizeof (UINT16);
 | |
|       }
 | |
| 
 | |
|       if (Opcode & OPCODE_M_IMMED_OP2) {
 | |
|         Index16     = VmReadIndex16 (VmPtr, Size);
 | |
|         Index64Op2  = (INT64) Index16;
 | |
|         Size += sizeof (UINT16);
 | |
|       }
 | |
|     } else if ((OpcMasked <= OPCODE_MOVQD) || (OpcMasked == OPCODE_MOVND)) {
 | |
|       //
 | |
|       // MOVBD, MOVWD, MOVDD, MOVQD, and MOVND have 32-bit immediate index
 | |
|       //
 | |
|       if (Opcode & OPCODE_M_IMMED_OP1) {
 | |
|         Index32     = VmReadIndex32 (VmPtr, 2);
 | |
|         Index64Op1  = (INT64) Index32;
 | |
|         Size += sizeof (UINT32);
 | |
|       }
 | |
| 
 | |
|       if (Opcode & OPCODE_M_IMMED_OP2) {
 | |
|         Index32     = VmReadIndex32 (VmPtr, Size);
 | |
|         Index64Op2  = (INT64) Index32;
 | |
|         Size += sizeof (UINT32);
 | |
|       }
 | |
|     } else if (OpcMasked == OPCODE_MOVQQ) {
 | |
|       //
 | |
|       // MOVqq -- only form with a 64-bit index
 | |
|       //
 | |
|       if (Opcode & OPCODE_M_IMMED_OP1) {
 | |
|         Index64Op1 = VmReadIndex64 (VmPtr, 2);
 | |
|         Size += sizeof (UINT64);
 | |
|       }
 | |
| 
 | |
|       if (Opcode & OPCODE_M_IMMED_OP2) {
 | |
|         Index64Op2 = VmReadIndex64 (VmPtr, Size);
 | |
|         Size += sizeof (UINT64);
 | |
|       }
 | |
|     } else {
 | |
|       //
 | |
|       // Obsolete MOVBQ, MOVWQ, MOVDQ, and MOVNQ have 64-bit immediate index
 | |
|       //
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
|   }
 | |
|   //
 | |
|   // Determine the size of the move, and create a mask for it so we can
 | |
|   // clear unused bits.
 | |
|   //
 | |
|   if ((OpcMasked == OPCODE_MOVBW) || (OpcMasked == OPCODE_MOVBD)) {
 | |
|     MoveSize  = DATA_SIZE_8;
 | |
|     DataMask  = 0xFF;
 | |
|   } else if ((OpcMasked == OPCODE_MOVWW) || (OpcMasked == OPCODE_MOVWD)) {
 | |
|     MoveSize  = DATA_SIZE_16;
 | |
|     DataMask  = 0xFFFF;
 | |
|   } else if ((OpcMasked == OPCODE_MOVDW) || (OpcMasked == OPCODE_MOVDD)) {
 | |
|     MoveSize  = DATA_SIZE_32;
 | |
|     DataMask  = 0xFFFFFFFF;
 | |
|   } else if ((OpcMasked == OPCODE_MOVQW) || (OpcMasked == OPCODE_MOVQD) || (OpcMasked == OPCODE_MOVQQ)) {
 | |
|     MoveSize  = DATA_SIZE_64;
 | |
|     DataMask  = (UINT64)~0;
 | |
|   } else if ((OpcMasked == OPCODE_MOVNW) || (OpcMasked == OPCODE_MOVND)) {
 | |
|     MoveSize  = DATA_SIZE_N;
 | |
|     DataMask  = (UINT64)~0 >> (64 - 8 * sizeof (UINTN));
 | |
|   } else {
 | |
|     //
 | |
|     // We were dispatched to this function and we don't recognize the opcode
 | |
|     //
 | |
|     EbcDebugSignalException (EXCEPT_EBC_UNDEFINED, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|     return EFI_UNSUPPORTED;
 | |
|   }
 | |
|   //
 | |
|   // Now get the source address
 | |
|   //
 | |
|   if (OPERAND2_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Indirect form @R2. Compute address of operand2
 | |
|     //
 | |
|     Source = (UINTN) (VmPtr->R[OPERAND2_REGNUM (Operands)] + Index64Op2);
 | |
|     //
 | |
|     // Now get the data from the source. Always 0-extend and let the compiler
 | |
|     // sign-extend where required.
 | |
|     //
 | |
|     switch (MoveSize) {
 | |
|     case DATA_SIZE_8:
 | |
|       Data64 = (UINT64) (UINT8) VmReadMem8 (VmPtr, Source);
 | |
|       break;
 | |
| 
 | |
|     case DATA_SIZE_16:
 | |
|       Data64 = (UINT64) (UINT16) VmReadMem16 (VmPtr, Source);
 | |
|       break;
 | |
| 
 | |
|     case DATA_SIZE_32:
 | |
|       Data64 = (UINT64) (UINT32) VmReadMem32 (VmPtr, Source);
 | |
|       break;
 | |
| 
 | |
|     case DATA_SIZE_64:
 | |
|       Data64 = (UINT64) VmReadMem64 (VmPtr, Source);
 | |
|       break;
 | |
| 
 | |
|     case DATA_SIZE_N:
 | |
|       Data64 = (UINT64) (UINTN) VmReadMemN (VmPtr, Source);
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       //
 | |
|       // not reached
 | |
|       //
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Not indirect source: MOVxx {@}Rx, Ry [Index]
 | |
|     //
 | |
|     Data64 = VmPtr->R[OPERAND2_REGNUM (Operands)] + Index64Op2;
 | |
|     //
 | |
|     // Did Operand2 have an index? If so, treat as two signed values since
 | |
|     // indexes are signed values.
 | |
|     //
 | |
|     if (Opcode & OPCODE_M_IMMED_OP2) {
 | |
|       //
 | |
|       // NOTE: need to find a way to fix this, most likely by changing the VM
 | |
|       // implementation to remove the stack gap. To do that, we'd need to
 | |
|       // allocate stack space for the VM and actually set the system
 | |
|       // stack pointer to the allocated buffer when the VM starts.
 | |
|       //
 | |
|       // Special case -- if someone took the address of a function parameter
 | |
|       // then we need to make sure it's not in the stack gap. We can identify
 | |
|       // this situation if (Operand2 register == 0) && (Operand2 is direct)
 | |
|       // && (Index applies to Operand2) && (Index > 0) && (Operand1 register != 0)
 | |
|       // Situations that to be aware of:
 | |
|       //   * stack adjustments at beginning and end of functions R0 = R0 += stacksize
 | |
|       //
 | |
|       if ((OPERAND2_REGNUM (Operands) == 0) &&
 | |
|           (!OPERAND2_INDIRECT (Operands)) &&
 | |
|           (Index64Op2 > 0) &&
 | |
|           (OPERAND1_REGNUM (Operands) == 0) &&
 | |
|           (OPERAND1_INDIRECT (Operands))
 | |
|           ) {
 | |
|         Data64 = (UINT64) ConvertStackAddr (VmPtr, (UINTN) (INT64) Data64);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   //
 | |
|   // Now write it back
 | |
|   //
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Reuse the Source variable to now be dest.
 | |
|     //
 | |
|     Source = (UINTN) (VmPtr->R[OPERAND1_REGNUM (Operands)] + Index64Op1);
 | |
|     //
 | |
|     // Do the write based on the size
 | |
|     //
 | |
|     switch (MoveSize) {
 | |
|     case DATA_SIZE_8:
 | |
|       VmWriteMem8 (VmPtr, Source, (UINT8) Data64);
 | |
|       break;
 | |
| 
 | |
|     case DATA_SIZE_16:
 | |
|       VmWriteMem16 (VmPtr, Source, (UINT16) Data64);
 | |
|       break;
 | |
| 
 | |
|     case DATA_SIZE_32:
 | |
|       VmWriteMem32 (VmPtr, Source, (UINT32) Data64);
 | |
|       break;
 | |
| 
 | |
|     case DATA_SIZE_64:
 | |
|       VmWriteMem64 (VmPtr, Source, Data64);
 | |
|       break;
 | |
| 
 | |
|     case DATA_SIZE_N:
 | |
|       VmWriteMemN (VmPtr, Source, (UINTN) Data64);
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       //
 | |
|       // not reached
 | |
|       //
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Operand1 direct.
 | |
|     // Make sure we didn't have an index on operand1.
 | |
|     //
 | |
|     if (Opcode & OPCODE_M_IMMED_OP1) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
|     //
 | |
|     // Direct storage in register. Clear unused bits and store back to
 | |
|     // register.
 | |
|     //
 | |
|     VmPtr->R[OPERAND1_REGNUM (Operands)] = Data64 & DataMask;
 | |
|   }
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteBREAK (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute the EBC BREAK instruction
 | |
| 
 | |
| Arguments:
 | |
| 
 | |
|   VmPtr - pointer to current VM context
 | |
| 
 | |
| Returns:
 | |
| 
 | |
|   EFI_UNSUPPORTED
 | |
|   EFI_SUCCESS
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8       Operands;
 | |
|   VOID        *EbcEntryPoint;
 | |
|   VOID        *Thunk;
 | |
|   EFI_STATUS  Status;
 | |
|   UINT64      U64EbcEntryPoint;
 | |
|   INT32       Offset;
 | |
| 
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
|   switch (Operands) {
 | |
|   //
 | |
|   // Runaway program break. Generate an exception and terminate
 | |
|   //
 | |
|   case 0:
 | |
|     EbcDebugSignalException (EXCEPT_EBC_BAD_BREAK, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|     break;
 | |
| 
 | |
|   //
 | |
|   // Get VM version -- return VM revision number in R7
 | |
|   //
 | |
|   case 1:
 | |
|     //
 | |
|     // Bits:
 | |
|     //  63-17 = 0
 | |
|     //  16-8  = Major version
 | |
|     //  7-0   = Minor version
 | |
|     //
 | |
|     VmPtr->R[7] = GetVmVersion ();
 | |
|     break;
 | |
| 
 | |
|   //
 | |
|   // Debugger breakpoint
 | |
|   //
 | |
|   case 3:
 | |
|     VmPtr->StopFlags |= STOPFLAG_BREAKPOINT;
 | |
|     //
 | |
|     // See if someone has registered a handler
 | |
|     //
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_BREAKPOINT,
 | |
|       EXCEPTION_FLAG_NONE,
 | |
|       VmPtr
 | |
|       );
 | |
|     //
 | |
|     // Don't advance the IP
 | |
|     //
 | |
|     return EFI_UNSUPPORTED;
 | |
|     break;
 | |
| 
 | |
|   //
 | |
|   // System call, which there are none, so NOP it.
 | |
|   //
 | |
|   case 4:
 | |
|     break;
 | |
| 
 | |
|   //
 | |
|   // Create a thunk for EBC code. R7 points to a 32-bit (in a 64-bit slot)
 | |
|   // "offset from self" pointer to the EBC entry point.
 | |
|   // After we're done, *(UINT64 *)R7 will be the address of the new thunk.
