https://bugzilla.tianocore.org/show_bug.cgi?id=1201 Update Brotli to the latest version 1.0.6 https://github.com/google/brotli Verify VS2017, GCC5 build. Verify Decompression boot functionality. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Liming Gao <liming.gao@intel.com> Reviewed-by: Star Zeng <star.zeng@intel.com>
		
			
				
	
	
		
			502 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			502 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Copyright 2010 Google Inc. All Rights Reserved.
 | 
						|
 | 
						|
   Distributed under MIT license.
 | 
						|
   See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
 | 
						|
*/
 | 
						|
 | 
						|
/* Entropy encoding (Huffman) utilities. */
 | 
						|
 | 
						|
#include "./entropy_encode.h"
 | 
						|
 | 
						|
#include <string.h>  /* memset */
 | 
						|
 | 
						|
#include "../common/constants.h"
 | 
						|
#include "../common/platform.h"
 | 
						|
#include <brotli/types.h>
 | 
						|
 | 
						|
#if defined(__cplusplus) || defined(c_plusplus)
 | 
						|
extern "C" {
 | 
						|
#endif
 | 
						|
 | 
						|
BROTLI_BOOL BrotliSetDepth(
 | 
						|
    int p0, HuffmanTree* pool, uint8_t* depth, int max_depth) {
 | 
						|
  int stack[16];
 | 
						|
  int level = 0;
 | 
						|
  int p = p0;
 | 
						|
  BROTLI_DCHECK(max_depth <= 15);
 | 
						|
  stack[0] = -1;
 | 
						|
  while (BROTLI_TRUE) {
 | 
						|
    if (pool[p].index_left_ >= 0) {
 | 
						|
      level++;
 | 
						|
      if (level > max_depth) return BROTLI_FALSE;
 | 
						|
      stack[level] = pool[p].index_right_or_value_;
 | 
						|
      p = pool[p].index_left_;
 | 
						|
      continue;
 | 
						|
    } else {
 | 
						|
      depth[pool[p].index_right_or_value_] = (uint8_t)level;
 | 
						|
    }
 | 
						|
    while (level >= 0 && stack[level] == -1) level--;
 | 
						|
    if (level < 0) return BROTLI_TRUE;
 | 
						|
    p = stack[level];
 | 
						|
    stack[level] = -1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/* Sort the root nodes, least popular first. */
 | 
						|
static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree(
 | 
						|
    const HuffmanTree* v0, const HuffmanTree* v1) {
 | 
						|
  if (v0->total_count_ != v1->total_count_) {
 | 
						|
    return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_);
 | 
						|
  }
 | 
						|
  return TO_BROTLI_BOOL(v0->index_right_or_value_ > v1->index_right_or_value_);
 | 
						|
}
 | 
						|
 | 
						|
/* This function will create a Huffman tree.
 | 
						|
 | 
						|
   The catch here is that the tree cannot be arbitrarily deep.
 | 
						|
   Brotli specifies a maximum depth of 15 bits for "code trees"
 | 
						|
   and 7 bits for "code length code trees."
 | 
						|
 | 
						|
   count_limit is the value that is to be faked as the minimum value
 | 
						|
   and this minimum value is raised until the tree matches the
 | 
						|
   maximum length requirement.
 | 
						|
 | 
						|
   This algorithm is not of excellent performance for very long data blocks,
 | 
						|
   especially when population counts are longer than 2**tree_limit, but
 | 
						|
   we are not planning to use this with extremely long blocks.
 | 
						|
 | 
						|
   See http://en.wikipedia.org/wiki/Huffman_coding */
 | 
						|
void BrotliCreateHuffmanTree(const uint32_t* data,
 | 
						|
                             const size_t length,
 | 
						|
                             const int tree_limit,
 | 
						|
                             HuffmanTree* tree,
 | 
						|
                             uint8_t* depth) {
 | 
						|
  uint32_t count_limit;
 | 
						|
  HuffmanTree sentinel;
 | 
						|
  InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1);
 | 
						|
  /* For block sizes below 64 kB, we never need to do a second iteration
 | 
						|
     of this loop. Probably all of our block sizes will be smaller than
 | 
						|
     that, so this loop is mostly of academic interest. If we actually
 | 
						|
     would need this, we would be better off with the Katajainen algorithm. */
 | 
						|
  for (count_limit = 1; ; count_limit *= 2) {
 | 
						|
    size_t n = 0;
 | 
						|
    size_t i;
 | 
						|
    size_t j;
 | 
						|
    size_t k;
 | 
						|
    for (i = length; i != 0;) {
 | 
						|
      --i;
 | 
						|
      if (data[i]) {
 | 
						|
        const uint32_t count = BROTLI_MAX(uint32_t, data[i], count_limit);
 | 
						|
        InitHuffmanTree(&tree[n++], count, -1, (int16_t)i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (n == 1) {
 | 
						|
      depth[tree[0].index_right_or_value_] = 1;  /* Only one element. */
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    SortHuffmanTreeItems(tree, n, SortHuffmanTree);
 | 
						|
 | 
						|
    /* The nodes are:
 | 
						|
       [0, n): the sorted leaf nodes that we start with.
