Compare commits
130 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
d7c77403fd | ||
|
c8898b5ca0 | ||
|
781257bc64 | ||
|
dec083dcc1 | ||
|
cdd9507493 | ||
|
dba877311e | ||
|
31fd3be6eb | ||
|
2b4284df81 | ||
|
d84e2d6e29 | ||
|
56355159c6 | ||
|
a7135d429b | ||
|
3b0a40cd5d | ||
|
83c74802f8 | ||
|
adc17933cd | ||
|
68c52673d6 | ||
|
2aa35577f2 | ||
|
14ffc66c45 | ||
|
2ea0832e0f | ||
|
ab050878e9 | ||
|
707a04022e | ||
|
d12c357793 | ||
|
ddf8668e16 | ||
|
3491e49c5f | ||
|
d322e495b2 | ||
|
5d80f7006a | ||
|
3e7a9e5d20 | ||
|
33e8769226 | ||
|
59842edbcb | ||
|
507e1e436e | ||
|
b27447ef48 | ||
|
c9a3ba99be | ||
|
967942460e | ||
|
bfa257902e | ||
|
3f103c91f0 | ||
|
2fd9971f41 | ||
|
a3063a9392 | ||
|
d8a02bbbdb | ||
|
76d4a395d1 | ||
|
c515bfb5fb | ||
|
83430be580 | ||
|
9bd9f91722 | ||
|
e6ef43e51a | ||
|
16bca67f2d | ||
|
d65eea550c | ||
|
46080b367a | ||
|
317afae37c | ||
|
930a608236 | ||
|
6e3c45580c | ||
|
e3df7d7bc8 | ||
|
c1fca91103 | ||
|
d3c56a76e7 | ||
|
4194cdda5b | ||
|
f5f999d7bf | ||
|
b4b607681c | ||
|
1e75eba27b | ||
|
f3f3d202ac | ||
|
c90fa530db | ||
|
aeb8097cbc | ||
|
04bea72787 | ||
|
ce95f56ac8 | ||
|
aff45fd455 | ||
|
c8f28d9d09 | ||
|
f3697e5e02 | ||
|
557ba20ff4 | ||
|
dd0e5c26d1 | ||
|
c9a3f41152 | ||
|
d13ffa0aba | ||
|
fb0be29604 | ||
|
7ca1550775 | ||
|
665a71b471 | ||
|
9268a4b28c | ||
|
529bbfad10 | ||
|
e7945c2277 | ||
|
5ee91c73ed | ||
|
2116e4202b | ||
|
19521d16cd | ||
|
057302b936 | ||
|
d62619c9c8 | ||
|
9c80a89597 | ||
|
00834ef03d | ||
|
5b7b065b96 | ||
|
a739af823f | ||
|
493eb446b7 | ||
|
1b45b3802a | ||
|
7898307d78 | ||
|
8da8aa140f | ||
|
4572af2bce | ||
|
6dc17f0e6e | ||
|
3fcf3f69ca | ||
|
a9fd2769f3 | ||
|
9adaf92674 | ||
|
e75c3b6c54 | ||
|
61f2bb1228 | ||
|
d1502f74ea | ||
|
83f9413196 | ||
|
cdc3e18d99 | ||
|
55a6315862 | ||
|
cf447a5442 | ||
|
7597b4fb40 | ||
|
7cd0f2a32a | ||
|
4dae5890e9 | ||
|
738ae4be33 | ||
|
e573611021 | ||
|
f60965a107 | ||
|
3995e8373c | ||
|
ddc82b84e2 | ||
|
87a943756a | ||
|
8e28731f96 | ||
|
cdbd438a04 | ||
|
3220c49f1b | ||
|
94e67a036a | ||
|
c977e82074 | ||
|
9878a5ab58 | ||
|
2de914c38c | ||
|
49b05ba989 | ||
|
85fa8c55c9 | ||
|
57eef65d9c | ||
|
894c954e8f | ||
|
046bac6769 | ||
|
765720e98b | ||
|
26a244325b | ||
|
f7d28ce1d6 | ||
|
c85633b47f | ||
|
6861b1ec82 | ||
|
003cb20b9f | ||
|
f1f622de01 | ||
|
dbb8f3db09 | ||
|
5d7c72db5a | ||
|
755adb8973 | ||
|
0977429138 |
4
.github/workflows/check-pr.yml
vendored
4
.github/workflows/check-pr.yml
vendored
@@ -20,10 +20,8 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: peter-evans/close-pull@v1
|
||||
- uses: superbrothers/close-pull-request@v3
|
||||
with:
|
||||
token: ${{ github.token }}
|
||||
delete-branch: false
|
||||
comment: >
|
||||
Thanks for your contribution! Unfortunately we can't accept PRs directed at release branches. We make patches to the bugfix branches and only later do we push them out as releases.
|
||||
|
||||
|
44
.github/workflows/test-builds.yml
vendored
44
.github/workflows/test-builds.yml
vendored
@@ -56,29 +56,31 @@ jobs:
|
||||
|
||||
# STM32F1 (Maple) Environments
|
||||
|
||||
- STM32F103RC_btt
|
||||
- STM32F103RC_btt_USB
|
||||
- STM32F103RE_btt
|
||||
- STM32F103RE_btt_USB
|
||||
#- STM32F103RC_btt_maple
|
||||
- STM32F103RC_btt_USB_maple
|
||||
- STM32F103RC_fysetc
|
||||
- STM32F103RC_meeb
|
||||
- jgaurora_a5s_a1
|
||||
- STM32F103VE_longer
|
||||
- mks_robin
|
||||
#- mks_robin_maple
|
||||
- mks_robin_lite
|
||||
- mks_robin_pro
|
||||
- STM32F103RET6_creality
|
||||
- mks_robin_nano35
|
||||
#- mks_robin_nano35_maple
|
||||
#- STM32F103RET6_creality_maple
|
||||
|
||||
# STM32 (ST) Environments
|
||||
|
||||
- STM32F103RC_btt_stm32
|
||||
- STM32F103RC_btt
|
||||
#- STM32F103RC_btt_USB
|
||||
- STM32F103RE_btt
|
||||
- STM32F103RE_btt_USB
|
||||
- STM32F103RET6_creality
|
||||
- STM32F407VE_black
|
||||
- STM32F401VE_STEVAL
|
||||
- BIGTREE_BTT002
|
||||
- BIGTREE_SKR_PRO
|
||||
- BIGTREE_GTR_V1_0
|
||||
- mks_robin_stm32
|
||||
- mks_robin
|
||||
- ARMED
|
||||
- FYSETC_S6
|
||||
- STM32F070CB_malyan
|
||||
@@ -88,7 +90,7 @@ jobs:
|
||||
- rumba32
|
||||
- LERDGEX
|
||||
- LERDGEK
|
||||
- mks_robin_nano35_stm32
|
||||
- mks_robin_nano35
|
||||
- NUCLEO_F767ZI
|
||||
- REMRAM_V1
|
||||
- BTT_SKR_SE_BX
|
||||
@@ -107,8 +109,25 @@ jobs:
|
||||
|
||||
steps:
|
||||
|
||||
- name: Check out the PR
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Cache pip
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pip-
|
||||
|
||||
- name: Cache PlatformIO
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: ~/.platformio
|
||||
key: ${{ runner.os }}-${{ hashFiles('**/lockfiles') }}
|
||||
|
||||
- name: Select Python 3.7
|
||||
uses: actions/setup-python@v1
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: '3.7' # Version range or exact version of a Python version to use, using semvers version range syntax.
|
||||
architecture: 'x64' # optional x64 or x86. Defaults to x64 if not specified
|
||||
@@ -118,9 +137,6 @@ jobs:
|
||||
pip install -U https://github.com/platformio/platformio-core/archive/develop.zip
|
||||
platformio update
|
||||
|
||||
- name: Check out the PR
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Run ${{ matrix.test-platform }} Tests
|
||||
run: |
|
||||
make tests-single-ci TEST_TARGET=${{ matrix.test-platform }}
|
||||
|
@@ -35,7 +35,7 @@
|
||||
*
|
||||
* Advanced settings can be found in Configuration_adv.h
|
||||
*/
|
||||
#define CONFIGURATION_H_VERSION 02000801
|
||||
#define CONFIGURATION_H_VERSION 02000900
|
||||
|
||||
//===========================================================================
|
||||
//============================= Getting Started =============================
|
||||
@@ -105,21 +105,9 @@
|
||||
#define SERIAL_PORT 0
|
||||
|
||||
/**
|
||||
* Select a secondary serial port on the board to use for communication with the host.
|
||||
* Currently Ethernet (-2) is only supported on Teensy 4.1 boards.
|
||||
* :[-2, -1, 0, 1, 2, 3, 4, 5, 6, 7]
|
||||
*/
|
||||
//#define SERIAL_PORT_2 -1
|
||||
|
||||
/**
|
||||
* Select a third serial port on the board to use for communication with the host.
|
||||
* Currently only supported for AVR, DUE, LPC1768/9 and STM32/STM32F1
|
||||
* :[-1, 0, 1, 2, 3, 4, 5, 6, 7]
|
||||
*/
|
||||
//#define SERIAL_PORT_3 1
|
||||
|
||||
/**
|
||||
* This setting determines the communication speed of the printer.
|
||||
* Serial Port Baud Rate
|
||||
* This is the default communication speed for all serial ports.
|
||||
* Set the baud rate defaults for additional serial ports below.
|
||||
*
|
||||
* 250000 works in most cases, but you might try a lower speed if
|
||||
* you commonly experience drop-outs during host printing.
|
||||
@@ -128,6 +116,23 @@
|
||||
* :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000]
|
||||
*/
|
||||
#define BAUDRATE 250000
|
||||
//#define BAUD_RATE_GCODE // Enable G-code M575 to set the baud rate
|
||||
|
||||
/**
|
||||
* Select a secondary serial port on the board to use for communication with the host.
|
||||
* Currently Ethernet (-2) is only supported on Teensy 4.1 boards.
|
||||
* :[-2, -1, 0, 1, 2, 3, 4, 5, 6, 7]
|
||||
*/
|
||||
//#define SERIAL_PORT_2 -1
|
||||
//#define BAUDRATE_2 250000 // Enable to override BAUDRATE
|
||||
|
||||
/**
|
||||
* Select a third serial port on the board to use for communication with the host.
|
||||
* Currently only supported for AVR, DUE, LPC1768/9 and STM32/STM32F1
|
||||
* :[-1, 0, 1, 2, 3, 4, 5, 6, 7]
|
||||
*/
|
||||
//#define SERIAL_PORT_3 1
|
||||
//#define BAUDRATE_3 250000 // Enable to override BAUDRATE
|
||||
|
||||
// Enable the Bluetooth serial interface on AT90USB devices
|
||||
//#define BLUETOOTH
|
||||
@@ -144,6 +149,45 @@
|
||||
// Choose your own or use a service like https://www.uuidgenerator.net/version4
|
||||
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
|
||||
|
||||
/**
|
||||
* Define the number of coordinated linear axes.
|
||||
* See https://github.com/DerAndere1/Marlin/wiki
|
||||
* Each linear axis gets its own stepper control and endstop:
|
||||
*
|
||||
* Steppers: *_STEP_PIN, *_ENABLE_PIN, *_DIR_PIN, *_ENABLE_ON
|
||||
* Endstops: *_STOP_PIN, USE_*MIN_PLUG, USE_*MAX_PLUG
|
||||
* Axes: *_MIN_POS, *_MAX_POS, INVERT_*_DIR
|
||||
* Planner: DEFAULT_AXIS_STEPS_PER_UNIT, DEFAULT_MAX_FEEDRATE
|
||||
* DEFAULT_MAX_ACCELERATION, AXIS_RELATIVE_MODES,
|
||||
* MICROSTEP_MODES, MANUAL_FEEDRATE
|
||||
*
|
||||
* :[3, 4, 5, 6]
|
||||
*/
|
||||
//#define LINEAR_AXES 3
|
||||
|
||||
/**
|
||||
* Axis codes for additional axes:
|
||||
* This defines the axis code that is used in G-code commands to
|
||||
* reference a specific axis.
|
||||
* 'A' for rotational axis parallel to X
|
||||
* 'B' for rotational axis parallel to Y
|
||||
* 'C' for rotational axis parallel to Z
|
||||
* 'U' for secondary linear axis parallel to X
|
||||
* 'V' for secondary linear axis parallel to Y
|
||||
* 'W' for secondary linear axis parallel to Z
|
||||
* Regardless of the settings, firmware-internal axis IDs are
|
||||
* I (AXIS4), J (AXIS5), K (AXIS6).
|
||||
*/
|
||||
#if LINEAR_AXES >= 4
|
||||
#define AXIS4_NAME 'A' // :['A', 'B', 'C', 'U', 'V', 'W']
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
#define AXIS5_NAME 'B' // :['A', 'B', 'C', 'U', 'V', 'W']
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
#define AXIS6_NAME 'C' // :['A', 'B', 'C', 'U', 'V', 'W']
|
||||
#endif
|
||||
|
||||
// @section extruder
|
||||
|
||||
// This defines the number of extruders
|
||||
@@ -428,6 +472,7 @@
|
||||
#define TEMP_SENSOR_PROBE 0
|
||||
#define TEMP_SENSOR_CHAMBER 0
|
||||
#define TEMP_SENSOR_COOLER 0
|
||||
#define TEMP_SENSOR_REDUNDANT 0
|
||||
|
||||
// Dummy thermistor constant temperature readings, for use with 998 and 999
|
||||
#define DUMMY_THERMISTOR_998_VALUE 25
|
||||
@@ -439,11 +484,6 @@
|
||||
//#define MAX31865_SENSOR_OHMS_1 100
|
||||
//#define MAX31865_CALIBRATION_OHMS_1 430
|
||||
|
||||
// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings
|
||||
// from the two sensors differ too much the print will be aborted.
|
||||
//#define TEMP_SENSOR_1_AS_REDUNDANT
|
||||
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
|
||||
|
||||
#define TEMP_RESIDENCY_TIME 10 // (seconds) Time to wait for hotend to "settle" in M109
|
||||
#define TEMP_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
|
||||
#define TEMP_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
|
||||
@@ -456,6 +496,28 @@
|
||||
#define TEMP_CHAMBER_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
|
||||
#define TEMP_CHAMBER_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
|
||||
|
||||
/**
|
||||
* Redundant Temperature Sensor (TEMP_SENSOR_REDUNDANT)
|
||||
*
|
||||
* Use a temp sensor as a redundant sensor for another reading. Select an unused temperature sensor, and another
|
||||
* sensor you'd like it to be redundant for. If the two thermistors differ by TEMP_SENSOR_REDUNDANT_MAX_DIFF (°C),
|
||||
* the print will be aborted. Whichever sensor is selected will have its normal functions disabled; i.e. selecting
|
||||
* the Bed sensor (-1) will disable bed heating/monitoring.
|
||||
*
|
||||
* Use the following to select temp sensors:
|
||||
* -5 : Cooler
|
||||
* -4 : Probe
|
||||
* -3 : not used
|
||||
* -2 : Chamber
|
||||
* -1 : Bed
|
||||
* 0-7 : E0 through E7
|
||||
*/
|
||||
#if TEMP_SENSOR_REDUNDANT
|
||||
#define TEMP_SENSOR_REDUNDANT_SOURCE 1 // The sensor that will provide the redundant reading.
|
||||
#define TEMP_SENSOR_REDUNDANT_TARGET 0 // The sensor that we are providing a redundant reading for.
|
||||
#define TEMP_SENSOR_REDUNDANT_MAX_DIFF 10 // (°C) Temperature difference that will trigger a print abort.
|
||||
#endif
|
||||
|
||||
// Below this temperature the heater will be switched off
|
||||
// because it probably indicates a broken thermistor wire.
|
||||
#define HEATER_0_MINTEMP 5
|
||||
@@ -686,9 +748,15 @@
|
||||
#define USE_XMIN_PLUG
|
||||
#define USE_YMIN_PLUG
|
||||
#define USE_ZMIN_PLUG
|
||||
//#define USE_IMIN_PLUG
|
||||
//#define USE_JMIN_PLUG
|
||||
//#define USE_KMIN_PLUG
|
||||
//#define USE_XMAX_PLUG
|
||||
//#define USE_YMAX_PLUG
|
||||
//#define USE_ZMAX_PLUG
|
||||
//#define USE_IMAX_PLUG
|
||||
//#define USE_JMAX_PLUG
|
||||
//#define USE_KMAX_PLUG
|
||||
|
||||
// Enable pullup for all endstops to prevent a floating state
|
||||
#define ENDSTOPPULLUPS
|
||||
@@ -697,9 +765,15 @@
|
||||
//#define ENDSTOPPULLUP_XMAX
|
||||
//#define ENDSTOPPULLUP_YMAX
|
||||
//#define ENDSTOPPULLUP_ZMAX
|
||||
//#define ENDSTOPPULLUP_IMAX
|
||||
//#define ENDSTOPPULLUP_JMAX
|
||||
//#define ENDSTOPPULLUP_KMAX
|
||||
//#define ENDSTOPPULLUP_XMIN
|
||||
//#define ENDSTOPPULLUP_YMIN
|
||||
//#define ENDSTOPPULLUP_ZMIN
|
||||
//#define ENDSTOPPULLUP_IMIN
|
||||
//#define ENDSTOPPULLUP_JMIN
|
||||
//#define ENDSTOPPULLUP_KMIN
|
||||
//#define ENDSTOPPULLUP_ZMIN_PROBE
|
||||
#endif
|
||||
|
||||
@@ -710,9 +784,15 @@
|
||||
//#define ENDSTOPPULLDOWN_XMAX
|
||||
//#define ENDSTOPPULLDOWN_YMAX
|
||||
//#define ENDSTOPPULLDOWN_ZMAX
|
||||
//#define ENDSTOPPULLDOWN_IMAX
|
||||
//#define ENDSTOPPULLDOWN_JMAX
|
||||
//#define ENDSTOPPULLDOWN_KMAX
|
||||
//#define ENDSTOPPULLDOWN_XMIN
|
||||
//#define ENDSTOPPULLDOWN_YMIN
|
||||
//#define ENDSTOPPULLDOWN_ZMIN
|
||||
//#define ENDSTOPPULLDOWN_IMIN
|
||||
//#define ENDSTOPPULLDOWN_JMIN
|
||||
//#define ENDSTOPPULLDOWN_KMIN
|
||||
//#define ENDSTOPPULLDOWN_ZMIN_PROBE
|
||||
#endif
|
||||
|
||||
@@ -720,9 +800,15 @@
|
||||
#define X_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define Y_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define Z_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define I_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define J_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define K_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define X_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define Y_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define Z_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define I_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define J_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define K_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define Z_MIN_PROBE_ENDSTOP_INVERTING false // Set to true to invert the logic of the probe.
|
||||
|
||||
/**
|
||||
@@ -751,6 +837,9 @@
|
||||
//#define Z2_DRIVER_TYPE A4988
|
||||
//#define Z3_DRIVER_TYPE A4988
|
||||
//#define Z4_DRIVER_TYPE A4988
|
||||
//#define I_DRIVER_TYPE A4988
|
||||
//#define J_DRIVER_TYPE A4988
|
||||
//#define K_DRIVER_TYPE A4988
|
||||
#define E0_DRIVER_TYPE A4988
|
||||
//#define E1_DRIVER_TYPE A4988
|
||||
//#define E2_DRIVER_TYPE A4988
|
||||
@@ -804,14 +893,14 @@
|
||||
/**
|
||||
* Default Axis Steps Per Unit (steps/mm)
|
||||
* Override with M92
|
||||
* X, Y, Z, E0 [, E1[, E2...]]
|
||||
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
|
||||
*/
|
||||
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 400, 500 }
|
||||
|
||||
/**
|
||||
* Default Max Feed Rate (mm/s)
|
||||
* Override with M203
|
||||
* X, Y, Z, E0 [, E1[, E2...]]
|
||||
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
|
||||
*/
|
||||
#define DEFAULT_MAX_FEEDRATE { 300, 300, 5, 25 }
|
||||
|
||||
@@ -824,7 +913,7 @@
|
||||
* Default Max Acceleration (change/s) change = mm/s
|
||||
* (Maximum start speed for accelerated moves)
|
||||
* Override with M201
|
||||
* X, Y, Z, E0 [, E1[, E2...]]
|
||||
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
|
||||
*/
|
||||
#define DEFAULT_MAX_ACCELERATION { 3000, 3000, 100, 10000 }
|
||||
|
||||
@@ -858,6 +947,9 @@
|
||||
#define DEFAULT_XJERK 10.0
|
||||
#define DEFAULT_YJERK 10.0
|
||||
#define DEFAULT_ZJERK 0.3
|
||||
//#define DEFAULT_IJERK 0.3
|
||||
//#define DEFAULT_JJERK 0.3
|
||||
//#define DEFAULT_KJERK 0.3
|
||||
|
||||
//#define TRAVEL_EXTRA_XYJERK 0.0 // Additional jerk allowance for all travel moves
|
||||
|
||||
@@ -1172,12 +1264,18 @@
|
||||
#define Y_ENABLE_ON 0
|
||||
#define Z_ENABLE_ON 0
|
||||
#define E_ENABLE_ON 0 // For all extruders
|
||||
//#define I_ENABLE_ON 0
|
||||
//#define J_ENABLE_ON 0
|
||||
//#define K_ENABLE_ON 0
|
||||
|
||||
// Disable axis steppers immediately when they're not being stepped.
|
||||
// WARNING: When motors turn off there is a chance of losing position accuracy!
|
||||
#define DISABLE_X false
|
||||
#define DISABLE_Y false
|
||||
#define DISABLE_Z false
|
||||
//#define DISABLE_I false
|
||||
//#define DISABLE_J false
|
||||
//#define DISABLE_K false
|
||||
|
||||
// Turn off the display blinking that warns about possible accuracy reduction
|
||||
//#define DISABLE_REDUCED_ACCURACY_WARNING
|
||||
@@ -1193,6 +1291,9 @@
|
||||
#define INVERT_X_DIR false
|
||||
#define INVERT_Y_DIR true
|
||||
#define INVERT_Z_DIR false
|
||||
//#define INVERT_I_DIR false
|
||||
//#define INVERT_J_DIR false
|
||||
//#define INVERT_K_DIR false
|
||||
|
||||
// @section extruder
|
||||
|
||||
@@ -1228,6 +1329,9 @@
|
||||
#define X_HOME_DIR -1
|
||||
#define Y_HOME_DIR -1
|
||||
#define Z_HOME_DIR -1
|
||||
//#define I_HOME_DIR -1
|
||||
//#define J_HOME_DIR -1
|
||||
//#define K_HOME_DIR -1
|
||||
|
||||
// @section machine
|
||||
|
||||
@@ -1242,6 +1346,12 @@
|
||||
#define X_MAX_POS X_BED_SIZE
|
||||
#define Y_MAX_POS Y_BED_SIZE
|
||||
#define Z_MAX_POS 200
|
||||
//#define I_MIN_POS 0
|
||||
//#define I_MAX_POS 50
|
||||
//#define J_MIN_POS 0
|
||||
//#define J_MAX_POS 50
|
||||
//#define K_MIN_POS 0
|
||||
//#define K_MAX_POS 50
|
||||
|
||||
/**
|
||||
* Software Endstops
|
||||
@@ -1258,6 +1368,9 @@
|
||||
#define MIN_SOFTWARE_ENDSTOP_X
|
||||
#define MIN_SOFTWARE_ENDSTOP_Y
|
||||
#define MIN_SOFTWARE_ENDSTOP_Z
|
||||
#define MIN_SOFTWARE_ENDSTOP_I
|
||||
#define MIN_SOFTWARE_ENDSTOP_J
|
||||
#define MIN_SOFTWARE_ENDSTOP_K
|
||||
#endif
|
||||
|
||||
// Max software endstops constrain movement within maximum coordinate bounds
|
||||
@@ -1266,6 +1379,9 @@
|
||||
#define MAX_SOFTWARE_ENDSTOP_X
|
||||
#define MAX_SOFTWARE_ENDSTOP_Y
|
||||
#define MAX_SOFTWARE_ENDSTOP_Z
|
||||
#define MAX_SOFTWARE_ENDSTOP_I
|
||||
#define MAX_SOFTWARE_ENDSTOP_J
|
||||
#define MAX_SOFTWARE_ENDSTOP_K
|
||||
#endif
|
||||
|
||||
#if EITHER(MIN_SOFTWARE_ENDSTOPS, MAX_SOFTWARE_ENDSTOPS)
|
||||
@@ -1577,6 +1693,9 @@
|
||||
//#define MANUAL_X_HOME_POS 0
|
||||
//#define MANUAL_Y_HOME_POS 0
|
||||
//#define MANUAL_Z_HOME_POS 0
|
||||
//#define MANUAL_I_HOME_POS 0
|
||||
//#define MANUAL_J_HOME_POS 0
|
||||
//#define MANUAL_K_HOME_POS 0
|
||||
|
||||
// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
|
||||
//
|
||||
@@ -1819,11 +1938,20 @@
|
||||
/**
|
||||
* Print Job Timer
|
||||
*
|
||||
* Automatically start and stop the print job timer on M104/M109/M190.
|
||||
* Automatically start and stop the print job timer on M104/M109/M140/M190/M141/M191.
|
||||
* The print job timer will only be stopped if the bed/chamber target temp is
|
||||
* below BED_MINTEMP/CHAMBER_MINTEMP.
|
||||
*
|
||||
* M104 (hotend, no wait) - high temp = none, low temp = stop timer
|
||||
* M109 (hotend, wait) - high temp = start timer, low temp = stop timer
|
||||
* M190 (bed, wait) - high temp = start timer, low temp = none
|
||||
* M104 (hotend, no wait) - high temp = none, low temp = stop timer
|
||||
* M109 (hotend, wait) - high temp = start timer, low temp = stop timer
|
||||
* M140 (bed, no wait) - high temp = none, low temp = stop timer
|
||||
* M190 (bed, wait) - high temp = start timer, low temp = none
|
||||
* M141 (chamber, no wait) - high temp = none, low temp = stop timer
|
||||
* M191 (chamber, wait) - high temp = start timer, low temp = none
|
||||
*
|
||||
* For M104/M109, high temp is anything over EXTRUDE_MINTEMP / 2.
|
||||
* For M140/M190, high temp is anything over BED_MINTEMP.