 | |
|   //
 | |
|   case 5:
 | |
|     Offset            = (INT32) VmReadMem32 (VmPtr, (UINTN) VmPtr->R[7]);
 | |
|     U64EbcEntryPoint  = (UINT64) (VmPtr->R[7] + Offset + 4);
 | |
|     EbcEntryPoint     = (VOID *) (UINTN) U64EbcEntryPoint;
 | |
| 
 | |
|     //
 | |
|     // Now create a new thunk
 | |
|     //
 | |
|     Status = EbcCreateThunks (VmPtr->ImageHandle, EbcEntryPoint, &Thunk, 0);
 | |
| 
 | |
|     //
 | |
|     // Finally replace the EBC entry point memory with the thunk address
 | |
|     //
 | |
|     VmWriteMem64 (VmPtr, (UINTN) VmPtr->R[7], (UINT64) (UINTN) Thunk);
 | |
|     break;
 | |
| 
 | |
|   //
 | |
|   // Compiler setting version per value in R7
 | |
|   //
 | |
|   case 6:
 | |
|     VmPtr->CompilerVersion = (UINT32) VmPtr->R[7];
 | |
|     //
 | |
|     // Check compiler version against VM version?
 | |
|     //
 | |
|     break;
 | |
| 
 | |
|   //
 | |
|   // Unhandled break code. Signal exception.
 | |
|   //
 | |
|   default:
 | |
|     EbcDebugSignalException (EXCEPT_EBC_BAD_BREAK, EXCEPTION_FLAG_FATAL, VmPtr);
 | |
|     break;
 | |
|   }
 | |
|   //
 | |
|   // Advance IP
 | |
|   //
 | |
|   VmPtr->Ip += 2;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteJMP (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the JMP instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr      - pointer to VM context
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|   JMP64{cs|cc} Immed64
 | |
|   JMP32{cs|cc} {@}R1 {Immed32|Index32}
 | |
| 
 | |
| Encoding:
 | |
|   b0.7 -  immediate data present
 | |
|   b0.6 -  1 = 64 bit immediate data
 | |
|           0 = 32 bit immediate data
 | |
|   b1.7 -  1 = conditional
 | |
|   b1.6    1 = CS (condition set)
 | |
|           0 = CC (condition clear)
 | |
|   b1.4    1 = relative address
 | |
|           0 = absolute address
 | |
|   b1.3    1 = operand1 indirect
 | |
|   b1.2-0  operand 1
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   CompareSet;
 | |
|   UINT8   ConditionFlag;
 | |
|   UINT8   Size;
 | |
|   UINT8   Operand;
 | |
|   UINT64  Data64;
 | |
|   INT32   Index32;
 | |
|   UINTN   Addr;
 | |
| 
 | |
|   Operand = GETOPERANDS (VmPtr);
 | |
|   Opcode  = GETOPCODE (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get instruction length from the opcode. The upper two bits are used here
 | |
|   // to index into the length array.
 | |
|   //
 | |
|   Size = mJMPLen[(Opcode >> 6) & 0x03];
 | |
| 
 | |
|   //
 | |
|   // Decode instruction conditions
 | |
|   // If we haven't met the condition, then simply advance the IP and return.
 | |
|   //
 | |
|   CompareSet    = (UINT8) ((Operand & JMP_M_CS) ? 1 : 0);
 | |
|   ConditionFlag = (UINT8) VMFLAG_ISSET (VmPtr, VMFLAGS_CC);
 | |
|   if (Operand & CONDITION_M_CONDITIONAL) {
 | |
|     if (CompareSet != ConditionFlag) {
 | |
|       VmPtr->Ip += Size;
 | |
|       return EFI_SUCCESS;
 | |
|     }
 | |
|   }
 | |
|   //
 | |
|   // Check for 64-bit form and do it right away since it's the most
 | |
|   // straight-forward form.
 | |
|   //
 | |
|   if (Opcode & OPCODE_M_IMMDATA64) {
 | |
|     //
 | |
|     // Double check for immediate-data, which is required. If not there,
 | |
|     // then signal an exception
 | |
|     //
 | |
|     if (!(Opcode & OPCODE_M_IMMDATA)) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_ERROR,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
|     //
 | |
|     // 64-bit immediate data is full address. Read the immediate data,
 | |
|     // check for alignment, and jump absolute.
 | |
|     //
 | |
|     Data64 = VmReadImmed64 (VmPtr, 2);
 | |
|     if (!IS_ALIGNED ((UINTN) Data64, sizeof (UINT16))) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
| 
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Take jump -- relative or absolute
 | |
|     //
 | |
|     if (Operand & JMP_M_RELATIVE) {
 | |
|       VmPtr->Ip += (UINTN) Data64 + Size;
 | |
|     } else {
 | |
|       VmPtr->Ip = (VMIP) (UINTN) Data64;
 | |
|     }
 | |
| 
 | |
|     return EFI_SUCCESS;
 | |
|   }
 | |
|   //
 | |
|   // 32-bit forms:
 | |
|   // Get the index if there is one. May be either an index, or an immediate
 | |
|   // offset depending on indirect operand.
 | |
|   //   JMP32 @R1 Index32 -- immediate data is an index
 | |
|   //   JMP32 R1 Immed32  -- immedate data is an offset
 | |
|   //
 | |
|   if (Opcode & OPCODE_M_IMMDATA) {
 | |
|     if (OPERAND1_INDIRECT (Operand)) {
 | |
|       Index32 = VmReadIndex32 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index32 = VmReadImmed32 (VmPtr, 2);
 | |
|     }
 | |
|   } else {
 | |
|     Index32 = 0;
 | |
|   }
 | |
|   //
 | |
|   // Get the register data. If R == 0, then special case where it's ignored.
 | |
|   //
 | |
|   if (OPERAND1_REGNUM (Operand) == 0) {
 | |
|     Data64 = 0;
 | |
|   } else {
 | |
|     Data64 = OPERAND1_REGDATA (VmPtr, Operand);
 | |
|   }
 | |
|   //
 | |
|   // Decode the forms
 | |
|   //
 | |
|   if (OPERAND1_INDIRECT (Operand)) {
 | |
|     //
 | |
|     // Form: JMP32 @Rx {Index32}
 | |
|     //
 | |
|     Addr = VmReadMemN (VmPtr, (UINTN) Data64 + Index32);
 | |
|     if (!IS_ALIGNED ((UINTN) Addr, sizeof (UINT16))) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
| 
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     if (Operand & JMP_M_RELATIVE) {
 | |
|       VmPtr->Ip += (UINTN) Addr + Size;
 | |
|     } else {
 | |
|       VmPtr->Ip = (VMIP) Addr;
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Form: JMP32 Rx {Immed32}
 | |
|     //
 | |
|     Addr = (UINTN) (Data64 + Index32);
 | |
|     if (!IS_ALIGNED ((UINTN) Addr, sizeof (UINT16))) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
| 
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     if (Operand & JMP_M_RELATIVE) {
 | |
|       VmPtr->Ip += (UINTN) Addr + Size;
 | |
|     } else {
 | |
|       VmPtr->Ip = (VMIP) Addr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteJMP8 (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC JMP8 instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|   JMP8{cs|cc}  Offset/2
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8 Opcode;
 | |
|   UINT8 ConditionFlag;
 | |
|   UINT8 CompareSet;
 | |
|   INT8  Offset;
 | |
| 
 | |
|   //
 | |
|   // Decode instruction.
 | |
|   //
 | |
|   Opcode        = GETOPCODE (VmPtr);
 | |
|   CompareSet    = (UINT8) ((Opcode & JMP_M_CS) ? 1 : 0);
 | |
|   ConditionFlag = (UINT8) VMFLAG_ISSET (VmPtr, VMFLAGS_CC);
 | |
| 
 | |
|   //
 | |
|   // If we haven't met the condition, then simply advance the IP and return
 | |
|   //
 | |
|   if (Opcode & CONDITION_M_CONDITIONAL) {
 | |
|     if (CompareSet != ConditionFlag) {
 | |
|       VmPtr->Ip += 2;
 | |
|       return EFI_SUCCESS;
 | |
|     }
 | |
|   }
 | |
|   //
 | |
|   // Get the offset from the instruction stream. It's relative to the
 | |
|   // following instruction, and divided by 2.
 | |
|   //
 | |
|   Offset = VmReadImmed8 (VmPtr, 1);
 | |
|   //
 | |
|   // Want to check for offset == -2 and then raise an exception?
 | |
|   //
 | |
|   VmPtr->Ip += (Offset * 2) + 2;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVI (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute the EBC MOVI 
 | |
| 
 | |
| Arguments:
 | |
| 
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
| 
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
| 
 | |
|   MOVI[b|w|d|q][w|d|q] {@}R1 {Index16}, ImmData16|32|64
 | |
| 
 | |
|   First variable character specifies the move size
 | |
|   Second variable character specifies size of the immediate data
 | |
| 
 | |
|   Sign-extend the immediate data to the size of the operation, and zero-extend
 | |
|   if storing to a register.
 | |
| 
 | |
|   Operand1 direct with index/immed is invalid.
 | |
|     
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT16   Index16;
 | |
|   INT64   ImmData64;
 | |
|   UINT64  Op1;
 | |
|   UINT64  Mask64;
 | |
| 
 | |
|   //
 | |
|   // Get the opcode and operands byte so we can get R1 and R2
 | |
|   //
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   Operands  = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get the index (16-bit) if present
 | |
|   //
 | |
|   if (Operands & MOVI_M_IMMDATA) {
 | |
|     Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     Size    = 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     Size    = 2;
 | |
|   }
 | |
|   //
 | |
|   // Extract the immediate data. Sign-extend always.
 | |
|   //
 | |
|   if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) {
 | |
|     ImmData64 = (INT64) (INT16) VmReadImmed16 (VmPtr, Size);
 | |
|     Size += 2;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) {
 | |
|     ImmData64 = (INT64) (INT32) VmReadImmed32 (VmPtr, Size);
 | |
|     Size += 4;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) {
 | |
|     ImmData64 = (INT64) VmReadImmed64 (VmPtr, Size);
 | |
|     Size += 8;
 | |
|   } else {
 | |
|     //
 | |
|     // Invalid encoding
 | |
|     //
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return EFI_UNSUPPORTED;
 | |
|   }
 | |
|   //
 | |
|   // Now write back the result
 | |
|   //
 | |
|   if (!OPERAND1_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Operand1 direct. Make sure it didn't have an index.
 | |
|     //
 | |
|     if (Operands & MOVI_M_IMMDATA) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
|     //
 | |
|     // Writing directly to a register. Clear unused bits.
 | |
|     //
 | |
|     if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH8) {
 | |
|       Mask64 = 0x000000FF;
 | |
|     } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH16) {
 | |
|       Mask64 = 0x0000FFFF;
 | |
|     } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH32) {
 | |
|       Mask64 = 0x00000000FFFFFFFF;
 | |
|     } else {
 | |
|       Mask64 = (UINT64)~0;
 | |
|     }
 | |
| 
 | |
|     VmPtr->R[OPERAND1_REGNUM (Operands)] = ImmData64 & Mask64;
 | |
|   } else {
 | |
|     //
 | |
|     // Get the address then write back based on size of the move
 | |
|     //
 | |
|     Op1 = (UINT64) VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16;
 | |
|     if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH8) {
 | |
|       VmWriteMem8 (VmPtr, (UINTN) Op1, (UINT8) ImmData64);
 | |
|     } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH16) {
 | |
|       VmWriteMem16 (VmPtr, (UINTN) Op1, (UINT16) ImmData64);
 | |
|     } else if ((Operands & MOVI_M_MOVEWIDTH) == MOVI_MOVEWIDTH32) {
 | |
|       VmWriteMem32 (VmPtr, (UINTN) Op1, (UINT32) ImmData64);
 | |
|     } else {
 | |
|       VmWriteMem64 (VmPtr, (UINTN) Op1, ImmData64);
 | |
|     }
 | |
|   }
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVIn (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute the EBC MOV immediate natural. This instruction moves an immediate
 | |
|   index value into a register or memory location.
