Contributed-under: TianoCore Contribution Agreement 1.0 Signed-off-by: Scott Duplichan <scott@notabs.org> Reviewed-by: Olivier Martin <olivier.martin@arm.com> git-svn-id: https://svn.code.sf.net/p/edk2/code/trunk/edk2@16340 6f19259b-4bc3-4df7-8a09-765794883524
		
			
				
	
	
		
			685 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			685 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /** @file
 | |
|   Implement EFI RealTimeClock runtime services via RTC Lib.
 | |
| 
 | |
|   Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.<BR>
 | |
|   Copyright (c) 2011 - 2014, ARM Ltd. All rights reserved.<BR>
 | |
| 
 | |
|   This program and the accompanying materials
 | |
|   are licensed and made available under the terms and conditions of the BSD License
 | |
|   which accompanies this distribution.  The full text of the license may be found at
 | |
|   http://opensource.org/licenses/bsd-license.php
 | |
| 
 | |
|   THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
 | |
|   WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
 | |
| 
 | |
| **/
 | |
| 
 | |
| #include <Uefi.h>
 | |
| #include <PiDxe.h>
 | |
| #include <Library/BaseLib.h>
 | |
| #include <Library/DebugLib.h>
 | |
| #include <Library/UefiLib.h>
 | |
| #include <Library/IoLib.h>
 | |
| #include <Library/RealTimeClockLib.h>
 | |
| #include <Library/MemoryAllocationLib.h>
 | |
| #include <Library/PcdLib.h>
 | |
| #include <Library/ArmPlatformSysConfigLib.h>
 | |
| #include <Library/DxeServicesTableLib.h>
 | |
| #include <Library/UefiBootServicesTableLib.h>
 | |
| #include <Library/UefiRuntimeServicesTableLib.h>
 | |
| #include <Library/UefiRuntimeLib.h>
 | |
| 
 | |
| #include <Protocol/RealTimeClock.h>
 | |
| 
 | |
| #include <Guid/GlobalVariable.h>
 | |
| #include <Guid/EventGroup.h>
 | |
| 
 | |
| #include <Drivers/PL031RealTimeClock.h>
 | |
| 
 | |
| #include <ArmPlatform.h>
 | |
| 
 | |
| STATIC CONST CHAR16           mTimeZoneVariableName[] = L"PL031RtcTimeZone";
 | |
| STATIC CONST CHAR16           mDaylightVariableName[] = L"PL031RtcDaylight";
 | |
| STATIC BOOLEAN                mPL031Initialized = FALSE;
 | |
| STATIC EFI_EVENT              mRtcVirtualAddrChangeEvent;
 | |
| STATIC UINTN                  mPL031RtcBase;
 | |
| STATIC EFI_RUNTIME_SERVICES   *mRT;
 | |
| 
 | |
| EFI_STATUS
 | |
| IdentifyPL031 (
 | |
|   VOID
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS    Status;
 | |
| 
 | |
|   // Check if this is a PrimeCell Peripheral
 | |
|   if (  (MmioRead8 (mPL031RtcBase + PL031_RTC_PCELL_ID0) != 0x0D)
 | |
|       || (MmioRead8 (mPL031RtcBase + PL031_RTC_PCELL_ID1) != 0xF0)
 | |
|       || (MmioRead8 (mPL031RtcBase + PL031_RTC_PCELL_ID2) != 0x05)
 | |
|       || (MmioRead8 (mPL031RtcBase + PL031_RTC_PCELL_ID3) != 0xB1)) {
 | |
|     Status = EFI_NOT_FOUND;
 | |
|     goto EXIT;
 | |
|   }
 | |
| 
