Simulation Parameters & File Loading

- Rename `xenia_sravan_nonlinearopt.m` to `part2_MPC_controller.m`
- Add commands to close figures, clear workspace, and clear terminal
- Load track information & reference trajectory
- Add simulation parameters (step size & prediction horizon)
This commit is contained in:
Sravan Balaji
2021-12-09 14:18:53 -05:00
parent 28ad7d9d21
commit 3e873fc597

View File

@@ -0,0 +1,430 @@
%% Close Figures, Clear Workspace, and Clear Terminal
close all;
clear;
clc;
%% System Parameters
% Track Information & Reference Trajectory
load("TestTrack.mat");
load('ROB535_ControlProject_part1_Team3.mat');
% Vehicle Parameters (Table 1)
global Nw f Iz a b By Cy Dy Ey Shy Svy m g
Nw = 2;
f = 0.01;
Iz = 2667;
a = 1.35;
b = 1.45;
By = 0.27;
Cy = 1.2;
Dy = 0.7;
Ey = -1.6;
Shy = 0;
Svy = 0;
m = 1400;
g = 9.806;
% Input Limits (Table 1)
global delta_lims Fx_lims
delta_lims = [-0.5, 0.5];
Fx_lims = [-5e3, 5e3];
% Initial Conditions (Equation 15)
state_init = [ ...
287; ... % x [m]
5; ... % u [m/s]
-176; ... % y [m]
0; ... % v [m/s]
2; ... % psi [rad]
0; ... % r [rad/s]
];
% Simulation Parameters
T_s = 0.01; % Step Size [s]
T_p = 0.5; % Prediction Horizon [s]
%% Setup
curr_pos = [state_init(1);state_init(3)];
%state_size = tbd;
% z = [init, init, -0.004, 3900]; %for testing purposes
% nsteps = 2;
% [LB, UB] = bounds(nsteps, 1);
% [g,h,dg,dh]=nonlcon(z, Xobs, nsteps);
% [J, dJ] = costfun(z, TestTrack.cline(:,1), TestTrack.theta(1), nsteps);
Nobs = randi([10 25], 1,1);
global Xobs
Xobs = generateRandomObstacles(Nobs);
U_final = [];
Y_final = [];
options = optimoptions('fmincon','SpecifyConstraintGradient',true,...
'SpecifyObjectiveGradient',true) ;
load('ROB535_ControlProject_part1_Team3.mat');
%[Y_submission, T_submission] = forwardIntegrateControlInput(ROB535_ControlProject_part1_input, init);
load('reftrack_info.mat');
load('segments_info.mat');
%% MPC
U_ref = ROB535_ControlProject_part1_input';
Y_ref = Y_submission';
dt = 0.01;
%discretize dynamics
F_zf=b/(a+b)*m*g;
F_zr=a/(a+b)*m*g;
%we are just going to use cornering stiffness to make linear so this derivative
%easier, the vehicle parameter's are close enough to problem 1 hw 2
B=10;
C=1.3;
D=1;
Ca_r= F_zr*B*C*D;
Ca_f= F_zf*B*C*D;
x = @(s,i) Y_ref(s,i);
Ac = @(i) [0, cos(x(5,i)), 0, -sin(x(5,i)), x(2,i)*sin(x(5,i))-x(4,i)*cos(x(5,i)), 0;
0, (-1/m)*Ca_f*x(2,i)^-2, 0, -Ca_f/m + 1, 0, Ca_f*(-a/m) + 1;
0, sin(x(5,i)), 0, cos(x(5,i)), -x(4,i)*sin(x(5,i))+x(2,i)*cos(x(5,i)), 0;
0, (1/m)*(-Ca_f*x(2,i)^-2 - Ca_r*x(2,i)^-2) - 1, 0, Ca_r/m*(-1/x(2,i)) + Ca_f/m*(-1/x(2,i)), 0, Ca_r/m*(b/x(2,i)) + Ca_f/m*(-a/x(2,i)) - x(2,i);
0, 0, 0, 0, 0, 1
0, (1/Iz)*(-Ca_f*a*x(2,i)^-2 - b*Ca_r*x(2,i)^-2), 0, -b*Ca_r/Iz*(-1/x(2,i)) + a*Ca_f/Iz*(-1/x(2,i)), 0, -b*Ca_r/Iz*(b/x(2,i)) + a*Ca_f/Iz*(-a/x(2,i))];