 | |
| 
 | |
| Arguments:
 | |
| 
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
| 
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
| 
 | |
|   MOVIn[w|d|q] {@}R1 {Index16}, Index16|32|64
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT16   Index16;
 | |
|   INT16   ImmedIndex16;
 | |
|   INT32   ImmedIndex32;
 | |
|   INT64   ImmedIndex64;
 | |
|   UINT64  Op1;
 | |
| 
 | |
|   //
 | |
|   // Get the opcode and operands byte so we can get R1 and R2
 | |
|   //
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   Operands  = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get the operand1 index (16-bit) if present
 | |
|   //
 | |
|   if (Operands & MOVI_M_IMMDATA) {
 | |
|     Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     Size    = 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     Size    = 2;
 | |
|   }
 | |
|   //
 | |
|   // Extract the immediate data and convert to a 64-bit index.
 | |
|   //
 | |
|   if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) {
 | |
|     ImmedIndex16  = VmReadIndex16 (VmPtr, Size);
 | |
|     ImmedIndex64  = (INT64) ImmedIndex16;
 | |
|     Size += 2;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) {
 | |
|     ImmedIndex32  = VmReadIndex32 (VmPtr, Size);
 | |
|     ImmedIndex64  = (INT64) ImmedIndex32;
 | |
|     Size += 4;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) {
 | |
|     ImmedIndex64 = VmReadIndex64 (VmPtr, Size);
 | |
|     Size += 8;
 | |
|   } else {
 | |
|     //
 | |
|     // Invalid encoding
 | |
|     //
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return EFI_UNSUPPORTED;
 | |
|   }
 | |
|   //
 | |
|   // Now write back the result
 | |
|   //
 | |
|   if (!OPERAND1_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Check for MOVIn R1 Index16, Immed (not indirect, with index), which
 | |
|     // is illegal
 | |
|     //
 | |
|     if (Operands & MOVI_M_IMMDATA) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     VmPtr->R[OPERAND1_REGNUM (Operands)] = ImmedIndex64;
 | |
|   } else {
 | |
|     //
 | |
|     // Get the address
 | |
|     //
 | |
|     Op1 = (UINT64) VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16;
 | |
|     VmWriteMemN (VmPtr, (UINTN) Op1, (INTN) ImmedIndex64);
 | |
|   }
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVREL (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute the EBC MOVREL instruction.
 | |
|   Dest <- Ip + ImmData
 | |
| 
 | |
| Arguments:
 | |
| 
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
| 
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
| 
 | |
|   MOVREL[w|d|q] {@}R1 {Index16}, ImmData16|32|64
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT16   Index16;
 | |
|   INT64   ImmData64;
 | |
|   UINT64  Op1;
 | |
|   UINT64  Op2;
 | |
| 
 | |
|   //
 | |
|   // Get the opcode and operands byte so we can get R1 and R2
 | |
|   //
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   Operands  = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get the Operand 1 index (16-bit) if present
 | |
|   //
 | |
|   if (Operands & MOVI_M_IMMDATA) {
 | |
|     Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     Size    = 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     Size    = 2;
 | |
|   }
 | |
|   //
 | |
|   // Get the immediate data.
 | |
|   //
 | |
|   if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH16) {
 | |
|     ImmData64 = (INT64) VmReadImmed16 (VmPtr, Size);
 | |
|     Size += 2;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH32) {
 | |
|     ImmData64 = (INT64) VmReadImmed32 (VmPtr, Size);
 | |
|     Size += 4;
 | |
|   } else if ((Opcode & MOVI_M_DATAWIDTH) == MOVI_DATAWIDTH64) {
 | |
|     ImmData64 = VmReadImmed64 (VmPtr, Size);
 | |
|     Size += 8;
 | |
|   } else {
 | |
|     //
 | |
|     // Invalid encoding
 | |
|     //
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return EFI_UNSUPPORTED;
 | |
|   }
 | |
|   //
 | |
|   // Compute the value and write back the result
 | |
|   //
 | |
|   Op2 = (UINT64) ((INT64) ((UINT64) (UINTN) VmPtr->Ip) + (INT64) ImmData64 + Size);
 | |
|   if (!OPERAND1_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Check for illegal combination of operand1 direct with immediate data
 | |
|     //
 | |
|     if (Operands & MOVI_M_IMMDATA) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     VmPtr->R[OPERAND1_REGNUM (Operands)] = (VM_REGISTER) Op2;
 | |
|   } else {
 | |
|     //
 | |
|     // Get the address = [Rx] + Index16
 | |
|     // Write back the result. Always a natural size write, since
 | |
|     // we're talking addresses here.
 | |
|     //
 | |
|     Op1 = (UINT64) VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16;
 | |
|     VmWriteMemN (VmPtr, (UINTN) Op1, (UINTN) Op2);
 | |
|   }
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVsnw (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute the EBC MOVsnw instruction. This instruction loads a signed 
 | |
|   natural value from memory or register to another memory or register. On
 | |
|   32-bit machines, the value gets sign-extended to 64 bits if the destination
 | |
|   is a register.
 | |
| 
 | |
| Arguments:
 | |
| 
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
| 
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
| 
 | |
|   MOVsnw {@}R1 {Index16}, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   0:7 1=>operand1 index present
 | |
|   0:6 1=>operand2 index present
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT16   Op1Index;
 | |
|   INT16   Op2Index;
 | |
|   UINT64  Op2;
 | |
| 
 | |
|   //
 | |
|   // Get the opcode and operand bytes
 | |
|   //
 | |
|   Opcode              = GETOPCODE (VmPtr);
 | |
|   Operands            = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   Op1Index            = Op2Index = 0;
 | |
| 
 | |
|   //
 | |
|   // Get the indexes if present.
 | |
|   //
 | |
|   Size = 2;
 | |
|   if (Opcode & OPCODE_M_IMMED_OP1) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Op1Index = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       //
 | |
|       // Illegal form operand1 direct with index:  MOVsnw R1 Index16, {@}R2
 | |
|       //
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     Size += sizeof (UINT16);
 | |
|   }
 | |
| 
 | |
|   if (Opcode & OPCODE_M_IMMED_OP2) {
 | |
|     if (OPERAND2_INDIRECT (Operands)) {
 | |
|       Op2Index = VmReadIndex16 (VmPtr, Size);
 | |
|     } else {
 | |
|       Op2Index = VmReadImmed16 (VmPtr, Size);
 | |
|     }
 | |
| 
 | |
|     Size += sizeof (UINT16);
 | |
|   }
 | |
|   //
 | |
|   // Get the data from the source.
 | |
|   //
 | |
|   Op2 = (INT64) ((INTN) (VmPtr->R[OPERAND2_REGNUM (Operands)] + Op2Index));
 | |
|   if (OPERAND2_INDIRECT (Operands)) {
 | |
|     Op2 = (INT64) (INTN) VmReadMemN (VmPtr, (UINTN) Op2);
 | |
|   }
 | |
|   //
 | |
|   // Now write back the result.
 | |
|   //
 | |
|   if (!OPERAND1_INDIRECT (Operands)) {
 | |
|     VmPtr->R[OPERAND1_REGNUM (Operands)] = Op2;
 | |
|   } else {
 | |
|     VmWriteMemN (VmPtr, (UINTN) (VmPtr->R[OPERAND1_REGNUM (Operands)] + Op1Index), (UINTN) Op2);
 | |
|   }
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteMOVsnd (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute the EBC MOVsnw instruction. This instruction loads a signed 
 | |
|   natural value from memory or register to another memory or register. On
 | |
|   32-bit machines, the value gets sign-extended to 64 bits if the destination
 | |
|   is a register.
 | |
| 
 | |
| Arguments:
 | |
| 
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
| 
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
| 
 | |
|   MOVsnd {@}R1 {Indx32}, {@}R2 {Index32|Immed32}
 | |
| 
 | |
|   0:7 1=>operand1 index present
 | |
|   0:6 1=>operand2 index present
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT32   Op1Index;
 | |
|   INT32   Op2Index;
 | |
|   UINT64  Op2;
 | |
| 
 | |
|   //
 | |
|   // Get the opcode and operand bytes
 | |
|   //
 | |
|   Opcode              = GETOPCODE (VmPtr);
 | |
|   Operands            = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   Op1Index            = Op2Index = 0;
 | |
| 
 | |
|   //
 | |
|   // Get the indexes if present.
 | |
|   //
 | |
|   Size = 2;
 | |
|   if (Opcode & OPCODE_M_IMMED_OP1) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Op1Index = VmReadIndex32 (VmPtr, 2);
 | |
|     } else {
 | |
|       //
 | |
|       // Illegal form operand1 direct with index:  MOVsnd R1 Index16,..
 | |
|       //
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
| 
 | |
|     Size += sizeof (UINT32);
 | |
|   }
 | |
| 
 | |
|   if (Opcode & OPCODE_M_IMMED_OP2) {
 | |
|     if (OPERAND2_INDIRECT (Operands)) {
 | |
|       Op2Index = VmReadIndex32 (VmPtr, Size);
 | |
|     } else {
 | |
|       Op2Index = VmReadImmed32 (VmPtr, Size);
 | |
|     }
 | |
| 
 | |
|     Size += sizeof (UINT32);
 | |
|   }
 | |
|   //
 | |
|   // Get the data from the source.
 | |
|   //
 | |
|   Op2 = (INT64) ((INTN) (VmPtr->R[OPERAND2_REGNUM (Operands)] + Op2Index));
 | |
|   if (OPERAND2_INDIRECT (Operands)) {
 | |
|     Op2 = (INT64) (INTN) VmReadMemN (VmPtr, (UINTN) Op2);
 | |
|   }
 | |
|   //
 | |
|   // Now write back the result.
 | |
|   //
 | |
|   if (!OPERAND1_INDIRECT (Operands)) {
 | |
|     VmPtr->R[OPERAND1_REGNUM (Operands)] = Op2;
 | |
|   } else {
 | |
|     VmWriteMemN (VmPtr, (UINTN) (VmPtr->R[OPERAND1_REGNUM (Operands)] + Op1Index), (UINTN) Op2);
 | |
|   }
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecutePUSHn (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC PUSHn instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|    PUSHn {@}R1 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8 Opcode;
 | |
|   UINT8 Operands;
 | |
|   INT16 Index16;
 | |
|   UINTN DataN;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   Operands  = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get index if present
 | |
|   //
 | |
|   if (Opcode & PUSHPOP_M_IMMDATA) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     VmPtr->Ip += 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     VmPtr->Ip += 2;
 | |
|   }
 | |
|   //
 | |
|   // Get the data to push
 | |
|   //
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     DataN = VmReadMemN (VmPtr, (UINTN) (VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16));
 | |
|   } else {
 | |
|     DataN = (UINTN) (VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16);
 | |
|   }
 | |
|   //
 | |
|   // Adjust the stack down.
 | |
|   //
 | |
|   VmPtr->R[0] -= sizeof (UINTN);
 | |
|   VmWriteMemN (VmPtr, (UINTN) VmPtr->R[0], DataN);
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecutePUSH (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC PUSH instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|    PUSH[32|64] {@}R1 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT32  Data32;
 | |
|   UINT64  Data64;
 | |
|   INT16   Index16;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   Operands  = GETOPERANDS (VmPtr);
 | |
|   //
 | |
|   // Get immediate index if present, then advance the IP.