 | |
|   // Check if this PrimeCell Peripheral is the PL031 Real Time Clock
 | |
|   if (  (MmioRead8 (mPL031RtcBase + PL031_RTC_PERIPH_ID0) != 0x31)
 | |
|       || (MmioRead8 (mPL031RtcBase + PL031_RTC_PERIPH_ID1) != 0x10)
 | |
|       || ((MmioRead8 (mPL031RtcBase + PL031_RTC_PERIPH_ID2) & 0xF) != 0x04)
 | |
|       || (MmioRead8 (mPL031RtcBase + PL031_RTC_PERIPH_ID3) != 0x00)) {
 | |
|     Status = EFI_NOT_FOUND;
 | |
|     goto EXIT;
 | |
|   }
 | |
| 
 | |
|   Status = EFI_SUCCESS;
 | |
| 
 | |
|   EXIT:
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| EFI_STATUS
 | |
| InitializePL031 (
 | |
|   VOID
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS    Status;
 | |
| 
 | |
|   // Prepare the hardware
 | |
|   Status = IdentifyPL031();
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     goto EXIT;
 | |
|   }
 | |
| 
 | |
|   // Ensure interrupts are masked. We do not want RTC interrupts in UEFI
 | |
|   if ((MmioRead32 (mPL031RtcBase + PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER) & PL031_SET_IRQ_MASK) != PL031_SET_IRQ_MASK) {
 | |
|     MmioOr32 (mPL031RtcBase + PL031_RTC_IMSC_IRQ_MASK_SET_CLEAR_REGISTER, PL031_SET_IRQ_MASK);
 | |
|   }
 | |
| 
 | |
|   // Clear any existing interrupts
 | |
|   if ((MmioRead32 (mPL031RtcBase + PL031_RTC_RIS_RAW_IRQ_STATUS_REGISTER) & PL031_IRQ_TRIGGERED) == PL031_IRQ_TRIGGERED) {
 | |
|     MmioOr32 (mPL031RtcBase + PL031_RTC_ICR_IRQ_CLEAR_REGISTER, PL031_CLEAR_IRQ);
 | |
|   }
 | |
| 
 | |
|   // Start the clock counter
 | |
|   if ((MmioRead32 (mPL031RtcBase + PL031_RTC_CR_CONTROL_REGISTER) & PL031_RTC_ENABLED) != PL031_RTC_ENABLED) {
 | |
|     MmioOr32 (mPL031RtcBase + PL031_RTC_CR_CONTROL_REGISTER, PL031_RTC_ENABLED);
 | |
|   }
 | |
| 
 | |
|   mPL031Initialized = TRUE;
 | |
| 
 | |
|   EXIT:
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Converts Epoch seconds (elapsed since 1970 JANUARY 01, 00:00:00 UTC) to EFI_TIME
 | |
|  **/
 | |
| VOID
 | |
| EpochToEfiTime (
 | |
|   IN  UINTN     EpochSeconds,
 | |
|   OUT EFI_TIME  *Time
 | |
|   )
 | |
| {
 | |
|   UINTN         a;
 | |
|   UINTN         b;
 | |
|   UINTN         c;
 | |
|   UINTN         d;
 | |
|   UINTN         g;
 | |
|   UINTN         j;
 | |
|   UINTN         m;
 | |
|   UINTN         y;
 | |
|   UINTN         da;
 | |
|   UINTN         db;
 | |
|   UINTN         dc;
 | |
|   UINTN         dg;
 | |
|   UINTN         hh;
 | |
|   UINTN         mm;
 | |
|   UINTN         ss;
 | |
|   UINTN         J;
 | |
| 
 | |
|   J  = (EpochSeconds / 86400) + 2440588;
 | |
|   j  = J + 32044;
 | |
|   g  = j / 146097;
 | |
|   dg = j % 146097;
 | |
|   c  = (((dg / 36524) + 1) * 3) / 4;
 | |
|   dc = dg - (c * 36524);
 | |
|   b  = dc / 1461;
 | |
|   db = dc % 1461;
 | |
|   a  = (((db / 365) + 1) * 3) / 4;
 | |
|   da = db - (a * 365);
 | |
|   y  = (g * 400) + (c * 100) + (b * 4) + a;