|
||||
* For M141/M191, high temp is anything over CHAMBER_MINTEMP.
|
||||
*
|
||||
* The timer can also be controlled with the following commands:
|
||||
*
|
||||
@@ -2685,7 +2813,7 @@
|
||||
//#define NEOPIXEL_LED
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
#define NEOPIXEL_TYPE NEO_GRBW // NEO_GRBW / NEO_GRB - four/three channel driver type (defined in Adafruit_NeoPixel.h)
|
||||
#define NEOPIXEL_PIN 4 // LED driving pin
|
||||
//#define NEOPIXEL_PIN 4 // LED driving pin
|
||||
//#define NEOPIXEL2_TYPE NEOPIXEL_TYPE
|
||||
//#define NEOPIXEL2_PIN 5
|
||||
#define NEOPIXEL_PIXELS 30 // Number of LEDs in the strip. (Longest strip when NEOPIXEL2_SEPARATE is disabled.)
|
||||
@@ -2703,10 +2831,11 @@
|
||||
//#define NEOPIXEL2_INSERIES // Default behavior is NeoPixel 2 in parallel
|
||||
#endif
|
||||
|
||||
// Use a single NeoPixel LED for static (background) lighting
|
||||
//#define NEOPIXEL_BKGD_LED_INDEX 0 // Index of the LED to use
|
||||
//#define NEOPIXEL_BKGD_COLOR { 255, 255, 255, 0 } // R, G, B, W
|
||||
//#define NEOPIXEL_BKGD_ALWAYS_ON // Keep the backlight on when other NeoPixels are off
|
||||
// Use some of the NeoPixel LEDs for static (background) lighting
|
||||
//#define NEOPIXEL_BKGD_INDEX_FIRST 0 // Index of the first background LED
|
||||
//#define NEOPIXEL_BKGD_INDEX_LAST 5 // Index of the last background LED
|
||||
//#define NEOPIXEL_BKGD_COLOR { 255, 255, 255, 0 } // R, G, B, W
|
||||
//#define NEOPIXEL_BKGD_ALWAYS_ON // Keep the backlight on when other NeoPixels are off
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
@@ -30,7 +30,7 @@
|
||||
*
|
||||
* Basic settings can be found in Configuration.h
|
||||
*/
|
||||
#define CONFIGURATION_ADV_H_VERSION 02000801
|
||||
#define CONFIGURATION_ADV_H_VERSION 02000900
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Settings ============================
|
||||
@@ -125,6 +125,12 @@
|
||||
#define PROBE_BETA 3950 // Beta value
|
||||
#endif
|
||||
|
||||
#if TEMP_SENSOR_REDUNDANT == 1000
|
||||
#define REDUNDANT_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor
|
||||
#define REDUNDANT_RESISTANCE_25C_OHMS 100000 // Resistance at 25C
|
||||
#define REDUNDANT_BETA 3950 // Beta value
|
||||
#endif
|
||||
|
||||
//
|
||||
// Hephestos 2 24V heated bed upgrade kit.
|
||||
// https://store.bq.com/en/heated-bed-kit-hephestos2
|
||||
@@ -196,7 +202,7 @@
|
||||
#define COOLER_MAXTEMP 26 // (°C)
|
||||
#define COOLER_DEFAULT_TEMP 16 // (°C)
|
||||
#define TEMP_COOLER_HYSTERESIS 1 // (°C) Temperature proximity considered "close enough" to the target
|
||||
#define COOLER_PIN 8 // Laser cooler on/off pin used to control power to the cooling element e.g. TEC, External chiller via relay
|
||||
#define COOLER_PIN 8 // Laser cooler on/off pin used to control power to the cooling element (e.g., TEC, External chiller via relay)
|
||||
#define COOLER_INVERTING false
|
||||
#define TEMP_COOLER_PIN 15 // Laser/Cooler temperature sensor pin. ADC is required.
|
||||
#define COOLER_FAN // Enable a fan on the cooler, Fan# 0,1,2,3 etc.
|
||||
@@ -526,6 +532,11 @@
|
||||
//#define USE_OCR2A_AS_TOP
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Use one of the PWM fans as a redundant part-cooling fan
|
||||
*/
|
||||
//#define REDUNDANT_PART_COOLING_FAN 2 // Index of the fan to sync with FAN 0.
|
||||
|
||||
// @section extruder
|
||||
|
||||
/**
|
||||
@@ -671,6 +682,12 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Drive the E axis with two synchronized steppers
|
||||
//#define E_DUAL_STEPPER_DRIVERS
|
||||
#if ENABLED(E_DUAL_STEPPER_DRIVERS)
|
||||
//#define INVERT_E1_VS_E0_DIR // Enable if the E motors need opposite DIR states
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Dual X Carriage
|
||||
*
|
||||
@@ -734,7 +751,7 @@
|
||||
* the position of the toolhead relative to the workspace.
|
||||
*/
|
||||
|
||||
//#define SENSORLESS_BACKOFF_MM { 2, 2 } // (mm) Backoff from endstops before sensorless homing
|
||||
//#define SENSORLESS_BACKOFF_MM { 2, 2, 0 } // (mm) Backoff from endstops before sensorless homing
|
||||
|
||||
#define HOMING_BUMP_MM { 5, 5, 2 } // (mm) Backoff from endstops after first bump
|
||||
#define HOMING_BUMP_DIVISOR { 2, 2, 4 } // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
@@ -918,6 +935,9 @@
|
||||
#define INVERT_X_STEP_PIN false
|
||||
#define INVERT_Y_STEP_PIN false
|
||||
#define INVERT_Z_STEP_PIN false
|
||||
#define INVERT_I_STEP_PIN false
|
||||
#define INVERT_J_STEP_PIN false
|
||||
#define INVERT_K_STEP_PIN false
|
||||
#define INVERT_E_STEP_PIN false
|
||||
|
||||
/**
|
||||
@@ -929,6 +949,9 @@
|
||||
#define DISABLE_INACTIVE_X true
|
||||
#define DISABLE_INACTIVE_Y true
|
||||
#define DISABLE_INACTIVE_Z true // Set 'false' if the nozzle could fall onto your printed part!
|
||||
#define DISABLE_INACTIVE_I true
|
||||
#define DISABLE_INACTIVE_J true
|
||||
#define DISABLE_INACTIVE_K true
|
||||
#define DISABLE_INACTIVE_E true
|
||||
|
||||
// Default Minimum Feedrates for printing and travel moves
|
||||
@@ -969,7 +992,7 @@
|
||||
#if ENABLED(BACKLASH_COMPENSATION)
|
||||
// Define values for backlash distance and correction.
|
||||
// If BACKLASH_GCODE is enabled these values are the defaults.
|
||||
#define BACKLASH_DISTANCE_MM { 0, 0, 0 } // (mm)
|
||||
#define BACKLASH_DISTANCE_MM { 0, 0, 0 } // (mm) One value for each linear axis
|
||||
#define BACKLASH_CORRECTION 0.0 // 0.0 = no correction; 1.0 = full correction
|
||||
|
||||
// Add steps for motor direction changes on CORE kinematics
|
||||
@@ -1040,6 +1063,13 @@
|
||||
#define CALIBRATION_MEASURE_LEFT
|
||||
#define CALIBRATION_MEASURE_BACK
|
||||
|
||||
//#define CALIBRATION_MEASURE_IMIN
|
||||
//#define CALIBRATION_MEASURE_IMAX
|
||||
//#define CALIBRATION_MEASURE_JMIN
|
||||
//#define CALIBRATION_MEASURE_JMAX
|
||||
//#define CALIBRATION_MEASURE_KMIN
|
||||
//#define CALIBRATION_MEASURE_KMAX
|
||||
|
||||
// Probing at the exact top center only works if the center is flat. If
|
||||
// probing on a screwhead or hollow washer, probe near the edges.
|
||||
//#define CALIBRATION_MEASURE_AT_TOP_EDGES
|
||||
@@ -1301,6 +1331,8 @@
|
||||
|
||||
//#define BROWSE_MEDIA_ON_INSERT // Open the file browser when media is inserted
|
||||
|
||||
//#define MEDIA_MENU_AT_TOP // Force the media menu to be listed on the top of the main menu
|
||||
|
||||
#define EVENT_GCODE_SD_ABORT "G28XY" // G-code to run on SD Abort Print (e.g., "G28XY" or "G27")
|
||||
|
||||
#if ENABLED(PRINTER_EVENT_LEDS)
|
||||
@@ -1940,21 +1972,21 @@
|
||||
//#define USE_TEMP_EXT_COMPENSATION
|
||||
|
||||
// Probe temperature calibration generates a table of values starting at PTC_SAMPLE_START
|
||||
// (e.g. 30), in steps of PTC_SAMPLE_RES (e.g. 5) with PTC_SAMPLE_COUNT (e.g. 10) samples.
|
||||
// (e.g., 30), in steps of PTC_SAMPLE_RES (e.g., 5) with PTC_SAMPLE_COUNT (e.g., 10) samples.
|
||||
|
||||
//#define PTC_SAMPLE_START 30.0f
|
||||
//#define PTC_SAMPLE_RES 5.0f
|
||||
//#define PTC_SAMPLE_COUNT 10U
|
||||
//#define PTC_SAMPLE_START 30 // (°C)
|
||||
//#define PTC_SAMPLE_RES 5 // (°C)
|
||||
//#define PTC_SAMPLE_COUNT 10
|
||||
|
||||
// Bed temperature calibration builds a similar table.
|
||||
|
||||
//#define BTC_SAMPLE_START 60.0f
|
||||
//#define BTC_SAMPLE_RES 5.0f
|
||||
//#define BTC_SAMPLE_COUNT 10U
|
||||
//#define BTC_SAMPLE_START 60 // (°C)
|
||||
//#define BTC_SAMPLE_RES 5 // (°C)
|
||||
//#define BTC_SAMPLE_COUNT 10
|
||||
|
||||
// The temperature the probe should be at while taking measurements during bed temperature
|
||||
// calibration.
|
||||
//#define BTC_PROBE_TEMP 30.0f
|
||||
//#define BTC_PROBE_TEMP 30 // (°C)
|
||||
|
||||
// Height above Z=0.0f to raise the nozzle. Lowering this can help the probe to heat faster.
|
||||
// Note: the Z=0.0f offset is determined by the probe offset which can be set using M851.
|
||||
@@ -1963,7 +1995,7 @@
|
||||
// Height to raise the Z-probe between heating and taking the next measurement. Some probes
|
||||
// may fail to untrigger if they have been triggered for a long time, which can be solved by
|
||||
// increasing the height the probe is raised to.
|
||||
//#define PTC_PROBE_RAISE 15U
|
||||
//#define PTC_PROBE_RAISE 15
|
||||
|
||||
// If the probe is outside of the defined range, use linear extrapolation using the closest
|
||||
// point and the PTC_LINEAR_EXTRAPOLATION'th next point. E.g. if set to 4 it will use data[0]
|
||||
@@ -2078,7 +2110,7 @@
|
||||
// @section motion
|
||||
|
||||
// The number of linear moves that can be in the planner at once.
|
||||
// The value of BLOCK_BUFFER_SIZE must be a power of 2 (e.g. 8, 16, 32)
|
||||
// The value of BLOCK_BUFFER_SIZE must be a power of 2 (e.g., 8, 16, 32)
|
||||
#if BOTH(SDSUPPORT, DIRECT_STEPPING)
|
||||
#define BLOCK_BUFFER_SIZE 8
|
||||
#elif ENABLED(SDSUPPORT)
|
||||
@@ -2114,9 +2146,6 @@
|
||||
//#define SERIAL_XON_XOFF
|
||||
#endif
|
||||
|
||||
// Add M575 G-code to change the baud rate
|
||||
//#define BAUD_RATE_GCODE
|
||||
|
||||
#if ENABLED(SDSUPPORT)
|
||||
// Enable this option to collect and display the maximum
|
||||
// RX queue usage after transferring a file to SD.
|
||||
@@ -2237,6 +2266,13 @@
|
||||
//#define EVENT_GCODE_AFTER_TOOLCHANGE "G12X" // Extra G-code to run after tool-change
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Extra G-code to run while executing tool-change commands. Can be used to use an additional
|
||||
* stepper motor (I axis, see option LINEAR_AXES in Configuration.h) to drive the tool-changer.
|
||||
*/
|
||||
//#define EVENT_GCODE_TOOLCHANGE_T0 "G28 A\nG1 A0" // Extra G-code to run while executing tool-change command T0
|
||||
//#define EVENT_GCODE_TOOLCHANGE_T1 "G1 A10" // Extra G-code to run while executing tool-change command T1
|
||||
|
||||
/**
|
||||
* Tool Sensors detect when tools have been picked up or dropped.
|
||||
* Requires the pins TOOL_SENSOR1_PIN, TOOL_SENSOR2_PIN, etc.
|
||||
@@ -2414,6 +2450,24 @@
|
||||
#define Z4_MICROSTEPS Z_MICROSTEPS
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_I(TMC26X)
|
||||
#define I_MAX_CURRENT 1000
|
||||
#define I_SENSE_RESISTOR 91
|
||||
#define I_MICROSTEPS 16
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_J(TMC26X)
|
||||
#define J_MAX_CURRENT 1000
|
||||
#define J_SENSE_RESISTOR 91
|
||||
#define J_MICROSTEPS 16
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_K(TMC26X)
|
||||
#define K_MAX_CURRENT 1000
|
||||
#define K_SENSE_RESISTOR 91
|
||||
#define K_MICROSTEPS 16
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_E0(TMC26X)
|
||||
#define E0_MAX_CURRENT 1000
|
||||
#define E0_SENSE_RESISTOR 91
|
||||
@@ -2564,6 +2618,33 @@
|
||||
//#define Z4_INTERPOLATE true
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(I)
|
||||
#define I_CURRENT 800
|
||||
#define I_CURRENT_HOME I_CURRENT
|
||||
#define I_MICROSTEPS 16
|
||||
#define I_RSENSE 0.11
|
||||
#define I_CHAIN_POS -1
|
||||
//#define I_INTERPOLATE true
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(J)
|
||||
#define J_CURRENT 800
|
||||
#define J_CURRENT_HOME J_CURRENT
|
||||
#define J_MICROSTEPS 16
|
||||
#define J_RSENSE 0.11
|
||||
#define J_CHAIN_POS -1
|
||||
//#define J_INTERPOLATE true
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(K)
|
||||
#define K_CURRENT 800
|
||||
#define K_CURRENT_HOME K_CURRENT
|
||||
#define K_MICROSTEPS 16
|
||||
#define K_RSENSE 0.11
|
||||
#define K_CHAIN_POS -1
|
||||
//#define K_INTERPOLATE true
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(E0)
|
||||
#define E0_CURRENT 800
|
||||
#define E0_MICROSTEPS 16
|
||||
@@ -2639,6 +2720,10 @@
|
||||
//#define Y2_CS_PIN -1
|
||||
//#define Z2_CS_PIN -1
|
||||
//#define Z3_CS_PIN -1
|
||||
//#define Z4_CS_PIN -1
|
||||
//#define I_CS_PIN -1
|
||||
//#define J_CS_PIN -1
|
||||
//#define K_CS_PIN -1
|
||||
//#define E0_CS_PIN -1
|
||||
//#define E1_CS_PIN -1
|
||||
//#define E2_CS_PIN -1
|
||||
@@ -2678,6 +2763,9 @@
|
||||
//#define Z2_SLAVE_ADDRESS 0
|
||||
//#define Z3_SLAVE_ADDRESS 0
|
||||
//#define Z4_SLAVE_ADDRESS 0
|
||||
//#define I_SLAVE_ADDRESS 0
|
||||
//#define J_SLAVE_ADDRESS 0
|
||||
//#define K_SLAVE_ADDRESS 0
|
||||
//#define E0_SLAVE_ADDRESS 0
|
||||
//#define E1_SLAVE_ADDRESS 0
|
||||
//#define E2_SLAVE_ADDRESS 0
|
||||
@@ -2702,6 +2790,9 @@
|
||||
*/
|
||||
#define STEALTHCHOP_XY
|
||||
#define STEALTHCHOP_Z
|
||||
#define STEALTHCHOP_I
|
||||
#define STEALTHCHOP_J
|
||||
#define STEALTHCHOP_K
|
||||
#define STEALTHCHOP_E
|
||||
|
||||
/**
|
||||
@@ -2773,6 +2864,9 @@
|
||||
#define Z2_HYBRID_THRESHOLD 3
|
||||
#define Z3_HYBRID_THRESHOLD 3
|
||||
#define Z4_HYBRID_THRESHOLD 3
|
||||
#define I_HYBRID_THRESHOLD 3
|
||||
#define J_HYBRID_THRESHOLD 3
|
||||
#define K_HYBRID_THRESHOLD 3
|
||||
#define E0_HYBRID_THRESHOLD 30
|
||||
#define E1_HYBRID_THRESHOLD 30
|
||||
#define E2_HYBRID_THRESHOLD 30
|
||||
@@ -2819,6 +2913,9 @@
|
||||
//#define Z2_STALL_SENSITIVITY Z_STALL_SENSITIVITY
|
||||
//#define Z3_STALL_SENSITIVITY Z_STALL_SENSITIVITY
|
||||
//#define Z4_STALL_SENSITIVITY Z_STALL_SENSITIVITY
|
||||
//#define I_STALL_SENSITIVITY 8
|
||||
//#define J_STALL_SENSITIVITY 8
|
||||
//#define K_STALL_SENSITIVITY 8
|
||||
//#define SPI_ENDSTOPS // TMC2130 only
|
||||
//#define IMPROVE_HOMING_RELIABILITY
|
||||
#endif
|
||||
@@ -2959,6 +3056,33 @@
|
||||
#define Z4_SLEW_RATE 1
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_I(L6470)
|
||||
#define I_MICROSTEPS 128
|
||||
#define I_OVERCURRENT 2000
|
||||
#define I_STALLCURRENT 1500
|
||||
#define I_MAX_VOLTAGE 127
|
||||
#define I_CHAIN_POS -1
|
||||
#define I_SLEW_RATE 1
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_J(L6470)
|
||||
#define J_MICROSTEPS 128
|
||||
#define J_OVERCURRENT 2000
|
||||
#define J_STALLCURRENT 1500
|
||||
#define J_MAX_VOLTAGE 127
|
||||
#define J_CHAIN_POS -1
|
||||
#define J_SLEW_RATE 1
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_K(L6470)
|
||||
#define K_MICROSTEPS 128
|
||||
#define K_OVERCURRENT 2000
|
||||
#define K_STALLCURRENT 1500
|
||||
#define K_MAX_VOLTAGE 127
|
||||
#define K_CHAIN_POS -1
|
||||
#define K_SLEW_RATE 1
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_L64XX(E0)
|
||||
#define E0_MICROSTEPS 128
|
||||
#define E0_OVERCURRENT 2000
|
||||
@@ -3308,8 +3432,18 @@
|
||||
#define SPINDLE_LASER_POWERDOWN_DELAY 50 // (ms) Delay to allow the spindle to stop
|
||||
|
||||
#endif
|
||||
|
||||
//
|
||||
// Laser I2C Ammeter (High precision INA226 low/high side module)
|
||||
//
|
||||
//#define I2C_AMMETER
|
||||
#if ENABLED(I2C_AMMETER)
|
||||
#define I2C_AMMETER_IMAX 0.1 // (Amps) Calibration value for the expected current range
|
||||
#define I2C_AMMETER_SHUNT_RESISTOR 0.1 // (Ohms) Calibration shunt resistor value
|
||||
#endif
|
||||
|
||||
#endif
|
||||
#endif
|
||||
#endif // SPINDLE_FEATURE || LASER_FEATURE
|
||||
|
||||
/**
|
||||
* Synchronous Laser Control with M106/M107
|
||||
|
@@ -28,7 +28,7 @@
|
||||
/**
|
||||
* Marlin release version identifier
|
||||
*/
|
||||
//#define SHORT_BUILD_VERSION "2.0.8.1"
|
||||
//#define SHORT_BUILD_VERSION "2.0.9"
|
||||
|
||||
/**
|
||||
* Verbose version identifier which should contain a reference to the location
|
||||
@@ -41,7 +41,7 @@
|
||||
* here we define this default string as the date where the latest release
|
||||
* version was tagged.
|
||||
*/
|
||||
//#define STRING_DISTRIBUTION_DATE "2021-05-15"
|
||||
//#define STRING_DISTRIBUTION_DATE "2021-06-15"
|
||||
|
||||
/**
|
||||
* Defines a generic printer name to be output to the LCD after booting Marlin.
|
||||
|
@@ -186,7 +186,7 @@ inline void HAL_adc_init() {
|
||||
#define GET_PIN_MAP_INDEX(pin) pin
|
||||
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
|
||||
|
||||
#define HAL_SENSITIVE_PINS 0, 1
|
||||
#define HAL_SENSITIVE_PINS 0, 1,
|
||||
|
||||
#ifdef __AVR_AT90USB1286__
|
||||
#define JTAG_DISABLE() do{ MCUCR = 0x80; MCUCR = 0x80; }while(0)
|
||||
|
@@ -168,6 +168,51 @@ void setup_endstop_interrupts() {
|
||||
pciSetup(Z_MIN_PIN);
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_I_MAX
|
||||
#if (digitalPinToInterrupt(I_MAX_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(I_MAX_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(I_MAX_PIN), "I_MAX_PIN is not interrupt-capable");
|
||||
pciSetup(I_MAX_PIN);
|
||||
#endif
|
||||
#elif HAS_I_MIN
|
||||
#if (digitalPinToInterrupt(I_MIN_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(I_MIN_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(I_MIN_PIN), "I_MIN_PIN is not interrupt-capable");
|
||||
pciSetup(I_MIN_PIN);
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_J_MAX
|
||||
#if (digitalPinToInterrupt(J_MAX_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(J_MAX_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(J_MAX_PIN), "J_MAX_PIN is not interrupt-capable");
|
||||
pciSetup(J_MAX_PIN);
|
||||
#endif
|
||||
#elif HAS_J_MIN
|
||||
#if (digitalPinToInterrupt(J_MIN_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(J_MIN_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(J_MIN_PIN), "J_MIN_PIN is not interrupt-capable");
|
||||
pciSetup(J_MIN_PIN);
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_K_MAX
|
||||
#if (digitalPinToInterrupt(K_MAX_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(K_MAX_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(K_MAX_PIN), "K_MAX_PIN is not interrupt-capable");
|
||||
pciSetup(K_MAX_PIN);
|
||||
#endif
|
||||
#elif HAS_K_MIN
|
||||
#if (digitalPinToInterrupt(K_MIN_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(K_MIN_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(K_MIN_PIN), "K_MIN_PIN is not interrupt-capable");
|
||||
pciSetup(K_MIN_PIN);
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_X2_MAX
|
||||
#if (digitalPinToInterrupt(X2_MAX_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(X2_MAX_PIN);
|
||||
@@ -256,6 +301,5 @@ void setup_endstop_interrupts() {
|
||||
pciSetup(Z_MIN_PROBE_PIN);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// If we arrive here without raising an assertion, each pin has either an EXT-interrupt or a PCI.
