git-svn-id: https://edk2.svn.sourceforge.net/svnroot/edk2/trunk/edk2@1676 6f19259b-4bc3-4df7-8a09-765794883524
		
			
				
	
	
		
			346 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			346 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Abstract syntax tree manipulation functions
 | 
						|
 *
 | 
						|
 * SOFTWARE RIGHTS
 | 
						|
 *
 | 
						|
 * We reserve no LEGAL rights to the Purdue Compiler Construction Tool
 | 
						|
 * Set (PCCTS) -- PCCTS is in the public domain.  An individual or
 | 
						|
 * company may do whatever they wish with source code distributed with
 | 
						|
 * PCCTS or the code generated by PCCTS, including the incorporation of
 | 
						|
 * PCCTS, or its output, into commerical software.
 | 
						|
 *
 | 
						|
 * We encourage users to develop software with PCCTS.  However, we do ask
 | 
						|
 * that credit is given to us for developing PCCTS.  By "credit",
 | 
						|
 * we mean that if you incorporate our source code into one of your
 | 
						|
 * programs (commercial product, research project, or otherwise) that you
 | 
						|
 * acknowledge this fact somewhere in the documentation, research report,
 | 
						|
 * etc...  If you like PCCTS and have developed a nice tool with the
 | 
						|
 * output, please mention that you developed it using PCCTS.  In
 | 
						|
 * addition, we ask that this header remain intact in our source code.
 | 
						|
 * As long as these guidelines are kept, we expect to continue enhancing
 | 
						|
 * this system and expect to make other tools available as they are
 | 
						|
 * completed. 
 | 
						|
 *
 | 
						|
 * ANTLR 1.33
 | 
						|
 * Terence Parr
 | 
						|
 * Parr Research Corporation
 | 
						|
 * with Purdue University and AHPCRC, University of Minnesota
 | 
						|
 * 1989-2000
 | 
						|
 */
 | 
						|
 | 
						|
#include "pcctscfg.h"
 | 
						|
 | 
						|
#ifdef PCCTS_USE_STDARG
 | 
						|
#include "pccts_stdarg.h"
 | 
						|
#else
 | 
						|
#include <varargs.h>
 | 
						|
#endif
 | 
						|
 | 
						|
/* ensure that tree manipulation variables are current after a rule
 | 
						|
 * reference
 | 
						|
 */
 | 
						|
 | 
						|
void
 | 
						|
#ifdef __USE_PROTOS
 | 
						|
zzlink(AST **_root, AST **_sibling, AST **_tail)
 | 
						|
#else
 | 
						|
zzlink(_root, _sibling, _tail)
 | 
						|
AST **_root, **_sibling, **_tail;
 | 
						|
#endif
 | 
						|
{
 | 
						|
	if ( *_sibling == NULL ) return;
 | 
						|
	if ( *_root == NULL ) *_root = *_sibling;
 | 
						|
	else if ( *_root != *_sibling ) (*_root)->down = *_sibling;
 | 
						|
	if ( *_tail==NULL ) *_tail = *_sibling;
 | 
						|
	while ( (*_tail)->right != NULL ) *_tail = (*_tail)->right;
 | 
						|
}
 | 
						|
 | 
						|
AST *
 | 
						|
#ifdef __USE_PROTOS
 | 
						|
zzastnew(void)
 | 
						|
#else
 | 
						|
zzastnew()
 | 
						|
#endif
 | 
						|
{
 | 
						|
	AST *p = (AST *) calloc(1, sizeof(AST));
 | 
						|
	if ( p == NULL ) fprintf(stderr,"%s(%d): cannot allocate AST node\n",__FILE__,__LINE__);
 | 
						|
	return p;
 | 
						|
}
 | 
						|
 | 
						|
/* add a child node to the current sibling list */
 | 
						|
void
 | 
						|
#ifdef __USE_PROTOS
 | 
						|
zzsubchild(AST **_root, AST **_sibling, AST **_tail)
 | 
						|
#else
 | 
						|
zzsubchild(_root, _sibling, _tail)
 | 
						|
AST **_root, **_sibling, **_tail;
 | 
						|
#endif
 | 
						|
{
 | 
						|
	AST *n;
 | 
						|
	zzNON_GUESS_MODE {
 | 
						|
	n = zzastnew();
 | 
						|
#ifdef DEMAND_LOOK
 | 
						|
	zzcr_ast(n, &(zzaCur), LA(0), LATEXT(0));
 | 
						|
#else
 | 
						|
	zzcr_ast(n, &(zzaCur), LA(1), LATEXT(1));
 | 
						|
#endif
 | 
						|
	zzastPush( n );
 | 
						|
	if ( *_tail != NULL ) (*_tail)->right = n;
 | 
						|
	else {
 | 
						|
		*_sibling = n;
 | 
						|
		if ( *_root != NULL ) (*_root)->down = *_sibling;
 | 
						|
	}
 | 
						|
	*_tail = n;
 | 
						|
	if ( *_root == NULL ) *_root = *_sibling;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* make a new AST node.  Make the newly-created
 | 
						|
 * node the root for the current sibling list.  If a root node already
 | 
						|
 * exists, make the newly-created node the root of the current root.