 | |
|   m  = (((da * 5) + 308) / 153) - 2;
 | |
|   d  = da - (((m + 4) * 153) / 5) + 122;
 | |
| 
 | |
|   Time->Year  = y - 4800 + ((m + 2) / 12);
 | |
|   Time->Month = ((m + 2) % 12) + 1;
 | |
|   Time->Day   = d + 1;
 | |
| 
 | |
|   ss = EpochSeconds % 60;
 | |
|   a  = (EpochSeconds - ss) / 60;
 | |
|   mm = a % 60;
 | |
|   b = (a - mm) / 60;
 | |
|   hh = b % 24;
 | |
| 
 | |
|   Time->Hour        = hh;
 | |
|   Time->Minute      = mm;
 | |
|   Time->Second      = ss;
 | |
|   Time->Nanosecond  = 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Converts EFI_TIME to Epoch seconds (elapsed since 1970 JANUARY 01, 00:00:00 UTC)
 | |
|  **/
 | |
| UINTN
 | |
| EfiTimeToEpoch (
 | |
|   IN  EFI_TIME  *Time
 | |
|   )
 | |
| {
 | |
|   UINTN a;
 | |
|   UINTN y;
 | |
|   UINTN m;
 | |
|   UINTN JulianDate;  // Absolute Julian Date representation of the supplied Time
 | |
|   UINTN EpochDays;   // Number of days elapsed since EPOCH_JULIAN_DAY
 | |
|   UINTN EpochSeconds;
 | |
| 
 | |
|   a = (14 - Time->Month) / 12 ;
 | |
|   y = Time->Year + 4800 - a;
 | |
|   m = Time->Month + (12*a) - 3;
 | |
| 
 | |
|   JulianDate = Time->Day + ((153*m + 2)/5) + (365*y) + (y/4) - (y/100) + (y/400) - 32045;
 | |
| 
 | |
|   ASSERT (JulianDate >= EPOCH_JULIAN_DATE);
 | |
|   EpochDays = JulianDate - EPOCH_JULIAN_DATE;
 | |
| 
 | |
|   EpochSeconds = (EpochDays * SEC_PER_DAY) + ((UINTN)Time->Hour * SEC_PER_HOUR) + (Time->Minute * SEC_PER_MIN) + Time->Second;
 | |
| 
 | |
|   return EpochSeconds;
 | |
| }
 | |
| 
 | |
| BOOLEAN
 | |
| IsLeapYear (
 | |
|   IN EFI_TIME   *Time
 | |
|   )
 | |
| {
 | |
|   if (Time->Year % 4 == 0) {
 | |
|     if (Time->Year % 100 == 0) {
 | |
|       if (Time->Year % 400 == 0) {
 | |
|         return TRUE;
 | |
|       } else {
 | |
|         return FALSE;
 | |
|       }
 | |
|     } else {
 | |
|       return TRUE;
 | |
|     }
 | |
|   } else {
 | |
|     return FALSE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| BOOLEAN
 | |
| DayValid (
 | |
|   IN  EFI_TIME  *Time
 | |
|   )
 | |
| {
 | |
|   STATIC CONST INTN DayOfMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
 | |
| 
 | |
|   if (Time->Day < 1 ||
 | |
|       Time->Day > DayOfMonth[Time->Month - 1] ||
 | |
|       (Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28))
 | |
|      ) {
 | |
|     return FALSE;
 | |
|   }
 | |
| 
 | |
|   return TRUE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Returns the current time and date information, and the time-keeping capabilities
 | |
|   of the hardware platform.
 | |
| 
 | |
|   @param  Time                   A pointer to storage to receive a snapshot of the current time.
 | |
|   @param  Capabilities           An optional pointer to a buffer to receive the real time clock
 | |
|                                  device's capabilities.