|
||||
}
|
||||
|
@@ -38,7 +38,7 @@
|
||||
// portModeRegister takes a different argument
|
||||
#define digitalPinToTimer_DEBUG(p) digitalPinToTimer(p)
|
||||
#define digitalPinToBitMask_DEBUG(p) digitalPinToBitMask(p)
|
||||
#define digitalPinToPort_DEBUG(p) digitalPinToPort_Teensy(p)
|
||||
#define digitalPinToPort_DEBUG(p) digitalPinToPort(p)
|
||||
#define GET_PINMODE(pin) (*portModeRegister(pin) & digitalPinToBitMask_DEBUG(pin))
|
||||
|
||||
#elif AVR_ATmega2560_FAMILY_PLUS_70 // So we can access/display all the pins on boards using more than 70
|
||||
|
@@ -64,4 +64,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -59,4 +59,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -25,43 +25,6 @@
|
||||
|
||||
#include "../../../gcode/parser.h"
|
||||
|
||||
uint8_t analog_offset = NUM_DIGITAL_PINS - NUM_ANALOG_INPUTS;
|
||||
|
||||
// Get the digital pin for an analog index
|
||||
pin_t analogInputToDigitalPin(const int8_t p) {
|
||||
return (WITHIN(p, 0, NUM_ANALOG_INPUTS) ? analog_offset + p : P_NC);
|
||||
}
|
||||
|
||||
// Return the index of a pin number
|
||||
int16_t GET_PIN_MAP_INDEX(const pin_t pin) {
|
||||
return pin;
|
||||
}
|
||||
|
||||
// Test whether the pin is valid
|
||||
bool VALID_PIN(const pin_t p) {
|
||||
return WITHIN(p, 0, NUM_DIGITAL_PINS);
|
||||
}
|
||||
|
||||
// Get the analog index for a digital pin
|
||||
int8_t DIGITAL_PIN_TO_ANALOG_PIN(const pin_t p) {
|
||||
return (WITHIN(p, analog_offset, NUM_DIGITAL_PINS) ? p - analog_offset : P_NC);
|
||||
}
|
||||
|
||||
// Test whether the pin is PWM
|
||||
bool PWM_PIN(const pin_t p) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Test whether the pin is interruptable
|
||||
bool INTERRUPT_PIN(const pin_t p) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Get the pin number at the given index
|
||||
pin_t GET_PIN_MAP_PIN(const int16_t ind) {
|
||||
return ind;
|
||||
}
|
||||
|
||||
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval) {
|
||||
return parser.intval(code, dval);
|
||||
}
|
||||
|
@@ -34,26 +34,32 @@ constexpr uint8_t NUM_ANALOG_INPUTS = 16;
|
||||
|
||||
#define HAL_SENSITIVE_PINS
|
||||
|
||||
constexpr uint8_t analog_offset = NUM_DIGITAL_PINS - NUM_ANALOG_INPUTS;
|
||||
|
||||
// Get the digital pin for an analog index
|
||||
pin_t analogInputToDigitalPin(const int8_t p);
|
||||
|
||||
// Return the index of a pin number
|
||||
int16_t GET_PIN_MAP_INDEX(const pin_t pin);
|
||||
|
||||
// Test whether the pin is valid
|
||||
bool VALID_PIN(const pin_t p);
|
||||
constexpr pin_t analogInputToDigitalPin(const int8_t p) {
|
||||
return (WITHIN(p, 0, NUM_ANALOG_INPUTS) ? analog_offset + p : P_NC);
|
||||
}
|
||||
|
||||
// Get the analog index for a digital pin
|
||||
int8_t DIGITAL_PIN_TO_ANALOG_PIN(const pin_t p);
|
||||
constexpr int8_t DIGITAL_PIN_TO_ANALOG_PIN(const pin_t p) {
|
||||
return (WITHIN(p, analog_offset, NUM_DIGITAL_PINS) ? p - analog_offset : P_NC);
|
||||
}
|
||||
|
||||
// Return the index of a pin number
|
||||
constexpr int16_t GET_PIN_MAP_INDEX(const pin_t pin) { return pin; }
|
||||
|
||||
// Test whether the pin is valid
|
||||
constexpr bool VALID_PIN(const pin_t p) { return WITHIN(p, 0, NUM_DIGITAL_PINS); }
|
||||
|
||||
// Test whether the pin is PWM
|
||||
bool PWM_PIN(const pin_t p);
|
||||
constexpr bool PWM_PIN(const pin_t p) { return false; }
|
||||
|
||||
// Test whether the pin is interruptable
|
||||
bool INTERRUPT_PIN(const pin_t p);
|
||||
constexpr bool INTERRUPT_PIN(const pin_t p) { return false; }
|
||||
|
||||
// Get the pin number at the given index
|
||||
pin_t GET_PIN_MAP_PIN(const int16_t ind);
|
||||
constexpr pin_t GET_PIN_MAP_PIN(const int16_t ind) { return ind; }
|
||||
|
||||
// Parse a G-code word into a pin index
|
||||
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval);
|
||||
|
@@ -198,7 +198,7 @@ constexpr pin_t GET_PIN_MAP_PIN(const int16_t index) {
|
||||
// Parse a G-code word into a pin index
|
||||
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval);
|
||||
// P0.6 thru P0.9 are for the onboard SD card
|
||||
#define HAL_SENSITIVE_PINS P0_06, P0_07, P0_08, P0_09
|
||||
#define HAL_SENSITIVE_PINS P0_06, P0_07, P0_08, P0_09,
|
||||
|
||||
#define HAL_IDLETASK 1
|
||||
void HAL_idletask();
|
||||
|
@@ -66,11 +66,7 @@
|
||||
|
||||
#include <SoftwareSPI.h>
|
||||
|
||||
#ifndef HAL_SPI_SPEED
|
||||
#define HAL_SPI_SPEED SPI_FULL_SPEED
|
||||
#endif
|
||||
|
||||
static uint8_t SPI_speed = HAL_SPI_SPEED;
|
||||
static uint8_t SPI_speed = SPI_FULL_SPEED;
|
||||
|
||||
static uint8_t spiTransfer(uint8_t b) {
|
||||
return swSpiTransfer(b, SPI_speed, SD_SCK_PIN, SD_MISO_PIN, SD_MOSI_PIN);
|
||||
@@ -106,15 +102,13 @@
|
||||
|
||||
#else
|
||||
|
||||
#ifndef HAL_SPI_SPEED
|
||||
#ifdef SD_SPI_SPEED
|
||||
#define HAL_SPI_SPEED SD_SPI_SPEED
|
||||
#else
|
||||
#define HAL_SPI_SPEED SPI_FULL_SPEED
|
||||
#endif
|
||||
#ifdef SD_SPI_SPEED
|
||||
#define INIT_SPI_SPEED SD_SPI_SPEED
|
||||
#else
|
||||
#define INIT_SPI_SPEED SPI_FULL_SPEED
|
||||
#endif
|
||||
|
||||
void spiBegin() { spiInit(HAL_SPI_SPEED); } // Set up SCK, MOSI & MISO pins for SSP0
|
||||
void spiBegin() { spiInit(INIT_SPI_SPEED); } // Set up SCK, MOSI & MISO pins for SSP0
|
||||
|
||||
void spiInit(uint8_t spiRate) {
|
||||
#if SD_MISO_PIN == BOARD_SPI1_MISO_PIN
|
||||
|
@@ -122,4 +122,37 @@ void setup_endstop_interrupts() {
|
||||
#endif
|
||||
_ATTACH(Z_MIN_PROBE_PIN);
|
||||
#endif
|
||||
#if HAS_I_MAX
|
||||
#if !LPC1768_PIN_INTERRUPT_M(I_MAX_PIN)
|
||||
#error "I_MAX_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(I_MAX_PIN);
|
||||
#elif HAS_I_MIN
|
||||
#if !LPC1768_PIN_INTERRUPT_M(I_MIN_PIN)
|
||||
#error "I_MIN_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(I_MIN_PIN);
|
||||
#endif
|
||||
#if HAS_J_MAX
|
||||
#if !LPC1768_PIN_INTERRUPT_M(J_MAX_PIN)
|
||||
#error "J_MAX_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(J_MAX_PIN);
|
||||
#elif HAS_J_MIN
|
||||
#if !LPC1768_PIN_INTERRUPT_M(J_MIN_PIN)
|
||||
#error "J_MIN_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(J_MIN_PIN);
|
||||
#endif
|
||||
#if HAS_K_MAX
|
||||
#if !LPC1768_PIN_INTERRUPT_M(K_MAX_PIN)
|
||||
#error "K_MAX_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(K_MAX_PIN);
|
||||
#elif HAS_K_MIN
|
||||
#if !LPC1768_PIN_INTERRUPT_M(K_MIN_PIN)
|
||||
#error "K_MIN_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(K_MIN_PIN);
|
||||
#endif
|
||||
}
|
||||
|
@@ -144,7 +144,7 @@ static_assert(DISABLED(BAUD_RATE_GCODE), "BAUD_RATE_GCODE is not yet supported o
|
||||
#error "Serial port pins (2) conflict with Z4 pins!"
|
||||
#elif ANY_RX(2, X_DIR_PIN, Y_DIR_PIN)
|
||||
#error "Serial port pins (2) conflict with other pins!"
|
||||
#elif Y_HOME_DIR < 0 && IS_TX2(Y_STOP_PIN)
|
||||
#elif Y_HOME_TO_MIN && IS_TX2(Y_STOP_PIN)
|
||||
#error "Serial port pins (2) conflict with Y endstop pin!"
|
||||
#elif HAS_CUSTOM_PROBE_PIN && IS_TX2(Z_MIN_PROBE_PIN)
|
||||
#error "Serial port pins (2) conflict with probe pin!"
|
||||
|
@@ -54,7 +54,7 @@ enum XPTCoordinate : uint8_t {
|
||||
XPT2046_Z2 = 0x40 | XPT2046_CONTROL | XPT2046_DFR_MODE,
|
||||
};
|
||||
|
||||
#if !defined(XPT2046_Z1_THRESHOLD)
|
||||
#ifndef XPT2046_Z1_THRESHOLD
|
||||
#define XPT2046_Z1_THRESHOLD 10
|
||||
#endif
|
||||
|
||||
|
@@ -47,80 +47,38 @@
|
||||
|
||||
#include "../../module/endstops.h"
|
||||
|
||||
#define MATCH_EILINE(P1,P2) (P1 != P2 && PIN_TO_EILINE(P1) == PIN_TO_EILINE(P2))
|
||||
#if HAS_X_MAX
|
||||
#define MATCH_X_MAX_EILINE(P) MATCH_EILINE(P, X_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_X_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_X_MIN
|
||||
#define MATCH_X_MIN_EILINE(P) MATCH_EILINE(P, X_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_X_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Y_MAX
|
||||
#define MATCH_Y_MAX_EILINE(P) MATCH_EILINE(P, Y_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_Y_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Y_MIN
|
||||
#define MATCH_Y_MIN_EILINE(P) MATCH_EILINE(P, Y_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_Y_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z_MAX
|
||||
#define MATCH_Z_MAX_EILINE(P) MATCH_EILINE(P, Z_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_Z_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z_MIN
|
||||
#define MATCH_Z_MIN_EILINE(P) MATCH_EILINE(P, Z_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_Z_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z2_MAX
|
||||
#define MATCH_Z2_MAX_EILINE(P) MATCH_EILINE(P, Z2_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_Z2_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z2_MIN
|
||||
#define MATCH_Z2_MIN_EILINE(P) MATCH_EILINE(P, Z2_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_Z2_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z3_MAX
|
||||
#define MATCH_Z3_MAX_EILINE(P) MATCH_EILINE(P, Z3_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_Z3_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z3_MIN
|
||||
#define MATCH_Z3_MIN_EILINE(P) MATCH_EILINE(P, Z3_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_Z3_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z4_MAX
|
||||
#define MATCH_Z4_MAX_EILINE(P) MATCH_EILINE(P, Z4_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_Z4_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z4_MIN
|
||||
#define MATCH_Z4_MIN_EILINE(P) MATCH_EILINE(P, Z4_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_Z4_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z_MIN_PROBE_PIN
|
||||
#define MATCH_Z_MIN_PROBE_EILINE(P) MATCH_EILINE(P, Z_MIN_PROBE_PIN)
|
||||
#else
|
||||
#define MATCH_Z_MIN_PROBE_EILINE(P) false
|
||||
#endif
|
||||
#define AVAILABLE_EILINE(P) (PIN_TO_EILINE(P) != -1 \
|
||||
&& !MATCH_X_MAX_EILINE(P) && !MATCH_X_MIN_EILINE(P) \
|
||||
&& !MATCH_Y_MAX_EILINE(P) && !MATCH_Y_MIN_EILINE(P) \
|
||||
&& !MATCH_Z_MAX_EILINE(P) && !MATCH_Z_MIN_EILINE(P) \
|
||||
&& !MATCH_Z2_MAX_EILINE(P) && !MATCH_Z2_MIN_EILINE(P) \
|
||||
&& !MATCH_Z3_MAX_EILINE(P) && !MATCH_Z3_MIN_EILINE(P) \
|
||||
&& !MATCH_Z4_MAX_EILINE(P) && !MATCH_Z4_MIN_EILINE(P) \
|
||||
&& !MATCH_Z_MIN_PROBE_EILINE(P))
|
||||
#define MATCH_EILINE(P1,P2) (P1 != P2 && PIN_TO_EILINE(P1) == PIN_TO_EILINE(P2))
|
||||
#define MATCH_X_MAX_EILINE(P) TERN0(HAS_X_MAX, DEFER4(MATCH_EILINE)(P, X_MAX_PIN))
|
||||
#define MATCH_X_MIN_EILINE(P) TERN0(HAS_X_MIN, DEFER4(MATCH_EILINE)(P, X_MIN_PIN))
|
||||
#define MATCH_Y_MAX_EILINE(P) TERN0(HAS_Y_MAX, DEFER4(MATCH_EILINE)(P, Y_MAX_PIN))
|
||||
#define MATCH_Y_MIN_EILINE(P) TERN0(HAS_Y_MIN, DEFER4(MATCH_EILINE)(P, Y_MIN_PIN))
|
||||
#define MATCH_Z_MAX_EILINE(P) TERN0(HAS_Z_MAX, DEFER4(MATCH_EILINE)(P, Z_MAX_PIN))
|
||||
#define MATCH_Z_MIN_EILINE(P) TERN0(HAS_Z_MIN, DEFER4(MATCH_EILINE)(P, Z_MIN_PIN))
|
||||
#define MATCH_I_MAX_EILINE(P) TERN0(HAS_I_MAX, DEFER4(MATCH_EILINE)(P, I_MAX_PIN))
|
||||
#define MATCH_I_MIN_EILINE(P) TERN0(HAS_I_MIN, DEFER4(MATCH_EILINE)(P, I_MIN_PIN))
|
||||
#define MATCH_J_MAX_EILINE(P) TERN0(HAS_J_MAX, DEFER4(MATCH_EILINE)(P, J_MAX_PIN))
|
||||
#define MATCH_J_MIN_EILINE(P) TERN0(HAS_J_MIN, DEFER4(MATCH_EILINE)(P, J_MIN_PIN))
|
||||
#define MATCH_K_MAX_EILINE(P) TERN0(HAS_K_MAX, DEFER4(MATCH_EILINE)(P, K_MAX_PIN))
|
||||
#define MATCH_K_MIN_EILINE(P) TERN0(HAS_K_MIN, DEFER4(MATCH_EILINE)(P, K_MIN_PIN))
|
||||
#define MATCH_Z2_MAX_EILINE(P) TERN0(HAS_Z2_MAX, DEFER4(MATCH_EILINE)(P, Z2_MAX_PIN))
|
||||
#define MATCH_Z2_MIN_EILINE(P) TERN0(HAS_Z2_MIN, DEFER4(MATCH_EILINE)(P, Z2_MIN_PIN))
|
||||
#define MATCH_Z3_MAX_EILINE(P) TERN0(HAS_Z3_MAX, DEFER4(MATCH_EILINE)(P, Z3_MAX_PIN))
|
||||
#define MATCH_Z3_MIN_EILINE(P) TERN0(HAS_Z3_MIN, DEFER4(MATCH_EILINE)(P, Z3_MIN_PIN))
|
||||
#define MATCH_Z4_MAX_EILINE(P) TERN0(HAS_Z4_MAX, DEFER4(MATCH_EILINE)(P, Z4_MAX_PIN))
|
||||
#define MATCH_Z4_MIN_EILINE(P) TERN0(HAS_Z4_MIN, DEFER4(MATCH_EILINE)(P, Z4_MIN_PIN))
|
||||
#define MATCH_Z_MIN_PROBE_EILINE(P) TERN0(HAS_Z_MIN_PROBE_PIN, DEFER4(MATCH_EILINE)(P, Z_MIN_PROBE_PIN))
|
||||
|
||||
#define AVAILABLE_EILINE(P) ( PIN_TO_EILINE(P) != -1 \
|
||||
&& !MATCH_X_MAX_EILINE(P) && !MATCH_X_MIN_EILINE(P) \
|
||||
&& !MATCH_Y_MAX_EILINE(P) && !MATCH_Y_MIN_EILINE(P) \
|
||||
&& !MATCH_Z_MAX_EILINE(P) && !MATCH_Z_MIN_EILINE(P) \
|
||||
&& !MATCH_I_MAX_EILINE(P) && !MATCH_I_MIN_EILINE(P) \
|
||||
&& !MATCH_J_MAX_EILINE(P) && !MATCH_J_MIN_EILINE(P) \
|
||||
&& !MATCH_K_MAX_EILINE(P) && !MATCH_K_MIN_EILINE(P) \
|
||||
&& !MATCH_Z2_MAX_EILINE(P) && !MATCH_Z2_MIN_EILINE(P) \
|
||||
&& !MATCH_Z3_MAX_EILINE(P) && !MATCH_Z3_MIN_EILINE(P) \
|
||||
&& !MATCH_Z4_MAX_EILINE(P) && !MATCH_Z4_MIN_EILINE(P) \
|
||||
&& !MATCH_Z_MIN_PROBE_EILINE(P) )
|
||||
|
||||
// One ISR for all EXT-Interrupts
|
||||
void endstop_ISR() { endstops.update(); }
|
||||
@@ -204,5 +162,37 @@ void setup_endstop_interrupts() {
|
||||
#error "Z_MIN_PROBE_PIN has no EXTINT line available."
|
||||
#endif
|
||||
_ATTACH(Z_MIN_PROBE_PIN);
|
||||
#elif HAS_I_MAX
|
||||
#if !AVAILABLE_EILINE(I_MAX_PIN)
|
||||
#error "I_MAX_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(I_MAX_PIN, endstop_ISR, CHANGE);
|
||||
#elif HAS_I_MIN
|
||||
#if !AVAILABLE_EILINE(I_MIN_PIN)
|
||||
#error "I_MIN_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(I_MIN_PIN, endstop_ISR, CHANGE);
|
||||
#endif
|
||||
#if HAS_J_MAX
|
||||
#if !AVAILABLE_EILINE(J_MAX_PIN)
|
||||
#error "J_MAX_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(J_MAX_PIN, endstop_ISR, CHANGE);
|
||||
#elif HAS_J_MIN
|
||||
#if !AVAILABLE_EILINE(J_MIN_PIN)
|
||||
#error "J_MIN_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(J_MIN_PIN, endstop_ISR, CHANGE);
|
||||
#endif
|
||||
#if HAS_K_MAX
|
||||
#if !AVAILABLE_EILINE(K_MAX_PIN)
|
||||
#error "K_MAX_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(K_MAX_PIN, endstop_ISR, CHANGE);
|
||||
#elif HAS_K_MIN
|
||||
#if !AVAILABLE_EILINE(K_MIN_PIN)
|
||||
#error "K_MIN_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(K_MIN_PIN, endstop_ISR, CHANGE);
|
||||
#endif
|
||||
}
|
||||
|
@@ -195,6 +195,7 @@ uint16_t HAL_adc_get_result();
|
||||
#ifdef STM32F1xx
|
||||
#define JTAG_DISABLE() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_JTAGDISABLE)
|
||||
#define JTAGSWD_DISABLE() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_DISABLE)
|
||||
#define JTAGSWD_RESET() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_RESET); // Reset: FULL SWD+JTAG
|
||||
#endif
|
||||
|
||||
#define PLATFORM_M997_SUPPORT
|
||||
|
@@ -163,11 +163,9 @@ static SPISettings spiConfig;
|
||||
}
|
||||
spiConfig = SPISettings(clock, MSBFIRST, SPI_MODE0);
|
||||
|
||||
#if ENABLED(CUSTOM_SPI_PINS)
|
||||
SPI.setMISO(SD_MISO_PIN);
|
||||
SPI.setMOSI(SD_MOSI_PIN);
|
||||
SPI.setSCLK(SD_SCK_PIN);
|
||||
#endif
|
||||
SPI.setMISO(SD_MISO_PIN);
|
||||
SPI.setMOSI(SD_MOSI_PIN);
|
||||
SPI.setSCLK(SD_SCK_PIN);
|
||||
|
||||
SPI.begin();
|
||||
}
|
||||
|
82
Marlin/src/HAL/STM32/eeprom_bl24cxx.cpp
Normal file
82
Marlin/src/HAL/STM32/eeprom_bl24cxx.cpp
Normal file
@@ -0,0 +1,82 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
#ifdef STM32F1
|
||||
|
||||
/**
|
||||
* PersistentStore for Arduino-style EEPROM interface
|
||||
* with simple implementations supplied by Marlin.
|
||||
*/
|
||||
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(IIC_BL24CXX_EEPROM)
|
||||
|
||||
#include "../shared/eeprom_if.h"
|
||||
#include "../shared/eeprom_api.h"
|
||||
|
||||
//
|
||||
// PersistentStore
|
||||
//
|
||||
|
||||
#ifndef MARLIN_EEPROM_SIZE
|
||||
#error "MARLIN_EEPROM_SIZE is required for IIC_BL24CXX_EEPROM."
|
||||
#endif
|
||||
|
||||
size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE; }
|
||||
|
||||
bool PersistentStore::access_start() { eeprom_init(); return true; }
|
||||
bool PersistentStore::access_finish() { return true; }
|
||||
|
||||
bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
|
||||
uint16_t written = 0;
|
||||
while (size--) {
|
||||
uint8_t v = *value;
|
||||
uint8_t * const p = (uint8_t * const)pos;
|
||||
if (v != eeprom_read_byte(p)) { // EEPROM has only ~100,000 write cycles, so only write bytes that have changed!
|
||||
eeprom_write_byte(p, v);
|
||||
if (++written & 0x7F) delay(2); else safe_delay(2); // Avoid triggering watchdog during long EEPROM writes
|
||||
if (eeprom_read_byte(p) != v) {
|
||||
SERIAL_ECHO_MSG(STR_ERR_EEPROM_WRITE);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
crc16(crc, &v, 1);
|
||||
pos++;
|
||||
value++;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool PersistentStore::read_data(int &pos, uint8_t *value, size_t size, uint16_t *crc, const bool writing/*=true*/) {
|
||||
do {
|
||||
uint8_t * const p = (uint8_t * const)pos;
|
||||
uint8_t c = eeprom_read_byte(p);
|
||||
if (writing) *value = c;
|
||||
crc16(crc, &c, 1);
|
||||
pos++;
|
||||
value++;
|
||||
} while (--size);
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif // IIC_BL24CXX_EEPROM
|
||||
#endif // STM32F1
|
@@ -28,6 +28,10 @@
|
||||
|
||||
#include "../shared/eeprom_api.h"
|
||||
|
||||
// Better: "utility/stm32_eeprom.h", but only after updating stm32duino to 2.0.0
|
||||
// Use EEPROM.h for compatibility, for now.
|
||||
#include <EEPROM.h>
|
||||
|
||||
/**
|
||||
* The STM32 HAL supports chips that deal with "pages" and some with "sectors" and some that
|
||||
* even have multiple "banks" of flash.
|
||||
|
54
Marlin/src/HAL/STM32/eeprom_if_iic.cpp
Normal file
54
Marlin/src/HAL/STM32/eeprom_if_iic.cpp
Normal file
@@ -0,0 +1,54 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* Platform-independent Arduino functions for I2C EEPROM.
|
||||
* Enable USE_SHARED_EEPROM if not supplied by the framework.
|
||||
*/
|
||||
|
||||
#ifdef STM32F1
|
||||
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(IIC_BL24CXX_EEPROM)
|
||||
|
||||
#include "../../libs/BL24CXX.h"
|
||||
#include "../shared/eeprom_if.h"
|
||||
|
||||
void eeprom_init() { BL24CXX::init(); }
|
||||
|
||||
// ------------------------
|
||||
// Public functions
|
||||
// ------------------------
|
||||
|
||||
void eeprom_write_byte(uint8_t *pos, uint8_t value) {
|
||||
const unsigned eeprom_address = (unsigned)pos;
|
||||
return BL24CXX::writeOneByte(eeprom_address, value);
|
||||
}
|
||||
|
||||
uint8_t eeprom_read_byte(uint8_t *pos) {
|
||||
const unsigned eeprom_address = (unsigned)pos;
|
||||
return BL24CXX::readOneByte(eeprom_address);
|
||||
}
|
||||
|
||||
#endif // IIC_BL24CXX_EEPROM
|
||||
#endif // STM32F1
|
@@ -46,4 +46,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -21,7 +21,7 @@
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#if defined(USBD_USE_CDC_MSC) && DISABLED(NO_SD_HOST_DRIVE)
|
||||
#if BOTH(SDSUPPORT, USBD_USE_CDC_MSC) && DISABLED(NO_SD_HOST_DRIVE)
|
||||
#define HAS_SD_HOST_DRIVE 1
|
||||
#endif
|
||||
|
||||
@@ -30,3 +30,6 @@
|
||||
#undef F_CPU
|
||||
#define F_CPU BOARD_F_CPU
|
||||
#endif
|
||||
|
||||
// The Sensitive Pins array is not optimizable
|
||||
#define RUNTIME_ONLY_ANALOG_TO_DIGITAL
|
||||
|
@@ -33,9 +33,9 @@ public:
|
||||
DiskIODriver* diskIODriver() {
|
||||
#if ENABLED(MULTI_VOLUME)
|
||||
#if SHARED_VOLUME_IS(SD_ONBOARD)
|
||||
return &card.media_sd_spi;
|
||||
return &card.media_driver_sdcard;
|
||||
#elif SHARED_VOLUME_IS(USB_FLASH_DRIVE)
|
||||
return &card.media_usbFlashDrive;
|
||||
return &card.media_driver_usbFlash;
|
||||
#endif
|
||||
#else
|
||||
return card.diskIODriver();
|
||||
|
@@ -125,12 +125,20 @@ void TFT_SPI::DataTransferBegin(uint16_t DataSize) {
|
||||
WRITE(TFT_CS_PIN, LOW);
|
||||
}
|
||||
|
||||
#ifdef TFT_DEFAULT_DRIVER
|
||||
#include "../../../lcd/tft_io/tft_ids.h"
|
||||
#endif
|
||||
|
||||
uint32_t TFT_SPI::GetID() {
|
||||
uint32_t id;
|
||||
id = ReadID(LCD_READ_ID);
|
||||
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF) {
|
||||
id = ReadID(LCD_READ_ID4);
|
||||
#ifdef TFT_DEFAULT_DRIVER
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
|
||||
id = TFT_DEFAULT_DRIVER;
|
||||
#endif
|
||||
}
|
||||
return id;
|
||||
}
|
||||
|
||||
|
@@ -56,7 +56,7 @@ enum XPTCoordinate : uint8_t {
|
||||
XPT2046_Z2 = 0x40 | XPT2046_CONTROL | XPT2046_DFR_MODE,
|
||||
};
|
||||
|
||||
#if !defined(XPT2046_Z1_THRESHOLD)
|
||||
#ifndef XPT2046_Z1_THRESHOLD
|
||||
#define XPT2046_Z1_THRESHOLD 10
|
||||
#endif
|
||||
|
||||
|
@@ -167,6 +167,15 @@ constexpr bool IsSerialClassAllowed(const HardwareSerial&) { return false; }
|
||||
#if AXIS_HAS_HW_SERIAL(Z4)
|
||||
CHECK_AXIS_SERIAL(Z4);
|
||||
#endif
|
||||
#if AXIS_HAS_HW_SERIAL(I)
|
||||
CHECK_AXIS_SERIAL(I);
|
||||
#endif
|
||||
#if AXIS_HAS_HW_SERIAL(J)
|
||||
CHECK_AXIS_SERIAL(J);
|
||||
#endif
|
||||
#if AXIS_HAS_HW_SERIAL(K)
|
||||
CHECK_AXIS_SERIAL(K);
|
||||
#endif
|
||||
#if AXIS_HAS_HW_SERIAL(E0)
|
||||
CHECK_AXIS_SERIAL(E0);
|
||||
#endif
|
||||
|
@@ -11,6 +11,7 @@ if __name__ == "__main__":
|
||||
"-fsigned-char",
|
||||
"-fno-move-loop-invariants",
|
||||
"-fno-strict-aliasing",
|
||||
"-fsingle-precision-constant",
|
||||
|
||||
"--specs=nano.specs",
|
||||
"--specs=nosys.specs",
|
||||
|
@@ -71,4 +71,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -90,12 +90,20 @@ void TFT_SPI::DataTransferBegin(uint16_t DataSize) {
|
||||
TFT_CS_L;
|
||||
}
|
||||
|
||||
#ifdef TFT_DEFAULT_DRIVER
|
||||
#include "../../../lcd/tft_io/tft_ids.h"
|
||||
#endif
|
||||
|
||||
uint32_t TFT_SPI::GetID() {
|
||||
uint32_t id;
|
||||
id = ReadID(LCD_READ_ID);
|
||||
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF) {
|
||||
id = ReadID(LCD_READ_ID4);
|
||||
#ifdef TFT_DEFAULT_DRIVER
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
|
||||
id = TFT_DEFAULT_DRIVER;
|
||||
#endif
|
||||
}
|
||||
return id;
|
||||
}
|
||||
|
||||
|
@@ -54,7 +54,7 @@ enum XPTCoordinate : uint8_t {
|
||||
XPT2046_Z2 = 0x40 | XPT2046_CONTROL | XPT2046_DFR_MODE,
|
||||
};
|
||||
|
||||
#if !defined(XPT2046_Z1_THRESHOLD)
|
||||
#ifndef XPT2046_Z1_THRESHOLD
|
||||
#define XPT2046_Z1_THRESHOLD 10
|
||||
#endif
|
||||
|
||||
|
@@ -80,7 +80,7 @@ typedef uint16_t hal_timer_t;
|
||||
//#define TEMP_TIMER_NUM 4 // 2->4, Timer 2 for Stepper Current PWM
|
||||
#endif
|
||||
|
||||
#if MB(BTT_SKR_MINI_E3_V1_0, BTT_SKR_E3_DIP, BTT_SKR_MINI_E3_V1_2, MKS_ROBIN_LITE)
|
||||
#if MB(BTT_SKR_MINI_E3_V1_0, BTT_SKR_E3_DIP, BTT_SKR_MINI_E3_V1_2, MKS_ROBIN_LITE, MKS_ROBIN_E3D, MKS_ROBIN_E3)
|
||||
// SKR Mini E3 boards use PA8 as FAN_PIN, so TIMER 1 is used for Fan PWM.