 | 
						|
       [n]: we add a sentinel here.
 | 
						|
       [n + 1, 2n): new parent nodes are added here, starting from
 | 
						|
                    (n+1). These are naturally in ascending order.
 | 
						|
       [2n]: we add a sentinel at the end as well.
 | 
						|
       There will be (2n+1) elements at the end. */
 | 
						|
    tree[n] = sentinel;
 | 
						|
    tree[n + 1] = sentinel;
 | 
						|
 | 
						|
    i = 0;      /* Points to the next leaf node. */
 | 
						|
    j = n + 1;  /* Points to the next non-leaf node. */
 | 
						|
    for (k = n - 1; k != 0; --k) {
 | 
						|
      size_t left, right;
 | 
						|
      if (tree[i].total_count_ <= tree[j].total_count_) {
 | 
						|
        left = i;
 | 
						|
        ++i;
 | 
						|
      } else {
 | 
						|
        left = j;
 | 
						|
        ++j;
 | 
						|
      }
 | 
						|
      if (tree[i].total_count_ <= tree[j].total_count_) {
 | 
						|
        right = i;
 | 
						|
        ++i;
 | 
						|
      } else {
 | 
						|
        right = j;
 | 
						|
        ++j;
 | 
						|
      }
 | 
						|
 | 
						|
      {
 | 
						|
        /* The sentinel node becomes the parent node. */
 | 
						|
        size_t j_end = 2 * n - k;
 | 
						|
        tree[j_end].total_count_ =
 | 
						|
            tree[left].total_count_ + tree[right].total_count_;
 | 
						|
        tree[j_end].index_left_ = (int16_t)left;
 | 
						|
        tree[j_end].index_right_or_value_ = (int16_t)right;
 | 
						|
 | 
						|
        /* Add back the last sentinel node. */
 | 
						|
        tree[j_end + 1] = sentinel;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (BrotliSetDepth((int)(2 * n - 1), &tree[0], depth, tree_limit)) {
 | 
						|
      /* We need to pack the Huffman tree in tree_limit bits. If this was not
 | 
						|
         successful, add fake entities to the lowest values and retry. */
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void Reverse(uint8_t* v, size_t start, size_t end) {
 | 
						|
  --end;
 | 
						|
  while (start < end) {
 | 
						|
    uint8_t tmp = v[start];
 | 
						|
    v[start] = v[end];
 | 
						|
    v[end] = tmp;
 | 
						|
    ++start;
 | 
						|
    --end;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void BrotliWriteHuffmanTreeRepetitions(
 | 
						|
    const uint8_t previous_value,
 | 
						|
    const uint8_t value,
 | 
						|
    size_t repetitions,
 | 
						|
    size_t* tree_size,
 | 
						|
    uint8_t* tree,
 | 
						|
    uint8_t* extra_bits_data) {
 | 
						|
  BROTLI_DCHECK(repetitions > 0);
 | 
						|
  if (previous_value != value) {
 | 
						|
    tree[*tree_size] = value;
 | 
						|
    extra_bits_data[*tree_size] = 0;
 | 
						|
    ++(*tree_size);
 | 
						|
    --repetitions;
 | 
						|
  }
 | 
						|
  if (repetitions == 7) {
 | 
						|
    tree[*tree_size] = value;
 | 
						|
    extra_bits_data[*tree_size] = 0;
 | 
						|
    ++(*tree_size);
 | 
						|
    --repetitions;
 | 
						|
  }
 | 
						|
  if (repetitions < 3) {
 | 
						|
    size_t i;
 | 
						|
    for (i = 0; i < repetitions; ++i) {
 | 
						|
      tree[*tree_size] = value;
 | 
						|
      extra_bits_data[*tree_size] = 0;
 | 
						|
      ++(*tree_size);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    size_t start = *tree_size;
 | 
						|
    repetitions -= 3;
 | 
						|
    while (BROTLI_TRUE) {
 | 
						|
      tree[*tree_size] = BROTLI_REPEAT_PREVIOUS_CODE_LENGTH;
 | 
						|
      extra_bits_data[*tree_size] = repetitions & 0x3;
 | 
						|
      ++(*tree_size);
 | 
						|
      repetitions >>= 2;
 | 
						|