 | |
| 
 | |
|   @retval EFI_SUCCESS            The operation completed successfully.
 | |
|   @retval EFI_INVALID_PARAMETER  Time is NULL.
 | |
|   @retval EFI_DEVICE_ERROR       The time could not be retrieved due to hardware error.
 | |
|   @retval EFI_SECURITY_VIOLATION The time could not be retrieved due to an authentication failure.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| LibGetTime (
 | |
|   OUT EFI_TIME                *Time,
 | |
|   OUT EFI_TIME_CAPABILITIES   *Capabilities
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS  Status = EFI_SUCCESS;
 | |
|   UINT32      EpochSeconds;
 | |
|   INT16       TimeZone;
 | |
|   UINT8       Daylight;
 | |
|   UINTN       Size;
 | |
| 
 | |
|   // Initialize the hardware if not already done
 | |
|   if (!mPL031Initialized) {
 | |
|     Status = InitializePL031 ();
 | |
|     if (EFI_ERROR (Status)) {
 | |
|       goto EXIT;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Snapshot the time as early in the function call as possible
 | |
|   // On some platforms we may have access to a battery backed up hardware clock.
 | |
|   // If such RTC exists try to use it first.
 | |
|   Status = ArmPlatformSysConfigGet (SYS_CFG_RTC, &EpochSeconds);
 | |
|   if (Status == EFI_UNSUPPORTED) {
 | |
|     // Battery backed up hardware RTC does not exist, revert to PL031
 | |
|     EpochSeconds = MmioRead32 (mPL031RtcBase + PL031_RTC_DR_DATA_REGISTER);
 | |
|     Status = EFI_SUCCESS;
 | |
|   } else if (EFI_ERROR (Status)) {
 | |
|     // Battery backed up hardware RTC exists but could not be read due to error. Abort.
 | |
|     goto EXIT;
 | |
|   } else {
 | |
|     // Battery backed up hardware RTC exists and we read the time correctly from it.
 | |
|     // Now sync the PL031 to the new time.
 | |
|     MmioWrite32 (mPL031RtcBase + PL031_RTC_LR_LOAD_REGISTER, EpochSeconds);
 | |
|   }
 | |
| 
 | |
|   // Ensure Time is a valid pointer
 | |
|   if (Time == NULL) {
 | |
|     Status = EFI_INVALID_PARAMETER;
 | |
|     goto EXIT;
 | |
|   }
 | |
| 
 | |
|   // Get the current time zone information from non-volatile storage
 | |
|   Size = sizeof (TimeZone);
 | |
|   Status = mRT->GetVariable (
 | |
|                   (CHAR16 *)mTimeZoneVariableName,
 | |
|                   &gEfiCallerIdGuid,
 | |
|                   NULL,
 | |
|                   &Size,
 | |
|                   (VOID *)&TimeZone
 | |
|                   );
 | |
| 
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     ASSERT(Status != EFI_INVALID_PARAMETER);
 | |
|     ASSERT(Status != EFI_BUFFER_TOO_SMALL);
 | |
| 
 | |
|     if (Status != EFI_NOT_FOUND)
 | |
|       goto EXIT;
 | |
| 
 | |
|     // The time zone variable does not exist in non-volatile storage, so create it.