|
||||
#ifdef STM32_HIGH_DENSITY
|
||||
#define SERVO0_TIMER_NUM 8 // tone.cpp uses Timer 4
|
||||
|
@@ -64,4 +64,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -63,4 +63,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -63,4 +63,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -61,11 +61,24 @@ static constexpr uint8_t eeprom_device_address = I2C_ADDRESS(EEPROM_DEVICE_ADDRE
|
||||
// Public functions
|
||||
// ------------------------
|
||||
|
||||
#define SMALL_EEPROM (MARLIN_EEPROM_SIZE <= 2048)
|
||||
|
||||
// Combine Address high bits into the device address on <=16Kbit (2K) and >512Kbit (64K) EEPROMs.
|
||||
// Note: MARLIN_EEPROM_SIZE is specified in bytes, whereas EEPROM model numbers refer to bits.
|
||||
// e.g., The "16" in BL24C16 indicates a 16Kbit (2KB) size.
|
||||
static uint8_t _eeprom_calc_device_address(uint8_t * const pos) {
|
||||
const unsigned eeprom_address = (unsigned)pos;
|
||||
return (SMALL_EEPROM || MARLIN_EEPROM_SIZE > 65536)
|
||||
? uint8_t(eeprom_device_address | ((eeprom_address >> (SMALL_EEPROM ? 8 : 16)) & 0x07))
|
||||
: eeprom_device_address;
|
||||
}
|
||||
|
||||
static void _eeprom_begin(uint8_t * const pos) {
|
||||
const unsigned eeprom_address = (unsigned)pos;
|
||||
Wire.beginTransmission(eeprom_device_address);
|
||||
Wire.write(int(eeprom_address >> 8)); // Address High
|
||||
Wire.write(int(eeprom_address & 0xFF)); // Address Low
|
||||
Wire.beginTransmission(_eeprom_calc_device_address(pos));
|
||||
if (!SMALL_EEPROM)
|
||||
Wire.write(uint8_t((eeprom_address >> 8) & 0xFF)); // Address High, if needed
|
||||
Wire.write(uint8_t(eeprom_address & 0xFF)); // Address Low
|
||||
}
|
||||
|
||||
void eeprom_write_byte(uint8_t *pos, uint8_t value) {
|
||||
@@ -81,7 +94,7 @@ void eeprom_write_byte(uint8_t *pos, uint8_t value) {
|
||||
uint8_t eeprom_read_byte(uint8_t *pos) {
|
||||
_eeprom_begin(pos);
|
||||
Wire.endTransmission();
|
||||
Wire.requestFrom(eeprom_device_address, (byte)1);
|
||||
Wire.requestFrom(_eeprom_calc_device_address(pos), (byte)1);
|
||||
return Wire.available() ? Wire.read() : 0xFF;
|
||||
}
|
||||
|
||||
|
@@ -282,8 +282,15 @@ bool wait_for_heatup = true;
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wnarrowing"
|
||||
|
||||
#ifdef RUNTIME_ONLY_ANALOG_TO_DIGITAL
|
||||
static const pin_t sensitive_pins[] PROGMEM = { SENSITIVE_PINS };
|
||||
#else
|
||||
template <pin_t ...D>
|
||||
constexpr pin_t OnlyPins<-2, D...>::table[sizeof...(D)];
|
||||
#define sensitive_pins OnlyPins<SENSITIVE_PINS>::table
|
||||
#endif
|
||||
|
||||
bool pin_is_protected(const pin_t pin) {
|
||||
static const pin_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
|
||||
LOOP_L_N(i, COUNT(sensitive_pins)) {
|
||||
pin_t sensitive_pin;
|
||||
memcpy_P(&sensitive_pin, &sensitive_pins[i], sizeof(pin_t));
|
||||
@@ -304,6 +311,9 @@ void enable_all_steppers() {
|
||||
ENABLE_AXIS_X();
|
||||
ENABLE_AXIS_Y();
|
||||
ENABLE_AXIS_Z();
|
||||
ENABLE_AXIS_I(); // Marlin 6-axis support by DerAndere (https://github.com/DerAndere1/Marlin/wiki)
|
||||
ENABLE_AXIS_J();
|
||||
ENABLE_AXIS_K();
|
||||
enable_e_steppers();
|
||||
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onSteppersEnabled());
|
||||
@@ -317,7 +327,7 @@ void disable_e_steppers() {
|
||||
void disable_e_stepper(const uint8_t e) {
|
||||
#define _CASE_DIS_E(N) case N: DISABLE_AXIS_E##N(); break;
|
||||
switch (e) {
|
||||
REPEAT(EXTRUDERS, _CASE_DIS_E)
|
||||
REPEAT(E_STEPPERS, _CASE_DIS_E)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -325,6 +335,9 @@ void disable_all_steppers() {
|
||||
DISABLE_AXIS_X();
|
||||
DISABLE_AXIS_Y();
|
||||
DISABLE_AXIS_Z();
|
||||
DISABLE_AXIS_I();
|
||||
DISABLE_AXIS_J();
|
||||
DISABLE_AXIS_K();
|
||||
disable_e_steppers();
|
||||
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onSteppersDisabled());
|
||||
@@ -408,19 +421,18 @@ void startOrResumeJob() {
|
||||
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
|
||||
* - Pulse FET_SAFETY_PIN if it exists
|
||||
*/
|
||||
inline void manage_inactivity(const bool ignore_stepper_queue=false) {
|
||||
inline void manage_inactivity(const bool no_stepper_sleep=false) {
|
||||
|
||||
queue.get_available_commands();
|
||||
|
||||
const millis_t ms = millis();
|
||||
|
||||
// Prevent steppers timing-out in the middle of M600
|
||||
// unless PAUSE_PARK_NO_STEPPER_TIMEOUT is disabled
|
||||
const bool parked_or_ignoring = ignore_stepper_queue
|
||||
// Prevent steppers timing-out
|
||||
const bool do_reset_timeout = no_stepper_sleep
|
||||
|| TERN0(PAUSE_PARK_NO_STEPPER_TIMEOUT, did_pause_print);
|
||||
|
||||
// Reset both the M18/M84 activity timeout and the M85 max 'kill' timeout
|
||||
if (parked_or_ignoring) gcode.reset_stepper_timeout(ms);
|
||||
if (do_reset_timeout) gcode.reset_stepper_timeout(ms);
|
||||
|
||||
if (gcode.stepper_max_timed_out(ms)) {
|
||||
SERIAL_ERROR_MSG(STR_KILL_INACTIVE_TIME, parser.command_ptr);
|
||||
@@ -436,7 +448,7 @@ inline void manage_inactivity(const bool ignore_stepper_queue=false) {
|
||||
// activity timeout and the M85 max 'kill' timeout
|
||||
if (planner.has_blocks_queued())
|
||||
gcode.reset_stepper_timeout(ms);
|
||||
else if (!parked_or_ignoring && gcode.stepper_inactive_timeout()) {
|
||||
else if (!do_reset_timeout && gcode.stepper_inactive_timeout()) {
|
||||
if (!already_shutdown_steppers) {
|
||||
already_shutdown_steppers = true; // L6470 SPI will consume 99% of free time without this
|
||||
|
||||
@@ -444,6 +456,9 @@ inline void manage_inactivity(const bool ignore_stepper_queue=false) {
|
||||
if (ENABLED(DISABLE_INACTIVE_X)) DISABLE_AXIS_X();
|
||||
if (ENABLED(DISABLE_INACTIVE_Y)) DISABLE_AXIS_Y();
|
||||
if (ENABLED(DISABLE_INACTIVE_Z)) DISABLE_AXIS_Z();
|
||||
if (ENABLED(DISABLE_INACTIVE_I)) DISABLE_AXIS_I();
|
||||
if (ENABLED(DISABLE_INACTIVE_J)) DISABLE_AXIS_J();
|
||||
if (ENABLED(DISABLE_INACTIVE_K)) DISABLE_AXIS_K();
|
||||
if (ENABLED(DISABLE_INACTIVE_E)) disable_e_steppers();
|
||||
|
||||
TERN_(AUTO_BED_LEVELING_UBL, ubl.steppers_were_disabled());
|
||||
@@ -716,14 +731,14 @@ inline void manage_inactivity(const bool ignore_stepper_queue=false) {
|
||||
* - Update the Průša MMU2
|
||||
* - Handle Joystick jogging
|
||||
*/
|
||||
void idle(TERN_(ADVANCED_PAUSE_FEATURE, bool no_stepper_sleep/*=false*/)) {
|
||||
void idle(bool no_stepper_sleep/*=false*/) {
|
||||
#if ENABLED(MARLIN_DEV_MODE)
|
||||
static uint16_t idle_depth = 0;
|
||||
if (++idle_depth > 5) SERIAL_ECHOLNPAIR("idle() call depth: ", idle_depth);
|
||||
#endif
|
||||
|
||||
// Core Marlin activities
|
||||
manage_inactivity(TERN_(ADVANCED_PAUSE_FEATURE, no_stepper_sleep));
|
||||
manage_inactivity(no_stepper_sleep);
|
||||
|
||||
// Manage Heaters (and Watchdog)
|
||||
thermalManager.manage_heater();
|
||||
@@ -935,6 +950,15 @@ inline void tmc_standby_setup() {
|
||||
#if PIN_EXISTS(Z4_STDBY)
|
||||
SET_INPUT_PULLDOWN(Z4_STDBY_PIN);
|
||||
#endif
|
||||
#if PIN_EXISTS(I_STDBY)
|
||||
SET_INPUT_PULLDOWN(I_STDBY_PIN);
|
||||
#endif
|
||||
#if PIN_EXISTS(J_STDBY)
|
||||
SET_INPUT_PULLDOWN(J_STDBY_PIN);
|
||||
#endif
|
||||
#if PIN_EXISTS(K_STDBY)
|
||||
SET_INPUT_PULLDOWN(K_STDBY_PIN);
|
||||
#endif
|
||||
#if PIN_EXISTS(E0_STDBY)
|
||||
SET_INPUT_PULLDOWN(E0_STDBY_PIN);
|
||||
#endif
|
||||
@@ -1073,11 +1097,17 @@ void setup() {
|
||||
while (!MYSERIAL1.connected() && PENDING(millis(), serial_connect_timeout)) { /*nada*/ }
|
||||
|
||||
#if HAS_MULTI_SERIAL && !HAS_ETHERNET
|
||||
MYSERIAL2.begin(BAUDRATE);
|
||||
#ifndef BAUDRATE_2
|
||||
#define BAUDRATE_2 BAUDRATE
|
||||
#endif
|
||||
MYSERIAL2.begin(BAUDRATE_2);
|
||||
serial_connect_timeout = millis() + 1000UL;
|
||||
while (!MYSERIAL2.connected() && PENDING(millis(), serial_connect_timeout)) { /*nada*/ }
|
||||
#ifdef SERIAL_PORT_3
|
||||
MYSERIAL3.begin(BAUDRATE);
|
||||
#ifndef BAUDRATE_3
|
||||
#define BAUDRATE_3 BAUDRATE
|
||||
#endif
|
||||
MYSERIAL3.begin(BAUDRATE_3);
|
||||
serial_connect_timeout = millis() + 1000UL;
|
||||
while (!MYSERIAL3.connected() && PENDING(millis(), serial_connect_timeout)) { /*nada*/ }
|
||||
#endif
|
||||
@@ -1095,6 +1125,7 @@ void setup() {
|
||||
#endif
|
||||
|
||||
#if HAS_FREEZE_PIN
|
||||
SETUP_LOG("FREEZE_PIN");
|
||||
SET_INPUT_PULLUP(FREEZE_PIN);
|
||||
#endif
|
||||
|
||||
@@ -1103,11 +1134,19 @@ void setup() {
|
||||
OUT_WRITE(SUICIDE_PIN, !SUICIDE_PIN_INVERTING);
|
||||
#endif
|
||||
|
||||
#ifdef JTAGSWD_RESET
|
||||
SETUP_LOG("JTAGSWD_RESET");
|
||||
JTAGSWD_RESET();
|
||||
#endif
|
||||
|
||||
#if EITHER(DISABLE_DEBUG, DISABLE_JTAG)
|
||||
delay(10);
|
||||
// Disable any hardware debug to free up pins for IO
|
||||
#if ENABLED(DISABLE_DEBUG) && defined(JTAGSWD_DISABLE)
|
||||
SETUP_LOG("JTAGSWD_DISABLE");
|
||||
JTAGSWD_DISABLE();
|
||||
#elif defined(JTAG_DISABLE)
|
||||
SETUP_LOG("JTAG_DISABLE");
|
||||
JTAG_DISABLE();
|
||||
#else
|
||||
#error "DISABLE_(DEBUG|JTAG) is not supported for the selected MCU/Board."
|
||||
@@ -1126,10 +1165,10 @@ void setup() {
|
||||
SETUP_RUN(HAL_init());
|
||||
|
||||
// Init and disable SPI thermocouples; this is still needed
|
||||
#if TEMP_SENSOR_0_IS_MAX_TC
|
||||
#if TEMP_SENSOR_0_IS_MAX_TC || (TEMP_SENSOR_REDUNDANT_IS_MAX_TC && TEMP_SENSOR_REDUNDANT_SOURCE == 0)
|
||||
OUT_WRITE(MAX6675_SS_PIN, HIGH); // Disable
|
||||
#endif
|
||||
#if TEMP_SENSOR_1_IS_MAX_TC
|
||||
#if TEMP_SENSOR_1_IS_MAX_TC || (TEMP_SENSOR_REDUNDANT_IS_MAX_TC && TEMP_SENSOR_REDUNDANT_SOURCE == 1)
|
||||
OUT_WRITE(MAX6675_SS2_PIN, HIGH); // Disable
|
||||
#endif
|
||||
|
||||
@@ -1417,10 +1456,7 @@ void setup() {
|
||||
#endif
|
||||
|
||||
#if HAS_PRUSA_MMU1
|
||||
SETUP_LOG("Prusa MMU1");
|
||||
SET_OUTPUT(E_MUX0_PIN);
|
||||
SET_OUTPUT(E_MUX1_PIN);
|
||||
SET_OUTPUT(E_MUX2_PIN);
|
||||
SETUP_RUN(mmu_init());
|
||||
#endif
|
||||
|
||||
#if HAS_FANMUX
|
||||
@@ -1488,7 +1524,7 @@ void setup() {
|
||||
#endif
|
||||
|
||||
#if HAS_TRINAMIC_CONFIG && DISABLED(PSU_DEFAULT_OFF)
|
||||
SETUP_RUN(test_tmc_connection(true, true, true, true));
|
||||
SETUP_RUN(test_tmc_connection());
|
||||
#endif
|
||||
|
||||
#if HAS_DRIVER_SAFE_POWER_PROTECT
|
||||
|
@@ -34,8 +34,8 @@
|
||||
void stop();
|
||||
|
||||
// Pass true to keep steppers from timing out
|
||||
void idle(TERN_(ADVANCED_PAUSE_FEATURE, bool no_stepper_sleep=false));
|
||||
inline void idle_no_sleep() { idle(TERN_(ADVANCED_PAUSE_FEATURE, true)); }
|
||||
void idle(bool no_stepper_sleep=false);
|
||||
inline void idle_no_sleep() { idle(true); }
|
||||
|
||||
#if ENABLED(G38_PROBE_TARGET)
|
||||
extern uint8_t G38_move; // Flag to tell the ISR that G38 is in progress, and the type
|
||||
|
@@ -159,6 +159,7 @@
|
||||
#define BOARD_PICA_REVB 1324 // PICA Shield (original version)
|
||||
#define BOARD_PICA 1325 // PICA Shield (rev C or later)
|
||||
#define BOARD_INTAMSYS40 1326 // Intamsys 4.0 (Funmat HT)
|
||||
#define BOARD_MALYAN_M180 1327 // Malyan M180 Mainboard Version 2 (no display function, direct gcode only)
|
||||
|
||||
//
|
||||
// ATmega1281, ATmega2561
|
||||
@@ -320,7 +321,7 @@
|
||||
#define BOARD_BTT_SKR_MINI_V1_1 4023 // BigTreeTech SKR Mini v1.1 (STM32F103RC)
|
||||
#define BOARD_BTT_SKR_MINI_E3_V1_0 4024 // BigTreeTech SKR Mini E3 (STM32F103RC)
|
||||
#define BOARD_BTT_SKR_MINI_E3_V1_2 4025 // BigTreeTech SKR Mini E3 V1.2 (STM32F103RC)
|
||||
#define BOARD_BTT_SKR_MINI_E3_V2_0 4026 // BigTreeTech SKR Mini E3 V2.0 (STM32F103RC)
|
||||
#define BOARD_BTT_SKR_MINI_E3_V2_0 4026 // BigTreeTech SKR Mini E3 V2.0 (STM32F103RC / STM32F103RE)
|
||||
#define BOARD_BTT_SKR_MINI_MZ_V1_0 4027 // BigTreeTech SKR Mini MZ V1.0 (STM32F103RC)
|
||||
#define BOARD_BTT_SKR_E3_DIP 4028 // BigTreeTech SKR E3 DIP V1.0 (STM32F103RC / STM32F103RE)
|
||||
#define BOARD_BTT_SKR_CR6 4029 // BigTreeTech SKR CR6 v1.0 (STM32F103RE)
|
||||
@@ -371,20 +372,21 @@
|
||||
#define BOARD_BTT_SKR_V2_0_REV_B 4212 // BigTreeTech SKR v2.0 Rev B (STM32F407VGT6)
|
||||
#define BOARD_BTT_GTR_V1_0 4213 // BigTreeTech GTR v1.0 (STM32F407IGT)
|
||||
#define BOARD_BTT_OCTOPUS_V1_0 4214 // BigTreeTech Octopus v1.0 (STM32F446ZET6)
|
||||
#define BOARD_LERDGE_K 4215 // Lerdge K (STM32F407ZG)
|
||||
#define BOARD_LERDGE_S 4216 // Lerdge S (STM32F407VE)
|
||||
#define BOARD_LERDGE_X 4217 // Lerdge X (STM32F407VE)
|
||||
#define BOARD_VAKE403D 4218 // VAkE 403D (STM32F446VET6)
|
||||
#define BOARD_FYSETC_S6 4219 // FYSETC S6 (STM32F446VET6)
|
||||
#define BOARD_FYSETC_S6_V2_0 4220 // FYSETC S6 v2.0 (STM32F446VET6)
|
||||
#define BOARD_FYSETC_SPIDER 4221 // FYSETC Spider (STM32F446VET6)
|
||||
#define BOARD_FLYF407ZG 4222 // FLYF407ZG (STM32F407ZG)
|
||||
#define BOARD_MKS_ROBIN2 4223 // MKS_ROBIN2 (STM32F407ZE)
|
||||
#define BOARD_MKS_ROBIN_PRO_V2 4224 // MKS Robin Pro V2 (STM32F407VE)
|
||||
#define BOARD_MKS_ROBIN_NANO_V3 4225 // MKS Robin Nano V3 (STM32F407VG)
|
||||
#define BOARD_ANET_ET4 4226 // ANET ET4 V1.x (STM32F407VGT6)
|
||||
#define BOARD_ANET_ET4P 4227 // ANET ET4P V1.x (STM32F407VGT6)
|
||||
#define BOARD_FYSETC_CHEETAH_V20 4228 // FYSETC Cheetah V2.0
|
||||
#define BOARD_BTT_OCTOPUS_V1_1 4215 // BigTreeTech Octopus v1.1 (STM32F446ZET6)
|
||||
#define BOARD_LERDGE_K 4216 // Lerdge K (STM32F407ZG)
|
||||
#define BOARD_LERDGE_S 4217 // Lerdge S (STM32F407VE)
|
||||
#define BOARD_LERDGE_X 4218 // Lerdge X (STM32F407VE)
|
||||
#define BOARD_VAKE403D 4219 // VAkE 403D (STM32F446VET6)
|
||||
#define BOARD_FYSETC_S6 4220 // FYSETC S6 (STM32F446VET6)
|
||||
#define BOARD_FYSETC_S6_V2_0 4221 // FYSETC S6 v2.0 (STM32F446VET6)
|
||||
#define BOARD_FYSETC_SPIDER 4222 // FYSETC Spider (STM32F446VET6)
|
||||
#define BOARD_FLYF407ZG 4223 // FLYF407ZG (STM32F407ZG)
|
||||
#define BOARD_MKS_ROBIN2 4224 // MKS_ROBIN2 (STM32F407ZE)
|
||||
#define BOARD_MKS_ROBIN_PRO_V2 4225 // MKS Robin Pro V2 (STM32F407VE)
|
||||
#define BOARD_MKS_ROBIN_NANO_V3 4226 // MKS Robin Nano V3 (STM32F407VG)
|
||||
#define BOARD_ANET_ET4 4227 // ANET ET4 V1.x (STM32F407VGT6)
|
||||
#define BOARD_ANET_ET4P 4228 // ANET ET4P V1.x (STM32F407VGT6)
|
||||
#define BOARD_FYSETC_CHEETAH_V20 4229 // FYSETC Cheetah V2.0
|
||||
|
||||
|
||||
//
|
||||
|
@@ -44,6 +44,6 @@ private:
|
||||
SERIAL_ECHOPGM_P(the_msg);
|
||||
}
|
||||
SERIAL_CHAR(' ');
|
||||
print_xyz(current_position);
|
||||
print_pos(current_position);
|
||||
}
|
||||
};
|
||||
|
@@ -60,6 +60,9 @@
|
||||
#define AXIS_DRIVER_TYPE_X(T) _AXIS_DRIVER_TYPE(X,T)
|
||||
#define AXIS_DRIVER_TYPE_Y(T) _AXIS_DRIVER_TYPE(Y,T)
|
||||
#define AXIS_DRIVER_TYPE_Z(T) _AXIS_DRIVER_TYPE(Z,T)
|
||||
#define AXIS_DRIVER_TYPE_I(T) _AXIS_DRIVER_TYPE(I,T)
|
||||
#define AXIS_DRIVER_TYPE_J(T) _AXIS_DRIVER_TYPE(J,T)
|
||||
#define AXIS_DRIVER_TYPE_K(T) _AXIS_DRIVER_TYPE(K,T)
|
||||
|
||||
#define AXIS_DRIVER_TYPE_X2(T) (EITHER(X_DUAL_STEPPER_DRIVERS, DUAL_X_CARRIAGE) && _AXIS_DRIVER_TYPE(X2,T))
|
||||
#define AXIS_DRIVER_TYPE_Y2(T) (ENABLED(Y_DUAL_STEPPER_DRIVERS) && _AXIS_DRIVER_TYPE(Y2,T))
|
||||
@@ -83,6 +86,7 @@
|
||||
#define HAS_E_DRIVER(T) (0 RREPEAT2(E_STEPPERS, _OR_ADTE, T))
|
||||
|
||||
#define HAS_DRIVER(T) ( AXIS_DRIVER_TYPE_X(T) || AXIS_DRIVER_TYPE_Y(T) || AXIS_DRIVER_TYPE_Z(T) \
|
||||
|| AXIS_DRIVER_TYPE_I(T) || AXIS_DRIVER_TYPE_J(T) || AXIS_DRIVER_TYPE_K(T) \
|
||||
|| AXIS_DRIVER_TYPE_X2(T) || AXIS_DRIVER_TYPE_Y2(T) || AXIS_DRIVER_TYPE_Z2(T) \
|
||||
|| AXIS_DRIVER_TYPE_Z3(T) || AXIS_DRIVER_TYPE_Z4(T) || HAS_E_DRIVER(T) )
|
||||
|
||||
@@ -153,9 +157,11 @@
|
||||
#define _OR_EAH(N,T) || AXIS_HAS_##T(E##N)
|
||||
#define E_AXIS_HAS(T) (0 _OR_EAH(0,T) _OR_EAH(1,T) _OR_EAH(2,T) _OR_EAH(3,T) _OR_EAH(4,T) _OR_EAH(5,T) _OR_EAH(6,T) _OR_EAH(7,T))
|
||||
|
||||
#define ANY_AXIS_HAS(T) ( AXIS_HAS_##T(X) || AXIS_HAS_##T(Y) || AXIS_HAS_##T(Z) \
|
||||
|| AXIS_HAS_##T(X2) || AXIS_HAS_##T(Y2) || AXIS_HAS_##T(Z2) \
|
||||
|| AXIS_HAS_##T(Z3) || AXIS_HAS_##T(Z4) || E_AXIS_HAS(T) )
|
||||
#define ANY_AXIS_HAS(T) ( AXIS_HAS_##T(X) || AXIS_HAS_##T(X2) \
|
||||
|| AXIS_HAS_##T(Y) || AXIS_HAS_##T(Y2) \
|
||||
|| AXIS_HAS_##T(Z) || AXIS_HAS_##T(Z2) || AXIS_HAS_##T(Z3) || AXIS_HAS_##T(Z4) \
|
||||
|| AXIS_HAS_##T(I) || AXIS_HAS_##T(J) || AXIS_HAS_##T(K) \
|
||||
|| E_AXIS_HAS(T) )
|
||||
|
||||
#if ANY_AXIS_HAS(STEALTHCHOP)
|
||||
#define HAS_STEALTHCHOP 1
|
||||
|
@@ -140,25 +140,7 @@
|
||||
#define STR_RESEND "Resend: "
|
||||
#define STR_UNKNOWN_COMMAND "Unknown command: \""
|
||||
#define STR_ACTIVE_EXTRUDER "Active Extruder: "
|
||||
#define STR_X_MIN "x_min"
|
||||
#define STR_X_MAX "x_max"
|
||||
#define STR_X2_MIN "x2_min"
|
||||
#define STR_X2_MAX "x2_max"
|
||||
#define STR_Y_MIN "y_min"
|
||||
#define STR_Y_MAX "y_max"
|
||||
#define STR_Y2_MIN "y2_min"
|
||||
#define STR_Y2_MAX "y2_max"
|
||||
#define STR_Z_MIN "z_min"
|
||||
#define STR_Z_MAX "z_max"
|
||||
#define STR_Z2_MIN "z2_min"
|
||||
#define STR_Z2_MAX "z2_max"
|
||||
#define STR_Z3_MIN "z3_min"
|
||||
#define STR_Z3_MAX "z3_max"
|
||||
#define STR_Z4_MIN "z4_min"
|
||||
#define STR_Z4_MAX "z4_max"
|
||||
#define STR_Z_PROBE "z_probe"
|
||||
#define STR_PROBE_EN "probe_en"
|
||||
#define STR_FILAMENT_RUNOUT_SENSOR "filament"
|
||||
|
||||
#define STR_PROBE_OFFSET "Probe Offset"
|
||||
#define STR_SKEW_MIN "min_skew_factor: "
|
||||
#define STR_SKEW_MAX "max_skew_factor: "
|
||||
@@ -277,17 +259,43 @@
|
||||
#define STR_REMINDER_SAVE_SETTINGS "Remember to save!"