      if (repetitions == 0) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      --repetitions;
 | 
						|
    }
 | 
						|
    Reverse(tree, start, *tree_size);
 | 
						|
    Reverse(extra_bits_data, start, *tree_size);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void BrotliWriteHuffmanTreeRepetitionsZeros(
 | 
						|
    size_t repetitions,
 | 
						|
    size_t* tree_size,
 | 
						|
    uint8_t* tree,
 | 
						|
    uint8_t* extra_bits_data) {
 | 
						|
  if (repetitions == 11) {
 | 
						|
    tree[*tree_size] = 0;
 | 
						|
    extra_bits_data[*tree_size] = 0;
 | 
						|
    ++(*tree_size);
 | 
						|
    --repetitions;
 | 
						|
  }
 | 
						|
  if (repetitions < 3) {
 | 
						|
    size_t i;
 | 
						|
    for (i = 0; i < repetitions; ++i) {
 | 
						|
      tree[*tree_size] = 0;
 | 
						|
      extra_bits_data[*tree_size] = 0;
 | 
						|
      ++(*tree_size);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    size_t start = *tree_size;
 | 
						|
    repetitions -= 3;
 | 
						|
    while (BROTLI_TRUE) {
 | 
						|
      tree[*tree_size] = BROTLI_REPEAT_ZERO_CODE_LENGTH;
 | 
						|
      extra_bits_data[*tree_size] = repetitions & 0x7;
 | 
						|
      ++(*tree_size);
 | 
						|
      repetitions >>= 3;
 | 
						|
      if (repetitions == 0) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      --repetitions;
 | 
						|
    }
 | 
						|
    Reverse(tree, start, *tree_size);
 | 
						|
    Reverse(extra_bits_data, start, *tree_size);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void BrotliOptimizeHuffmanCountsForRle(size_t length, uint32_t* counts,
 | 
						|
                                       uint8_t* good_for_rle) {
 | 
						|
  size_t nonzero_count = 0;
 | 
						|
  size_t stride;
 | 
						|
  size_t limit;
 | 
						|
  size_t sum;
 | 
						|
  const size_t streak_limit = 1240;
 | 
						|
  /* Let's make the Huffman code more compatible with RLE encoding. */
 | 
						|
  size_t i;
 | 
						|
  for (i = 0; i < length; i++) {
 | 
						|
    if (counts[i]) {
 | 
						|
      ++nonzero_count;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (nonzero_count < 16) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  while (length != 0 && counts[length - 1] == 0) {
 | 
						|
    --length;
 | 
						|
  }
 | 
						|
  if (length == 0) {
 | 
						|
    return;  /* All zeros. */
 | 
						|
  }
 | 
						|
  /* Now counts[0..length - 1] does not have trailing zeros. */
 | 
						|
  {
 | 
						|
    size_t nonzeros = 0;
 | 
						|
    uint32_t smallest_nonzero = 1 << 30;
 | 
						|
    for (i = 0; i < length; ++i) {
 | 
						|
      if (counts[i] != 0) {
 | 
						|
        ++nonzeros;
 | 
						|
        if (smallest_nonzero > counts[i]) {
 | 
						|
          smallest_nonzero = counts[i];
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (nonzeros < 5) {
 | 
						|
      /* Small histogram will model it well. */
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (smallest_nonzero < 4) {
 | 
						|
      size_t zeros = length - nonzeros;
 | 
						|
      if (zeros < 6) {
 | 
						|
        for (i = 1; i < length - 1; ++i) {
 | 
						|
          if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
 | 
						|
            counts[i] = 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (nonzeros < 28) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /* 2) Let's mark all population counts that already can be encoded
 | 
						|
     with an RLE code. */
 | 
						|
  memset(good_for_rle, 0, length);
 | 
						|
  {
 | 
						|
    /* Let's not spoil any of the existing good RLE codes.
 | 
						|
       Mark any seq of 0's that is longer as 5 as a good_for_rle.