 | |
|     Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE;
 | |
|     // Store it
 | |
|     Status = mRT->SetVariable (
 | |
|                     (CHAR16 *)mTimeZoneVariableName,
 | |
|                     &gEfiCallerIdGuid,
 | |
|                     EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
 | |
|                     Size,
 | |
|                     (VOID *)&(Time->TimeZone)
 | |
|                     );
 | |
|     if (EFI_ERROR (Status)) {
 | |
|       DEBUG ((
 | |
|         EFI_D_ERROR,
 | |
|         "LibGetTime: Failed to save %s variable to non-volatile storage, Status = %r\n",
 | |
|         mTimeZoneVariableName,
 | |
|         Status
 | |
|         ));
 | |
|       goto EXIT;
 | |
|     }
 | |
|   } else {
 | |
|     // Got the time zone
 | |
|     Time->TimeZone = TimeZone;
 | |
| 
 | |
|     // Check TimeZone bounds:   -1440 to 1440 or 2047
 | |
|     if (((Time->TimeZone < -1440) || (Time->TimeZone > 1440))
 | |
|         && (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE)) {
 | |
|       Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE;
 | |
|     }
 | |
| 
 | |
|     // Adjust for the correct time zone
 | |
|     if (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) {
 | |
|       EpochSeconds += Time->TimeZone * SEC_PER_MIN;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get the current daylight information from non-volatile storage
 | |
|   Size = sizeof (Daylight);
 | |
|   Status = mRT->GetVariable (
 | |
|                   (CHAR16 *)mDaylightVariableName,
 | |
|                   &gEfiCallerIdGuid,
 | |
|                   NULL,
 | |
|                   &Size,
 | |
|                   (VOID *)&Daylight
 | |
|                   );
 | |
| 
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     ASSERT(Status != EFI_INVALID_PARAMETER);
 | |
|     ASSERT(Status != EFI_BUFFER_TOO_SMALL);
 | |
| 
 | |
|     if (Status != EFI_NOT_FOUND)
 | |
|       goto EXIT;
 | |
| 
 | |
|     // The daylight variable does not exist in non-volatile storage, so create it.
 | |
|     Time->Daylight = 0;
 | |
|     // Store it
 | |
|     Status = mRT->SetVariable (
 | |
|                     (CHAR16 *)mDaylightVariableName,
 | |
|                     &gEfiCallerIdGuid,
 | |
|                     EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
 | |
|                     Size,
 | |
|                     (VOID *)&(Time->Daylight)
 | |
|                     );
 | |
|     if (EFI_ERROR (Status)) {
 | |
|       DEBUG ((
 | |
|         EFI_D_ERROR,
 | |
|         "LibGetTime: Failed to save %s variable to non-volatile storage, Status = %r\n",
 | |
|         mDaylightVariableName,
 | |
|         Status
 | |
|         ));
 | |
|       goto EXIT;
 | |
|     }
 | |
|   } else {
 | |
|     // Got the daylight information
 | |
|     Time->Daylight = Daylight;
 | |
| 
 | |
|     // Adjust for the correct period
 | |
|     if ((Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT) {
 | |
|       // Convert to adjusted time, i.e. spring forwards one hour
 | |
|       EpochSeconds += SEC_PER_HOUR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Convert from internal 32-bit time to UEFI time
 | |
|   EpochToEfiTime (EpochSeconds, Time);
 | |
| 
 | |
|   // Update the Capabilities info
 | |
|   if (Capabilities != NULL) {
 | |
|     // PL031 runs at frequency 1Hz
 | |
|     Capabilities->Resolution  = PL031_COUNTS_PER_SECOND;
 | |
|     // Accuracy in ppm multiplied by 1,000,000, e.g. for 50ppm set 50,000,000
 | |
|     Capabilities->Accuracy    = (UINT32)PcdGet32 (PcdPL031RtcPpmAccuracy);
 | |
|     // FALSE: Setting the time does not clear the values below the resolution level
 | |
|     Capabilities->SetsToZero  = FALSE;
 | |
|   }
 | |
| 
 | |
|   EXIT:
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   Sets the current local time and date information.
 | |
| 
 | |
|   @param  Time                  A pointer to the current time.
 | |
| 
 | |
|   @retval EFI_SUCCESS           The operation completed successfully.
 | |
|   @retval EFI_INVALID_PARAMETER A time field is out of range.