 | 
						|
 */
 | 
						|
void
 | 
						|
#ifdef __USE_PROTOS
 | 
						|
zzsubroot(AST **_root, AST **_sibling, AST **_tail)
 | 
						|
#else
 | 
						|
zzsubroot(_root, _sibling, _tail)
 | 
						|
AST **_root, **_sibling, **_tail;
 | 
						|
#endif
 | 
						|
{
 | 
						|
	AST *n;
 | 
						|
	zzNON_GUESS_MODE {
 | 
						|
	n = zzastnew();
 | 
						|
#ifdef DEMAND_LOOK
 | 
						|
	zzcr_ast(n, &(zzaCur), LA(0), LATEXT(0));
 | 
						|
#else
 | 
						|
	zzcr_ast(n, &(zzaCur), LA(1), LATEXT(1));
 | 
						|
#endif
 | 
						|
	zzastPush( n );
 | 
						|
	if ( *_root != NULL )
 | 
						|
		if ( (*_root)->down == *_sibling ) *_sibling = *_tail = *_root;
 | 
						|
	*_root = n;
 | 
						|
	(*_root)->down = *_sibling;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Apply function to root then each sibling
 | 
						|
 * example: print tree in child-sibling LISP-format (AST has token field)
 | 
						|
 *
 | 
						|
 *	void show(tree)
 | 
						|
 *	AST *tree;
 | 
						|
 *	{
 | 
						|
 *		if ( tree == NULL ) return;
 | 
						|
 *		printf(" %s", zztokens[tree->token]);
 | 
						|
 *	}
 | 
						|
 *
 | 
						|
 *	void before() { printf(" ("); }
 | 
						|
 *	void after()  { printf(" )"); }
 | 
						|
 *
 | 
						|
 *	LISPdump() { zzpre_ast(tree, show, before, after); }
 | 
						|
 *
 | 
						|
 */
 | 
						|
void
 | 
						|
#ifdef __USE_PROTOS
 | 
						|
zzpre_ast(
 | 
						|
	  AST *tree,
 | 
						|
	  void (*func)(AST *),   /* apply this to each tree node */
 | 
						|
	  void (*before)(AST *), /* apply this to root of subtree before preordering it */
 | 
						|
	  void (*after)(AST *))  /* apply this to root of subtree after preordering it */
 | 
						|
#else
 | 
						|
zzpre_ast(tree, func, before, after)
 | 
						|
AST *tree;
 | 
						|
void (*func)(),   /* apply this to each tree node */
 | 
						|
	 (*before)(), /* apply this to root of subtree before preordering it */
 | 
						|
	 (*after)();  /* apply this to root of subtree after preordering it */
 | 
						|
#endif
 | 
						|
{
 | 
						|
	while ( tree!= NULL )
 | 
						|
	{
 | 
						|
		if ( tree->down != NULL ) (*before)(tree);
 | 
						|
		(*func)(tree);
 | 
						|
		zzpre_ast(tree->down, func, before, after);
 | 
						|
		if ( tree->down != NULL ) (*after)(tree);
 | 
						|
		tree = tree->right;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* free all AST nodes in tree; apply func to each before freeing */
 | 
						|
 | 
						|
#if 0
 | 
						|
////void
 | 
						|
////#ifdef __USE_PROTOS
 | 
						|
////zzfree_ast(AST *tree)
 | 
						|
////#else
 | 
						|
////zzfree_ast(tree)
 | 
						|
////AST *tree;
 | 
						|
////#endif
 | 
						|
////{
 | 
						|
////	if ( tree == NULL ) return;
 | 
						|
////	zzfree_ast( tree->down );
 | 
						|
////	zzfree_ast( tree->right );
 | 
						|
////	zztfree( tree );
 | 
						|
////}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
   MR19 Optimize freeing of the following structure to limit recursion
 | 
						|
   SAKAI Kiyotaka (ksakai@isr.co.jp)
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
         NULL o
 | 
						|
             / \
 | 
						|
           NULL o
 | 
						|
               / \
 | 
						|
            NULL NULL
 | 
						|
*/
 | 
						|
 | 
						|
/*
 | 
						|
   MR21 Another refinement to replace recursion with iteration
 | 
						|
   NAKAJIMA Mutsuki (muc@isr.co.jp).
 | 
						|
*/
 | 
						|
 | 
						|
void
 | 
						|
#ifdef __USE_PROTOS
 | 
						|
zzfree_ast(AST *tree)
 | 
						|
#else
 | 
						|
zzfree_ast(tree)
 | 
						|
AST *tree;
 | 
						|
#endif
 | 
						|
{
 | 
						|
 | 
						|
    AST *otree;
 | 
						|
 | 
						|
    if (tree == NULL) return;
 | 
						|
 | 
						|
    while (tree->down == NULL || tree->right == NULL) {
 | 
						|
 | 
						|
        if (tree->down == NULL && tree->right == NULL) {
 | 
						|
            zztfree(tree);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        otree = tree;
 | 
						|
        if (tree->down == NULL) {
 | 
						|
            tree = tree->right;
 | 
						|
        } else {
 | 
						|
            tree = tree->down;
 | 
						|
        }
 | 
						|
        zztfree( otree );
 | 
						|
    }
 | 
						|
 | 
						|
    while (tree != NULL) {
 | 
						|
        zzfree_ast(tree->down);
 | 
						|
        otree = tree;
 | 
						|
        tree = otree->right;
 | 
						|
        zztfree(otree);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* build a tree (root child1 child2 ... NULL)
 | 
						|
 * If root is NULL, simply make the children siblings and return ptr
 | 
						|
 * to 1st sibling (child1).  If root is not single node, return NULL.