 | |
|   //
 | |
|   if (Opcode & PUSHPOP_M_IMMDATA) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     VmPtr->Ip += 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     VmPtr->Ip += 2;
 | |
|   }
 | |
|   //
 | |
|   // Get the data to push
 | |
|   //
 | |
|   if (Opcode & PUSHPOP_M_64) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Data64 = VmReadMem64 (VmPtr, (UINTN) (VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16));
 | |
|     } else {
 | |
|       Data64 = (UINT64) VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16;
 | |
|     }
 | |
|     //
 | |
|     // Adjust the stack down, then write back the data
 | |
|     //
 | |
|     VmPtr->R[0] -= sizeof (UINT64);
 | |
|     VmWriteMem64 (VmPtr, (UINTN) VmPtr->R[0], Data64);
 | |
|   } else {
 | |
|     //
 | |
|     // 32-bit data
 | |
|     //
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Data32 = VmReadMem32 (VmPtr, (UINTN) (VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16));
 | |
|     } else {
 | |
|       Data32 = (UINT32) VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16;
 | |
|     }
 | |
|     //
 | |
|     // Adjust the stack down and write the data
 | |
|     //
 | |
|     VmPtr->R[0] -= sizeof (UINT32);
 | |
|     VmWriteMem32 (VmPtr, (UINTN) VmPtr->R[0], Data32);
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecutePOPn (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC POPn instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|    POPn {@}R1 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8 Opcode;
 | |
|   UINT8 Operands;
 | |
|   INT16 Index16;
 | |
|   UINTN DataN;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   Operands  = GETOPERANDS (VmPtr);
 | |
|   //
 | |
|   // Get immediate data if present, and advance the IP
 | |
|   //
 | |
|   if (Opcode & PUSHPOP_M_IMMDATA) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     VmPtr->Ip += 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     VmPtr->Ip += 2;
 | |
|   }
 | |
|   //
 | |
|   // Read the data off the stack, then adjust the stack pointer
 | |
|   //
 | |
|   DataN = VmReadMemN (VmPtr, (UINTN) VmPtr->R[0]);
 | |
|   VmPtr->R[0] += sizeof (UINTN);
 | |
|   //
 | |
|   // Do the write-back
 | |
|   //
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     VmWriteMemN (VmPtr, (UINTN) (VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16), DataN);
 | |
|   } else {
 | |
|     VmPtr->R[OPERAND1_REGNUM (Operands)] = (INT64) (UINT64) ((UINTN) DataN + Index16);
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecutePOP (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC POP instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|   POP {@}R1 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   INT16   Index16;
 | |
|   INT32   Data32;
 | |
|   UINT64  Data64;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   Operands  = GETOPERANDS (VmPtr);
 | |
|   //
 | |
|   // Get immediate data if present, and advance the IP.
 | |
|   //
 | |
|   if (Opcode & PUSHPOP_M_IMMDATA) {
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     VmPtr->Ip += 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     VmPtr->Ip += 2;
 | |
|   }
 | |
|   //
 | |
|   // Get the data off the stack, then write it to the appropriate location
 | |
|   //
 | |
|   if (Opcode & PUSHPOP_M_64) {
 | |
|     //
 | |
|     // Read the data off the stack, then adjust the stack pointer
 | |
|     //
 | |
|     Data64 = VmReadMem64 (VmPtr, (UINTN) VmPtr->R[0]);
 | |
|     VmPtr->R[0] += sizeof (UINT64);
 | |
|     //
 | |
|     // Do the write-back
 | |
|     //
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       VmWriteMem64 (VmPtr, (UINTN) (VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16), Data64);
 | |
|     } else {
 | |
|       VmPtr->R[OPERAND1_REGNUM (Operands)] = Data64 + Index16;
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // 32-bit pop. Read it off the stack and adjust the stack pointer
 | |
|     //
 | |
|     Data32 = (INT32) VmReadMem32 (VmPtr, (UINTN) VmPtr->R[0]);
 | |
|     VmPtr->R[0] += sizeof (UINT32);
 | |
|     //
 | |
|     // Do the write-back
 | |
|     //
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       VmWriteMem32 (VmPtr, (UINTN) (VmPtr->R[OPERAND1_REGNUM (Operands)] + Index16), Data32);
 | |
|     } else {
 | |
|       VmPtr->R[OPERAND1_REGNUM (Operands)] = (INT64) Data32 + Index16;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteCALL (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Implements the EBC CALL instruction.
 | |
| 
 | |
|   Instruction format:  
 | |
| 
 | |
|     CALL64 Immed64
 | |
|     CALL32 {@}R1 {Immed32|Index32}
 | |
|     CALLEX64 Immed64
 | |
|     CALLEX16 {@}R1 {Immed32}
 | |
| 
 | |
|   If Rx == R0, then it's a PC relative call to PC = PC + imm32.
 | |
|   
 | |
| Arguments:
 | |
|   VmPtr - pointer to a VM context.
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8 Opcode;
 | |
|   UINT8 Operands;
 | |
|   INT32 Immed32;
 | |
|   UINT8 Size;
 | |
|   INT64 Immed64;
 | |
|   VOID  *FramePtr;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   Operands  = GETOPERANDS (VmPtr);
 | |
|   //
 | |
|   // Assign these as well to avoid compiler warnings
 | |
|   //
 | |
|   Immed64   = 0;
 | |
|   Immed32   = 0;
 | |
| 
 | |
|   FramePtr  = VmPtr->FramePtr;
 | |
|   //
 | |
|   // Determine the instruction size, and get immediate data if present
 | |
|   //
 | |
|   if (Opcode & OPCODE_M_IMMDATA) {
 | |
|     if (Opcode & OPCODE_M_IMMDATA64) {
 | |
|       Immed64 = VmReadImmed64 (VmPtr, 2);
 | |
|       Size    = 10;
 | |
|     } else {
 | |
|       //
 | |
|       // If register operand is indirect, then the immediate data is an index
 | |
|       //
 | |
|       if (OPERAND1_INDIRECT (Operands)) {
 | |
|         Immed32 = VmReadIndex32 (VmPtr, 2);
 | |
|       } else {
 | |
|         Immed32 = VmReadImmed32 (VmPtr, 2);
 | |
|       }
 | |
| 
 | |
|       Size = 6;
 | |
|     }
 | |
|   } else {
 | |
|     Size = 2;
 | |
|   }
 | |
|   //
 | |
|   // If it's a call to EBC, adjust the stack pointer down 16 bytes and
 | |
|   // put our return address and frame pointer on the VM stack.
 | |
|   //
 | |
|   if ((Operands & OPERAND_M_NATIVE_CALL) == 0) {
 | |
|     VmPtr->R[0] -= 8;
 | |
|     VmWriteMemN (VmPtr, (UINTN) VmPtr->R[0], (UINTN) FramePtr);
 | |
|     VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->R[0];
 | |
|     VmPtr->R[0] -= 8;
 | |
|     VmWriteMem64 (VmPtr, (UINTN) VmPtr->R[0], (UINT64) (UINTN) (VmPtr->Ip + Size));
 | |
|   }
 | |
|   //
 | |
|   // If 64-bit data, then absolute jump only
 | |
|   //
 | |
|   if (Opcode & OPCODE_M_IMMDATA64) {
 | |
|     //
 | |
|     // Native or EBC call?
 | |
|     //
 | |
|     if ((Operands & OPERAND_M_NATIVE_CALL) == 0) {
 | |
|       VmPtr->Ip = (VMIP) (UINTN) Immed64;
 | |
|     } else {
 | |
|       //
 | |
|       // Call external function, get the return value, and advance the IP
 | |
|       //
 | |
|       EbcLLCALLEX (VmPtr, (UINTN) Immed64, (UINTN) VmPtr->R[0], FramePtr, Size);
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Get the register data. If operand1 == 0, then ignore register and
 | |
|     // take immediate data as relative or absolute address.
 | |
|     // Compiler should take care of upper bits if 32-bit machine.
 | |
|     //
 | |
|     if (OPERAND1_REGNUM (Operands) != 0) {
 | |
|       Immed64 = (UINT64) (UINTN) VmPtr->R[OPERAND1_REGNUM (Operands)];
 | |
|     }
 | |
|     //
 | |
|     // Get final address
 | |
|     //
 | |
|     if (OPERAND1_INDIRECT (Operands)) {
 | |
|       Immed64 = (INT64) (UINT64) (UINTN) VmReadMemN (VmPtr, (UINTN) (Immed64 + Immed32));
 | |
|     } else {
 | |
|       Immed64 += Immed32;
 | |
|     }
 | |
|     //
 | |
|     // Now determine if external call, and then if relative or absolute
 | |
|     //
 | |
|     if ((Operands & OPERAND_M_NATIVE_CALL) == 0) {
 | |
|       //
 | |
|       // EBC call. Relative or absolute? If relative, then it's relative to the
 | |
|       // start of the next instruction.
 | |
|       //
 | |
|       if (Operands & OPERAND_M_RELATIVE_ADDR) {
 | |
|         VmPtr->Ip += Immed64 + Size;
 | |
|       } else {
 | |
|         VmPtr->Ip = (VMIP) (UINTN) Immed64;
 | |
|       }
 | |
|     } else {
 | |
|       //
 | |
|       // Native call. Relative or absolute?
 | |
|       //
 | |
|       if (Operands & OPERAND_M_RELATIVE_ADDR) {
 | |
|         EbcLLCALLEX (VmPtr, (UINTN) (Immed64 + VmPtr->Ip + Size), (UINTN) VmPtr->R[0], FramePtr, Size);
 | |
|       } else {
 | |
|         if (VmPtr->StopFlags & STOPFLAG_BREAK_ON_CALLEX) {
 | |
|           CpuBreakpoint ();
 | |
|         }
 | |
| 
 | |
|         EbcLLCALLEX (VmPtr, (UINTN) Immed64, (UINTN) VmPtr->R[0], FramePtr, Size);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteRET (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC RET instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|    RET
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   //
 | |
|   // If we're at the top of the stack, then simply set the done
 | |
|   // flag and return
 | |
|   //
 | |
|   if (VmPtr->StackRetAddr == (UINT64) VmPtr->R[0]) {
 | |
|     VmPtr->StopFlags |= STOPFLAG_APP_DONE;
 | |
|   } else {
 | |
|     //
 | |
|     // Pull the return address off the VM app's stack and set the IP
 | |
|     // to it
 | |
|     //
 | |
|     if (!IS_ALIGNED ((UINTN) VmPtr->R[0], sizeof (UINT16))) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|         EXCEPTION_FLAG_FATAL,
 | |
|         VmPtr
 | |
|         );
 | |
|     }
 | |
|     //
 | |
|     // Restore the IP and frame pointer from the stack
 | |
|     //
 | |
|     VmPtr->Ip = (VMIP) (UINTN) VmReadMem64 (VmPtr, (UINTN) VmPtr->R[0]);
 | |
|     VmPtr->R[0] += 8;
 | |
|     VmPtr->FramePtr = (VOID *) VmReadMemN (VmPtr, (UINTN) VmPtr->R[0]);
 | |
|     VmPtr->R[0] += 8;
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteCMP (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC CMP instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|    CMP[32|64][eq|lte|gte|ulte|ugte] R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT16   Index16;
 | |
|   UINT32  Flag;
 | |
|   INT64   Op2;
 | |
|   INT64   Op1;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   Operands  = GETOPERANDS (VmPtr);
 | |
|   //
 | |
|   // Get the register data we're going to compare to
 | |
|   //
 | |
|   Op1 = VmPtr->R[OPERAND1_REGNUM (Operands)];
 | |
|   //
 | |
|   // Get immediate data
 | |
|   //
 | |
|   if (Opcode & OPCODE_M_IMMDATA) {
 | |
|     if (OPERAND2_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     Size = 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     Size    = 2;
 | |
|   }
 | |
|   //
 | |
|   // Now get Op2
 | |
|   //
 | |
|   if (OPERAND2_INDIRECT (Operands)) {
 | |
|     if (Opcode & OPCODE_M_64BIT) {
 | |
|       Op2 = (INT64) VmReadMem64 (VmPtr, (UINTN) (VmPtr->R[OPERAND2_REGNUM (Operands)] + Index16));
 | |
|     } else {
 | |
|       //
 | |
|       // 32-bit operations. 0-extend the values for all cases.