 | |
|   @retval EFI_DEVICE_ERROR      The time could not be set due due to hardware error.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| LibSetTime (
 | |
|   IN  EFI_TIME                *Time
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS  Status;
 | |
|   UINTN       EpochSeconds;
 | |
| 
 | |
|   // Check the input parameters are within the range specified by UEFI
 | |
|   if ((Time->Year   < 1900) ||
 | |
|        (Time->Year   > 9999) ||
 | |
|        (Time->Month  < 1   ) ||
 | |
|        (Time->Month  > 12  ) ||
 | |
|        (!DayValid (Time)    ) ||
 | |
|        (Time->Hour   > 23  ) ||
 | |
|        (Time->Minute > 59  ) ||
 | |
|        (Time->Second > 59  ) ||
 | |
|        (Time->Nanosecond > 999999999) ||
 | |
|        (!((Time->TimeZone == EFI_UNSPECIFIED_TIMEZONE) || ((Time->TimeZone >= -1440) && (Time->TimeZone <= 1440)))) ||
 | |
|        (Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT)))
 | |
|     ) {
 | |
|     Status = EFI_INVALID_PARAMETER;
 | |
|     goto EXIT;
 | |
|   }
 | |
| 
 | |
|   // Because the PL031 is a 32-bit counter counting seconds,
 | |
|   // the maximum time span is just over 136 years.
 | |
|   // Time is stored in Unix Epoch format, so it starts in 1970,
 | |
|   // Therefore it can not exceed the year 2106.
 | |
|   if ((Time->Year < 1970) || (Time->Year >= 2106)) {
 | |
|     Status = EFI_UNSUPPORTED;
 | |
|     goto EXIT;
 | |
|   }
 | |
| 
 | |
|   // Initialize the hardware if not already done
 | |
|   if (!mPL031Initialized) {
 | |
|     Status = InitializePL031 ();
 | |
|     if (EFI_ERROR (Status)) {
 | |
|       goto EXIT;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   EpochSeconds = EfiTimeToEpoch (Time);
 | |
| 
 | |
|   // Adjust for the correct time zone, i.e. convert to UTC time zone
 | |
|   if (Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) {
 | |
|     EpochSeconds -= Time->TimeZone * SEC_PER_MIN;
 | |
|   }
 | |
| 
 | |
|   // TODO: Automatic Daylight activation
 | |
| 
 | |
|   // Adjust for the correct period
 | |
|   if ((Time->Daylight & EFI_TIME_IN_DAYLIGHT) == EFI_TIME_IN_DAYLIGHT) {
 | |
|     // Convert to un-adjusted time, i.e. fall back one hour
 | |
|     EpochSeconds -= SEC_PER_HOUR;
 | |
|   }
 | |
| 
 | |
|   // On some platforms we may have access to a battery backed up hardware clock.
 | |
|   //
 | |
|   // If such RTC exists then it must be updated first, before the PL031,
 | |
|   // to minimise any time drift. This is important because the battery backed-up
 | |
|   // RTC maintains the master time for the platform across reboots.
 | |
|   //
 | |
|   // If such RTC does not exist then the following function returns UNSUPPORTED.
 | |
|   Status = ArmPlatformSysConfigSet (SYS_CFG_RTC, EpochSeconds);
 | |
|   if ((EFI_ERROR (Status)) && (Status != EFI_UNSUPPORTED)){
 | |
|     // Any status message except SUCCESS and UNSUPPORTED indicates a hardware failure.
 | |
|     goto EXIT;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // Set the PL031
 | |
|   MmioWrite32 (mPL031RtcBase + PL031_RTC_LR_LOAD_REGISTER, EpochSeconds);
 | |
| 
 | |
|   // The accesses to Variable Services can be very slow, because we may be writing to Flash.
 | |
|   // Do this after having set the RTC.
