https://bugzilla.tianocore.org/show_bug.cgi?id=1201 Update Brotli to the latest version 1.0.6 https://github.com/google/brotli Verify VS2017, GCC5 build. Verify Decompression boot functionality. Contributed-under: TianoCore Contribution Agreement 1.1 Signed-off-by: Liming Gao <liming.gao@intel.com> Reviewed-by: Star Zeng <star.zeng@intel.com>
		
			
				
	
	
		
			502 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			502 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright 2010 Google Inc. All Rights Reserved.
 | |
| 
 | |
|    Distributed under MIT license.
 | |
|    See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
 | |
| */
 | |
| 
 | |
| /* Entropy encoding (Huffman) utilities. */
 | |
| 
 | |
| #include "./entropy_encode.h"
 | |
| 
 | |
| #include <string.h>  /* memset */
 | |
| 
 | |
| #include "../common/constants.h"
 | |
| #include "../common/platform.h"
 | |
| #include <brotli/types.h>
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| BROTLI_BOOL BrotliSetDepth(
 | |
|     int p0, HuffmanTree* pool, uint8_t* depth, int max_depth) {
 | |
|   int stack[16];
 | |
|   int level = 0;
 | |
|   int p = p0;
 | |
|   BROTLI_DCHECK(max_depth <= 15);
 | |
|   stack[0] = -1;
 | |
|   while (BROTLI_TRUE) {
 | |
|     if (pool[p].index_left_ >= 0) {
 | |
|       level++;
 | |
|       if (level > max_depth) return BROTLI_FALSE;
 | |
|       stack[level] = pool[p].index_right_or_value_;
 | |
|       p = pool[p].index_left_;
 | |
|       continue;
 | |
|     } else {
 | |
|       depth[pool[p].index_right_or_value_] = (uint8_t)level;
 | |
|     }
 | |
|     while (level >= 0 && stack[level] == -1) level--;
 | |
|     if (level < 0) return BROTLI_TRUE;
 | |
|     p = stack[level];
 | |
|     stack[level] = -1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /* Sort the root nodes, least popular first. */
 | |
| static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree(
 | |
|     const HuffmanTree* v0, const HuffmanTree* v1) {
 | |
|   if (v0->total_count_ != v1->total_count_) {
 | |
|     return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_);
 | |
|   }
 | |
|   return TO_BROTLI_BOOL(v0->index_right_or_value_ > v1->index_right_or_value_);
 | |
| }
 | |
| 
 | |
| /* This function will create a Huffman tree.
 | |
| 
 | |
|    The catch here is that the tree cannot be arbitrarily deep.
 | |
|    Brotli specifies a maximum depth of 15 bits for "code trees"
 | |
|    and 7 bits for "code length code trees."
 | |
| 
 | |
|    count_limit is the value that is to be faked as the minimum value
 | |
|    and this minimum value is raised until the tree matches the
 | |
|    maximum length requirement.
 | |
| 
 | |
|    This algorithm is not of excellent performance for very long data blocks,
 | |
|    especially when population counts are longer than 2**tree_limit, but
 | |
|    we are not planning to use this with extremely long blocks.
 | |
| 
 | |
|    See http://en.wikipedia.org/wiki/Huffman_coding */
 | |
| void BrotliCreateHuffmanTree(const uint32_t* data,
 | |
|                              const size_t length,
 | |
|                              const int tree_limit,
 | |
|                              HuffmanTree* tree,
 | |
|                              uint8_t* depth) {
 | |
|   uint32_t count_limit;
 | |
|   HuffmanTree sentinel;
 | |
|   InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1);
 | |
|   /* For block sizes below 64 kB, we never need to do a second iteration
 | |
|      of this loop. Probably all of our block sizes will be smaller than
 | |
|      that, so this loop is mostly of academic interest. If we actually
 | |
|      would need this, we would be better off with the Katajainen algorithm. */
 | |
|   for (count_limit = 1; ; count_limit *= 2) {
 | |
|     size_t n = 0;
 | |
|     size_t i;
 | |
|     size_t j;
 | |
|     size_t k;
 | |
|     for (i = length; i != 0;) {
 | |
|       --i;
 | |
|       if (data[i]) {
 | |
|         const uint32_t count = BROTLI_MAX(uint32_t, data[i], count_limit);
 | |
|         InitHuffmanTree(&tree[n++], count, -1, (int16_t)i);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (n == 1) {
 | |
|       depth[tree[0].index_right_or_value_] = 1;  /* Only one element. */
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     SortHuffmanTreeItems(tree, n, SortHuffmanTree);
 | |
| 
 | |
|     /* The nodes are:
 | |
|        [0, n): the sorted leaf nodes that we start with.