Bc = @(i) [0, -Ca_f/m, 0, Ca_f/m, 0, a*Ca_f/Iz;
0, Nw/m, 0, 0, 0, 0]';
A = @(i) eye(6) + dt*Ac(i);
B = @(i) dt*Bc(i);
%Decision variables
npred = 10;
nstates = 6;
ninputs = 2;
Ndec=(npred+1)*nstates+ninputs*npred;
input_range = [-0.5, 0.5; -5000, 5000];
eY0 = state_init';
[Aeq_test1,beq_test1]=eq_cons(1,A,B,eY0,npred,nstates,ninputs);
%simulate forward
T = 0:0.01:(size(Y_ref,2)/100);
%final trajectory
Y=NaN(nstates,length(T));
%applied inputs
U=NaN(ninputs,length(T));
%input from QP
u_mpc=NaN(ninputs,length(T));
%error in states (actual-reference)
eY=NaN(nstates,length(T));
%set random initial condition
Y(:,1)=eY0+Y_ref(:,1);
for i=1:length(T)-1
i
%shorten prediction horizon if we are at the end of trajectory
npred_i=min([npred,length(T)-i]);
%calculate error
eY(:,i)=Y(:,i)-Y_ref(:,i);
%generate equality constraints
[Aeq,beq]=eq_cons(i,A,B,eY(:,i),npred_i,nstates,ninputs);
%generate boundary constraints
[Lb,Ub]=bound_cons(i,U_ref,npred_i,input_range,nstates,ninputs);
%cost for states
Q=[1,1,1,1,1,1];
%cost for inputs
R=[0.1,0.01];
H=diag([repmat(Q,[1,npred_i+1]),repmat(R,[1,npred_i])]);
f=zeros(nstates*(npred_i+1)+ninputs*npred_i,1);
[x,fval] = quadprog(H,f,[],[],Aeq,beq,Lb,Ub);
%get linearized input
u_mpc(:,i)=x(nstates*(npred_i+1)+1:nstates*(npred_i+1)+ninputs);
%get input
U(:,i)=u_mpc(:,i)+U_ref(:,i);
%simulate model
[~,ztemp]=ode45(@(t,z)kinematic_bike(t,z,U(:,i),0),[0 dt],Y(:,i));
%store final state
Y(:,i+1)=ztemp(end,:)';
end
%% function start
function [start_idx, end_idx] = get_indices(segment_num, num_pts)
if segment_num == 1
start_idx = 1;
end_idx = num_pts(segment_num);
else
start_idx = sum(num_pts(1:segment_num-1)) + 1;
end_idx = sum(num_pts(1:segment_num));
end
end
%not used
function x0vec = initvec(x0, u0)
%function used because fmincon needs initial condition to be size of
%state vector
%x0 - last row of Y at checkpoint
%u0 - last row of U at checkpoint
global nsteps
x0vec = [];
for i = 1:nsteps
x0vec = [x0vec, x0];
end
%not sure if inputs should be instantiated or not
%will instantiate them to previous u
for i = 1:nsteps-1
x0vec = [x0vec, u0];
end
end
%% mpc functions
function [Aeq,beq]=eq_cons(initial_idx,A,B,x_initial,npred,nstates,ninputs)
%build matrix for A_i*x_i+B_i*u_i-x_{i+1}=0
%in the form Aeq*z=beq
%initial_idx specifies the time index of initial condition from the reference trajectory
%A and B are function handles above
%initial condition
x_initial=x_initial(:);
%size of decision variable and size of part holding states
zsize=(npred+1)*nstates+npred*ninputs;
xsize=(npred+1)*nstates;
Aeq=zeros(xsize,zsize);
Aeq(1:nstates,1:nstates)=eye(nstates); %initial condition
beq=zeros(xsize,1);
beq(1:nstates)=x_initial;
state_idxs=nstates+1:nstates:xsize;
input_idxs=xsize+1:ninputs:zsize;
for i=1:npred
%negative identity for i+1