 | |
| 
 | |
|   // Save the current time zone information into non-volatile storage
 | |
|   Status = mRT->SetVariable (
 | |
|                   (CHAR16 *)mTimeZoneVariableName,
 | |
|                   &gEfiCallerIdGuid,
 | |
|                   EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
 | |
|                   sizeof (Time->TimeZone),
 | |
|                   (VOID *)&(Time->TimeZone)
 | |
|                   );
 | |
|   if (EFI_ERROR (Status)) {
 | |
|       DEBUG ((
 | |
|         EFI_D_ERROR,
 | |
|         "LibSetTime: Failed to save %s variable to non-volatile storage, Status = %r\n",
 | |
|         mTimeZoneVariableName,
 | |
|         Status
 | |
|         ));
 | |
|     goto EXIT;
 | |
|   }
 | |
| 
 | |
|   // Save the current daylight information into non-volatile storage
 | |
|   Status = mRT->SetVariable (
 | |
|                   (CHAR16 *)mDaylightVariableName,
 | |
|                   &gEfiCallerIdGuid,
 | |
|                   EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
 | |
|                   sizeof(Time->Daylight),
 | |
|                   (VOID *)&(Time->Daylight)
 | |
|                   );
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     DEBUG ((
 | |
|       EFI_D_ERROR,
 | |
|       "LibSetTime: Failed to save %s variable to non-volatile storage, Status = %r\n",
 | |
|       mDaylightVariableName,
 | |
|       Status
 | |
|       ));
 | |
|     goto EXIT;
 | |
|   }
 | |
| 
 | |
|   EXIT:
 | |
|   return Status;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   Returns the current wakeup alarm clock setting.
 | |
| 
 | |
|   @param  Enabled               Indicates if the alarm is currently enabled or disabled.
 | |
|   @param  Pending               Indicates if the alarm signal is pending and requires acknowledgement.
 | |
|   @param  Time                  The current alarm setting.
 | |
| 
 | |
|   @retval EFI_SUCCESS           The alarm settings were returned.
 | |
|   @retval EFI_INVALID_PARAMETER Any parameter is NULL.
 | |
|   @retval EFI_DEVICE_ERROR      The wakeup time could not be retrieved due to a hardware error.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| LibGetWakeupTime (
 | |
|   OUT BOOLEAN     *Enabled,
 | |
|   OUT BOOLEAN     *Pending,
 | |
|   OUT EFI_TIME    *Time
 | |
|   )
 | |
| {
 | |
|   // Not a required feature
 | |
|   return EFI_UNSUPPORTED;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|   Sets the system wakeup alarm clock time.
 | |
| 
 | |
|   @param  Enabled               Enable or disable the wakeup alarm.
 | |
|   @param  Time                  If Enable is TRUE, the time to set the wakeup alarm for.
 | |
| 
 | |
|   @retval EFI_SUCCESS           If Enable is TRUE, then the wakeup alarm was enabled. If
 | |
|                                 Enable is FALSE, then the wakeup alarm was disabled.
 | |
|   @retval EFI_INVALID_PARAMETER A time field is out of range.
 | |
|   @retval EFI_DEVICE_ERROR      The wakeup time could not be set due to a hardware error.
 | |
|   @retval EFI_UNSUPPORTED       A wakeup timer is not supported on this platform.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| LibSetWakeupTime (
 | |
|   IN BOOLEAN      Enabled,
 | |
|   OUT EFI_TIME    *Time
 | |
|   )
 | |
| {
 | |
|   // Not a required feature
 | |
|   return EFI_UNSUPPORTED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   Fixup internal data so that EFI can be call in virtual mode.
 | |
|   Call the passed in Child Notify event and convert any pointers in
 | |
|   lib to virtual mode.
 | |
| 
 | |
|   @param[in]    Event   The Event that is being processed
 | |
|   @param[in]    Context Event Context
 | |
| **/
 | |
| VOID
 | |
| EFIAPI
 | |
| LibRtcVirtualNotifyEvent (
 | |
|   IN EFI_EVENT        Event,
 | |
|   IN VOID             *Context
 | |
|   )
 | |
| {
 | |
|   //
 | |
|   // Only needed if you are going to support the OS calling RTC functions in virtual mode.