 | |
|        [n]: we add a sentinel here.
 | |
|        [n + 1, 2n): new parent nodes are added here, starting from
 | |
|                     (n+1). These are naturally in ascending order.
 | |
|        [2n]: we add a sentinel at the end as well.
 | |
|        There will be (2n+1) elements at the end. */
 | |
|     tree[n] = sentinel;
 | |
|     tree[n + 1] = sentinel;
 | |
| 
 | |
|     i = 0;      /* Points to the next leaf node. */
 | |
|     j = n + 1;  /* Points to the next non-leaf node. */
 | |
|     for (k = n - 1; k != 0; --k) {
 | |
|       size_t left, right;
 | |
|       if (tree[i].total_count_ <= tree[j].total_count_) {
 | |
|         left = i;
 | |
|         ++i;
 | |
|       } else {
 | |
|         left = j;
 | |
|         ++j;
 | |
|       }
 | |
|       if (tree[i].total_count_ <= tree[j].total_count_) {
 | |
|         right = i;
 | |
|         ++i;
 | |
|       } else {
 | |
|         right = j;
 | |
|         ++j;
 | |
|       }
 | |
| 
 | |
|       {
 | |
|         /* The sentinel node becomes the parent node. */
 | |
|         size_t j_end = 2 * n - k;
 | |
|         tree[j_end].total_count_ =
 | |
|             tree[left].total_count_ + tree[right].total_count_;
 | |
|         tree[j_end].index_left_ = (int16_t)left;
 | |
|         tree[j_end].index_right_or_value_ = (int16_t)right;
 | |
| 
 | |
|         /* Add back the last sentinel node. */
 | |
|         tree[j_end + 1] = sentinel;
 | |
|       }
 | |
|     }
 | |
|     if (BrotliSetDepth((int)(2 * n - 1), &tree[0], depth, tree_limit)) {
 | |
|       /* We need to pack the Huffman tree in tree_limit bits. If this was not
 | |
|          successful, add fake entities to the lowest values and retry. */
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void Reverse(uint8_t* v, size_t start, size_t end) {
 | |
|   --end;
 | |
|   while (start < end) {
 | |
|     uint8_t tmp = v[start];
 | |
|     v[start] = v[end];
 | |
|     v[end] = tmp;
 | |
|     ++start;
 | |
|     --end;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void BrotliWriteHuffmanTreeRepetitions(
 | |
|     const uint8_t previous_value,
 | |
|     const uint8_t value,
 | |
|     size_t repetitions,
 | |
|     size_t* tree_size,
 | |
|     uint8_t* tree,
 | |
|     uint8_t* extra_bits_data) {
 | |
|   BROTLI_DCHECK(repetitions > 0);
 | |
|   if (previous_value != value) {
 | |
|     tree[*tree_size] = value;
 | |
|     extra_bits_data[*tree_size] = 0;
 | |
|     ++(*tree_size);
 | |
|     --repetitions;
 | |
|   }
 | |
|   if (repetitions == 7) {
 | |
|     tree[*tree_size] = value;
 | |
|     extra_bits_data[*tree_size] = 0;
 | |
|     ++(*tree_size);
 | |
|     --repetitions;
 | |
|   }
 | |
|   if (repetitions < 3) {
 | |
|     size_t i;
 | |
|     for (i = 0; i < repetitions; ++i) {
 | |
|       tree[*tree_size] = value;
 | |
|       extra_bits_data[*tree_size] = 0;
 | |
|       ++(*tree_size);
 | |
|     }
 | |
|   } else {
 | |
|     size_t start = *tree_size;
 | |
|     repetitions -= 3;
 | |
|     while (BROTLI_TRUE) {
 | |
|       tree[*tree_size] = BROTLI_REPEAT_PREVIOUS_CODE_LENGTH;
 | |
|       extra_bits_data[*tree_size] = repetitions & 0x3;
 | |
|       ++(*tree_size);
 | |
|       repetitions >>= 2;
 | |
|       if (repetitions == 0) {
 | |
|         break;
 | |
|       }