Aeq(state_idxs(i):state_idxs(i)+nstates-1,state_idxs(i):state_idxs(i)+nstates-1)=-eye(nstates);
%A matrix for i
Aeq(state_idxs(i):state_idxs(i)+nstates-1,state_idxs(i)-nstates:state_idxs(i)-1)=A(initial_idx+i-1);
%B matrix for i
Aeq(state_idxs(i):state_idxs(i)+nstates-1,input_idxs(i):input_idxs(i)+ninputs-1)=B(initial_idx+i-1);
end
end
function [Lb,Ub]=bound_cons(initial_idx,U_ref,npred,input_range,nstates,ninputs)
%time_idx is the index along uref the initial condition is at
xsize=(npred+1)*nstates;
usize=npred*ninputs;
Lb=[];
Ub=[];
for j=1:ninputs
Lb=[Lb;input_range(j,1)-U_ref(j,initial_idx:initial_idx+npred-1)];
Ub=[Ub;input_range(j,2)-U_ref(j,initial_idx:initial_idx+npred-1)];
end
Lb=reshape(Lb,[usize,1]);
Ub=reshape(Ub,[usize,1]);
Lb=[-Inf(xsize,1);Lb];
Ub=[Inf(xsize,1);Ub];
end
function dzdt=kinematic_bike(t,x,U,T)
global Nw f Iz a b By Cy Dy Ey Shy Svy m g delta_lims Fx_lims
%generate input functions
delta_f=U(1);
F_x=U(2);
%slip angle functions in degrees
a_f=rad2deg(delta_f-atan2(x(4)+a*x(6),x(2)));
a_r=rad2deg(-atan2((x(4)-b*x(6)),x(2)));
%Nonlinear Tire Dynamics
phi_yf=(1-Ey)*(a_f+Shy)+(Ey/By)*atan(By*(a_f+Shy));
phi_yr=(1-Ey)*(a_r+Shy)+(Ey/By)*atan(By*(a_r+Shy));
F_zf=b/(a+b)*m*g;
F_yf=F_zf*Dy*sin(Cy*atan(By*phi_yf))+Svy;
F_zr=a/(a+b)*m*g;
F_yr=F_zr*Dy*sin(Cy*atan(By*phi_yr))+Svy;
F_total=sqrt((Nw*F_x)^2+(F_yr^2));
F_max=0.7*m*g;
if F_total>F_max
F_x=F_max/F_total*F_x;
F_yr=F_max/F_total*F_yr;
end
%vehicle dynamics
dzdt= [x(2)*cos(x(5))-x(4)*sin(x(5));...
(-f*m*g+Nw*F_x-F_yf*sin(delta_f))/m+x(4)*x(6);...
x(2)*sin(x(5))+x(4)*cos(x(5));...
(F_yf*cos(delta_f)+F_yr)/m-x(2)*x(6);...
x(6);...
(F_yf*a*cos(delta_f)-F_yr*b)/Iz];
end
%% Kinematic Bike Models
function dXdt = nonlinear_bike_model(X,U)
global Nw f Iz a b By Cy Dy Ey Shy Svy m g delta_lims Fx_lims
[x,u,y,v,psi,r,delta_f,F_x,F_yf,F_yr] = bike_model_helper(X,U);
% Vehicle Dynamics (Equation 1)
dx = u*cos(psi) - v*sin(psi);
du = (1/m)*(-f*m*g + Nw*F_x - F_yf*sin(delta_f)) + v*r;
dy = u*sin(psi) + v*cos(psi);
dv = (1/m)*(F_yf*cos(delta_f) + F_yr) - u*r;
dpsi = r;
dr = (1/Iz)*(a*F_yf*cos(delta_f) - b*F_yr);
dXdt = [dx; du; dy; dv; dpsi; dr];
end
function [A, B] = linearized_bike_model(X_ref,U_ref)
global Nw f Iz a b By Cy Dy Ey Shy Svy m g
syms x_var u_var y_var v_var psi_var r_var ... % states
delta_f_var F_x_var ... % inputs
F_yf_var F_yr_var % lateral forces
% Vehicle Dynamics (Equation 1)
dx = u_var*cos(psi_var) - v_var*sin(psi_var);
du = (1/m)*(-f*m*g + Nw*F_x_var - F_yf_var*sin(delta_f_var)) + v_var*r_var;
dy = u_var*sin(psi_var) + v_var*cos(psi_var);
dv = (1/m)*(F_yf_var*cos(delta_f_var) + F_yr_var) - u_var*r_var;
dpsi = r_var;
dr = (1/Iz)*(a*F_yf_var*cos(delta_f_var) - b*F_yr_var);
% Jacobians of continuous-time linearized system
% TODO: Change A_c & B_c computation to regular functions (e.g.,
% using `matlabFunction`)
A_c_symb = [ ...