 | 
						|
       Mark any seq of non-0's that is longer as 7 as a good_for_rle. */
 | 
						|
    uint32_t symbol = counts[0];
 | 
						|
    size_t step = 0;
 | 
						|
    for (i = 0; i <= length; ++i) {
 | 
						|
      if (i == length || counts[i] != symbol) {
 | 
						|
        if ((symbol == 0 && step >= 5) ||
 | 
						|
            (symbol != 0 && step >= 7)) {
 | 
						|
          size_t k;
 | 
						|
          for (k = 0; k < step; ++k) {
 | 
						|
            good_for_rle[i - k - 1] = 1;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        step = 1;
 | 
						|
        if (i != length) {
 | 
						|
          symbol = counts[i];
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        ++step;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  /* 3) Let's replace those population counts that lead to more RLE codes.
 | 
						|
     Math here is in 24.8 fixed point representation. */
 | 
						|
  stride = 0;
 | 
						|
  limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
 | 
						|
  sum = 0;
 | 
						|
  for (i = 0; i <= length; ++i) {
 | 
						|
    if (i == length || good_for_rle[i] ||
 | 
						|
        (i != 0 && good_for_rle[i - 1]) ||
 | 
						|
        (256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) {
 | 
						|
      if (stride >= 4 || (stride >= 3 && sum == 0)) {
 | 
						|
        size_t k;
 | 
						|
        /* The stride must end, collapse what we have, if we have enough (4). */
 | 
						|
        size_t count = (sum + stride / 2) / stride;
 | 
						|
        if (count == 0) {
 | 
						|
          count = 1;
 | 
						|
        }
 | 
						|
        if (sum == 0) {
 | 
						|
          /* Don't make an all zeros stride to be upgraded to ones. */
 | 
						|
          count = 0;
 | 
						|
        }
 | 
						|
        for (k = 0; k < stride; ++k) {
 | 
						|
          /* We don't want to change value at counts[i],
 | 
						|
             that is already belonging to the next stride. Thus - 1. */
 | 
						|
          counts[i - k - 1] = (uint32_t)count;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      stride = 0;
 | 
						|
      sum = 0;
 | 
						|
      if (i < length - 2) {
 | 
						|
        /* All interesting strides have a count of at least 4, */
 | 
						|
        /* at least when non-zeros. */
 | 
						|
        limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
 | 
						|
      } else if (i < length) {
 | 
						|
        limit = 256 * counts[i];
 | 
						|
      } else {
 | 
						|
        limit = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ++stride;
 | 
						|
    if (i != length) {
 | 
						|
      sum += counts[i];
 | 
						|
      if (stride >= 4) {
 | 
						|
        limit = (256 * sum + stride / 2) / stride;
 | 
						|
      }
 | 
						|
      if (stride == 4) {
 | 
						|
        limit += 120;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void DecideOverRleUse(const uint8_t* depth, const size_t length,
 | 
						|
                             BROTLI_BOOL* use_rle_for_non_zero,
 | 
						|
                             BROTLI_BOOL* use_rle_for_zero) {
 | 
						|
  size_t total_reps_zero = 0;
 | 
						|
  size_t total_reps_non_zero = 0;
 | 
						|
  size_t count_reps_zero = 1;
 | 
						|
  size_t count_reps_non_zero = 1;
 | 
						|
  size_t i;
 | 
						|
  for (i = 0; i < length;) {
 | 
						|
    const uint8_t value = depth[i];
 | 
						|
    size_t reps = 1;
 | 
						|
    size_t k;
 | 
						|
    for (k = i + 1; k < length && depth[k] == value; ++k) {
 | 
						|
      ++reps;
 | 
						|
    }
 | 
						|
    if (reps >= 3 && value == 0) {
 | 
						|
      total_reps_zero += reps;
 | 
						|
      ++count_reps_zero;
 | 
						|
    }
 | 
						|
    if (reps >= 4 && value != 0) {
 | 
						|
      total_reps_non_zero += reps;
 | 
						|
      ++count_reps_non_zero;
 | 
						|
    }
 | 
						|
    i += reps;
 | 
						|
  }
 | 
						|
  *use_rle_for_non_zero =
 | 
						|
      TO_BROTLI_BOOL(total_reps_non_zero > count_reps_non_zero * 2);
 | 
						|
  *use_rle_for_zero = TO_BROTLI_BOOL(total_reps_zero > count_reps_zero * 2);
 | 
						|
}
 | 
						|
 | 
						|
void BrotliWriteHuffmanTree(const uint8_t* depth,
 | 
						|
                            size_t length,
 | 
						|
                            size_t* tree_size,
 | 
						|
                            uint8_t* tree,
 | 
						|
                            uint8_t* extra_bits_data) {
 | 
						|
  uint8_t previous_value = BROTLI_INITIAL_REPEATED_CODE_LENGTH;
 | 
						|
  size_t i;
 | 
						|
  BROTLI_BOOL use_rle_for_non_zero = BROTLI_FALSE;
 | 
						|
  BROTLI_BOOL use_rle_for_zero = BROTLI_FALSE;
 | 
						|
 | 
						|
  /* Throw away trailing zeros. */
 | 
						|
  size_t new_length = length;
 | 
						|
  for (i = 0; i < length; ++i) {
 | 
						|
    if (depth[length - i - 1] == 0) {
 | 
						|
      --new_length;
 | 
						|
    } else {
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* First gather statistics on if it is a good idea to do RLE. */
 | 
						|
  if (length > 50) {
 | 
						|
    /* Find RLE coding for longer codes.