 | |
|       --repetitions;
 | |
|     }
 | |
|     Reverse(tree, start, *tree_size);
 | |
|     Reverse(extra_bits_data, start, *tree_size);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void BrotliWriteHuffmanTreeRepetitionsZeros(
 | |
|     size_t repetitions,
 | |
|     size_t* tree_size,
 | |
|     uint8_t* tree,
 | |
|     uint8_t* extra_bits_data) {
 | |
|   if (repetitions == 11) {
 | |
|     tree[*tree_size] = 0;
 | |
|     extra_bits_data[*tree_size] = 0;
 | |
|     ++(*tree_size);
 | |
|     --repetitions;
 | |
|   }
 | |
|   if (repetitions < 3) {
 | |
|     size_t i;
 | |
|     for (i = 0; i < repetitions; ++i) {
 | |
|       tree[*tree_size] = 0;
 | |
|       extra_bits_data[*tree_size] = 0;
 | |
|       ++(*tree_size);
 | |
|     }
 | |
|   } else {
 | |
|     size_t start = *tree_size;
 | |
|     repetitions -= 3;
 | |
|     while (BROTLI_TRUE) {
 | |
|       tree[*tree_size] = BROTLI_REPEAT_ZERO_CODE_LENGTH;
 | |
|       extra_bits_data[*tree_size] = repetitions & 0x7;
 | |
|       ++(*tree_size);
 | |
|       repetitions >>= 3;
 | |
|       if (repetitions == 0) {
 | |
|         break;
 | |
|       }
 | |
|       --repetitions;
 | |
|     }
 | |
|     Reverse(tree, start, *tree_size);
 | |
|     Reverse(extra_bits_data, start, *tree_size);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void BrotliOptimizeHuffmanCountsForRle(size_t length, uint32_t* counts,
 | |
|                                        uint8_t* good_for_rle) {
 | |
|   size_t nonzero_count = 0;
 | |
|   size_t stride;
 | |
|   size_t limit;
 | |
|   size_t sum;
 | |
|   const size_t streak_limit = 1240;
 | |
|   /* Let's make the Huffman code more compatible with RLE encoding. */
 | |
|   size_t i;
 | |
|   for (i = 0; i < length; i++) {
 | |
|     if (counts[i]) {
 | |
|       ++nonzero_count;
 | |
|     }
 | |
|   }
 | |
|   if (nonzero_count < 16) {
 | |
|     return;
 | |
|   }
 | |
|   while (length != 0 && counts[length - 1] == 0) {
 | |
|     --length;
 | |
|   }
 | |
|   if (length == 0) {
 | |
|     return;  /* All zeros. */
 | |
|   }
 | |
|   /* Now counts[0..length - 1] does not have trailing zeros. */
 | |
|   {
 | |
|     size_t nonzeros = 0;
 | |
|     uint32_t smallest_nonzero = 1 << 30;
 | |
|     for (i = 0; i < length; ++i) {
 | |
|       if (counts[i] != 0) {
 | |
|         ++nonzeros;
 | |
|         if (smallest_nonzero > counts[i]) {
 | |
|           smallest_nonzero = counts[i];
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (nonzeros < 5) {
 | |
|       /* Small histogram will model it well. */
 | |
|       return;
 | |
|     }
 | |
|     if (smallest_nonzero < 4) {
 | |
|       size_t zeros = length - nonzeros;
 | |
|       if (zeros < 6) {
 | |
|         for (i = 1; i < length - 1; ++i) {
 | |
|           if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
 | |
|             counts[i] = 1;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (nonzeros < 28) {
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
|   /* 2) Let's mark all population counts that already can be encoded
 | |
|      with an RLE code. */
 | |
|   memset(good_for_rle, 0, length);
 | |
|   {
 | |
|     /* Let's not spoil any of the existing good RLE codes.
 | |
|        Mark any seq of 0's that is longer as 5 as a good_for_rle.