|
||||
#define STR_PASSWORD_SET "Password is "
|
||||
|
||||
// LCD Menu Messages
|
||||
//
|
||||
// Endstop Names used by Endstops::report_states
|
||||
//
|
||||
#define STR_X_MIN "x_min"
|
||||
#define STR_X_MAX "x_max"
|
||||
#define STR_X2_MIN "x2_min"
|
||||
#define STR_X2_MAX "x2_max"
|
||||
|
||||
#define LANGUAGE_DATA_INCL_(M) STRINGIFY_(fontdata/langdata_##M.h)
|
||||
#define LANGUAGE_DATA_INCL(M) LANGUAGE_DATA_INCL_(M)
|
||||
#if HAS_Y_AXIS
|
||||
#define STR_Y_MIN "y_min"
|
||||
#define STR_Y_MAX "y_max"
|
||||
#define STR_Y2_MIN "y2_min"
|
||||
#define STR_Y2_MAX "y2_max"
|
||||
#endif
|
||||
|
||||
#define LANGUAGE_INCL_(M) STRINGIFY_(../lcd/language/language_##M.h)
|
||||
#define LANGUAGE_INCL(M) LANGUAGE_INCL_(M)
|
||||
#if HAS_Z_AXIS
|
||||
#define STR_Z_MIN "z_min"
|
||||
#define STR_Z_MAX "z_max"
|
||||
#define STR_Z2_MIN "z2_min"
|
||||
#define STR_Z2_MAX "z2_max"
|
||||
#define STR_Z3_MIN "z3_min"
|
||||
#define STR_Z3_MAX "z3_max"
|
||||
#define STR_Z4_MIN "z4_min"
|
||||
#define STR_Z4_MAX "z4_max"
|
||||
#endif
|
||||
|
||||
#define STR_Z_PROBE "z_probe"
|
||||
#define STR_PROBE_EN "probe_en"
|
||||
#define STR_FILAMENT_RUNOUT_SENSOR "filament"
|
||||
|
||||
// General axis names
|
||||
#define STR_X "X"
|
||||
#define STR_Y "Y"
|
||||
#define STR_Z "Z"
|
||||
#define STR_I AXIS4_STR
|
||||
#define STR_J AXIS5_STR
|
||||
#define STR_K AXIS6_STR
|
||||
#define STR_E "E"
|
||||
#if IS_KINEMATIC
|
||||
#define STR_A "A"
|
||||
@@ -307,8 +315,114 @@
|
||||
#define LCD_STR_A STR_A
|
||||
#define LCD_STR_B STR_B
|
||||
#define LCD_STR_C STR_C
|
||||
#define LCD_STR_I STR_I
|
||||
#define LCD_STR_J STR_J
|
||||
#define LCD_STR_K STR_K
|
||||
#define LCD_STR_E STR_E
|
||||
|
||||
// Extra Axis and Endstop Names
|
||||
#if LINEAR_AXES >= 4
|
||||
#if AXIS4_NAME == 'A'
|
||||
#define AXIS4_STR "A"
|
||||
#define STR_I_MIN "a_min"
|
||||
#define STR_I_MAX "a_max"
|
||||
#elif AXIS4_NAME == 'B'
|
||||
#define AXIS4_STR "B"
|
||||
#define STR_I_MIN "b_min"
|
||||
#define STR_I_MAX "b_max"
|
||||
#elif AXIS4_NAME == 'C'
|
||||
#define AXIS4_STR "C"
|
||||
#define STR_I_MIN "c_min"
|
||||
#define STR_I_MAX "c_max"
|
||||
#elif AXIS4_NAME == 'U'
|
||||
#define AXIS4_STR "U"
|
||||
#define STR_I_MIN "u_min"
|
||||
#define STR_I_MAX "u_max"
|
||||
#elif AXIS4_NAME == 'V'
|
||||
#define AXIS4_STR "V"
|
||||
#define STR_I_MIN "v_min"
|
||||
#define STR_I_MAX "v_max"
|
||||
#elif AXIS4_NAME == 'W'
|
||||
#define AXIS4_STR "W"
|
||||
#define STR_I_MIN "w_min"
|
||||
#define STR_I_MAX "w_max"
|
||||
#else
|
||||
#define AXIS4_STR "A"
|
||||
#define STR_I_MIN "a_min"
|
||||
#define STR_I_MAX "a_max"
|
||||
#endif
|
||||
#else
|
||||
#define AXIS4_STR ""
|
||||
#endif
|
||||
|
||||
#if LINEAR_AXES >= 5
|
||||
#if AXIS5_NAME == 'A'
|
||||
#define AXIS5_STR "A"
|
||||
#define STR_J_MIN "a_min"
|
||||
#define STR_J_MAX "a_max"
|
||||
#elif AXIS5_NAME == 'B'
|
||||
#define AXIS5_STR "B"
|
||||
#define STR_J_MIN "b_min"
|
||||
#define STR_J_MAX "b_max"
|
||||
#elif AXIS5_NAME == 'C'
|
||||
#define AXIS5_STR "C"
|
||||
#define STR_J_MIN "c_min"
|
||||
#define STR_J_MAX "c_max"
|
||||
#elif AXIS5_NAME == 'U'
|
||||
#define AXIS5_STR "U"
|
||||
#define STR_J_MIN "u_min"
|
||||
#define STR_J_MAX "u_max"
|
||||
#elif AXIS5_NAME == 'V'
|
||||
#define AXIS5_STR "V"
|
||||
#define STR_J_MIN "v_min"
|
||||
#define STR_J_MAX "v_max"
|
||||
#elif AXIS5_NAME == 'W'
|
||||
#define AXIS5_STR "W"
|
||||
#define STR_J_MIN "w_min"
|
||||
#define STR_J_MAX "w_max"
|
||||
#else
|
||||
#define AXIS5_STR "B"
|
||||
#define STR_J_MIN "b_min"
|
||||
#define STR_J_MAX "b_max"
|
||||
#endif
|
||||
#else
|
||||
#define AXIS5_STR ""
|
||||
#endif
|
||||
|
||||
#if LINEAR_AXES >= 6
|
||||
#if AXIS6_NAME == 'A'
|
||||
#define AXIS6_STR "A"
|
||||
#define STR_K_MIN "a_min"
|
||||
#define STR_K_MAX "a_max"
|
||||
#elif AXIS6_NAME == 'B'
|
||||
#define AXIS6_STR "B"
|
||||
#define STR_K_MIN "b_min"
|
||||
#define STR_K_MAX "b_max"
|
||||
#elif AXIS6_NAME == 'C'
|
||||
#define AXIS6_STR "C"
|
||||
#define STR_K_MIN "c_min"
|
||||
#define STR_K_MAX "c_max"
|
||||
#elif AXIS6_NAME == 'U'
|
||||
#define AXIS6_STR "U"
|
||||
#define STR_K_MIN "u_min"
|
||||
#define STR_K_MAX "u_max"
|
||||
#elif AXIS6_NAME == 'V'
|
||||
#define AXIS6_STR "V"
|
||||
#define STR_K_MIN "v_min"
|
||||
#define STR_K_MAX "v_max"
|
||||
#elif AXIS6_NAME == 'W'
|
||||
#define AXIS6_STR "W"
|
||||
#define STR_K_MIN "w_min"
|
||||
#define STR_K_MAX "w_max"
|
||||
#else
|
||||
#define AXIS6_STR "C"
|
||||
#define STR_K_MIN "c_min"
|
||||
#define STR_K_MAX "c_max"
|
||||
#endif
|
||||
#else
|
||||
#define AXIS6_STR ""
|
||||
#endif
|
||||
|
||||
#if EITHER(HAS_MARLINUI_HD44780, IS_TFTGLCD_PANEL)
|
||||
|
||||
// Custom characters defined in the first 8 characters of the LCD
|
||||
@@ -386,6 +500,14 @@
|
||||
#define LCD_STR_E6 "E" LCD_STR_N6
|
||||
#define LCD_STR_E7 "E" LCD_STR_N7
|
||||
|
||||
// Include localized LCD Menu Messages
|
||||
|
||||
#define LANGUAGE_DATA_INCL_(M) STRINGIFY_(fontdata/langdata_##M.h)
|
||||
#define LANGUAGE_DATA_INCL(M) LANGUAGE_DATA_INCL_(M)
|
||||
|
||||
#define LANGUAGE_INCL_(M) STRINGIFY_(../lcd/language/language_##M.h)
|
||||
#define LANGUAGE_INCL(M) LANGUAGE_INCL_(M)
|
||||
|
||||
// Use superscripts, if possible. Evaluated at point of use.
|
||||
#define SUPERSCRIPT_TWO TERN(NOT_EXTENDED_ISO10646_1_5X7, "^2", "²")
|
||||
#define SUPERSCRIPT_THREE TERN(NOT_EXTENDED_ISO10646_1_5X7, "^3", "³")
|
||||
|
@@ -36,12 +36,21 @@
|
||||
#define _XMIN_ 100
|
||||
#define _YMIN_ 200
|
||||
#define _ZMIN_ 300
|
||||
#define _IMIN_ 500
|
||||
#define _JMIN_ 600
|
||||
#define _KMIN_ 700
|
||||
#define _XMAX_ 101
|
||||
#define _YMAX_ 201
|
||||
#define _ZMAX_ 301
|
||||
#define _IMAX_ 501
|
||||
#define _JMAX_ 601
|
||||
#define _KMAX_ 701
|
||||
#define _XDIAG_ 102
|
||||
#define _YDIAG_ 202
|
||||
#define _ZDIAG_ 302
|
||||
#define _IDIAG_ 502
|
||||
#define _JDIAG_ 602
|
||||
#define _KDIAG_ 702
|
||||
#define _E0DIAG_ 400
|
||||
#define _E1DIAG_ 401
|
||||
#define _E2DIAG_ 402
|
||||
@@ -195,6 +204,11 @@
|
||||
#define __TERN(T,V...) ___TERN(_CAT(_NO,T),V) // Prepend '_NO' to get '_NOT_0' or '_NOT_1'
|
||||
#define ___TERN(P,V...) THIRD(P,V) // If first argument has a comma, A. Else B.
|
||||
|
||||
#define _OPTARG(A) , A
|
||||
#define OPTARG(O,A) TERN_(O,DEFER4(_OPTARG)(A))
|
||||
#define _OPTCODE(A) A;
|
||||
#define OPTCODE(O,A) TERN_(O,DEFER4(_OPTCODE)(A))
|
||||
|
||||
// Macros to avoid 'f + 0.0' which is not always optimized away. Minus included for symmetry.
|
||||
// Compiler flags -fno-signed-zeros -ffinite-math-only also cover 'f * 1.0', 'f - f', etc.
|
||||
#define PLUS_TERN0(O,A) _TERN(_ENA_1(O),,+ (A)) // OPTION ? '+ (A)' : '<nul>'
|
||||
|
@@ -36,6 +36,10 @@ PGMSTR(X_LBL, "X:"); PGMSTR(Y_LBL, "Y:"); PGMSTR(Z_LBL, "Z:"); PGMST
|
||||
PGMSTR(SP_A_STR, " A"); PGMSTR(SP_B_STR, " B"); PGMSTR(SP_C_STR, " C");
|
||||
PGMSTR(SP_X_STR, " X"); PGMSTR(SP_Y_STR, " Y"); PGMSTR(SP_Z_STR, " Z"); PGMSTR(SP_E_STR, " E");
|
||||
PGMSTR(SP_X_LBL, " X:"); PGMSTR(SP_Y_LBL, " Y:"); PGMSTR(SP_Z_LBL, " Z:"); PGMSTR(SP_E_LBL, " E:");
|
||||
PGMSTR(I_STR, AXIS4_STR); PGMSTR(J_STR, AXIS5_STR); PGMSTR(K_STR, AXIS6_STR);
|
||||
PGMSTR(I_LBL, AXIS4_STR ":"); PGMSTR(J_LBL, AXIS5_STR ":"); PGMSTR(K_LBL, AXIS6_STR ":");
|
||||
PGMSTR(SP_I_STR, " " AXIS4_STR); PGMSTR(SP_J_STR, " " AXIS5_STR); PGMSTR(SP_K_STR, " " AXIS6_STR);
|
||||
PGMSTR(SP_I_LBL, " " AXIS4_STR ":"); PGMSTR(SP_J_LBL, " " AXIS5_STR ":"); PGMSTR(SP_K_LBL, " " AXIS6_STR ":");
|
||||
|
||||
// Hook Meatpack if it's enabled on the first leaf
|
||||
#if ENABLED(MEATPACK_ON_SERIAL_PORT_1)
|
||||
@@ -101,8 +105,10 @@ void print_bin(uint16_t val) {
|
||||
}
|
||||
}
|
||||
|
||||
void print_xyz(const_float_t x, const_float_t y, const_float_t z, PGM_P const prefix/*=nullptr*/, PGM_P const suffix/*=nullptr*/) {
|
||||
void print_pos(LINEAR_AXIS_ARGS(const_float_t), PGM_P const prefix/*=nullptr*/, PGM_P const suffix/*=nullptr*/) {
|
||||
if (prefix) serialprintPGM(prefix);
|
||||
SERIAL_ECHOPAIR_P(SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z);
|
||||
SERIAL_ECHOPAIR_P(
|
||||
LIST_N(DOUBLE(LINEAR_AXES), SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z, SP_I_STR, i, SP_J_STR, j, SP_K_STR, k)
|
||||
);
|
||||
if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
|
||||
}
|
||||
|
@@ -29,12 +29,16 @@
|
||||
#endif
|
||||
|
||||
// Commonly-used strings in serial output
|
||||
extern const char NUL_STR[], SP_P_STR[], SP_T_STR[],
|
||||
extern const char NUL_STR[],
|
||||
SP_X_STR[], SP_Y_STR[], SP_Z_STR[],
|
||||
SP_A_STR[], SP_B_STR[], SP_C_STR[], SP_E_STR[],
|
||||
SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[],
|
||||
SP_I_STR[], SP_J_STR[], SP_K_STR[],
|
||||
SP_I_LBL[], SP_J_LBL[], SP_K_LBL[],
|
||||
SP_P_STR[], SP_T_STR[],
|
||||
X_STR[], Y_STR[], Z_STR[], E_STR[],
|
||||
X_LBL[], Y_LBL[], Z_LBL[], E_LBL[],
|
||||
SP_A_STR[], SP_B_STR[], SP_C_STR[],
|
||||
SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[],
|
||||
SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[];
|
||||
I_LBL[], J_LBL[], K_LBL[];
|
||||
|
||||
//
|
||||
// Debugging flags for use by M111
|
||||
@@ -310,11 +314,11 @@ void serialprint_truefalse(const bool tf);
|
||||
void serial_spaces(uint8_t count);
|
||||
|
||||
void print_bin(const uint16_t val);
|
||||
void print_xyz(const_float_t x, const_float_t y, const_float_t z, PGM_P const prefix=nullptr, PGM_P const suffix=nullptr);
|
||||
void print_pos(LINEAR_AXIS_ARGS(const_float_t), PGM_P const prefix=nullptr, PGM_P const suffix=nullptr);
|
||||
|
||||
inline void print_xyz(const xyz_pos_t &xyz, PGM_P const prefix=nullptr, PGM_P const suffix=nullptr) {
|
||||
print_xyz(xyz.x, xyz.y, xyz.z, prefix, suffix);
|
||||
inline void print_pos(const xyz_pos_t &xyz, PGM_P const prefix=nullptr, PGM_P const suffix=nullptr) {
|
||||
print_pos(LINEAR_AXIS_ELEM(xyz), prefix, suffix);
|
||||
}
|
||||
|
||||
#define SERIAL_POS(SUFFIX,VAR) do { print_xyz(VAR, PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n")); }while(0)
|
||||
#define SERIAL_XYZ(PREFIX,V...) do { print_xyz(V, PSTR(PREFIX), nullptr); }while(0)
|
||||
#define SERIAL_POS(SUFFIX,VAR) do { print_pos(VAR, PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n")); }while(0)
|
||||
#define SERIAL_XYZ(PREFIX,V...) do { print_pos(V, PSTR(PREFIX), nullptr); }while(0)
|
||||
|
@@ -29,34 +29,6 @@
|
||||
class __FlashStringHelper;
|
||||
typedef const __FlashStringHelper *progmem_str;
|
||||
|
||||
//
|
||||
// Enumerated axis indices
|
||||
//
|
||||
// - X_AXIS, Y_AXIS, and Z_AXIS should be used for axes in Cartesian space
|
||||
// - A_AXIS, B_AXIS, and C_AXIS should be used for Steppers, corresponding to XYZ on Cartesians
|
||||
// - X_HEAD, Y_HEAD, and Z_HEAD should be used for Steppers on Core kinematics
|
||||
//
|
||||
enum AxisEnum : uint8_t {
|
||||
X_AXIS = 0, A_AXIS = 0,
|
||||
Y_AXIS = 1, B_AXIS = 1,
|
||||
Z_AXIS = 2, C_AXIS = 2,
|
||||
E_AXIS = 3,
|
||||
X_HEAD = 4, Y_HEAD = 5, Z_HEAD = 6,
|
||||
E0_AXIS = 3,
|
||||
E1_AXIS, E2_AXIS, E3_AXIS, E4_AXIS, E5_AXIS, E6_AXIS, E7_AXIS,
|
||||
ALL_AXES = 0xFE, NO_AXIS = 0xFF
|
||||
};
|
||||
|
||||
//
|
||||
// Loop over XYZE axes
|
||||
//
|
||||
#define LOOP_XYZ(VAR) LOOP_S_LE_N(VAR, X_AXIS, Z_AXIS)
|
||||
#define LOOP_XYZE(VAR) LOOP_S_LE_N(VAR, X_AXIS, E_AXIS)
|
||||
#define LOOP_XYZE_N(VAR) LOOP_S_L_N(VAR, X_AXIS, XYZE_N)
|
||||
#define LOOP_ABC(VAR) LOOP_S_LE_N(VAR, A_AXIS, C_AXIS)
|
||||
#define LOOP_ABCE(VAR) LOOP_S_LE_N(VAR, A_AXIS, E_AXIS)
|
||||
#define LOOP_ABCE_N(VAR) LOOP_S_L_N(VAR, A_AXIS, XYZE_N)
|
||||
|
||||
//
|
||||
// Conditional type assignment magic. For example...
|
||||
//
|
||||
@@ -67,6 +39,85 @@ struct IF { typedef R type; };
|
||||
template <class L, class R>
|
||||
struct IF<true, L, R> { typedef L type; };
|
||||
|
||||
#define LINEAR_AXIS_GANG(V...) GANG_N(LINEAR_AXES, V)
|
||||
#define LINEAR_AXIS_CODE(V...) CODE_N(LINEAR_AXES, V)
|
||||
#define LINEAR_AXIS_LIST(V...) LIST_N(LINEAR_AXES, V)
|
||||
#define LINEAR_AXIS_ARRAY(V...) { LINEAR_AXIS_LIST(V) }
|
||||
#define LINEAR_AXIS_ARGS(T...) LINEAR_AXIS_LIST(T x, T y, T z, T i, T j, T k)
|
||||
#define LINEAR_AXIS_ELEM(O) LINEAR_AXIS_LIST(O.x, O.y, O.z, O.i, O.j, O.k)
|
||||
#define LINEAR_AXIS_DEFS(T,V) LINEAR_AXIS_LIST(T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
|
||||
|
||||
#define LOGICAL_AXIS_GANG(E,V...) LINEAR_AXIS_GANG(V) GANG_ITEM_E(E)
|
||||
#define LOGICAL_AXIS_CODE(E,V...) LINEAR_AXIS_CODE(V) CODE_ITEM_E(E)
|
||||
#define LOGICAL_AXIS_LIST(E,V...) LINEAR_AXIS_LIST(V) LIST_ITEM_E(E)
|
||||
#define LOGICAL_AXIS_ARRAY(E,V...) { LOGICAL_AXIS_LIST(E,V) }
|
||||
#define LOGICAL_AXIS_ARGS(T...) LOGICAL_AXIS_LIST(T e, T x, T y, T z, T i, T j, T k)
|
||||
#define LOGICAL_AXIS_ELEM(O) LOGICAL_AXIS_LIST(O.e, O.x, O.y, O.z, O.i, O.j, O.k)
|
||||
#define LOGICAL_AXIS_DECL(T,V) LOGICAL_AXIS_LIST(T e=V, T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
|
||||
|
||||
#if HAS_EXTRUDERS
|
||||
#define LIST_ITEM_E(N) , N
|
||||
#define CODE_ITEM_E(N) ; N
|
||||
#define GANG_ITEM_E(N) N
|
||||
#else
|
||||
#define LIST_ITEM_E(N)
|
||||
#define CODE_ITEM_E(N)
|
||||
#define GANG_ITEM_E(N)
|
||||
#endif
|
||||
|
||||
//
|
||||
// Enumerated axis indices
|
||||
//
|
||||
// - X_AXIS, Y_AXIS, and Z_AXIS should be used for axes in Cartesian space
|
||||
// - A_AXIS, B_AXIS, and C_AXIS should be used for Steppers, corresponding to XYZ on Cartesians
|
||||
// - X_HEAD, Y_HEAD, and Z_HEAD should be used for Steppers on Core kinematics
|
||||
//
|
||||
enum AxisEnum : uint8_t {
|
||||
|
||||
// Linear axes may be controlled directly or indirectly
|
||||
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS)
|
||||
|
||||
// Extruder axes may be considered distinctly
|
||||
#define _EN_ITEM(N) , E##N##_AXIS
|
||||
REPEAT(EXTRUDERS, _EN_ITEM)
|
||||
#undef _EN_ITEM
|
||||
|
||||
// Core also keeps toolhead directions
|
||||
#if IS_CORE
|
||||
, X_HEAD, Y_HEAD, Z_HEAD
|
||||
#endif
|
||||
|
||||
// Distinct axes, including all E and Core
|
||||
, NUM_AXIS_ENUMS
|
||||
|
||||
// Most of the time we refer only to the single E_AXIS
|
||||
#if HAS_EXTRUDERS
|
||||
, E_AXIS = E0_AXIS
|
||||
#endif
|
||||
|
||||
// A, B, and C are for DELTA, SCARA, etc.
|
||||
, A_AXIS = X_AXIS
|
||||
#if LINEAR_AXES >= 2
|
||||
, B_AXIS = Y_AXIS
|
||||
#endif
|
||||
#if LINEAR_AXES >= 3
|
||||
, C_AXIS = Z_AXIS
|
||||
#endif
|
||||
|
||||
// To refer to all or none
|
||||
, ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF
|
||||
};
|
||||
|
||||
typedef IF<(NUM_AXIS_ENUMS > 8), uint16_t, uint8_t>::type axis_bits_t;
|
||||
|
||||
//
|
||||
// Loop over axes
|
||||
//
|
||||
#define LOOP_ABC(VAR) LOOP_S_LE_N(VAR, A_AXIS, C_AXIS)
|
||||
#define LOOP_LINEAR_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, LINEAR_AXES)
|
||||
#define LOOP_LOGICAL_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, LOGICAL_AXES)
|
||||
#define LOOP_DISTINCT_AXES(VAR) LOOP_S_L_N(VAR, X_AXIS, DISTINCT_AXES)
|
||||
|
||||
//
|
||||
// feedRate_t is just a humble float
|
||||
//
|
||||
@@ -187,7 +238,7 @@ void toNative(xyz_pos_t &raw);
|
||||
void toNative(xyze_pos_t &raw);
|
||||
|
||||
//
|
||||
// XY coordinates, counters, etc.
|
||||
// Paired XY coordinates, counters, flags, etc.