 | 
						|
       Shorter codes seem not to benefit from RLE. */
 | 
						|
    DecideOverRleUse(depth, new_length,
 | 
						|
                     &use_rle_for_non_zero, &use_rle_for_zero);
 | 
						|
  }
 | 
						|
 | 
						|
  /* Actual RLE coding. */
 | 
						|
  for (i = 0; i < new_length;) {
 | 
						|
    const uint8_t value = depth[i];
 | 
						|
    size_t reps = 1;
 | 
						|
    if ((value != 0 && use_rle_for_non_zero) ||
 | 
						|
        (value == 0 && use_rle_for_zero)) {
 | 
						|
      size_t k;
 | 
						|
      for (k = i + 1; k < new_length && depth[k] == value; ++k) {
 | 
						|
        ++reps;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (value == 0) {
 | 
						|
      BrotliWriteHuffmanTreeRepetitionsZeros(
 | 
						|
          reps, tree_size, tree, extra_bits_data);
 | 
						|
    } else {
 | 
						|
      BrotliWriteHuffmanTreeRepetitions(previous_value,
 | 
						|
                                        value, reps, tree_size,
 | 
						|
                                        tree, extra_bits_data);
 | 
						|
      previous_value = value;
 | 
						|
    }
 | 
						|
    i += reps;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t BrotliReverseBits(size_t num_bits, uint16_t bits) {
 | 
						|
  static const size_t kLut[16] = {  /* Pre-reversed 4-bit values. */
 | 
						|
    0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E,
 | 
						|
    0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F
 | 
						|
  };
 | 
						|
  size_t retval = kLut[bits & 0x0F];
 | 
						|
  size_t i;
 | 
						|
  for (i = 4; i < num_bits; i += 4) {
 | 
						|
    retval <<= 4;
 | 
						|
    bits = (uint16_t)(bits >> 4);
 | 
						|
    retval |= kLut[bits & 0x0F];
 | 
						|
  }
 | 
						|
  retval >>= ((0 - num_bits) & 0x03);
 | 
						|
  return (uint16_t)retval;
 | 
						|
}
 | 
						|
 | 
						|
/* 0..15 are values for bits */
 | 
						|
#define MAX_HUFFMAN_BITS 16
 | 
						|
 | 
						|
void BrotliConvertBitDepthsToSymbols(const uint8_t* depth,
 | 
						|
                                     size_t len,
 | 
						|
                                     uint16_t* bits) {
 | 
						|
  /* In Brotli, all bit depths are [1..15]
 | 
						|
     0 bit depth means that the symbol does not exist. */
 | 
						|
  uint16_t bl_count[MAX_HUFFMAN_BITS] = { 0 };
 | 
						|
  uint16_t next_code[MAX_HUFFMAN_BITS];
 | 
						|
  size_t i;
 | 
						|
  int code = 0;
 | 
						|
  for (i = 0; i < len; ++i) {
 | 
						|
    ++bl_count[depth[i]];
 | 
						|
  }
 | 
						|
  bl_count[0] = 0;
 | 
						|
  next_code[0] = 0;
 | 
						|
  for (i = 1; i < MAX_HUFFMAN_BITS; ++i) {
 | 
						|
    code = (code + bl_count[i - 1]) << 1;
 | 
						|
    next_code[i] = (uint16_t)code;
 | 
						|
  }
 | 
						|
  for (i = 0; i < len; ++i) {
 | 
						|
    if (depth[i]) {
 | 
						|
      bits[i] = BrotliReverseBits(depth[i], next_code[depth[i]]++);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(__cplusplus) || defined(c_plusplus)
 | 
						|
}  /* extern "C" */
 | 
						|
#endif
 |