 | |
|       //
 | |
|       Op2 = (INT64) (UINT64) ((UINT32) VmReadMem32 (VmPtr, (UINTN) (VmPtr->R[OPERAND2_REGNUM (Operands)] + Index16)));
 | |
|     }
 | |
|   } else {
 | |
|     Op2 = VmPtr->R[OPERAND2_REGNUM (Operands)] + Index16;
 | |
|   }
 | |
|   //
 | |
|   // Now do the compare
 | |
|   //
 | |
|   Flag = 0;
 | |
|   if (Opcode & OPCODE_M_64BIT) {
 | |
|     //
 | |
|     // 64-bit compares
 | |
|     //
 | |
|     switch (Opcode & OPCODE_M_OPCODE) {
 | |
|     case OPCODE_CMPEQ:
 | |
|       if (Op1 == Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPLTE:
 | |
|       if (Op1 <= Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPGTE:
 | |
|       if (Op1 >= Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPULTE:
 | |
|       if ((UINT64) Op1 <= (UINT64) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPUGTE:
 | |
|       if ((UINT64) Op1 >= (UINT64) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       ASSERT (0);
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // 32-bit compares
 | |
|     //
 | |
|     switch (Opcode & OPCODE_M_OPCODE) {
 | |
|     case OPCODE_CMPEQ:
 | |
|       if ((INT32) Op1 == (INT32) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPLTE:
 | |
|       if ((INT32) Op1 <= (INT32) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPGTE:
 | |
|       if ((INT32) Op1 >= (INT32) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPULTE:
 | |
|       if ((UINT32) Op1 <= (UINT32) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPUGTE:
 | |
|       if ((UINT32) Op1 >= (UINT32) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       ASSERT (0);
 | |
|     }
 | |
|   }
 | |
|   //
 | |
|   // Now set the flag accordingly for the comparison
 | |
|   //
 | |
|   if (Flag) {
 | |
|     VMFLAG_SET (VmPtr, VMFLAGS_CC);
 | |
|   } else {
 | |
|     VMFLAG_CLEAR (VmPtr, VMFLAGS_CC);
 | |
|   }
 | |
|   //
 | |
|   // Advance the IP
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteCMPI (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC CMPI instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|    CMPI[32|64]{w|d}[eq|lte|gte|ulte|ugte] {@}Rx {Index16}, Immed16|Immed32
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   INT64   Op1;
 | |
|   INT64   Op2;
 | |
|   INT16   Index16;
 | |
|   UINT32  Flag;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   Operands  = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Get operand1 index if present
 | |
|   //
 | |
|   Size = 2;
 | |
|   if (Operands & OPERAND_M_CMPI_INDEX) {
 | |
|     Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     Size += 2;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|   }
 | |
|   //
 | |
|   // Get operand1 data we're going to compare to
 | |
|   //
 | |
|   Op1 = (INT64) VmPtr->R[OPERAND1_REGNUM (Operands)];
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Indirect operand1. Fetch 32 or 64-bit value based on compare size.
 | |
|     //
 | |
|     if (Opcode & OPCODE_M_CMPI64) {
 | |
|       Op1 = (INT64) VmReadMem64 (VmPtr, (UINTN) Op1 + Index16);
 | |
|     } else {
 | |
|       Op1 = (INT64) VmReadMem32 (VmPtr, (UINTN) Op1 + Index16);
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Better not have been an index with direct. That is, CMPI R1 Index,...
 | |
|     // is illegal.
 | |
|     //
 | |
|     if (Operands & OPERAND_M_CMPI_INDEX) {
 | |
|       EbcDebugSignalException (
 | |
|         EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|         EXCEPTION_FLAG_ERROR,
 | |
|         VmPtr
 | |
|         );
 | |
|       VmPtr->Ip += Size;
 | |
|       return EFI_UNSUPPORTED;
 | |
|     }
 | |
|   }
 | |
|   //
 | |
|   // Get immediate data -- 16- or 32-bit sign extended
 | |
|   //
 | |
|   if (Opcode & OPCODE_M_CMPI32_DATA) {
 | |
|     Op2 = (INT64) VmReadImmed32 (VmPtr, Size);
 | |
|     Size += 4;
 | |
|   } else {
 | |
|     //
 | |
|     // 16-bit immediate data. Sign extend always.
 | |
|     //
 | |
|     Op2 = (INT64) ((INT16) VmReadImmed16 (VmPtr, Size));
 | |
|     Size += 2;
 | |
|   }
 | |
|   //
 | |
|   // Now do the compare
 | |
|   //
 | |
|   Flag = 0;
 | |
|   if (Opcode & OPCODE_M_CMPI64) {
 | |
|     //
 | |
|     // 64 bit comparison
 | |
|     //
 | |
|     switch (Opcode & OPCODE_M_OPCODE) {
 | |
|     case OPCODE_CMPIEQ:
 | |
|       if (Op1 == (INT64) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPILTE:
 | |
|       if (Op1 <= (INT64) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPIGTE:
 | |
|       if (Op1 >= (INT64) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPIULTE:
 | |
|       if ((UINT64) Op1 <= (UINT64) ((UINT32) Op2)) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPIUGTE:
 | |
|       if ((UINT64) Op1 >= (UINT64) ((UINT32) Op2)) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       ASSERT (0);
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // 32-bit comparisons
 | |
|     //
 | |
|     switch (Opcode & OPCODE_M_OPCODE) {
 | |
|     case OPCODE_CMPIEQ:
 | |
|       if ((INT32) Op1 == Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPILTE:
 | |
|       if ((INT32) Op1 <= Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPIGTE:
 | |
|       if ((INT32) Op1 >= Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPIULTE:
 | |
|       if ((UINT32) Op1 <= (UINT32) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case OPCODE_CMPIUGTE:
 | |
|       if ((UINT32) Op1 >= (UINT32) Op2) {
 | |
|         Flag = 1;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       ASSERT (0);
 | |
|     }
 | |
|   }
 | |
|   //
 | |
|   // Now set the flag accordingly for the comparison
 | |
|   //
 | |
|   if (Flag) {
 | |
|     VMFLAG_SET (VmPtr, VMFLAGS_CC);
 | |
|   } else {
 | |
|     VMFLAG_CLEAR (VmPtr, VMFLAGS_CC);
 | |
|   }
 | |
|   //
 | |
|   // Advance the IP
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteNOT (
 | |
|   IN VM_CONTEXT     *VmPtr,
 | |
|   IN UINT64         Op1,
 | |
|   IN UINT64         Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC NOT instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   ~Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   NOT[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
|   
 | |
| --*/
 | |
| {
 | |
|   return ~Op2;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteNEG (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC NEG instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op2 * -1
 | |
| 
 | |
| Instruction syntax:
 | |
|   NEG[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   return ~Op2 + 1;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteADD (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute the EBC ADD instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1 + Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|    ADD[32|64] {@}R1, {@}R2 {Index16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   return Op1 + Op2;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteSUB (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC SUB instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1 - Op2
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|   SUB[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   if (*VmPtr->Ip & DATAMANIP_M_64) {
 | |
|     return (UINT64) ((INT64) ((INT64) Op1 - (INT64) Op2));
 | |
|   } else {
 | |
|     return (UINT64) ((INT64) ((INT32) Op1 - (INT32) Op2));
 | |
|   }
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteMUL (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute the EBC MUL instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1 * Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   MUL[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   INT64 ResultHigh;
 | |
| 
 | |
|   if (*VmPtr->Ip & DATAMANIP_M_64) {
 | |
|     return MulS64x64 (Op1, Op2, &ResultHigh);
 | |
|   } else {
 | |
|     return (UINT64) ((INT64) ((INT32) Op1 * (INT32) Op2));
 | |
|   }
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteMULU (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC MULU instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   (unsigned)Op1 * (unsigned)Op2 
 | |
| 
 | |
| Instruction syntax:
 | |
|   MULU[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   INT64 ResultHigh;
 | |
|   if (*VmPtr->Ip & DATAMANIP_M_64) {
 | |
|     return MulU64x64 (Op1, Op2, (UINT64 *)&ResultHigh);
 | |
|   } else {
 | |
|     return (UINT64) ((UINT32) Op1 * (UINT32) Op2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteDIV (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute the EBC DIV instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1/Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   DIV[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   INT64   Remainder;
 | |
|   UINT32  Error;
 | |
| 
 | |
|   //
 | |
|   // Check for divide-by-0
 | |
|   //
 | |
|   if (Op2 == 0) {
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_DIVIDE_ERROR,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
| 
 | |
|     return 0;
 | |
|   } else {
 | |
|     if (*VmPtr->Ip & DATAMANIP_M_64) {
 | |
|       return (UINT64) (DivS64x64 (Op1, Op2, &Remainder, &Error));
 | |
|     } else {
 | |
|       return (UINT64) ((INT64) ((INT32) Op1 / (INT32) Op2));
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteDIVU (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC DIVU instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   (unsigned)Op1 / (unsigned)Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   DIVU[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT64  Remainder;
 | |
|   UINT32  Error;
 | |
| 
 | |
|   //
 | |
|   // Check for divide-by-0
 | |
|   //
 | |
|   if (Op2 == 0) {
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_DIVIDE_ERROR,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return 0;
 | |
|   } else {
 | |
|     //
 | |
|     // Get the destination register
 | |
|     //
 | |
|     if (*VmPtr->Ip & DATAMANIP_M_64) {
 | |
|       return (UINT64) (DivU64x64 (Op1, Op2, &Remainder, &Error));
 | |
|     } else {
 | |
|       return (UINT64) ((UINT32) Op1 / (UINT32) Op2);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteMOD (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC MOD instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1 MODULUS Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   MOD[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   INT64   Remainder;
 | |
|   UINT32  Error;
 | |
| 
 | |
|   //
 | |
|   // Check for divide-by-0
 | |
|   //
 | |
|   if (Op2 == 0) {
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_DIVIDE_ERROR,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return 0;
 | |
|   } else {
 | |
|     DivS64x64 ((INT64) Op1, (INT64) Op2, &Remainder, &Error);
 | |
|     return Remainder;
 | |
|   }
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteMODU (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC MODU instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1 UNSIGNED_MODULUS Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   MODU[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
|   
 | |
| --*/
 | |
| {
 | |
|   UINT64  Remainder;
 | |
|   UINT32  Error;
 | |
| 
 | |
|   //
 | |
|   // Check for divide-by-0
 | |
|   //
 | |
|   if (Op2 == 0) {
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_DIVIDE_ERROR,
 | |
|       EXCEPTION_FLAG_FATAL,
 | |
|       VmPtr
 | |
|       );
 | |
|     return 0;
 | |
|   } else {
 | |
|     DivU64x64 (Op1, Op2, &Remainder, &Error);
 | |
|     return Remainder;
 | |
|   }
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteAND (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC AND instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1 AND Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   AND[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   return Op1 & Op2;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteOR (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC OR instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1 OR Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   OR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   return Op1 | Op2;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteXOR (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC XOR instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1 XOR Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   XOR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   return Op1 ^ Op2;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteSHL (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   Execute the EBC SHL shift left instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1 << Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   SHL[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   if (*VmPtr->Ip & DATAMANIP_M_64) {
 | |
|     return LeftShiftU64 (Op1, Op2);
 | |
|   } else {
 | |
|     return (UINT64) ((UINT32) ((UINT32) Op1 << (UINT32) Op2));
 | |
|   }
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteSHR (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC SHR instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1 >> Op2  (unsigned operands)
 | |
| 
 | |
| Instruction syntax:
 | |
|   SHR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   if (*VmPtr->Ip & DATAMANIP_M_64) {
 | |
|     return RightShiftU64 (Op1, Op2);
 | |
|   } else {
 | |
|     return (UINT64) ((UINT32) Op1 >> (UINT32) Op2);
 | |
|   }
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteASHR (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC ASHR instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   Op1 >> Op2 (signed)
 | |
| 
 | |
| Instruction syntax:
 | |
|   ASHR[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   if (*VmPtr->Ip & DATAMANIP_M_64) {
 | |
|     return ARightShift64 (Op1, Op2);
 | |
|   } else {
 | |
|     return (UINT64) ((INT64) ((INT32) Op1 >> (UINT32) Op2));
 | |
|   }
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteEXTNDB (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC EXTNDB instruction to sign-extend a byte value.