|
||||
//
|
||||
template<typename T>
|
||||
struct XYval {
|
||||
@@ -196,18 +247,34 @@ struct XYval {
|
||||
struct { T a, b; };
|
||||
T pos[2];
|
||||
};
|
||||
FI void set(const T px) { x = px; }
|
||||
FI void set(const T px, const T py) { x = px; y = py; }
|
||||
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
|
||||
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; }
|
||||
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; }
|
||||
#if XYZE_N > XYZE
|
||||
FI void set(const T (&arr)[XYZE_N]) { x = arr[0]; y = arr[1]; }
|
||||
#endif
|
||||
|
||||
// Set all to 0
|
||||
FI void reset() { x = y = 0; }
|
||||
|
||||
// Setters taking struct types and arrays
|
||||
FI void set(const T px) { x = px; }
|
||||
#if HAS_Y_AXIS
|
||||
FI void set(const T px, const T py) { x = px; y = py; }
|
||||
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
|
||||
#endif
|
||||
#if LINEAR_AXES > XY
|
||||
FI void set(const T (&arr)[LINEAR_AXES]) { x = arr[0]; y = arr[1]; }
|
||||
#endif
|
||||
#if LOGICAL_AXES > LINEAR_AXES
|
||||
FI void set(const T (&arr)[LOGICAL_AXES]) { x = arr[0]; y = arr[1]; }
|
||||
#if DISTINCT_AXES > LOGICAL_AXES
|
||||
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; }
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Length reduced to one dimension
|
||||
FI T magnitude() const { return (T)sqrtf(x*x + y*y); }
|
||||
// Pointer to the data as a simple array
|
||||
FI operator T* () { return pos; }
|
||||
// If any element is true then it's true
|
||||
FI operator bool() { return x || y; }
|
||||
|
||||
// Explicit copy and copies with conversion
|
||||
FI XYval<T> copy() const { return *this; }
|
||||
FI XYval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; }
|
||||
FI XYval<int16_t> asInt() { return { int16_t(x), int16_t(y) }; }
|
||||
@@ -219,17 +286,27 @@ struct XYval {
|
||||
FI XYval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y) }; }
|
||||
FI XYval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y) }; }
|
||||
FI XYval<float> reciprocal() const { return { _RECIP(x), _RECIP(y) }; }
|
||||
|
||||
// Marlin workspace shifting is done with G92 and M206
|
||||
FI XYval<float> asLogical() const { XYval<float> o = asFloat(); toLogical(o); return o; }
|
||||
FI XYval<float> asNative() const { XYval<float> o = asFloat(); toNative(o); return o; }
|
||||
|
||||
// Cast to a type with more fields by making a new object
|
||||
FI operator XYZval<T>() { return { x, y }; }
|
||||
FI operator XYZval<T>() const { return { x, y }; }
|
||||
FI operator XYZEval<T>() { return { x, y }; }
|
||||
FI operator XYZEval<T>() const { return { x, y }; }
|
||||
FI T& operator[](const int i) { return pos[i]; }
|
||||
FI const T& operator[](const int i) const { return pos[i]; }
|
||||
|
||||
// Accessor via an AxisEnum (or any integer) [index]
|
||||
FI T& operator[](const int n) { return pos[n]; }
|
||||
FI const T& operator[](const int n) const { return pos[n]; }
|
||||
|
||||
// Assignment operator overrides do the expected thing
|
||||
FI XYval<T>& operator= (const T v) { set(v, v ); return *this; }
|
||||
FI XYval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y); return *this; }
|
||||
FI XYval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y); return *this; }
|
||||
|
||||
// Override other operators to get intuitive behaviors
|
||||
FI XYval<T> operator+ (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYval<T> operator+ (const XYval<T> &rs) { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYval<T> operator- (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
@@ -266,6 +343,10 @@ struct XYval {
|
||||
FI XYval<T> operator>>(const int &v) { XYval<T> ls = *this; _RS(ls.x); _RS(ls.y); return ls; }
|
||||
FI XYval<T> operator<<(const int &v) const { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
|
||||
FI XYval<T> operator<<(const int &v) { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
|
||||
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
||||
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
||||
|
||||
// Modifier operators
|
||||
FI XYval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
|
||||
FI XYval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
|
||||
FI XYval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
|
||||
@@ -279,6 +360,8 @@ struct XYval {
|
||||
FI XYval<T>& operator*=(const int &v) { x *= v; y *= v; return *this; }
|
||||
FI XYval<T>& operator>>=(const int &v) { _RS(x); _RS(y); return *this; }
|
||||
FI XYval<T>& operator<<=(const int &v) { _LS(x); _LS(y); return *this; }
|
||||
|
||||
// Exact comparisons. For floats a "NEAR" operation may be better.
|
||||
FI bool operator==(const XYval<T> &rs) { return x == rs.x && y == rs.y; }
|
||||
FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y; }
|
||||
FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y; }
|
||||
@@ -291,224 +374,291 @@ struct XYval {
|
||||
FI bool operator!=(const XYval<T> &rs) const { return !operator==(rs); }
|
||||
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
|
||||
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
|
||||
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
||||
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
||||
};
|
||||
|
||||
//
|
||||
// XYZ coordinates, counters, etc.
|
||||
// Linear Axes coordinates, counters, flags, etc.
|
||||
//
|
||||
template<typename T>
|
||||
struct XYZval {
|
||||
union {
|
||||
struct { T x, y, z; };
|
||||
struct { T a, b, c; };
|
||||
T pos[3];
|
||||
struct { T LINEAR_AXIS_ARGS(); };
|
||||
struct { T LINEAR_AXIS_LIST(a, b, c, u, v, w); };
|
||||
T pos[LINEAR_AXES];
|
||||
};
|
||||
|
||||
// Set all to 0
|
||||
FI void reset() { LINEAR_AXIS_GANG(x =, y =, z =, i =, j =, k =) 0; }
|
||||
|
||||
// Setters taking struct types and arrays
|
||||
FI void set(const T px) { x = px; }
|
||||
FI void set(const T px, const T py) { x = px; y = py; }
|
||||
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
|
||||
FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; }
|
||||
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
|
||||
FI void set(const XYval<T> pxy, const T pz) { LINEAR_AXIS_CODE(x = pxy.x, y = pxy.y, z = pz, NOOP, NOOP, NOOP); }
|
||||
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
|
||||
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; z = arr[2]; }
|
||||
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; z = arr[2]; }
|
||||
#if XYZE_N > XYZE
|
||||
FI void set(const T (&arr)[XYZE_N]) { x = arr[0]; y = arr[1]; z = arr[2]; }
|
||||
#if HAS_Z_AXIS
|
||||
FI void set(const T (&arr)[LINEAR_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
|
||||
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
|
||||
#endif
|
||||
FI void reset() { x = y = z = 0; }
|
||||
FI T magnitude() const { return (T)sqrtf(x*x + y*y + z*z); }
|
||||
#if LOGICAL_AXES > LINEAR_AXES
|
||||
FI void set(const T (&arr)[LOGICAL_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
|
||||
FI void set(LOGICAL_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
|
||||
#if DISTINCT_AXES > LOGICAL_AXES
|
||||
FI void set(const T (&arr)[DISTINCT_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 4
|
||||
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
|
||||
#endif
|
||||
|
||||
// Length reduced to one dimension
|
||||
FI T magnitude() const { return (T)sqrtf(LINEAR_AXIS_GANG(x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
|
||||
// Pointer to the data as a simple array
|
||||
FI operator T* () { return pos; }
|
||||
FI operator bool() { return z || x || y; }
|
||||
// If any element is true then it's true
|
||||
FI operator bool() { return LINEAR_AXIS_GANG(x, || y, || z, || i, || j, || k); }
|
||||
|
||||
// Explicit copy and copies with conversion
|
||||
FI XYZval<T> copy() const { XYZval<T> o = *this; return o; }
|
||||
FI XYZval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)), T(_ABS(z)) }; }
|
||||
FI XYZval<int16_t> asInt() { return { int16_t(x), int16_t(y), int16_t(z) }; }
|
||||
FI XYZval<int16_t> asInt() const { return { int16_t(x), int16_t(y), int16_t(z) }; }
|
||||
FI XYZval<int32_t> asLong() { return { int32_t(x), int32_t(y), int32_t(z) }; }
|
||||
FI XYZval<int32_t> asLong() const { return { int32_t(x), int32_t(y), int32_t(z) }; }
|
||||
FI XYZval<int32_t> ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; }
|
||||
FI XYZval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; }
|
||||
FI XYZval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) }; }
|
||||
FI XYZval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) }; }
|
||||
FI XYZval<float> reciprocal() const { return { _RECIP(x), _RECIP(y), _RECIP(z) }; }
|
||||
FI XYZval<T> ABS() const { return LINEAR_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
|
||||
FI XYZval<int16_t> asInt() { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
||||
FI XYZval<int16_t> asInt() const { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
||||
FI XYZval<int32_t> asLong() { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
||||
FI XYZval<int32_t> asLong() const { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
||||
FI XYZval<int32_t> ROUNDL() { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
||||
FI XYZval<int32_t> ROUNDL() const { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
||||
FI XYZval<float> asFloat() { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
||||
FI XYZval<float> asFloat() const { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
||||
FI XYZval<float> reciprocal() const { return LINEAR_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
|
||||
|
||||
// Marlin workspace shifting is done with G92 and M206
|
||||
FI XYZval<float> asLogical() const { XYZval<float> o = asFloat(); toLogical(o); return o; }
|
||||
FI XYZval<float> asNative() const { XYZval<float> o = asFloat(); toNative(o); return o; }
|
||||
|
||||
// In-place cast to types having fewer fields
|
||||
FI operator XYval<T>&() { return *(XYval<T>*)this; }
|
||||
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
|
||||
FI operator XYZEval<T>() const { return { x, y, z }; }
|
||||
FI T& operator[](const int i) { return pos[i]; }
|
||||
FI const T& operator[](const int i) const { return pos[i]; }
|
||||
FI XYZval<T>& operator= (const T v) { set(v, v, v ); return *this; }
|
||||
|
||||
// Cast to a type with more fields by making a new object
|
||||
FI operator XYZEval<T>() const { return LINEAR_AXIS_ARRAY(x, y, z, i, j, k); }
|
||||
|
||||
// Accessor via an AxisEnum (or any integer) [index]
|
||||
FI T& operator[](const int n) { return pos[n]; }
|
||||
FI const T& operator[](const int n) const { return pos[n]; }
|
||||
|
||||
// Assignment operator overrides do the expected thing
|
||||
FI XYZval<T>& operator= (const T v) { set(ARRAY_N_1(LINEAR_AXES, v)); return *this; }
|
||||
FI XYZval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y ); return *this; }
|
||||
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y, rs.z); return *this; }
|
||||
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
|
||||
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
|
||||
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
|
||||
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
|
||||
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
|
||||
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
|
||||
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
|
||||
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
|
||||
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); return ls; }
|
||||
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); return ls; }
|
||||
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); return ls; }
|
||||
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); return ls; }
|
||||
FI XYZval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
|
||||
FI XYZval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
|
||||
FI XYZval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
|
||||
FI XYZval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
|
||||
FI XYZval<T>& operator+=(const XYZval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; }
|
||||
FI XYZval<T>& operator-=(const XYZval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; }
|
||||
FI XYZval<T>& operator*=(const XYZval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; }
|
||||
FI XYZval<T>& operator/=(const XYZval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; }
|
||||
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; }
|
||||
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; }
|
||||
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; }
|
||||
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; }
|
||||
FI XYZval<T>& operator*=(const float &v) { x *= v; y *= v; z *= v; return *this; }
|
||||
FI XYZval<T>& operator*=(const int &v) { x *= v; y *= v; z *= v; return *this; }
|
||||
FI XYZval<T>& operator>>=(const int &v) { _RS(x); _RS(y); _RS(z); return *this; }
|
||||
FI XYZval<T>& operator<<=(const int &v) { _LS(x); _LS(y); _LS(z); return *this; }
|
||||
FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y && z == rs.z; }
|
||||
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
|
||||
|
||||
// Override other operators to get intuitive behaviors
|
||||
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
||||
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
||||
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
||||
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
||||
FI const XYZval<T> operator-() const { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
|
||||
FI XYZval<T> operator-() { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
|
||||
|
||||
// Modifier operators
|
||||
FI XYZval<T>& operator+=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
||||
FI XYZval<T>& operator-=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
||||
FI XYZval<T>& operator*=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
||||
FI XYZval<T>& operator/=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
||||
FI XYZval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
||||
FI XYZval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
||||
FI XYZval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
||||
FI XYZval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
||||
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
||||
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
||||
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
||||
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
||||
FI XYZval<T>& operator*=(const float &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
|
||||
FI XYZval<T>& operator*=(const int &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
|
||||
FI XYZval<T>& operator>>=(const int &v) { LINEAR_AXIS_CODE(_RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
|
||||
FI XYZval<T>& operator<<=(const int &v) { LINEAR_AXIS_CODE(_LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
|
||||
|
||||
// Exact comparisons. For floats a "NEAR" operation may be better.
|
||||
FI bool operator==(const XYZEval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
||||
FI bool operator==(const XYZEval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
||||
FI bool operator!=(const XYZEval<T> &rs) { return !operator==(rs); }
|
||||
FI bool operator==(const XYZEval<T> &rs) const { return x == rs.x && y == rs.y && z == rs.z; }
|
||||
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
|
||||
FI XYZval<T> operator-() { XYZval<T> o = *this; o.x = -x; o.y = -y; o.z = -z; return o; }
|
||||
FI const XYZval<T> operator-() const { XYZval<T> o = *this; o.x = -x; o.y = -y; o.z = -z; return o; }
|
||||
};
|
||||
|
||||
//
|
||||
// XYZE coordinates, counters, etc.
|
||||
// Logical Axes coordinates, counters, etc.
|
||||
//
|
||||
template<typename T>
|
||||
struct XYZEval {
|
||||
union {
|
||||
struct{ T x, y, z, e; };
|
||||
struct{ T a, b, c; };
|
||||
T pos[4];
|
||||
struct { T LOGICAL_AXIS_ARGS(); };
|
||||
struct { T LOGICAL_AXIS_LIST(_e, a, b, c, u, v, w); };
|
||||
T pos[LOGICAL_AXES];
|
||||
};
|
||||
FI void reset() { x = y = z = e = 0; }
|
||||
FI T magnitude() const { return (T)sqrtf(x*x + y*y + z*z + e*e); }
|
||||
FI operator T* () { return pos; }
|
||||
FI operator bool() { return e || z || x || y; }
|
||||
FI void set(const T px) { x = px; }
|
||||
FI void set(const T px, const T py) { x = px; y = py; }
|
||||
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
|
||||
FI void set(const T px, const T py, const T pz, const T pe) { x = px; y = py; z = pz; e = pe; }
|
||||
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
|
||||
FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; }
|
||||
FI void set(const XYZval<T> pxyz) { x = pxyz.x; y = pxyz.y; z = pxyz.z; }
|
||||
FI void set(const XYval<T> pxy, const T pz, const T pe) { x = pxy.x; y = pxy.y; z = pz; e = pe; }
|
||||
FI void set(const XYval<T> pxy, const XYval<T> pze) { x = pxy.x; y = pxy.y; z = pze.z; e = pze.e; }
|
||||
FI void set(const XYZval<T> pxyz, const T pe) { x = pxyz.x; y = pxyz.y; z = pxyz.z; e = pe; }
|
||||
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
|
||||
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; z = arr[2]; }
|
||||
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; z = arr[2]; e = arr[3]; }
|
||||
#if XYZE_N > XYZE
|
||||
FI void set(const T (&arr)[XYZE_N]) { x = arr[0]; y = arr[1]; z = arr[2]; e = arr[3]; }
|
||||
// Reset all to 0
|
||||
FI void reset() { LOGICAL_AXIS_GANG(e =, x =, y =, z =, i =, j =, k =) 0; }
|
||||
|
||||
// Setters taking struct types and arrays
|
||||
FI void set(const T px) { x = px; }
|
||||
FI void set(const T px, const T py) { x = px; y = py; }
|
||||
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
|
||||
FI void set(const XYZval<T> pxyz) { set(LINEAR_AXIS_ELEM(pxyz)); }
|
||||
#if HAS_Z_AXIS
|
||||
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k); }
|
||||
#endif
|
||||
FI XYZEval<T> copy() const { return *this; }
|
||||
FI XYZEval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(e)) }; }
|
||||
FI XYZEval<int16_t> asInt() { return { int16_t(x), int16_t(y), int16_t(z), int16_t(e) }; }
|
||||
FI XYZEval<int16_t> asInt() const { return { int16_t(x), int16_t(y), int16_t(z), int16_t(e) }; }
|
||||
FI XYZEval<int32_t> asLong() { return { int32_t(x), int32_t(y), int32_t(z), int32_t(e) }; }
|
||||
FI XYZEval<int32_t> asLong() const { return { int32_t(x), int32_t(y), int32_t(z), int32_t(e) }; }
|
||||
FI XYZEval<int32_t> ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(e)) }; }
|
||||
FI XYZEval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(e)) }; }
|
||||
FI XYZEval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(e) }; }
|
||||
FI XYZEval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(e) }; }
|
||||
FI XYZEval<float> reciprocal() const { return { _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(e) }; }
|
||||
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
|
||||
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; }
|
||||
FI operator XYval<T>&() { return *(XYval<T>*)this; }
|
||||
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
|
||||
FI operator XYZval<T>&() { return *(XYZval<T>*)this; }
|
||||
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; }
|
||||
FI T& operator[](const int i) { return pos[i]; }
|
||||
FI const T& operator[](const int i) const { return pos[i]; }
|
||||
FI XYZEval<T>& operator= (const T v) { set(v, v, v, v); return *this; }
|
||||
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; }
|
||||
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y, rs.z); return *this; }
|
||||
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; ls.e += rs.e; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; ls.e += rs.e; return ls; }
|
||||
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; ls.e -= rs.e; return ls; }
|
||||
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; ls.e -= rs.e; return ls; }
|
||||
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; ls.e *= rs.e; return ls; }
|
||||
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; ls.e *= rs.e; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; ls.e /= rs.e; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; ls.e /= rs.e; return ls; }
|
||||
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
|
||||
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
|
||||
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
|
||||
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
|
||||
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
|
||||
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
|
||||
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
|
||||
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
|
||||
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); _RS(ls.e); return ls; }
|
||||
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); _RS(ls.e); return ls; }
|
||||
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); _LS(ls.e); return ls; }
|
||||
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); _LS(ls.e); return ls; }
|
||||
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; }
|
||||
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; e += rs.e; return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; e -= rs.e; return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; e *= rs.e; return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; e /= rs.e; return *this; }
|
||||
FI XYZEval<T>& operator*=(const T &v) { x *= v; y *= v; z *= v; e *= v; return *this; }
|
||||
FI XYZEval<T>& operator>>=(const int &v) { _RS(x); _RS(y); _RS(z); _RS(e); return *this; }
|
||||
FI XYZEval<T>& operator<<=(const int &v) { _LS(x); _LS(y); _LS(z); _LS(e); return *this; }
|
||||
FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y && z == rs.z; }
|
||||
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); }
|
||||
FI bool operator==(const XYZval<T> &rs) const { return x == rs.x && y == rs.y && z == rs.z; }
|
||||
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
|
||||
FI XYZEval<T> operator-() { return { -x, -y, -z, -e }; }
|
||||
FI const XYZEval<T> operator-() const { return { -x, -y, -z, -e }; }
|
||||
#if LOGICAL_AXES > LINEAR_AXES
|
||||
FI void set(const XYval<T> pxy, const T pe) { set(pxy); e = pe; }
|
||||
FI void set(const XYZval<T> pxyz, const T pe) { set(pxyz); e = pe; }
|
||||
FI void set(LOGICAL_AXIS_ARGS(const T)) { LOGICAL_AXIS_CODE(_e = e, a = x, b = y, c = z, u = i, v = j, w = k); }
|
||||
#endif
|
||||
#if LINEAR_AXES >= 4
|
||||
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
|
||||
#endif
|
||||
|
||||
// Length reduced to one dimension
|
||||
FI T magnitude() const { return (T)sqrtf(LOGICAL_AXIS_GANG(+ e*e, + x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
|
||||
// Pointer to the data as a simple array
|
||||
FI operator T* () { return pos; }
|
||||
// If any element is true then it's true
|
||||
FI operator bool() { return 0 LOGICAL_AXIS_GANG(|| e, || x, || y, || z, || i, || j, || k); }
|
||||
|
||||
// Explicit copy and copies with conversion
|
||||
FI XYZEval<T> copy() const { XYZEval<T> o = *this; return o; }
|
||||
FI XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
|
||||
FI XYZEval<int16_t> asInt() { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
||||
FI XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
||||
FI XYZEval<int32_t> asLong() { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
||||
FI XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
||||
FI XYZEval<int32_t> ROUNDL() { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
||||
FI XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
||||
FI XYZEval<float> asFloat() { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
||||
FI XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
||||
FI XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
|
||||
|
||||
// Marlin workspace shifting is done with G92 and M206
|
||||
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
|
||||
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; }
|
||||
|
||||
// In-place cast to types having fewer fields
|
||||
FI operator XYval<T>&() { return *(XYval<T>*)this; }
|
||||
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
|
||||
FI operator XYZval<T>&() { return *(XYZval<T>*)this; }
|
||||
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; }
|
||||
|
||||
// Accessor via an AxisEnum (or any integer) [index]
|
||||
FI T& operator[](const int n) { return pos[n]; }
|
||||
FI const T& operator[](const int n) const { return pos[n]; }
|
||||
|
||||
// Assignment operator overrides do the expected thing
|
||||
FI XYZEval<T>& operator= (const T v) { set(LIST_N_1(LINEAR_AXES, v)); return *this; }
|
||||
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; }
|
||||
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
|
||||
|
||||
// Override other operators to get intuitive behaviors
|
||||
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
||||
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
||||
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
||||
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
||||
FI const XYZEval<T> operator-() const { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
|
||||
FI XYZEval<T> operator-() { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
|
||||
|
||||
// Modifier operators
|
||||
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e += rs.e, x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e -= rs.e, x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e *= rs.e, x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e /= rs.e, x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator*=(const T &v) { LOGICAL_AXIS_CODE(e *= v, x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
|
||||
FI XYZEval<T>& operator>>=(const int &v) { LOGICAL_AXIS_CODE(_RS(e), _RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
|
||||
FI XYZEval<T>& operator<<=(const int &v) { LOGICAL_AXIS_CODE(_LS(e), _LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
|
||||
|
||||
// Exact comparisons. For floats a "NEAR" operation may be better.
|
||||
FI bool operator==(const XYZval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
||||
FI bool operator==(const XYZval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
||||
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); }
|
||||
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
|
||||
};
|
||||
|
||||
#undef _RECIP
|
||||
@@ -516,6 +666,3 @@ struct XYZEval {
|
||||
#undef _LS
|
||||
#undef _RS
|
||||
#undef FI
|
||||
|
||||
const xyze_char_t axis_codes { 'X', 'Y', 'Z', 'E' };
|
||||
#define XYZ_CHAR(A) ((char)('X' + A))
|
||||
|
@@ -122,10 +122,10 @@ void safe_delay(millis_t ms) {
|
||||
SERIAL_ECHOLNPAIR("Z Fade: ", planner.z_fade_height);
|
||||
#endif
|
||||
#if ABL_PLANAR
|
||||
SERIAL_ECHOPGM("ABL Adjustment X");
|
||||
LOOP_XYZ(a) {
|
||||
SERIAL_ECHOPGM("ABL Adjustment");
|
||||
LOOP_LINEAR_AXES(a) {
|
||||
const float v = planner.get_axis_position_mm(AxisEnum(a)) - current_position[a];
|
||||
SERIAL_CHAR(' ', XYZ_CHAR(a));
|
||||
SERIAL_CHAR(' ', AXIS_CHAR(a));
|
||||
if (v > 0) SERIAL_CHAR('+');
|
||||
SERIAL_DECIMAL(v);
|
||||
}
|
||||
|
@@ -76,3 +76,11 @@ public:
|
||||
// Converts from an uint8_t in the range of 0-255 to an uint8_t
|
||||
// in the range 0-100 while avoiding rounding artifacts
|
||||
constexpr uint8_t ui8_to_percent(const uint8_t i) { return (int(i) * 100 + 127) / 255; }
|
||||
|
||||
const xyze_char_t axis_codes LOGICAL_AXIS_ARRAY('E', 'X', 'Y', 'Z', AXIS4_NAME, AXIS5_NAME, AXIS6_NAME);
|
||||
|
||||
#if LINEAR_AXES <= XYZ
|
||||
#define AXIS_CHAR(A) ((char)('X' + A))
|
||||
#else
|
||||
#define AXIS_CHAR(A) axis_codes[A]
|
||||
#endif
|
||||
|
54
Marlin/src/feature/ammeter.cpp
Normal file
54
Marlin/src/feature/ammeter.cpp
Normal file
@@ -0,0 +1,54 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(I2C_AMMETER)
|
||||
|
||||
#include "ammeter.h"
|
||||
|
||||
#ifndef I2C_AMMETER_IMAX
|
||||
#define I2C_AMMETER_IMAX 0.500 // Calibration range 500 Milliamps
|
||||
#endif
|
||||
|
||||
INA226 ina;
|
||||
|
||||
Ammeter ammeter;
|
||||
|
||||
float Ammeter::scale;
|
||||
float Ammeter::current;
|
||||
|
||||
void Ammeter::init() {
|
||||
ina.begin();
|
||||
ina.configure(INA226_AVERAGES_16, INA226_BUS_CONV_TIME_1100US, INA226_SHUNT_CONV_TIME_1100US, INA226_MODE_SHUNT_BUS_CONT);
|
||||
ina.calibrate(I2C_AMMETER_SHUNT_RESISTOR, I2C_AMMETER_IMAX);
|
||||
}
|
||||
|
||||
float Ammeter::read() {
|
||||
scale = 1;
|
||||
current = ina.readShuntCurrent();
|
||||
if (current <= 0.0001f) current = 0; // Clean up least-significant-bit amplification errors
|
||||
if (current < 0.1f) scale = 1000;
|
||||
return current * scale;
|
||||
}
|
||||
|
||||
#endif // I2C_AMMETER
|
39
Marlin/src/feature/ammeter.h
Normal file
39
Marlin/src/feature/ammeter.h
Normal file
@@ -0,0 +1,39 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include "../inc/MarlinConfigPre.h"
|
||||
|
||||
#include <Wire.h>
|
||||
#include <INA226.h>
|
||||
|
||||
class Ammeter {
|
||||
private:
|
||||
static float scale;
|
||||
|
||||
public:
|
||||
static float current;
|
||||
static void init();
|
||||
static float read();
|
||||
};
|
||||
|
||||
extern Ammeter ammeter;
|
@@ -104,7 +104,7 @@ void Backlash::add_correction_steps(const int32_t &da, const int32_t &db, const
|
||||
|
||||
const float f_corr = float(correction) / 255.0f;
|
||||
|
||||
LOOP_XYZ(axis) {
|
||||
LOOP_LINEAR_AXES(axis) {
|
||||
if (distance_mm[axis]) {
|
||||
const bool reversing = TEST(dm,axis);
|
||||
|
||||
|
@@ -24,7 +24,7 @@
|
||||
#include "../../inc/MarlinConfigPre.h"
|
||||
|
||||
#if EITHER(RESTORE_LEVELING_AFTER_G28, ENABLE_LEVELING_AFTER_G28)
|
||||
#define G28_L0_ENSURES_LEVELING_OFF 1
|
||||
#define CAN_SET_LEVELING_AFTER_G28 1
|
||||
#endif
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
|
@@ -103,9 +103,7 @@ public:
|
||||
}
|
||||
|
||||
static float get_z(const xy_pos_t &pos
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
, const_float_t factor=1.0f
|
||||
#endif
|
||||
OPTARG(ENABLE_LEVELING_FADE_HEIGHT, const_float_t factor=1.0f)
|
||||
) {
|
||||
#if DISABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
constexpr float factor = 1.0f;
|
||||
|
@@ -164,7 +164,7 @@ static void serial_echo_column_labels(const uint8_t sp) {
|
||||
* 2: TODO: Display on Graphical LCD
|
||||
* 4: Compact Human-Readable
|
||||
*/
|
||||
void unified_bed_leveling::display_map(const int map_type) {
|
||||
void unified_bed_leveling::display_map(const uint8_t map_type) {
|
||||
const bool was = gcode.set_autoreport_paused(true);
|
||||
|
||||
constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567]
|
||||
@@ -263,7 +263,7 @@ bool unified_bed_leveling::sanity_check() {
|
||||
void GcodeSuite::M1004() {
|
||||
|
||||
#define ALIGN_GCODE TERN(Z_STEPPER_AUTO_ALIGN, "G34", "")
|
||||
#define PROBE_GCODE TERN(HAS_BED_PROBE, "G29P1\nG29P3", "G29P4R255")
|
||||
#define PROBE_GCODE TERN(HAS_BED_PROBE, "G29P1\nG29P3", "G29P4R")
|
||||
|
||||
#if HAS_HOTEND
|
||||
if (parser.seenval('H')) { // Handle H# parameter to set Hotend temp
|
||||
|
@@ -47,10 +47,10 @@ struct mesh_index_pair;
|
||||
|
||||
typedef struct {
|
||||
bool C_seen;
|
||||
int8_t V_verbosity,
|
||||
int8_t KLS_storage_slot;
|
||||
uint8_t R_repetition,
|
||||
V_verbosity,
|
||||
P_phase,
|
||||
R_repetition,
|
||||
KLS_storage_slot,
|
||||
T_map_type;
|
||||
float B_shim_thickness,
|
||||
C_constant;
|
||||
@@ -98,7 +98,7 @@ public:
|
||||
static void report_state();
|
||||
static void save_ubl_active_state_and_disable();
|
||||
static void restore_ubl_active_state_and_leave();
|
||||
static void display_map(const int) _O0;
|
||||
static void display_map(const uint8_t) _O0;
|
||||
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0;
|
||||
static mesh_index_pair find_furthest_invalid_mesh_point() _O0;
|
||||
static void reset();
|
||||
|
@@ -305,7 +305,7 @@ void unified_bed_leveling::G29() {
|
||||
bool probe_deployed = false;
|
||||
if (G29_parse_parameters()) return; // Abort on parameter error
|
||||
|
||||
const int8_t p_val = parser.intval('P', -1);
|
||||
const uint8_t p_val = parser.byteval('P');
|
||||
const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen_test('J');
|
||||
#if ENABLED(HAS_MULTI_HOTEND)
|
||||
const uint8_t old_tool_index = active_extruder;
|
||||
@@ -321,7 +321,7 @@ void unified_bed_leveling::G29() {
|
||||
|
||||
// Invalidate one or more nearby mesh points, possibly all.