 | |
|   // You will need to call EfiConvertPointer (). To convert any stored physical addresses
 | |
|   // to virtual address. After the OS transitions to calling in virtual mode, all future
 | |
|   // runtime calls will be made in virtual mode.
 | |
|   //
 | |
|   EfiConvertPointer (0x0, (VOID**)&mPL031RtcBase);
 | |
|   EfiConvertPointer (0x0, (VOID**)&mRT);
 | |
|   return;
 | |
| }
 | |
| 
 | |
| /**
 | |
|   This is the declaration of an EFI image entry point. This can be the entry point to an application
 | |
|   written to this specification, an EFI boot service driver, or an EFI runtime driver.
 | |
| 
 | |
|   @param  ImageHandle           Handle that identifies the loaded image.
 | |
|   @param  SystemTable           System Table for this image.
 | |
| 
 | |
|   @retval EFI_SUCCESS           The operation completed successfully.
 | |
| 
 | |
| **/
 | |
| EFI_STATUS
 | |
| EFIAPI
 | |
| LibRtcInitialize (
 | |
|   IN EFI_HANDLE                            ImageHandle,
 | |
|   IN EFI_SYSTEM_TABLE                      *SystemTable
 | |
|   )
 | |
| {
 | |
|   EFI_STATUS    Status;
 | |
|   EFI_HANDLE    Handle;
 | |
| 
 | |
|   // Initialize RTC Base Address
 | |
|   mPL031RtcBase = PcdGet32 (PcdPL031RtcBase);
 | |
| 
 | |
|   // Declare the controller as EFI_MEMORY_RUNTIME
 | |
|   Status = gDS->AddMemorySpace (
 | |
|                   EfiGcdMemoryTypeMemoryMappedIo,
 | |
|                   mPL031RtcBase, SIZE_4KB,
 | |
|                   EFI_MEMORY_UC | EFI_MEMORY_RUNTIME
 | |
|                   );
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     return Status;
 | |
|   }
 | |
| 
 | |
|   Status = gDS->SetMemorySpaceAttributes (mPL031RtcBase, SIZE_4KB, EFI_MEMORY_UC | EFI_MEMORY_RUNTIME);
 | |
|   if (EFI_ERROR (Status)) {
 | |
|     return Status;
 | |
|   }
 | |
| 
 | |
|   // Setup the setters and getters
 | |
|   gRT->GetTime       = LibGetTime;
 | |
|   gRT->SetTime       = LibSetTime;
 | |
|   gRT->GetWakeupTime = LibGetWakeupTime;
 | |
|   gRT->SetWakeupTime = LibSetWakeupTime;
 | |
| 
 | |
|   mRT = gRT;
 | |
| 
 | |
|   // Install the protocol
 | |
|   Handle = NULL;
 | |
|   Status = gBS->InstallMultipleProtocolInterfaces (
 | |
|                   &Handle,
 | |
|                   &gEfiRealTimeClockArchProtocolGuid,  NULL,
 | |
|                   NULL
 | |
|                  );
 | |
|   ASSERT_EFI_ERROR (Status);
 | |
| 
 | |
|   //
 | |
|   // Register for the virtual address change event
 | |
|   //
 | |
|   Status = gBS->CreateEventEx (
 | |
|                   EVT_NOTIFY_SIGNAL,
 | |
|                   TPL_NOTIFY,
 | |
|                   LibRtcVirtualNotifyEvent,
 | |
|                   NULL,
 | |
|                   &gEfiEventVirtualAddressChangeGuid,
 | |
|                   &mRtcVirtualAddrChangeEvent
 | |
|                   );
 | |
|   ASSERT_EFI_ERROR (Status);
 | |
| 
 | |
|   return Status;
 | |
| }
 |