 | |
|   
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   (INT64)(INT8)Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   EXTNDB[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   
 | |
| --*/
 | |
| {
 | |
|   INT8  Data8;
 | |
|   INT64 Data64;
 | |
|   //
 | |
|   // Convert to byte, then return as 64-bit signed value to let compiler
 | |
|   // sign-extend the value
 | |
|   //
 | |
|   Data8   = (INT8) Op2;
 | |
|   Data64  = (INT64) Data8;
 | |
| 
 | |
|   return (UINT64) Data64;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteEXTNDW (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC EXTNDW instruction to sign-extend a 16-bit value.
 | |
|   
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   (INT64)(INT16)Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   EXTNDW[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   
 | |
| --*/
 | |
| {
 | |
|   INT16 Data16;
 | |
|   INT64 Data64;
 | |
|   //
 | |
|   // Convert to word, then return as 64-bit signed value to let compiler
 | |
|   // sign-extend the value
 | |
|   //
 | |
|   Data16  = (INT16) Op2;
 | |
|   Data64  = (INT64) Data16;
 | |
| 
 | |
|   return (UINT64) Data64;
 | |
| }
 | |
| //
 | |
| // Execute the EBC EXTNDD instruction.
 | |
| //
 | |
| // Format: EXTNDD {@}Rx, {@}Ry [Index16|Immed16]
 | |
| //         EXTNDD Dest, Source
 | |
| //
 | |
| // Operation:  Dest <- SignExtended((DWORD)Source))
 | |
| //
 | |
| STATIC
 | |
| UINT64
 | |
| ExecuteEXTNDD (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINT64       Op1,
 | |
|   IN UINT64       Op2
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC EXTNDD instruction to sign-extend a 32-bit value.
 | |
|   
 | |
| Arguments:
 | |
|   VmPtr     - pointer to a VM context  
 | |
|   Op1       - Operand 1 from the instruction 
 | |
|   Op2       - Operand 2 from the instruction
 | |
| 
 | |
| Returns:
 | |
|   (INT64)(INT32)Op2
 | |
| 
 | |
| Instruction syntax:
 | |
|   EXTNDD[32|64] {@}R1, {@}R2 {Index16|Immed16}
 | |
| 
 | |
|   
 | |
| --*/
 | |
| {
 | |
|   INT32 Data32;
 | |
|   INT64 Data64;
 | |
|   //
 | |
|   // Convert to 32-bit value, then return as 64-bit signed value to let compiler
 | |
|   // sign-extend the value
 | |
|   //
 | |
|   Data32  = (INT32) Op2;
 | |
|   Data64  = (INT64) Data32;
 | |
| 
 | |
|   return (UINT64) Data64;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteSignedDataManip (
 | |
|   IN VM_CONTEXT   *VmPtr
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Just call the data manipulation function with a flag indicating this
 | |
|   // is a signed operation.
 | |
|   //
 | |
|   return ExecuteDataManip (VmPtr, TRUE);
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteUnsignedDataManip (
 | |
|   IN VM_CONTEXT   *VmPtr
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Just call the data manipulation function with a flag indicating this
 | |
|   // is not a signed operation.
 | |
|   //
 | |
|   return ExecuteDataManip (VmPtr, FALSE);
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteDataManip (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN BOOLEAN      IsSignedOp
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute all the EBC data manipulation instructions. 
 | |
|   Since the EBC data manipulation instructions all have the same basic form, 
 | |
|   they can share the code that does the fetch of operands and the write-back
 | |
|   of the result. This function performs the fetch of the operands (even if
 | |
|   both are not needed to be fetched, like NOT instruction), dispatches to the
 | |
|   appropriate subfunction, then writes back the returned result.
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr - pointer to VM context
 | |
| 
 | |
| Returns:
 | |
|   Standard EBC status
 | |
| 
 | |
| Format:  
 | |
|   INSTRUCITON[32|64] {@}R1, {@}R2 {Immed16|Index16}
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8   Opcode;
 | |
|   INT16   Index16;
 | |
|   UINT8   Operands;
 | |
|   UINT8   Size;
 | |
|   UINT64  Op1;
 | |
|   UINT64  Op2;
 | |
| 
 | |
|   //
 | |
|   // Get opcode and operands
 | |
|   //
 | |
|   Opcode    = GETOPCODE (VmPtr);
 | |
|   Operands  = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Determine if we have immediate data by the opcode
 | |
|   //
 | |
|   if (Opcode & DATAMANIP_M_IMMDATA) {
 | |
|     //
 | |
|     // Index16 if Ry is indirect, or Immed16 if Ry direct.
 | |
|     //
 | |
|     if (OPERAND2_INDIRECT (Operands)) {
 | |
|       Index16 = VmReadIndex16 (VmPtr, 2);
 | |
|     } else {
 | |
|       Index16 = VmReadImmed16 (VmPtr, 2);
 | |
|     }
 | |
| 
 | |
|     Size = 4;
 | |
|   } else {
 | |
|     Index16 = 0;
 | |
|     Size    = 2;
 | |
|   }
 | |
|   //
 | |
|   // Now get operand2 (source). It's of format {@}R2 {Index16|Immed16}
 | |
|   //
 | |
|   Op2 = (UINT64) VmPtr->R[OPERAND2_REGNUM (Operands)] + Index16;
 | |
|   if (OPERAND2_INDIRECT (Operands)) {
 | |
|     //
 | |
|     // Indirect form: @R2 Index16. Fetch as 32- or 64-bit data
 | |
|     //
 | |
|     if (Opcode & DATAMANIP_M_64) {
 | |
|       Op2 = VmReadMem64 (VmPtr, (UINTN) Op2);
 | |
|     } else {
 | |
|       //
 | |
|       // Read as signed value where appropriate.
 | |
|       //
 | |
|       if (IsSignedOp) {
 | |
|         Op2 = (UINT64) (INT64) ((INT32) VmReadMem32 (VmPtr, (UINTN) Op2));
 | |
|       } else {
 | |
|         Op2 = (UINT64) VmReadMem32 (VmPtr, (UINTN) Op2);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     if ((Opcode & DATAMANIP_M_64) == 0) {
 | |
|       if (IsSignedOp) {
 | |
|         Op2 = (UINT64) (INT64) ((INT32) Op2);
 | |
|       } else {
 | |
|         Op2 = (UINT64) ((UINT32) Op2);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   //
 | |
|   // Get operand1 (destination and sometimes also an actual operand)
 | |
|   // of form {@}R1
 | |
|   //
 | |
|   Op1 = VmPtr->R[OPERAND1_REGNUM (Operands)];
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     if (Opcode & DATAMANIP_M_64) {
 | |
|       Op1 = VmReadMem64 (VmPtr, (UINTN) Op1);
 | |
|     } else {
 | |
|       if (IsSignedOp) {
 | |
|         Op1 = (UINT64) (INT64) ((INT32) VmReadMem32 (VmPtr, (UINTN) Op1));
 | |
|       } else {
 | |
|         Op1 = (UINT64) VmReadMem32 (VmPtr, (UINTN) Op1);
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     if ((Opcode & DATAMANIP_M_64) == 0) {
 | |
|       if (IsSignedOp) {
 | |
|         Op1 = (UINT64) (INT64) ((INT32) Op1);
 | |
|       } else {
 | |
|         Op1 = (UINT64) ((UINT32) Op1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   //
 | |
|   // Dispatch to the computation function
 | |
|   //
 | |
|   if (((Opcode & OPCODE_M_OPCODE) - OPCODE_NOT) >=
 | |
|         (sizeof (mDataManipDispatchTable) / sizeof (mDataManipDispatchTable[0]))
 | |
|         ) {
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_INVALID_OPCODE,
 | |
|       EXCEPTION_FLAG_ERROR,
 | |
|       VmPtr
 | |
|       );
 | |
|     //
 | |
|     // Advance and return
 | |
|     //
 | |
|     VmPtr->Ip += Size;
 | |
|     return EFI_UNSUPPORTED;
 | |
|   } else {
 | |
|     Op2 = mDataManipDispatchTable[(Opcode & OPCODE_M_OPCODE) - OPCODE_NOT](VmPtr, Op1, Op2);
 | |
|   }
 | |
|   //
 | |
|   // Write back the result.
 | |
|   //
 | |
|   if (OPERAND1_INDIRECT (Operands)) {
 | |
|     Op1 = VmPtr->R[OPERAND1_REGNUM (Operands)];
 | |
|     if (Opcode & DATAMANIP_M_64) {
 | |
|       VmWriteMem64 (VmPtr, (UINTN) Op1, Op2);
 | |
|     } else {
 | |
|       VmWriteMem32 (VmPtr, (UINTN) Op1, (UINT32) Op2);
 | |
|     }
 | |
|   } else {
 | |
|     //
 | |
|     // Storage back to a register. Write back, clearing upper bits (as per
 | |
|     // the specification) if 32-bit operation.
 | |
|     //
 | |
|     VmPtr->R[OPERAND1_REGNUM (Operands)] = Op2;
 | |
|     if ((Opcode & DATAMANIP_M_64) == 0) {
 | |
|       VmPtr->R[OPERAND1_REGNUM (Operands)] &= 0xFFFFFFFF;
 | |
|     }
 | |
|   }
 | |
|   //
 | |
|   // Advance the instruction pointer
 | |
|   //
 | |
|   VmPtr->Ip += Size;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteLOADSP (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC LOADSP instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|   LOADSP  SP1, R2
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8 Operands;
 | |
| 
 | |
|   //
 | |
|   // Get the operands
 | |
|   //
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Do the operation
 | |
|   //
 | |
|   switch (OPERAND1_REGNUM (Operands)) {
 | |
|   //
 | |
|   // Set flags
 | |
|   //
 | |
|   case 0:
 | |
|     //
 | |
|     // Spec states that this instruction will not modify reserved bits in
 | |
|     // the flags register.