|
||||
if (parser.seen('I')) {
|
||||
int16_t count = parser.has_value() ? parser.value_int() : 1;
|
||||
uint8_t count = parser.has_value() ? parser.value_byte() : 1;
|
||||
bool invalidate_all = count >= GRID_MAX_POINTS;
|
||||
if (!invalidate_all) {
|
||||
while (count--) {
|
||||
@@ -345,7 +345,7 @@ void unified_bed_leveling::G29() {
|
||||
}
|
||||
|
||||
if (parser.seen('Q')) {
|
||||
const int test_pattern = parser.has_value() ? parser.value_int() : -99;
|
||||
const int16_t test_pattern = parser.has_value() ? parser.value_int() : -99;
|
||||
if (!WITHIN(test_pattern, -1, 2)) {
|
||||
SERIAL_ECHOLNPGM("Invalid test_pattern value. (-1 to 2)\n");
|
||||
return;
|
||||
@@ -581,7 +581,7 @@ void unified_bed_leveling::G29() {
|
||||
// use cases for the users. So we can wait and see what to do with it.
|
||||
//
|
||||
|
||||
if (parser.seen_test('K')) // Kompare Current Mesh Data to Specified Stored Mesh
|
||||
if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
|
||||
g29_compare_current_mesh_to_stored_mesh();
|
||||
|
||||
#endif // UBL_DEVEL_DEBUGGING
|
||||
@@ -592,7 +592,7 @@ void unified_bed_leveling::G29() {
|
||||
//
|
||||
|
||||
if (parser.seen('L')) { // Load Current Mesh Data
|
||||
param.KLS_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
|
||||
param.KLS_storage_slot = parser.has_value() ? (int8_t)parser.value_int() : storage_slot;
|
||||
|
||||
int16_t a = settings.calc_num_meshes();
|
||||
|
||||
@@ -617,10 +617,10 @@ void unified_bed_leveling::G29() {
|
||||
//
|
||||
|
||||
if (parser.seen('S')) { // Store (or Save) Current Mesh Data
|
||||
param.KLS_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
|
||||
param.KLS_storage_slot = parser.has_value() ? (int8_t)parser.value_int() : storage_slot;
|
||||
|
||||
if (param.KLS_storage_slot == -1) // Special case, the user wants to 'Export' the mesh to the
|
||||
return report_current_mesh(); // host program to be saved on the user's computer
|
||||
if (param.KLS_storage_slot == -1) // Special case: 'Export' the mesh to the
|
||||
return report_current_mesh(); // host so it can be saved in a file.
|
||||
|
||||
int16_t a = settings.calc_num_meshes();
|
||||
|
||||
@@ -673,7 +673,7 @@ void unified_bed_leveling::G29() {
|
||||
*/
|
||||
void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const_float_t offset) {
|
||||
float sum = 0;
|
||||
int n = 0;
|
||||
uint8_t n = 0;
|
||||
GRID_LOOP(x, y)
|
||||
if (!isnan(z_values[x][y])) {
|
||||
sum += z_values[x][y];
|
||||
@@ -734,7 +734,7 @@ void unified_bed_leveling::shift_mesh_height() {
|
||||
do {
|
||||
if (do_ubl_mesh_map) display_map(param.T_map_type);
|
||||
|
||||
const int point_num = (GRID_MAX_POINTS) - count + 1;
|
||||
const uint8_t point_num = (GRID_MAX_POINTS - count) + 1;
|
||||
SERIAL_ECHOLNPAIR("Probing mesh point ", point_num, "/", GRID_MAX_POINTS, ".");
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), point_num, int(GRID_MAX_POINTS)));
|
||||
|
||||
@@ -1025,7 +1025,7 @@ void set_message_with_feedback(PGM_P const msg_P) {
|
||||
SET_SOFT_ENDSTOP_LOOSE(true);
|
||||
|
||||
do {
|
||||
idle();
|
||||
idle_no_sleep();
|
||||
new_z = ui.ubl_mesh_value();
|
||||
TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset + new_z)); // Move the nozzle as the point is edited
|
||||
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
||||
@@ -1083,7 +1083,7 @@ bool unified_bed_leveling::G29_parse_parameters() {
|
||||
param.R_repetition = 0;
|
||||
|
||||
if (parser.seen('R')) {
|
||||
param.R_repetition = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
|
||||
param.R_repetition = parser.has_value() ? parser.value_byte() : GRID_MAX_POINTS;
|
||||
NOMORE(param.R_repetition, GRID_MAX_POINTS);
|
||||
if (param.R_repetition < 1) {
|
||||
SERIAL_ECHOLNPGM("?(R)epetition count invalid (1+).\n");
|
||||
@@ -1091,14 +1091,14 @@ bool unified_bed_leveling::G29_parse_parameters() {
|
||||
}
|
||||
}
|
||||
|
||||
param.V_verbosity = parser.intval('V');
|
||||
param.V_verbosity = parser.byteval('V');
|
||||
if (!WITHIN(param.V_verbosity, 0, 4)) {
|
||||
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).\n");
|
||||
err_flag = true;
|
||||
}
|
||||
|
||||
if (parser.seen('P')) {
|
||||
const int pv = parser.value_int();
|
||||
const uint8_t pv = parser.value_byte();
|
||||
#if !HAS_BED_PROBE
|
||||
if (pv == 1) {
|
||||
SERIAL_ECHOLNPGM("G29 P1 requires a probe.\n");
|
||||
@@ -1181,7 +1181,7 @@ bool unified_bed_leveling::G29_parse_parameters() {
|
||||
}
|
||||
#endif
|
||||
|
||||
param.T_map_type = parser.intval('T');
|
||||
param.T_map_type = parser.byteval('T');
|
||||
if (!WITHIN(param.T_map_type, 0, 2)) {
|
||||
SERIAL_ECHOLNPGM("Invalid map type.\n");
|
||||
return UBL_ERR;
|
||||
@@ -1833,7 +1833,7 @@ void unified_bed_leveling::smart_fill_mesh() {
|
||||
return;
|
||||
}
|
||||
|
||||
param.KLS_storage_slot = parser.value_int();
|
||||
param.KLS_storage_slot = (int8_t)parser.value_int();
|
||||
|
||||
float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
||||
settings.load_mesh(param.KLS_storage_slot, &tmp_z_values);
|
||||
|
@@ -113,20 +113,22 @@
|
||||
const xy_float_t ad = sign * dist;
|
||||
const bool use_x_dist = ad.x > ad.y;
|
||||
|
||||
float on_axis_distance = use_x_dist ? dist.x : dist.y,
|
||||
e_position = end.e - start.e,
|
||||
z_position = end.z - start.z;
|
||||
float on_axis_distance = use_x_dist ? dist.x : dist.y;
|
||||
|
||||
const float e_normalized_dist = e_position / on_axis_distance, // Allow divide by zero
|
||||
z_normalized_dist = z_position / on_axis_distance;
|
||||
const float z_normalized_dist = (end.z - start.z) / on_axis_distance; // Allow divide by zero
|
||||
#if HAS_EXTRUDERS
|
||||
const float e_normalized_dist = (end.e - start.e) / on_axis_distance;
|
||||
const bool inf_normalized_flag = isinf(e_normalized_dist);
|
||||
#endif
|
||||
|
||||
xy_int8_t icell = istart;
|
||||
|
||||
const float ratio = dist.y / dist.x, // Allow divide by zero
|
||||
c = start.y - ratio * start.x;
|
||||
|
||||
const bool inf_normalized_flag = isinf(e_normalized_dist),
|
||||
inf_ratio_flag = isinf(ratio);
|
||||
const bool inf_ratio_flag = isinf(ratio);
|
||||
|
||||
xyze_pos_t dest; // Stores XYZE for segmented moves
|
||||
|
||||
/**
|
||||
* Handle vertical lines that stay within one column.
|
||||
@@ -143,34 +145,36 @@
|
||||
* For others the next X is the same so this can continue.
|
||||
* Calculate X at the next Y mesh line.
|
||||
*/
|
||||
const float rx = inf_ratio_flag ? start.x : (next_mesh_line_y - c) / ratio;
|
||||
dest.x = inf_ratio_flag ? start.x : (next_mesh_line_y - c) / ratio;
|
||||
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x, icell.y)
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(dest.x, icell.x, icell.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
const float ry = mesh_index_to_ypos(icell.y);
|
||||
dest.y = mesh_index_to_ypos(icell.y);
|
||||
|
||||
/**
|
||||
* Without this check, it's possible to generate a zero length move, as in the case where
|
||||
* the line is heading down, starting exactly on a mesh line boundary. Since this is rare
|
||||
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
||||
*/
|
||||
if (ry != start.y) {
|
||||
if (dest.y != start.y) {
|
||||
if (!inf_normalized_flag) { // fall-through faster than branch
|
||||
on_axis_distance = use_x_dist ? rx - start.x : ry - start.y;
|
||||
e_position = start.e + on_axis_distance * e_normalized_dist;
|
||||
z_position = start.z + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = end.e;
|
||||
z_position = end.z;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
|
||||
planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder);
|
||||
dest.z += z0;
|
||||
planner.buffer_segment(dest, scaled_fr_mm_s, extruder);
|
||||
|
||||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
@@ -188,12 +192,13 @@
|
||||
*/
|
||||
if (iadd.y == 0) { // Horizontal line?
|
||||
icell.x += ineg.x; // Heading left? Just go to the left edge of the cell for the first move.
|
||||
|
||||
while (icell.x != iend.x + ineg.x) {
|
||||
icell.x += iadd.x;
|
||||
const float rx = mesh_index_to_xpos(icell.x);
|
||||
const float ry = ratio * rx + c; // Calculate Y at the next X mesh line
|
||||
dest.x = mesh_index_to_xpos(icell.x);
|
||||
dest.y = ratio * dest.x + c; // Calculate Y at the next X mesh line
|
||||
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x, icell.y)
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(dest.y, icell.x, icell.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
@@ -205,19 +210,20 @@
|
||||
* the line is heading left, starting exactly on a mesh line boundary. Since this is rare
|
||||
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
||||
*/
|
||||
if (rx != start.x) {
|
||||
if (dest.x != start.x) {
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? rx - start.x : ry - start.y;
|
||||
e_position = start.e + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
||||
z_position = start.z + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist); // Based on X or Y because the move is horizontal
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = end.e;
|
||||
z_position = end.z;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
|
||||
if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder))
|
||||
break;
|
||||
dest.z += z0;
|
||||
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
|
||||
|
||||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
@@ -239,57 +245,65 @@
|
||||
while (cnt) {
|
||||
|
||||
const float next_mesh_line_x = mesh_index_to_xpos(icell.x + iadd.x),
|
||||
next_mesh_line_y = mesh_index_to_ypos(icell.y + iadd.y),
|
||||
ry = ratio * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
||||
rx = (next_mesh_line_y - c) / ratio; // Calculate X at the next Y mesh line
|
||||
// (No need to worry about ratio == 0.
|
||||
// In that case, it was already detected
|
||||
// as a vertical line move above.)
|
||||
next_mesh_line_y = mesh_index_to_ypos(icell.y + iadd.y);
|
||||
|
||||
if (neg.x == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
|
||||
dest.y = ratio * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
||||
dest.x = (next_mesh_line_y - c) / ratio; // Calculate X at the next Y mesh line
|
||||
// (No need to worry about ratio == 0.
|
||||
// In that case, it was already detected
|
||||
// as a vertical line move above.)
|
||||
|
||||
if (neg.x == (dest.x > next_mesh_line_x)) { // Check if we hit the Y line first
|
||||
// Yes! Crossing a Y Mesh Line next
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x - ineg.x, icell.y + iadd.y)
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(dest.x, icell.x - ineg.x, icell.y + iadd.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
dest.y = next_mesh_line_y;
|
||||
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? rx - start.x : next_mesh_line_y - start.y;
|
||||
e_position = start.e + on_axis_distance * e_normalized_dist;
|
||||
z_position = start.z + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = end.e;
|
||||
z_position = end.z;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, scaled_fr_mm_s, extruder))
|
||||
break;
|
||||
|
||||
dest.z += z0;
|
||||
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
|
||||
|
||||
icell.y += iadd.y;
|
||||
cnt.y--;
|
||||
}
|
||||
else {
|
||||
// Yes! Crossing a X Mesh Line next
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x + iadd.x, icell.y - ineg.y)
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(dest.y, icell.x + iadd.x, icell.y - ineg.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
dest.x = next_mesh_line_x;
|
||||
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? next_mesh_line_x - start.x : ry - start.y;
|
||||
e_position = start.e + on_axis_distance * e_normalized_dist;
|
||||
z_position = start.z + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = end.e;
|
||||
z_position = end.z;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
|
||||
if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder))
|
||||
break;
|
||||
dest.z += z0;
|
||||
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
|
||||
|
||||
icell.x += iadd.x;
|
||||
cnt.x--;
|
||||
}
|
||||
@@ -362,15 +376,11 @@
|
||||
while (--segments) {
|
||||
raw += diff;
|
||||
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm
|
||||
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
||||
, inv_duration
|
||||
#endif
|
||||
OPTARG(SCARA_FEEDRATE_SCALING, inv_duration)
|
||||
);
|
||||
}
|
||||
planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, segment_xyz_mm
|
||||
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
||||
, inv_duration
|
||||
#endif
|
||||
OPTARG(SCARA_FEEDRATE_SCALING, inv_duration)
|
||||
);
|
||||
return false; // Did not set current from destination
|
||||
}
|
||||
@@ -442,11 +452,9 @@
|
||||
#endif
|
||||
;
|
||||
|
||||
planner.buffer_line(raw.x, raw.y, raw.z + z_cxcy, raw.e, scaled_fr_mm_s, active_extruder, segment_xyz_mm
|
||||
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
||||
, inv_duration
|
||||
#endif
|
||||
);
|
||||
const float oldz = raw.z; raw.z += z_cxcy;
|
||||
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm OPTARG(SCARA_FEEDRATE_SCALING, inv_duration) );
|
||||
raw.z = oldz;
|
||||
|
||||
if (segments == 0) // done with last segment
|
||||
return false; // didn't set current from destination
|
||||
|
@@ -24,9 +24,11 @@
|
||||
#include "../inc/MarlinConfig.h"
|
||||
|
||||
#define BINARY_STREAM_COMPRESSION
|
||||
|
||||
#if ENABLED(BINARY_STREAM_COMPRESSION)
|
||||
#include "../libs/heatshrink/heatshrink_decoder.h"
|
||||
// STM32 (and others?) require a word-aligned buffer for SD card transfers via DMA
|
||||
static __attribute__((aligned(sizeof(size_t)))) uint8_t decode_buffer[512] = {};
|
||||
static heatshrink_decoder hsd;
|
||||
#endif
|
||||
|
||||
inline bool bs_serial_data_available(const serial_index_t index) {
|
||||
@@ -37,16 +39,6 @@ inline int bs_read_serial(const serial_index_t index) {
|
||||
return SERIAL_IMPL.read(index);
|
||||
}
|
||||
|
||||
#if ENABLED(BINARY_STREAM_COMPRESSION)
|
||||
static heatshrink_decoder hsd;
|
||||
#if BOTH(ARDUINO_ARCH_STM32F1, SDIO_SUPPORT)
|
||||
// STM32 requires a word-aligned buffer for SD card transfers via DMA
|
||||
static __attribute__((aligned(sizeof(size_t)))) uint8_t decode_buffer[512] = {};
|
||||
#else
|
||||
static uint8_t decode_buffer[512] = {};
|
||||
#endif
|
||||
#endif
|
||||
|
||||
class SDFileTransferProtocol {
|
||||
private:
|
||||
struct Packet {
|
||||
|
@@ -41,11 +41,7 @@ bool CaseLight::on = CASE_LIGHT_DEFAULT_ON;
|
||||
#if CASE_LIGHT_IS_COLOR_LED
|
||||
#include "leds/leds.h"
|
||||
constexpr uint8_t init_case_light[] = CASE_LIGHT_DEFAULT_COLOR;
|
||||
LEDColor CaseLight::color = { init_case_light[0], init_case_light[1], init_case_light[2], TERN_(HAS_WHITE_LED, init_case_light[3]) };
|
||||
#endif
|
||||
|
||||
#ifndef INVERT_CASE_LIGHT
|
||||
#define INVERT_CASE_LIGHT false
|
||||
LEDColor CaseLight::color = { init_case_light[0], init_case_light[1], init_case_light[2] OPTARG(HAS_WHITE_LED, init_case_light[3]) };
|
||||
#endif
|
||||
|
||||
void CaseLight::update(const bool sflag) {
|
||||
@@ -64,14 +60,12 @@ void CaseLight::update(const bool sflag) {
|
||||
if (sflag && on)
|
||||
brightness = brightness_sav; // Restore last brightness for M355 S1
|
||||
|
||||
const uint8_t i = on ? brightness : 0, n10ct = INVERT_CASE_LIGHT ? 255 - i : i;
|
||||
const uint8_t i = on ? brightness : 0, n10ct = ENABLED(INVERT_CASE_LIGHT) ? 255 - i : i;
|
||||
UNUSED(n10ct);
|
||||
#endif
|
||||
|
||||
#if CASE_LIGHT_IS_COLOR_LED
|
||||
|
||||
leds.set_color(MakeLEDColor(color.r, color.g, color.b, color.w, n10ct));
|
||||
|
||||
leds.set_color(LEDColor(color.r, color.g, color.b OPTARG(HAS_WHITE_LED, color.w), n10ct));
|
||||
#else // !CASE_LIGHT_IS_COLOR_LED
|
||||
|
||||
#if CASELIGHT_USES_BRIGHTNESS
|
||||
@@ -86,7 +80,7 @@ void CaseLight::update(const bool sflag) {
|
||||
else
|
||||
#endif
|
||||
{
|
||||
const bool s = on ? !INVERT_CASE_LIGHT : INVERT_CASE_LIGHT;
|
||||
const bool s = on ? TERN(INVERT_CASE_LIGHT, LOW, HIGH) : TERN(INVERT_CASE_LIGHT, HIGH, LOW);
|
||||
WRITE(CASE_LIGHT_PIN, s ? HIGH : LOW);
|
||||
}
|
||||
|
||||
|
@@ -78,10 +78,8 @@ public:
|
||||
|
||||
// Get the total flow (in liters per minute) since the last reading
|
||||
static void calc_flowrate() {
|
||||
//flowmeter_interrupt_disable();
|
||||
// const uint16_t pulses = flowpulses;
|
||||
//flowmeter_interrupt_enable();
|
||||
flowrate = flowpulses * 60.0f * (1000.0f / (FLOWMETER_INTERVAL)) * (1000.0f / (FLOWMETER_PPL));
|
||||
// flowrate = (litres) * (seconds) = litres per minute
|
||||
flowrate = (flowpulses / (float)FLOWMETER_PPL) * ((1000.0f / (float)FLOWMETER_INTERVAL) * 60.0f);
|
||||
flowpulses = 0;
|
||||
}
|
||||
|
||||
|
@@ -73,7 +73,7 @@ uint8_t MCP4728::analogWrite(const uint8_t channel, const uint16_t value) {
|
||||
uint8_t MCP4728::eepromWrite() {
|
||||
Wire.beginTransmission(I2C_ADDRESS(DAC_DEV_ADDRESS));
|
||||
Wire.write(SEQWRITE);
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
Wire.write(DAC_STEPPER_VREF << 7 | DAC_STEPPER_GAIN << 4 | highByte(dac_values[i]));
|
||||
Wire.write(lowByte(dac_values[i]));
|
||||
}
|
||||
@@ -135,7 +135,7 @@ void MCP4728::setDrvPct(xyze_uint_t &pct) {
|
||||
*/
|
||||
uint8_t MCP4728::fastWrite() {
|
||||
Wire.beginTransmission(I2C_ADDRESS(DAC_DEV_ADDRESS));
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
Wire.write(highByte(dac_values[i]));
|
||||
Wire.write(lowByte(dac_values[i]));
|
||||
}
|
||||
|
@@ -51,7 +51,7 @@ int StepperDAC::init() {
|
||||
mcp4728.setVref_all(DAC_STEPPER_VREF);
|
||||
mcp4728.setGain_all(DAC_STEPPER_GAIN);
|
||||
|
||||
if (mcp4728.getDrvPct(0) < 1 || mcp4728.getDrvPct(1) < 1 || mcp4728.getDrvPct(2) < 1 || mcp4728.getDrvPct(3) < 1 ) {
|
||||
if (mcp4728.getDrvPct(0) < 1 || mcp4728.getDrvPct(1) < 1 || mcp4728.getDrvPct(2) < 1 || mcp4728.getDrvPct(3) < 1) {
|
||||
mcp4728.setDrvPct(dac_channel_pct);
|
||||
mcp4728.eepromWrite();
|
||||
}
|
||||
@@ -77,7 +77,7 @@ static float dac_amps(int8_t n) { return mcp4728.getValue(dac_order[n]) * 0.125
|
||||
|
||||
uint8_t StepperDAC::get_current_percent(const AxisEnum axis) { return mcp4728.getDrvPct(dac_order[axis]); }
|
||||
void StepperDAC::set_current_percents(xyze_uint8_t &pct) {
|
||||
LOOP_XYZE(i) dac_channel_pct[i] = pct[dac_order[i]];
|
||||
LOOP_LOGICAL_AXES(i) dac_channel_pct[i] = pct[dac_order[i]];
|
||||
mcp4728.setDrvPct(dac_channel_pct);
|
||||
}
|
||||
|
||||
|
@@ -327,7 +327,7 @@ int32_t I2CPositionEncoder::get_raw_count() {
|
||||
}
|
||||
|
||||
bool I2CPositionEncoder::test_axis() {
|
||||
//only works on XYZ cartesian machines for the time being
|
||||
// Only works on XYZ Cartesian machines for the time being
|
||||
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false;
|
||||
|
||||
const float startPosition = soft_endstop.min[encoderAxis] + 10,
|
||||
@@ -337,7 +337,7 @@ bool I2CPositionEncoder::test_axis() {
|
||||
ec = false;
|
||||
|
||||
xyze_pos_t startCoord, endCoord;
|
||||
LOOP_XYZ(a) {
|
||||
LOOP_LINEAR_AXES(a) {
|
||||
startCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
|
||||
endCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
|
||||
}
|
||||
@@ -345,9 +345,12 @@ bool I2CPositionEncoder::test_axis() {
|
||||
endCoord[encoderAxis] = endPosition;
|
||||
|
||||
planner.synchronize();
|
||||
startCoord.e = planner.get_axis_position_mm(E_AXIS);
|
||||
planner.buffer_line(startCoord, fr_mm_s, 0);
|
||||
planner.synchronize();
|
||||
|
||||
#if HAS_EXTRUDERS
|
||||
startCoord.e = planner.get_axis_position_mm(E_AXIS);
|
||||
planner.buffer_line(startCoord, fr_mm_s, 0);
|
||||
planner.synchronize();
|
||||
#endif
|
||||
|
||||
// if the module isn't currently trusted, wait until it is (or until it should be if things are working)
|
||||
if (!trusted) {
|
||||
@@ -357,7 +360,7 @@ bool I2CPositionEncoder::test_axis() {
|
||||
}
|
||||
|
||||
if (trusted) { // if trusted, commence test
|
||||
endCoord.e = planner.get_axis_position_mm(E_AXIS);
|
||||
TERN_(HAS_EXTRUDERS, endCoord.e = planner.get_axis_position_mm(E_AXIS));
|
||||
planner.buffer_line(endCoord, fr_mm_s, 0);
|
||||
planner.synchronize();
|
||||
}
|
||||
@@ -392,7 +395,7 @@ void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
|
||||
travelDistance = endDistance - startDistance;
|
||||
|
||||
xyze_pos_t startCoord, endCoord;
|
||||
LOOP_XYZ(a) {
|
||||
LOOP_LINEAR_AXES(a) {
|
||||
startCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
|
||||
endCoord[a] = planner.get_axis_position_mm((AxisEnum)a);
|
||||
}
|
||||
@@ -402,7 +405,7 @@ void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
|
||||
planner.synchronize();
|
||||
|
||||
LOOP_L_N(i, iter) {
|
||||
startCoord.e = planner.get_axis_position_mm(E_AXIS);
|
||||
TERN_(HAS_EXTRUDERS, startCoord.e = planner.get_axis_position_mm(E_AXIS));
|
||||
planner.buffer_line(startCoord, fr_mm_s, 0);
|
||||
planner.synchronize();
|
||||
|
||||
@@ -411,7 +414,7 @@ void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
|
||||
|
||||
//do_blocking_move_to(endCoord);
|
||||
|
||||
endCoord.e = planner.get_axis_position_mm(E_AXIS);
|
||||
TERN_(HAS_EXTRUDERS, endCoord.e = planner.get_axis_position_mm(E_AXIS));
|
||||
planner.buffer_line(endCoord, fr_mm_s, 0);
|
||||
planner.synchronize();
|
||||
|
||||
@@ -497,9 +500,7 @@ void I2CPositionEncodersMgr::init() {
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_1_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_1_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 1
|
||||
@@ -528,9 +529,7 @@ void I2CPositionEncodersMgr::init() {
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_2_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_2_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 2
|
||||
@@ -557,11 +556,9 @@ void I2CPositionEncodersMgr::init() {
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH);
|
||||
#endif
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_3_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_3_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 3
|
||||
@@ -590,9 +587,7 @@ void I2CPositionEncodersMgr::init() {
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_4_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_4_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 4
|
||||
@@ -621,9 +616,7 @@ void I2CPositionEncodersMgr::init() {
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_5_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_5_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 5
|
||||
@@ -652,9 +645,7 @@ void I2CPositionEncodersMgr::init() {
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_6_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_6_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -822,7 +813,7 @@ void I2CPositionEncodersMgr::M860() {
|
||||
const bool hasU = parser.seen_test('U'), hasO = parser.seen_test('O');
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen_test(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_position(idx, hasU, hasO);
|
||||
@@ -849,7 +840,7 @@ void I2CPositionEncodersMgr::M861() {
|
||||
if (parse()) return;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_status(idx);
|
||||
@@ -877,7 +868,7 @@ void I2CPositionEncodersMgr::M862() {
|
||||
if (parse()) return;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) test_axis(idx);
|
||||
@@ -908,7 +899,7 @@ void I2CPositionEncodersMgr::M863() {
|
||||
const uint8_t iterations = constrain(parser.byteval('P', 1), 1, 10);
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) calibrate_steps_mm(idx, iterations);
|
||||
@@ -984,7 +975,7 @@ void I2CPositionEncodersMgr::M865() {
|
||||
if (parse()) return;
|
||||
|
||||
if (!I2CPE_addr) {
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_module_firmware(encoders[idx].get_address());
|
||||
@@ -1015,7 +1006,7 @@ void I2CPositionEncodersMgr::M866() {
|
||||
const bool hasR = parser.seen_test('R');
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) {
|
||||
@@ -1053,7 +1044,7 @@ void I2CPositionEncodersMgr::M867() {
|
||||
const int8_t onoff = parser.seenval('S') ? parser.value_int() : -1;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) {
|
||||
@@ -1089,7 +1080,7 @@ void I2CPositionEncodersMgr::M868() {
|
||||
const float newThreshold = parser.seenval('T') ? parser.value_float() : -9999;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) {
|
||||
@@ -1123,7 +1114,7 @@ void I2CPositionEncodersMgr::M869() {
|
||||
if (parse()) return;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_error(idx);
|
||||
|
@@ -91,11 +91,7 @@ void FWRetract::reset() {
|
||||
* Note: Auto-retract will apply the set Z hop in addition to any Z hop
|
||||
* included in the G-code. Use M207 Z0 to to prevent double hop.