 | 
						|
 *
 | 
						|
 * Siblings that are actually siblins lists themselves are handled
 | 
						|
 * correctly.  For example #( NULL, #( NULL, A, B, C), D) results
 | 
						|
 * in the tree ( NULL A B C D ).
 | 
						|
 *
 | 
						|
 * Requires at least two parameters with the last one being NULL.  If
 | 
						|
 * both are NULL, return NULL.
 | 
						|
 */
 | 
						|
#ifdef PCCTS_USE_STDARG
 | 
						|
AST *zztmake(AST *rt, ...)
 | 
						|
#else
 | 
						|
AST *zztmake(va_alist)
 | 
						|
va_dcl
 | 
						|
#endif
 | 
						|
{
 | 
						|
	va_list ap;
 | 
						|
	register AST *child, *sibling=NULL, *tail=NULL /* MR20 */, *w;
 | 
						|
	AST *root;
 | 
						|
 | 
						|
#ifdef PCCTS_USE_STDARG
 | 
						|
	va_start(ap, rt);
 | 
						|
	root = rt;
 | 
						|
#else
 | 
						|
	va_start(ap);
 | 
						|
	root = va_arg(ap, AST *);
 | 
						|
#endif
 | 
						|
 | 
						|
	if ( root != NULL )
 | 
						|
		if ( root->down != NULL ) return NULL;
 | 
						|
	child = va_arg(ap, AST *);
 | 
						|
	while ( child != NULL )
 | 
						|
	{
 | 
						|
		for (w=child; w->right!=NULL; w=w->right) {;} /* find end of child */
 | 
						|
		if ( sibling == NULL ) {sibling = child; tail = w;}
 | 
						|
		else {tail->right = child; tail = w;}
 | 
						|
		child = va_arg(ap, AST *);
 | 
						|
	}
 | 
						|
	if ( root==NULL ) root = sibling;
 | 
						|
	else root->down = sibling;
 | 
						|
	va_end(ap);
 | 
						|
	return root;
 | 
						|
}
 | 
						|
 | 
						|
/* tree duplicate */
 | 
						|
AST *
 | 
						|
#ifdef __USE_PROTOS
 | 
						|
zzdup_ast(AST *t)
 | 
						|
#else
 | 
						|
zzdup_ast(t)
 | 
						|
AST *t;
 | 
						|
#endif
 | 
						|
{
 | 
						|
	AST *u;
 | 
						|
	
 | 
						|
	if ( t == NULL ) return NULL;
 | 
						|
	u = zzastnew();
 | 
						|
	*u = *t;
 | 
						|
#ifdef zzAST_DOUBLE
 | 
						|
	u->up = NULL;		/* set by calling invocation */
 | 
						|
	u->left = NULL;
 | 
						|
#endif
 | 
						|
	u->right = zzdup_ast(t->right);
 | 
						|
	u->down = zzdup_ast(t->down);
 | 
						|
#ifdef zzAST_DOUBLE
 | 
						|
	if ( u->right!=NULL ) u->right->left = u;
 | 
						|
	if ( u->down!=NULL ) u->down->up = u;
 | 
						|
#endif
 | 
						|
	return u;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
#ifdef __USE_PROTOS
 | 
						|
zztfree(AST *t)
 | 
						|
#else
 | 
						|
zztfree(t)
 | 
						|
AST *t;
 | 
						|
#endif
 | 
						|
{
 | 
						|
#ifdef zzd_ast
 | 
						|
	zzd_ast( t );
 | 
						|
#endif
 | 
						|
	free( t );
 | 
						|
}
 | 
						|
 | 
						|
#ifdef zzAST_DOUBLE
 | 
						|
/*
 | 
						|
 * Set the 'up', and 'left' pointers of all nodes in 't'.
 | 
						|
 * Initial call is double_link(your_tree, NULL, NULL).
 | 
						|
 */
 | 
						|
void
 | 
						|
#ifdef __USE_PROTOS
 | 
						|
zzdouble_link(AST *t, AST *left, AST *up)
 | 
						|
#else
 | 
						|
zzdouble_link(t, left, up)
 | 
						|
AST *t, *left, *up;
 | 
						|
#endif
 | 
						|
{
 | 
						|
	if ( t==NULL ) return;
 | 
						|
	t->left = left;
 | 
						|
	t->up = up;
 | 
						|
	zzdouble_link(t->down, NULL, t);
 | 
						|
	zzdouble_link(t->right, t, up);
 | 
						|
}
 | 
						|
#endif
 |