 | |
|     //
 | |
|     VmPtr->Flags = (VmPtr->Flags &~VMFLAGS_ALL_VALID) | (VmPtr->R[OPERAND2_REGNUM (Operands)] & VMFLAGS_ALL_VALID);
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|       EXCEPTION_FLAG_WARNING,
 | |
|       VmPtr
 | |
|       );
 | |
|     VmPtr->Ip += 2;
 | |
|     return EFI_UNSUPPORTED;
 | |
|   }
 | |
| 
 | |
|   VmPtr->Ip += 2;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| ExecuteSTORESP (
 | |
|   IN VM_CONTEXT *VmPtr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Execute the EBC STORESP instruction
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
| 
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| Instruction syntax:
 | |
|    STORESP  Rx, FLAGS|IP
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT8 Operands;
 | |
| 
 | |
|   //
 | |
|   // Get the operands
 | |
|   //
 | |
|   Operands = GETOPERANDS (VmPtr);
 | |
| 
 | |
|   //
 | |
|   // Do the operation
 | |
|   //
 | |
|   switch (OPERAND2_REGNUM (Operands)) {
 | |
|   //
 | |
|   // Get flags
 | |
|   //
 | |
|   case 0:
 | |
|     //
 | |
|     // Retrieve the value in the flags register, then clear reserved bits
 | |
|     //
 | |
|     VmPtr->R[OPERAND1_REGNUM (Operands)] = (UINT64) (VmPtr->Flags & VMFLAGS_ALL_VALID);
 | |
|     break;
 | |
| 
 | |
|   //
 | |
|   // Get IP -- address of following instruction
 | |
|   //
 | |
|   case 1:
 | |
|     VmPtr->R[OPERAND1_REGNUM (Operands)] = (UINT64) (UINTN) VmPtr->Ip + 2;
 | |
|     break;
 | |
| 
 | |
|   default:
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_INSTRUCTION_ENCODING,
 | |
|       EXCEPTION_FLAG_WARNING,
 | |
|       VmPtr
 | |
|       );
 | |
|     VmPtr->Ip += 2;
 | |
|     return EFI_UNSUPPORTED;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   VmPtr->Ip += 2;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| INT16
 | |
| VmReadIndex16 (
 | |
|   IN VM_CONTEXT     *VmPtr,
 | |
|   IN UINT32         CodeOffset
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Decode a 16-bit index to determine the offset. Given an index value:
 | |
| 
 | |
|     b15     - sign bit
 | |
|     b14:12  - number of bits in this index assigned to natural units (=a)
 | |
|     ba:11   - constant units = C
 | |
|     b0:a    - natural units = N
 | |
|   
 | |
|   Given this info, the offset can be computed by:
 | |
|     offset = sign_bit * (C + N * sizeof(UINTN))
 | |
| 
 | |
|   Max offset is achieved with index = 0x7FFF giving an offset of
 | |
|   0x27B (32-bit machine) or 0x477 (64-bit machine).
 | |
|   Min offset is achieved with index = 
 | |
|   
 | |
| Arguments:
 | |
|   VmPtr       - pointer to VM context
 | |
|   CodeOffset  - offset from IP of the location of the 16-bit index to decode
 | |
| 
 | |
| Returns:
 | |
|   The decoded offset.
 | |
|   
 | |
| --*/
 | |
| {
 | |
|   UINT16  Index;
 | |
|   INT16   Offset;
 | |
|   INT16   C;
 | |
|   INT16   N;
 | |
|   INT16   NBits;
 | |
|   INT16   Mask;
 | |
| 
 | |
|   //
 | |
|   // First read the index from the code stream
 | |
|   //
 | |
|   Index = VmReadCode16 (VmPtr, CodeOffset);
 | |
| 
 | |
|   //
 | |
|   // Get the mask for N. First get the number of bits from the index.
 | |
|   //
 | |
|   NBits = (INT16) ((Index & 0x7000) >> 12);
 | |
| 
 | |
|   //
 | |
|   // Scale it for 16-bit indexes
 | |
|   //
 | |
|   NBits *= 2;
 | |
| 
 | |
|   //
 | |
|   // Now using the number of bits, create a mask.
 | |
|   //
 | |
|   Mask = (INT16) ((INT16)~0 << NBits);
 | |
| 
 | |
|   //
 | |
|   // Now using the mask, extract N from the lower bits of the index.
 | |
|   //
 | |
|   N = (INT16) (Index &~Mask);
 | |
| 
 | |
|   //
 | |
|   // Now compute C
 | |
|   //
 | |
|   C       = (INT16) (((Index &~0xF000) & Mask) >> NBits);
 | |
| 
 | |
|   Offset  = (INT16) (N * sizeof (UINTN) + C);
 | |
| 
 | |
|   //
 | |
|   // Now set the sign
 | |
|   //
 | |
|   if (Index & 0x8000) {
 | |
|     //
 | |
|     // Do it the hard way to work around a bogus compiler warning
 | |
|     //
 | |
|     // Offset = -1 * Offset;
 | |
|     //
 | |
|     Offset = (INT16) ((INT32) Offset * -1);
 | |
|   }
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| INT32
 | |
| VmReadIndex32 (
 | |
|   IN VM_CONTEXT     *VmPtr,
 | |
|   IN UINT32         CodeOffset
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Decode a 32-bit index to determine the offset.
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr       - pointer to VM context
 | |
|   CodeOffset  - offset from IP of the location of the 32-bit index to decode
 | |
| 
 | |
| Returns:
 | |
|   Converted index per EBC VM specification
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT32  Index;
 | |
|   INT32   Offset;
 | |
|   INT32   C;
 | |
|   INT32   N;
 | |
|   INT32   NBits;
 | |
|   INT32   Mask;
 | |
| 
 | |
|   Index = VmReadImmed32 (VmPtr, CodeOffset);
 | |
| 
 | |
|   //
 | |
|   // Get the mask for N. First get the number of bits from the index.
 | |
|   //
 | |
|   NBits = (Index & 0x70000000) >> 28;
 | |
| 
 | |
|   //
 | |
|   // Scale it for 32-bit indexes
 | |
|   //
 | |
|   NBits *= 4;
 | |
| 
 | |
|   //
 | |
|   // Now using the number of bits, create a mask.
 | |
|   //
 | |
|   Mask = (INT32)~0 << NBits;
 | |
| 
 | |
|   //
 | |
|   // Now using the mask, extract N from the lower bits of the index.
 | |
|   //
 | |
|   N = Index &~Mask;
 | |
| 
 | |
|   //
 | |
|   // Now compute C
 | |
|   //
 | |
|   C       = ((Index &~0xF0000000) & Mask) >> NBits;
 | |
| 
 | |
|   Offset  = N * sizeof (UINTN) + C;
 | |
| 
 | |
|   //
 | |
|   // Now set the sign
 | |
|   //
 | |
|   if (Index & 0x80000000) {
 | |
|     Offset = Offset * -1;
 | |
|   }
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| INT64
 | |
| VmReadIndex64 (
 | |
|   IN VM_CONTEXT     *VmPtr,
 | |
|   IN UINT32         CodeOffset
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Decode a 64-bit index to determine the offset.
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr       - pointer to VM context
 | |
|   CodeOffset  - offset from IP of the location of the 64-bit index to decode
 | |
| 
 | |
| Returns:
 | |
|   Converted index per EBC VM specification
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   UINT64  Index;
 | |
|   UINT64  Remainder;
 | |
|   INT64   Offset;
 | |
|   INT64   C;
 | |
|   INT64   N;
 | |
|   INT64   NBits;
 | |
|   INT64   Mask;
 | |
| 
 | |
|   Index = VmReadCode64 (VmPtr, CodeOffset);
 | |
| 
 | |
|   //
 | |
|   // Get the mask for N. First get the number of bits from the index.
 | |
|   //
 | |
|   NBits = RightShiftU64 ((Index & 0x7000000000000000ULL), 60);
 | |
| 
 | |
|   //
 | |
|   // Scale it for 64-bit indexes (multiply by 8 by shifting left 3)
 | |
|   //
 | |
|   NBits = LeftShiftU64 (NBits, 3);
 | |
| 
 | |
|   //
 | |
|   // Now using the number of bits, create a mask.
 | |
|   //
 | |
|   Mask = (LeftShiftU64 ((UINT64)~0, (UINT64) NBits));
 | |
| 
 | |
|   //
 | |
|   // Now using the mask, extract N from the lower bits of the index.
 | |
|   //
 | |
|   N = Index &~Mask;
 | |
| 
 | |
|   //
 | |
|   // Now compute C
 | |
|   //
 | |
|   C       = ARightShift64 (((Index &~0xF000000000000000ULL) & Mask), (UINTN) NBits);
 | |
| 
 | |
|   Offset  = MulU64x64 (N, sizeof (UINTN), &Remainder) + C;
 | |
| 
 | |
|   //
 | |
|   // Now set the sign
 | |
|   //
 | |
|   if (Index & 0x8000000000000000ULL) {
 | |
|     Offset = MulS64x64 (Offset, -1, (INT64 *)&Index);
 | |
|   }
 | |
| 
 | |
|   return Offset;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| VmWriteMem8 (
 | |
|   IN VM_CONTEXT    *VmPtr,
 | |
|   IN UINTN         Addr,
 | |
|   IN UINT8         Data
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   The following VmWriteMem? routines are called by the EBC data
 | |
|   movement instructions that write to memory. Since these writes
 | |
|   may be to the stack, which looks like (high address on top) this,
 | |
| 
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
| 
 | |
|   we need to detect all attempts to write to the EBC entry point argument
 | |
|   stack area and adjust the address (which will initially point into the 
 | |
|   VM stack) to point into the EBC entry point arguments.
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
|   Addr    - adddress to write to
 | |
|   Data    - value to write to Addr
 | |
|   
 | |
| Returns:
 | |
|   Standard EFI_STATUS
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr            = ConvertStackAddr (VmPtr, Addr);
 | |
|   *(UINT8 *) Addr = Data;
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| VmWriteMem16 (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINTN        Addr,
 | |
|   IN UINT16       Data
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS  Status;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
| 
 | |
|   //
 | |
|   // Do a simple write if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT16))) {
 | |
|     *(UINT16 *) Addr = Data;
 | |
|   } else {
 | |
|     //
 | |
|     // Write as two bytes
 | |
|     //
 | |
|     MemoryFence ();
 | |
|     if ((Status = VmWriteMem8 (VmPtr, Addr, (UINT8) Data)) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|     if ((Status = VmWriteMem8 (VmPtr, Addr + 1, (UINT8) (Data >> 8))) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| EFI_STATUS
 | |
| VmWriteMem32 (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINTN        Addr,
 | |
|   IN UINT32       Data
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS  Status;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
| 
 | |
|   //
 | |
|   // Do a simple write if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT32))) {
 | |
|     *(UINT32 *) Addr = Data;
 | |
|   } else {
 | |
|     //
 | |
|     // Write as two words
 | |
|     //
 | |
|     MemoryFence ();
 | |
|     if ((Status = VmWriteMem16 (VmPtr, Addr, (UINT16) Data)) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|     if ((Status = VmWriteMem16 (VmPtr, Addr + sizeof (UINT16), (UINT16) (Data >> 16))) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| EFI_STATUS
 | |
| VmWriteMem64 (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINTN        Addr,
 | |
|   IN UINT64       Data
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS  Status;
 | |
|   UINT32      Data32;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
| 
 | |
|   //
 | |
|   // Do a simple write if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT64))) {
 | |
|     *(UINT64 *) Addr = Data;
 | |
|   } else {
 | |
|     //
 | |
|     // Write as two 32-bit words
 | |
|     //
 | |
|     MemoryFence ();
 | |
|     if ((Status = VmWriteMem32 (VmPtr, Addr, (UINT32) Data)) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|     Data32 = (UINT32) (((UINT32 *) &Data)[1]);
 | |
|     if ((Status = VmWriteMem32 (VmPtr, Addr + sizeof (UINT32), Data32)) != EFI_SUCCESS) {
 | |
|       return Status;
 | |
|     }
 | |
| 
 | |
|     MemoryFence ();
 | |
|   }
 | |
| 
 | |
|   return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| EFI_STATUS
 | |
| VmWriteMemN (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINTN        Addr,
 | |
|   IN UINTN        Data
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS  Status;
 | |
|   UINTN       Index;
 | |
| 
 | |
|   Status = EFI_SUCCESS;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
| 
 | |
|   //
 | |
|   // Do a simple write if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINTN))) {
 | |
|     *(UINTN *) Addr = Data;
 | |
|   } else {
 | |
|     for (Index = 0; Index < sizeof (UINTN) / sizeof (UINT32); Index++) {
 | |
|       MemoryFence ();
 | |
|       Status = VmWriteMem32 (VmPtr, Addr + Index * sizeof (UINT32), (UINT32) Data);
 | |
|       MemoryFence ();
 | |
|       Data = (UINTN)RShiftU64 ((UINT64)Data, 32);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| INT8
 | |
| VmReadImmed8 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   
 | |
|   The following VmReadImmed routines are called by the EBC execute
 | |
|   functions to read EBC immediate values from the code stream.