diff(dx, x_var), diff(dx, u_var), diff(dx, y_var), diff(dx, v_var), diff(dx, psi_var), diff(dx, r_var);
diff(du, x_var), diff(du, u_var), diff(du, y_var), diff(du, v_var), diff(du, psi_var), diff(du, r_var);
diff(dy, x_var), diff(dy, u_var), diff(dy, y_var), diff(dy, v_var), diff(dy, psi_var), diff(dy, r_var);
diff(dv, x_var), diff(dv, u_var), diff(dv, y_var), diff(dv, v_var), diff(dv, psi_var), diff(dv, r_var);
diff(dpsi,x_var), diff(dpsi,u_var), diff(dpsi,y_var), diff(dpsi,v_var), diff(dpsi,psi_var), diff(dpsi,r_var);
diff(dr, x_var), diff(dr, u_var), diff(dr, y_var), diff(dr, v_var), diff(dr, psi_var), diff(dr, r_var);
];
B_c_symb = [ ...
diff(dx, delta_f_var), diff(dx, F_x_var);
diff(du, delta_f_var), diff(du, F_x_var);
diff(dy, delta_f_var), diff(dy, F_x_var);
diff(dv, delta_f_var), diff(dv, F_x_var);
diff(dpsi,delta_f_var), diff(dpsi,F_x_var);
diff(dr, delta_f_var), diff(dr, F_x_var);
];
% Substitute values from reference trajectory into symbolic Jacobians
% TODO: Fix reference trajectory indexing with "i"
A_c = @(i) double( ...
subs( ...
A_c_symb, ...
[x_var, u_var, y_var, v_var, psi_var, r_var, delta_f_var, F_x_var, F_yf_var, F_yr_var], ...
bike_model_helper(X_ref(i), U_ref(i)) ...
) ...
);
B_c = @(i) double( ...
subs( ...
B_c_symb, ...
[x_var, u_var, y_var, v_var, psi_var, r_var, delta_f_var, F_x_var, F_yf_var, F_yr_var], ...
bike_model_helper(X_ref(i), U_ref(i)) ...
) ...
);
% Discrete-time LTV system
A = @(i) eye(6) + dt*A_c(i);
B = @(i) dt * B_c(i);
end
%% Helper Functions
function clamped_val = clamp(val, min, max)
clamped_val = val;
if clamped_val < min
clamped_val = min;
elseif clamped_val > max
clamped_val = max;
end
end
function [x,u,y,v,psi,r,delta_f,F_x,F_yf,F_yr] = bike_model_helper(X,U)
global Nw f Iz a b By Cy Dy Ey Shy Svy m g
% Get state & input variables
x = X(1);
u = X(2);
y = X(3);
v = X(4);
psi = X(5);
r = X(6);
delta_f = U(1);
F_x = U(2);
% Front and rear lateral slip angles in radians (Equations 8 & 9)
alpha_f_rad = delta_f - atan2(v + a*r, u);
alpha_r_rad = -atan2(v - b*r, u);
% Convert radians to degrees for other equations
alpha_f = rad2deg(alpha_f_rad);
alpha_r = rad2deg(alpha_r_rad);
% Nonlinear Tire Dynamics (Equations 6 & 7)
phi_yf = (1-Ey)*(alpha_f + Shy) + (Ey/By)*atan(By*(alpha_f + Shy));
phi_yr = (1-Ey)*(alpha_r + Shy) + (Ey/By)*atan(By*(alpha_r + Shy));
% Lateral forces using Pacejka "Magic Formula" (Equations 2 - 5)
F_zf = (b/(a+b))*(m*g);
F_yf = F_zf*Dy*sin(Cy*atan(By*phi_yf)) + Svy;
F_zr = (a/(a+b))*(m*g);
F_yr = F_zr*Dy*sin(Cy*atan(By*phi_yr)) + Svy;
% Limits on combined longitudinal and lateral loading of tires
% (Equations 10 - 14)
F_total = sqrt((Nw*F_x)^2 + (F_yr^2));
F_max = 0.7*(m*g);
if F_total > F_max
F_x = (F_max/F_total)*F_x;
F_yr = (F_max/F_total)*F_yr;
end
% Apply input limits (Table 1)
delta_f = clamp(delta_f, delta_lims(1), delta_lims(2));
F_x = clamp(F_x, Fx_lims(1), Fx_lims(2));
end