 | |
|        Mark any seq of non-0's that is longer as 7 as a good_for_rle. */
 | |
|     uint32_t symbol = counts[0];
 | |
|     size_t step = 0;
 | |
|     for (i = 0; i <= length; ++i) {
 | |
|       if (i == length || counts[i] != symbol) {
 | |
|         if ((symbol == 0 && step >= 5) ||
 | |
|             (symbol != 0 && step >= 7)) {
 | |
|           size_t k;
 | |
|           for (k = 0; k < step; ++k) {
 | |
|             good_for_rle[i - k - 1] = 1;
 | |
|           }
 | |
|         }
 | |
|         step = 1;
 | |
|         if (i != length) {
 | |
|           symbol = counts[i];
 | |
|         }
 | |
|       } else {
 | |
|         ++step;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   /* 3) Let's replace those population counts that lead to more RLE codes.
 | |
|      Math here is in 24.8 fixed point representation. */
 | |
|   stride = 0;
 | |
|   limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
 | |
|   sum = 0;
 | |
|   for (i = 0; i <= length; ++i) {
 | |
|     if (i == length || good_for_rle[i] ||
 | |
|         (i != 0 && good_for_rle[i - 1]) ||
 | |
|         (256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) {
 | |
|       if (stride >= 4 || (stride >= 3 && sum == 0)) {
 | |
|         size_t k;
 | |
|         /* The stride must end, collapse what we have, if we have enough (4). */
 | |
|         size_t count = (sum + stride / 2) / stride;
 | |
|         if (count == 0) {
 | |
|           count = 1;
 | |
|         }
 | |
|         if (sum == 0) {
 | |
|           /* Don't make an all zeros stride to be upgraded to ones. */
 | |
|           count = 0;
 | |
|         }
 | |
|         for (k = 0; k < stride; ++k) {
 | |
|           /* We don't want to change value at counts[i],
 | |
|              that is already belonging to the next stride. Thus - 1. */
 | |
|           counts[i - k - 1] = (uint32_t)count;
 | |
|         }
 | |
|       }
 | |
|       stride = 0;
 | |
|       sum = 0;
 | |
|       if (i < length - 2) {
 | |
|         /* All interesting strides have a count of at least 4, */
 | |
|         /* at least when non-zeros. */
 | |
|         limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
 | |
|       } else if (i < length) {
 | |
|         limit = 256 * counts[i];
 | |
|       } else {
 | |
|         limit = 0;
 | |
|       }
 | |
|     }
 | |
|     ++stride;
 | |
|     if (i != length) {
 | |
|       sum += counts[i];
 | |
|       if (stride >= 4) {
 | |
|         limit = (256 * sum + stride / 2) / stride;
 | |
|       }
 | |
|       if (stride == 4) {
 | |
|         limit += 120;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void DecideOverRleUse(const uint8_t* depth, const size_t length,
 | |
|                              BROTLI_BOOL* use_rle_for_non_zero,
 | |
|                              BROTLI_BOOL* use_rle_for_zero) {
 | |
|   size_t total_reps_zero = 0;
 | |
|   size_t total_reps_non_zero = 0;
 | |
|   size_t count_reps_zero = 1;
 | |
|   size_t count_reps_non_zero = 1;
 | |
|   size_t i;
 | |
|   for (i = 0; i < length;) {
 | |
|     const uint8_t value = depth[i];
 | |
|     size_t reps = 1;
 | |
|     size_t k;
 | |
|     for (k = i + 1; k < length && depth[k] == value; ++k) {
 | |
|       ++reps;
 | |
|     }
 | |
|     if (reps >= 3 && value == 0) {
 | |
|       total_reps_zero += reps;
 | |
|       ++count_reps_zero;
 | |
|     }
 | |
|     if (reps >= 4 && value != 0) {
 | |
|       total_reps_non_zero += reps;
 | |
|       ++count_reps_non_zero;
 | |
|     }
 | |
|     i += reps;
 | |
|   }
 | |
|   *use_rle_for_non_zero =
 | |
|       TO_BROTLI_BOOL(total_reps_non_zero > count_reps_non_zero * 2);
 | |
|   *use_rle_for_zero = TO_BROTLI_BOOL(total_reps_zero > count_reps_zero * 2);
 | |
| }
 | |
| 
 | |
| void BrotliWriteHuffmanTree(const uint8_t* depth,
 | |
|                             size_t length,
 | |
|                             size_t* tree_size,
 | |
|                             uint8_t* tree,
 | |
|                             uint8_t* extra_bits_data) {
 | |
|   uint8_t previous_value = BROTLI_INITIAL_REPEATED_CODE_LENGTH;
 | |
|   size_t i;
 | |
|   BROTLI_BOOL use_rle_for_non_zero = BROTLI_FALSE;
 | |
|   BROTLI_BOOL use_rle_for_zero = BROTLI_FALSE;
 | |
| 
 | |
|   /* Throw away trailing zeros. */
 | |
|   size_t new_length = length;
 | |
|   for (i = 0; i < length; ++i) {
 | |
|     if (depth[length - i - 1] == 0) {
 | |
|       --new_length;
 | |
|     } else {
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* First gather statistics on if it is a good idea to do RLE. */
 | |
|   if (length > 50) {
 | |
|     /* Find RLE coding for longer codes.