 | |
|   Since we can't assume alignment, each tries to read in the biggest 
 | |
|   chunks size available, but will revert to smaller reads if necessary.
 | |
| 
 | |
| Arguments:
 | |
|   VmPtr   - pointer to a VM context  
 | |
|   Offset  - offset from IP of the code bytes to read.
 | |
| 
 | |
| Returns:
 | |
|   Signed data of the requested size from the specified address.
 | |
| 
 | |
| --*/
 | |
| {
 | |
|   //
 | |
|   // Simply return the data in flat memory space
 | |
|   //
 | |
|   return * (INT8 *) (VmPtr->Ip + Offset);
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| INT16
 | |
| VmReadImmed16 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (INT16))) {
 | |
|     return * (INT16 *) (VmPtr->Ip + Offset);
 | |
|   } else {
 | |
|     //
 | |
|     // All code word reads should be aligned
 | |
|     //
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|       EXCEPTION_FLAG_WARNING,
 | |
|       VmPtr
 | |
|       );
 | |
|   }
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   return (INT16) (*(UINT8 *) (VmPtr->Ip + Offset) + (*(UINT8 *) (VmPtr->Ip + Offset + 1) << 8));
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| INT32
 | |
| VmReadImmed32 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   )
 | |
| {
 | |
|   UINT32  Data;
 | |
| 
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT32))) {
 | |
|     return * (INT32 *) (VmPtr->Ip + Offset);
 | |
|   }
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   Data = (UINT32) VmReadCode16 (VmPtr, Offset);
 | |
|   Data |= (UINT32) (VmReadCode16 (VmPtr, Offset + 2) << 16);
 | |
|   return Data;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| INT64
 | |
| VmReadImmed64 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   )
 | |
| {
 | |
|   UINT64  Data64;
 | |
|   UINT32  Data32;
 | |
|   UINT8   *Ptr;
 | |
| 
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT64))) {
 | |
|     return * (UINT64 *) (VmPtr->Ip + Offset);
 | |
|   }
 | |
|   //
 | |
|   // Return unaligned data.
 | |
|   //
 | |
|   Ptr             = (UINT8 *) &Data64;
 | |
|   Data32          = VmReadCode32 (VmPtr, Offset);
 | |
|   *(UINT32 *) Ptr = Data32;
 | |
|   Ptr += sizeof (Data32);
 | |
|   Data32          = VmReadCode32 (VmPtr, Offset + sizeof (UINT32));
 | |
|   *(UINT32 *) Ptr = Data32;
 | |
|   return Data64;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT16
 | |
| VmReadCode16 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   The following VmReadCode() routines provide the ability to read raw 
 | |
|   unsigned data from the code stream. 
 | |
|   
 | |
| Arguments:
 | |
|   VmPtr   - pointer to VM context
 | |
|   Offset  - offset from current IP to the raw data to read.
 | |
| 
 | |
| Returns:
 | |
|   The raw unsigned 16-bit value from the code stream.
 | |
|   
 | |
| --*/
 | |
| {
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT16))) {
 | |
|     return * (UINT16 *) (VmPtr->Ip + Offset);
 | |
|   } else {
 | |
|     //
 | |
|     // All code word reads should be aligned
 | |
|     //
 | |
|     EbcDebugSignalException (
 | |
|       EXCEPT_EBC_ALIGNMENT_CHECK,
 | |
|       EXCEPTION_FLAG_WARNING,
 | |
|       VmPtr
 | |
|       );
 | |
|   }
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   return (UINT16) (*(UINT8 *) (VmPtr->Ip + Offset) + (*(UINT8 *) (VmPtr->Ip + Offset + 1) << 8));
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT32
 | |
| VmReadCode32 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   )
 | |
| {
 | |
|   UINT32  Data;
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT32))) {
 | |
|     return * (UINT32 *) (VmPtr->Ip + Offset);
 | |
|   }
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   Data = (UINT32) VmReadCode16 (VmPtr, Offset);
 | |
|   Data |= (VmReadCode16 (VmPtr, Offset + 2) << 16);
 | |
|   return Data;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| VmReadCode64 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINT32     Offset
 | |
|   )
 | |
| {
 | |
|   UINT64  Data64;
 | |
|   UINT32  Data32;
 | |
|   UINT8   *Ptr;
 | |
| 
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED ((UINTN) VmPtr->Ip + Offset, sizeof (UINT64))) {
 | |
|     return * (UINT64 *) (VmPtr->Ip + Offset);
 | |
|   }
 | |
|   //
 | |
|   // Return unaligned data.
 | |
|   //
 | |
|   Ptr             = (UINT8 *) &Data64;
 | |
|   Data32          = VmReadCode32 (VmPtr, Offset);
 | |
|   *(UINT32 *) Ptr = Data32;
 | |
|   Ptr += sizeof (Data32);
 | |
|   Data32          = VmReadCode32 (VmPtr, Offset + sizeof (UINT32));
 | |
|   *(UINT32 *) Ptr = Data32;
 | |
|   return Data64;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT8
 | |
| VmReadMem8 (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINTN        Addr
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
|   //
 | |
|   // Simply return the data in flat memory space
 | |
|   //
 | |
|   return * (UINT8 *) Addr;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT16
 | |
| VmReadMem16 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINTN      Addr
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT16))) {
 | |
|     return * (UINT16 *) Addr;
 | |
|   }
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   return (UINT16) (*(UINT8 *) Addr + (*(UINT8 *) (Addr + 1) << 8));
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT32
 | |
| VmReadMem32 (
 | |
|   IN VM_CONTEXT *VmPtr,
 | |
|   IN UINTN      Addr
 | |
|   )
 | |
| {
 | |
|   UINT32  Data;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT32))) {
 | |
|     return * (UINT32 *) Addr;
 | |
|   }
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   Data = (UINT32) VmReadMem16 (VmPtr, Addr);
 | |
|   Data |= (VmReadMem16 (VmPtr, Addr + 2) << 16);
 | |
|   return Data;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINT64
 | |
| VmReadMem64 (
 | |
|   IN VM_CONTEXT   *VmPtr,
 | |
|   IN UINTN        Addr
 | |
|   )
 | |
| {
 | |
|   UINT64  Data;
 | |
|   UINT32  Data32;
 | |
| 
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
| 
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINT64))) {
 | |
|     return * (UINT64 *) Addr;
 | |
|   }
 | |
|   //
 | |
|   // Return unaligned data. Assume little endian.
 | |
|   //
 | |
|   Data    = (UINT64) VmReadMem32 (VmPtr, Addr);
 | |
|   Data32  = VmReadMem32 (VmPtr, Addr + sizeof (UINT32));
 | |
|   *(UINT32 *) ((UINT32 *) &Data + 1) = Data32;
 | |
|   return Data;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINTN
 | |
| ConvertStackAddr (
 | |
|   IN VM_CONTEXT    *VmPtr,
 | |
|   IN UINTN         Addr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
| 
 | |
|   Given an address that EBC is going to read from or write to, return
 | |
|   an appropriate address that accounts for a gap in the stack.
 | |
|   
 | |
|   The stack for this application looks like this (high addr on top)
 | |
|   [EBC entry point arguments]
 | |
|   [VM stack]
 | |
|   [EBC stack]
 | |
| 
 | |
|   The EBC assumes that its arguments are at the top of its stack, which
 | |
|   is where the VM stack is really. Therefore if the EBC does memory
 | |
|   accesses into the VM stack area, then we need to convert the address
 | |
|   to point to the EBC entry point arguments area. Do this here.
 | |
| 
 | |
| Arguments:
 | |
| 
 | |
|   VmPtr    - pointer to VM context
 | |
|   Addr  - address of interest
 | |
| 
 | |
| Returns:
 | |
| 
 | |
|   The unchanged address if it's not in the VM stack region. Otherwise, 
 | |
|   adjust for the stack gap and return the modified address.
 | |
|   
 | |
| --*/
 | |
| {
 | |
|   if ((Addr >= VmPtr->LowStackTop) && (Addr < VmPtr->HighStackBottom)) {
 | |
|     //
 | |
|     // In the stack gap -- now make sure it's not in the VM itself, which
 | |
|     // would be the case if it's accessing VM register contents.
 | |
|     //
 | |
|     if ((Addr < (UINTN) VmPtr) || (Addr > (UINTN) VmPtr + sizeof (VM_CONTEXT))) {
 | |
|       VmPtr->LastAddrConverted      = Addr;
 | |
|       VmPtr->LastAddrConvertedValue = Addr - VmPtr->LowStackTop + VmPtr->HighStackBottom;
 | |
|       return Addr - VmPtr->LowStackTop + VmPtr->HighStackBottom;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| STATIC
 | |
| UINTN
 | |
| VmReadMemN (
 | |
|   IN VM_CONTEXT    *VmPtr,
 | |
|   IN UINTN         Addr
 | |
|   )
 | |
| /*++
 | |
| 
 | |
| Routine Description:
 | |
|   Read a natural value from memory. May or may not be aligned.
 | |
|   
 | |
| Arguments:
 | |
|   VmPtr   - current VM context
 | |
|   Addr    - the address to read from
 | |
| 
 | |
| Returns:
 | |
|   The natural value at address Addr.
 | |
|   
 | |
| --*/
 | |
| {
 | |
|   UINTN   Data;
 | |
|   UINT32  Size;
 | |
|   UINT8   *FromPtr;
 | |
|   UINT8   *ToPtr;
 | |
|   //
 | |
|   // Convert the address if it's in the stack gap
 | |
|   //
 | |
|   Addr = ConvertStackAddr (VmPtr, Addr);
 | |
|   //
 | |
|   // Read direct if aligned
 | |
|   //
 | |
|   if (IS_ALIGNED (Addr, sizeof (UINTN))) {
 | |
|     return * (UINTN *) Addr;
 | |
|   }
 | |
|   //
 | |
|   // Return unaligned data
 | |
|   //
 | |
|   Data    = 0;
 | |
|   FromPtr = (UINT8 *) Addr;
 | |
|   ToPtr   = (UINT8 *) &Data;
 | |
| 
 | |
|   for (Size = 0; Size < sizeof (Data); Size++) {
 | |
|     *ToPtr = *FromPtr;
 | |
|     ToPtr++;
 | |
|     FromPtr++;
 | |
|   }
 | |
| 
 | |
|   return Data;
 | |
| }
 | |
| 
 | |
| UINT64
 | |
| GetVmVersion (
 | |
|   VOID
 | |
|   )
 | |
| {
 | |
|   return (UINT64) (((VM_MAJOR_VERSION & 0xFFFF) << 16) | ((VM_MINOR_VERSION & 0xFFFF)));
 | |
| }
 |