 | |
|        Shorter codes seem not to benefit from RLE. */
 | |
|     DecideOverRleUse(depth, new_length,
 | |
|                      &use_rle_for_non_zero, &use_rle_for_zero);
 | |
|   }
 | |
| 
 | |
|   /* Actual RLE coding. */
 | |
|   for (i = 0; i < new_length;) {
 | |
|     const uint8_t value = depth[i];
 | |
|     size_t reps = 1;
 | |
|     if ((value != 0 && use_rle_for_non_zero) ||
 | |
|         (value == 0 && use_rle_for_zero)) {
 | |
|       size_t k;
 | |
|       for (k = i + 1; k < new_length && depth[k] == value; ++k) {
 | |
|         ++reps;
 | |
|       }
 | |
|     }
 | |
|     if (value == 0) {
 | |
|       BrotliWriteHuffmanTreeRepetitionsZeros(
 | |
|           reps, tree_size, tree, extra_bits_data);
 | |
|     } else {
 | |
|       BrotliWriteHuffmanTreeRepetitions(previous_value,
 | |
|                                         value, reps, tree_size,
 | |
|                                         tree, extra_bits_data);
 | |
|       previous_value = value;
 | |
|     }
 | |
|     i += reps;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static uint16_t BrotliReverseBits(size_t num_bits, uint16_t bits) {
 | |
|   static const size_t kLut[16] = {  /* Pre-reversed 4-bit values. */
 | |
|     0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E,
 | |
|     0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F
 | |
|   };
 | |
|   size_t retval = kLut[bits & 0x0F];
 | |
|   size_t i;
 | |
|   for (i = 4; i < num_bits; i += 4) {
 | |
|     retval <<= 4;
 | |
|     bits = (uint16_t)(bits >> 4);
 | |
|     retval |= kLut[bits & 0x0F];
 | |
|   }
 | |
|   retval >>= ((0 - num_bits) & 0x03);
 | |
|   return (uint16_t)retval;
 | |
| }
 | |
| 
 | |
| /* 0..15 are values for bits */
 | |
| #define MAX_HUFFMAN_BITS 16
 | |
| 
 | |
| void BrotliConvertBitDepthsToSymbols(const uint8_t* depth,
 | |
|                                      size_t len,
 | |
|                                      uint16_t* bits) {
 | |
|   /* In Brotli, all bit depths are [1..15]
 | |
|      0 bit depth means that the symbol does not exist. */
 | |
|   uint16_t bl_count[MAX_HUFFMAN_BITS] = { 0 };
 | |
|   uint16_t next_code[MAX_HUFFMAN_BITS];
 | |
|   size_t i;
 | |
|   int code = 0;
 | |
|   for (i = 0; i < len; ++i) {
 | |
|     ++bl_count[depth[i]];
 | |
|   }
 | |
|   bl_count[0] = 0;
 | |
|   next_code[0] = 0;
 | |
|   for (i = 1; i < MAX_HUFFMAN_BITS; ++i) {
 | |
|     code = (code + bl_count[i - 1]) << 1;
 | |
|     next_code[i] = (uint16_t)code;
 | |
|   }
 | |
|   for (i = 0; i < len; ++i) {
 | |
|     if (depth[i]) {
 | |
|       bits[i] = BrotliReverseBits(depth[i], next_code[depth[i]]++);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| }  /* extern "C" */
 | |
| #endif
 |