|
||||
*/
|
||||
void FWRetract::retract(const bool retracting
|
||||
#if HAS_MULTI_EXTRUDER
|
||||
, bool swapping/*=false*/
|
||||
#endif
|
||||
) {
|
||||
void FWRetract::retract(const bool retracting OPTARG(HAS_MULTI_EXTRUDER, bool swapping/*=false*/)) {
|
||||
// Prevent two retracts or recovers in a row
|
||||
if (retracted[active_extruder] == retracting) return;
|
||||
|
||||
|
@@ -74,11 +74,7 @@ public:
|
||||
#endif
|
||||
}
|
||||
|
||||
static void retract(const bool retracting
|
||||
#if HAS_MULTI_EXTRUDER
|
||||
, bool swapping = false
|
||||
#endif
|
||||
);
|
||||
static void retract(const bool retracting OPTARG(HAS_MULTI_EXTRUDER, bool swapping = false));
|
||||
|
||||
static void M207();
|
||||
static void M207_report(const bool forReplay=false);
|
||||
|
@@ -163,7 +163,7 @@ Joystick joystick;
|
||||
// norm_jog values of [-1 .. 1] maps linearly to [-feedrate .. feedrate]
|
||||
xyz_float_t move_dist{0};
|
||||
float hypot2 = 0;
|
||||
LOOP_XYZ(i) if (norm_jog[i]) {
|
||||
LOOP_LINEAR_AXES(i) if (norm_jog[i]) {
|
||||
move_dist[i] = seg_time * norm_jog[i] * TERN(EXTENSIBLE_UI, manual_feedrate_mm_s, planner.settings.max_feedrate_mm_s)[i];
|
||||
hypot2 += sq(move_dist[i]);
|
||||
}
|
||||
|
@@ -47,9 +47,10 @@
|
||||
#endif
|
||||
|
||||
#if ENABLED(LED_COLOR_PRESETS)
|
||||
const LEDColor LEDLights::defaultLEDColor = MakeLEDColor(
|
||||
LED_USER_PRESET_RED, LED_USER_PRESET_GREEN, LED_USER_PRESET_BLUE,
|
||||
LED_USER_PRESET_WHITE, LED_USER_PRESET_BRIGHTNESS
|
||||
const LEDColor LEDLights::defaultLEDColor = LEDColor(
|
||||
LED_USER_PRESET_RED, LED_USER_PRESET_GREEN, LED_USER_PRESET_BLUE
|
||||
OPTARG(HAS_WHITE_LED, LED_USER_PRESET_WHITE)
|
||||
OPTARG(NEOPIXEL_LED, LED_USER_PRESET_BRIGHTNESS)
|
||||
);
|
||||
#endif
|
||||
|
||||
@@ -75,36 +76,35 @@ void LEDLights::setup() {
|
||||
}
|
||||
|
||||
void LEDLights::set_color(const LEDColor &incol
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
, bool isSequence/*=false*/
|
||||
#endif
|
||||
OPTARG(NEOPIXEL_IS_SEQUENTIAL, bool isSequence/*=false*/)
|
||||
) {
|
||||
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
|
||||
const uint32_t neocolor = LEDColorWhite() == incol
|
||||
? neo.Color(NEO_WHITE)
|
||||
: neo.Color(incol.r, incol.g, incol.b, incol.w);
|
||||
static uint16_t nextLed = 0;
|
||||
: neo.Color(incol.r, incol.g, incol.b OPTARG(HAS_WHITE_LED, incol.w));
|
||||
|
||||
#ifdef NEOPIXEL_BKGD_LED_INDEX
|
||||
if (NEOPIXEL_BKGD_LED_INDEX == nextLed) {
|
||||
neo.set_color_background();
|
||||
if (++nextLed >= neo.pixels()) {
|
||||
nextLed = 0;
|
||||
return;
|
||||
#if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
|
||||
static uint16_t nextLed = 0;
|
||||
#ifdef NEOPIXEL_BKGD_INDEX_FIRST
|
||||
while (WITHIN(nextLed, NEOPIXEL_BKGD_INDEX_FIRST, NEOPIXEL_BKGD_INDEX_LAST)) {
|
||||
neo.reset_background_color();
|
||||
if (++nextLed >= neo.pixels()) { nextLed = 0; return; }
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
neo.set_brightness(incol.i);
|
||||
|
||||
if (isSequence) {
|
||||
neo.set_pixel_color(nextLed, neocolor);
|
||||
neo.show();
|
||||
if (++nextLed >= neo.pixels()) nextLed = 0;
|
||||
return;
|
||||
}
|
||||
#if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
|
||||
if (isSequence) {
|
||||
neo.set_pixel_color(nextLed, neocolor);
|
||||
neo.show();
|
||||
if (++nextLed >= neo.pixels()) nextLed = 0;
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
neo.set_color(neocolor);
|
||||
|
||||
@@ -169,9 +169,10 @@ void LEDLights::set_color(const LEDColor &incol
|
||||
#if ENABLED(NEOPIXEL2_SEPARATE)
|
||||
|
||||
#if ENABLED(NEO2_COLOR_PRESETS)
|
||||
const LEDColor LEDLights2::defaultLEDColor = MakeLEDColor(
|
||||
NEO2_USER_PRESET_RED, NEO2_USER_PRESET_GREEN, NEO2_USER_PRESET_BLUE,
|
||||
NEO2_USER_PRESET_WHITE, NEO2_USER_PRESET_BRIGHTNESS
|
||||
const LEDColor LEDLights2::defaultLEDColor = LEDColor(
|
||||
LED_USER_PRESET_RED, LED_USER_PRESET_GREEN, LED_USER_PRESET_BLUE
|
||||
OPTARG(HAS_WHITE_LED2, LED_USER_PRESET_WHITE)
|
||||
OPTARG(NEOPIXEL_LED, LED_USER_PRESET_BRIGHTNESS)
|
||||
);
|
||||
#endif
|
||||
|
||||
@@ -190,7 +191,7 @@ void LEDLights::set_color(const LEDColor &incol
|
||||
void LEDLights2::set_color(const LEDColor &incol) {
|
||||
const uint32_t neocolor = LEDColorWhite() == incol
|
||||
? neo2.Color(NEO2_WHITE)
|
||||
: neo2.Color(incol.r, incol.g, incol.b, incol.w);
|
||||
: neo2.Color(incol.r, incol.g, incol.b OPTARG(HAS_WHITE_LED2, incol.w));
|
||||
neo2.set_brightness(incol.i);
|
||||
neo2.set_color(neocolor);
|
||||
|
||||
|
@@ -29,13 +29,15 @@
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
#include "neopixel.h"
|
||||
// A white component can be passed
|
||||
#if EITHER(RGBW_LED, PCA9632_RGBW)
|
||||
#define HAS_WHITE_LED 1
|
||||
#endif
|
||||
|
||||
// A white component can be passed
|
||||
#if ANY(RGBW_LED, NEOPIXEL_LED, PCA9632_RGBW)
|
||||
#define HAS_WHITE_LED 1
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
#define _NEOPIXEL_INCLUDE_
|
||||
#include "neopixel.h"
|
||||
#undef _NEOPIXEL_INCLUDE_
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -43,46 +45,21 @@
|
||||
*/
|
||||
typedef struct LEDColor {
|
||||
uint8_t r, g, b
|
||||
#if HAS_WHITE_LED
|
||||
, w
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
, i
|
||||
#endif
|
||||
#endif
|
||||
OPTARG(HAS_WHITE_LED, w)
|
||||
OPTARG(NEOPIXEL_LED, i)
|
||||
;
|
||||
|
||||
LEDColor() : r(255), g(255), b(255)
|
||||
#if HAS_WHITE_LED
|
||||
, w(255)
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
, i(NEOPIXEL_BRIGHTNESS)
|
||||
#endif
|
||||
#endif
|
||||
OPTARG(HAS_WHITE_LED, w(255))
|
||||
OPTARG(NEOPIXEL_LED, i(NEOPIXEL_BRIGHTNESS))
|
||||
{}
|
||||
|
||||
LEDColor(uint8_t r, uint8_t g, uint8_t b
|
||||
#if HAS_WHITE_LED
|
||||
, uint8_t w=0
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
, uint8_t i=NEOPIXEL_BRIGHTNESS
|
||||
#endif
|
||||
#endif
|
||||
) : r(r), g(g), b(b)
|
||||
#if HAS_WHITE_LED
|
||||
, w(w)
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
, i(i)
|
||||
#endif
|
||||
#endif
|
||||
{}
|
||||
LEDColor(uint8_t r, uint8_t g, uint8_t b OPTARG(HAS_WHITE_LED, uint8_t w=0) OPTARG(NEOPIXEL_LED, uint8_t i=NEOPIXEL_BRIGHTNESS))
|
||||
: r(r), g(g), b(b) OPTARG(HAS_WHITE_LED, w(w)) OPTARG(NEOPIXEL_LED, i(i)) {}
|
||||
|
||||
LEDColor(const uint8_t (&rgbw)[4]) : r(rgbw[0]), g(rgbw[1]), b(rgbw[2])
|
||||
#if HAS_WHITE_LED
|
||||
, w(rgbw[3])
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
, i(NEOPIXEL_BRIGHTNESS)
|
||||
#endif
|
||||
#endif
|
||||
OPTARG(HAS_WHITE_LED, w(rgbw[3]))
|
||||
OPTARG(NEOPIXEL_LED, i(NEOPIXEL_BRIGHTNESS))
|
||||
{}
|
||||
|
||||
LEDColor& operator=(const uint8_t (&rgbw)[4]) {
|
||||
@@ -109,17 +86,8 @@ typedef struct LEDColor {
|
||||
} LEDColor;
|
||||
|
||||
/**
|
||||
* Color helpers and presets
|
||||
* Color presets
|
||||
*/
|
||||
#if HAS_WHITE_LED
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
#define MakeLEDColor(R,G,B,W,I) LEDColor(R, G, B, W, I)
|
||||
#else
|
||||
#define MakeLEDColor(R,G,B,W,I) LEDColor(R, G, B, W)
|
||||
#endif
|
||||
#else
|
||||
#define MakeLEDColor(R,G,B,W,I) LEDColor(R, G, B)
|
||||
#endif
|
||||
|
||||
#define LEDColorOff() LEDColor( 0, 0, 0)
|
||||
#define LEDColorRed() LEDColor(255, 0, 0)
|
||||
@@ -147,25 +115,15 @@ public:
|
||||
static void setup(); // init()
|
||||
|
||||
static void set_color(const LEDColor &color
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
, bool isSequence=false
|
||||
#endif
|
||||
OPTARG(NEOPIXEL_IS_SEQUENTIAL, bool isSequence=false)
|
||||
);
|
||||
|
||||
static inline void set_color(uint8_t r, uint8_t g, uint8_t b
|
||||
#if HAS_WHITE_LED
|
||||
, uint8_t w=0
|
||||
#endif
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
, uint8_t i=NEOPIXEL_BRIGHTNESS
|
||||
, bool isSequence=false
|
||||
#endif
|
||||
OPTARG(HAS_WHITE_LED, uint8_t w=0)
|
||||
OPTARG(NEOPIXEL_LED, uint8_t i=NEOPIXEL_BRIGHTNESS)
|
||||
OPTARG(NEOPIXEL_IS_SEQUENTIAL, bool isSequence=false)
|
||||
) {
|
||||
set_color(MakeLEDColor(r, g, b, w, i)
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
, isSequence
|
||||
#endif
|
||||
);
|
||||
set_color(LEDColor(r, g, b OPTARG(HAS_WHITE_LED, w) OPTARG(NEOPIXEL_LED, i)) OPTARG(NEOPIXEL_IS_SEQUENTIAL, isSequence));
|
||||
}
|
||||
|
||||
static inline void set_off() { set_color(LEDColorOff()); }
|
||||
@@ -223,8 +181,14 @@ extern LEDLights leds;
|
||||
|
||||
static void set_color(const LEDColor &color);
|
||||
|
||||
inline void set_color(uint8_t r, uint8_t g, uint8_t b, uint8_t w=0, uint8_t i=NEOPIXEL2_BRIGHTNESS) {
|
||||
set_color(MakeLEDColor(r, g, b, w, i));
|
||||
static inline void set_color(uint8_t r, uint8_t g, uint8_t b
|
||||
OPTARG(HAS_WHITE_LED, uint8_t w=0)
|
||||
OPTARG(NEOPIXEL_LED, uint8_t i=NEOPIXEL_BRIGHTNESS)
|
||||
) {
|
||||
set_color(LEDColor(r, g, b
|
||||
OPTARG(HAS_WHITE_LED, w)
|
||||
OPTARG(NEOPIXEL_LED, i)
|
||||
));
|
||||
}
|
||||
|
||||
static inline void set_off() { set_color(LEDColorOff()); }
|
||||
|
@@ -28,7 +28,7 @@
|
||||
|
||||
#if ENABLED(NEOPIXEL_LED)
|
||||
|
||||
#include "neopixel.h"
|
||||
#include "leds.h"
|
||||
|
||||
#if EITHER(NEOPIXEL_STARTUP_TEST, NEOPIXEL2_STARTUP_TEST)
|
||||
#include "../../core/utility.h"
|
||||
@@ -37,17 +37,21 @@
|
||||
Marlin_NeoPixel neo;
|
||||
int8_t Marlin_NeoPixel::neoindex;
|
||||
|
||||
Adafruit_NeoPixel Marlin_NeoPixel::adaneo1(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEOPIXEL_TYPE + NEO_KHZ800)
|
||||
#if CONJOINED_NEOPIXEL
|
||||
, Marlin_NeoPixel::adaneo2(NEOPIXEL_PIXELS, NEOPIXEL2_PIN, NEOPIXEL2_TYPE + NEO_KHZ800)
|
||||
#endif
|
||||
;
|
||||
Adafruit_NeoPixel Marlin_NeoPixel::adaneo1(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEOPIXEL_TYPE + NEO_KHZ800);
|
||||
#if CONJOINED_NEOPIXEL
|
||||
Adafruit_NeoPixel Marlin_NeoPixel::adaneo2(NEOPIXEL_PIXELS, NEOPIXEL2_PIN, NEOPIXEL2_TYPE + NEO_KHZ800);
|
||||
#endif
|
||||
|
||||
#ifdef NEOPIXEL_BKGD_LED_INDEX
|
||||
#ifdef NEOPIXEL_BKGD_INDEX_FIRST
|
||||
|
||||
void Marlin_NeoPixel::set_color_background() {
|
||||
uint8_t background_color[4] = NEOPIXEL_BKGD_COLOR;
|
||||
set_pixel_color(NEOPIXEL_BKGD_LED_INDEX, adaneo1.Color(background_color[0], background_color[1], background_color[2], background_color[3]));
|
||||
void Marlin_NeoPixel::set_background_color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
|
||||
for (int background_led = NEOPIXEL_BKGD_INDEX_FIRST; background_led <= NEOPIXEL_BKGD_INDEX_LAST; background_led++)
|
||||
set_pixel_color(background_led, adaneo1.Color(r, g, b, w));
|
||||
}
|
||||
|
||||
void Marlin_NeoPixel::reset_background_color() {
|
||||
constexpr uint8_t background_color[4] = NEOPIXEL_BKGD_COLOR;
|
||||
set_background_color(background_color[0], background_color[1], background_color[2], background_color[3]);
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -59,9 +63,10 @@ void Marlin_NeoPixel::set_color(const uint32_t color) {
|
||||
}
|
||||
else {
|
||||
for (uint16_t i = 0; i < pixels(); ++i) {
|
||||
#ifdef NEOPIXEL_BKGD_LED_INDEX
|
||||
if (i == NEOPIXEL_BKGD_LED_INDEX && TERN(NEOPIXEL_BKGD_ALWAYS_ON, true, color != 0x000000)) {
|
||||
set_color_background();
|
||||
#ifdef NEOPIXEL_BKGD_INDEX_FIRST
|
||||
if (i == NEOPIXEL_BKGD_INDEX_FIRST && TERN(NEOPIXEL_BKGD_ALWAYS_ON, true, color != 0x000000)) {
|
||||
reset_background_color();
|
||||
i += NEOPIXEL_BKGD_INDEX_LAST - (NEOPIXEL_BKGD_INDEX_FIRST);
|
||||
continue;
|
||||
}
|
||||
#endif
|
||||
@@ -90,36 +95,23 @@ void Marlin_NeoPixel::init() {
|
||||
safe_delay(500);
|
||||
set_color_startup(adaneo1.Color(0, 0, 255, 0)); // blue
|
||||
safe_delay(500);
|
||||
#if HAS_WHITE_LED
|
||||
set_color_startup(adaneo1.Color(0, 0, 0, 255)); // white
|
||||
safe_delay(500);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef NEOPIXEL_BKGD_LED_INDEX
|
||||
set_color_background();
|
||||
#ifdef NEOPIXEL_BKGD_INDEX_FIRST
|
||||
reset_background_color();
|
||||
#endif
|
||||
|
||||
#if ENABLED(LED_USER_PRESET_STARTUP)
|
||||
set_color(adaneo1.Color(LED_USER_PRESET_RED, LED_USER_PRESET_GREEN, LED_USER_PRESET_BLUE, LED_USER_PRESET_WHITE));
|
||||
#else
|
||||
set_color(adaneo1.Color(0, 0, 0, 0));
|
||||
#endif
|
||||
set_color(adaneo1.Color
|
||||
TERN(LED_USER_PRESET_STARTUP,
|
||||
(LED_USER_PRESET_RED, LED_USER_PRESET_GREEN, LED_USER_PRESET_BLUE, LED_USER_PRESET_WHITE),
|
||||
(0, 0, 0, 0))
|
||||
);
|
||||
}
|
||||
|
||||
#if 0
|
||||
bool Marlin_NeoPixel::set_led_color(const uint8_t r, const uint8_t g, const uint8_t b, const uint8_t w, const uint8_t p) {
|
||||
const uint32_t color = adaneo1.Color(r, g, b, w);
|
||||
set_brightness(p);
|
||||
#if DISABLED(NEOPIXEL_IS_SEQUENTIAL)
|
||||
set_color(color);
|
||||
return false;
|
||||
#else
|
||||
static uint16_t nextLed = 0;
|
||||
set_pixel_color(nextLed, color);
|
||||
show();
|
||||
if (++nextLed >= pixels()) nextLed = 0;
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(NEOPIXEL2_SEPARATE)
|
||||
|
||||
Marlin_NeoPixel2 neo2;
|
||||
@@ -158,13 +150,17 @@ bool Marlin_NeoPixel::set_led_color(const uint8_t r, const uint8_t g, const uint
|
||||
safe_delay(500);
|
||||
set_color_startup(adaneo.Color(0, 0, 255, 0)); // blue
|
||||
safe_delay(500);
|
||||
#if HAS_WHITE_LED2
|
||||
set_color_startup(adaneo.Color(0, 0, 0, 255)); // white
|
||||
safe_delay(500);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(NEO2_USER_PRESET_STARTUP)
|
||||
set_color(adaneo.Color(NEO2_USER_PRESET_RED, NEO2_USER_PRESET_GREEN, NEO2_USER_PRESET_BLUE, NEO2_USER_PRESET_WHITE));
|
||||
#else
|
||||
set_color(adaneo.Color(0, 0, 0, 0));
|
||||
#endif
|
||||
set_color(adaneo.Color
|
||||
TERN(NEO2_USER_PRESET_STARTUP,
|
||||
(NEO2_USER_PRESET_RED, NEO2_USER_PRESET_GREEN, NEO2_USER_PRESET_BLUE, NEO2_USER_PRESET_WHITE),
|
||||
(0, 0, 0, 0))
|
||||
);
|
||||
}
|
||||
|
||||
#endif // NEOPIXEL2_SEPARATE
|
||||
|
@@ -25,6 +25,10 @@
|
||||
* NeoPixel support
|
||||
*/
|
||||
|
||||
#ifndef _NEOPIXEL_INCLUDE_
|
||||
#error "Always include 'leds.h' and not 'neopixel.h' directly."
|
||||
#endif
|
||||
|
||||
// ------------------------
|
||||
// Includes
|
||||
// ------------------------
|
||||
@@ -38,6 +42,18 @@
|
||||
// Defines
|
||||
// ------------------------
|
||||
|
||||
#define _NEO_IS_RGB(N) (N == NEO_RGB || N == NEO_RBG || N == NEO_GRB || N == NEO_GBR || N == NEO_BRG || N == NEO_BGR)
|
||||
|
||||
#if !_NEO_IS_RGB(NEOPIXEL_TYPE)
|
||||
#define HAS_WHITE_LED 1
|
||||
#endif
|
||||
|
||||
#if HAS_WHITE_LED
|
||||
#define NEO_WHITE 0, 0, 0, 255
|
||||
#else
|
||||
#define NEO_WHITE 255, 255, 255
|
||||
#endif
|
||||
|
||||
#if defined(NEOPIXEL2_TYPE) && NEOPIXEL2_TYPE != NEOPIXEL_TYPE && DISABLED(NEOPIXEL2_SEPARATE)
|
||||
#define MULTIPLE_NEOPIXEL_TYPES 1
|
||||
#endif
|
||||
@@ -46,29 +62,16 @@
|
||||
#define CONJOINED_NEOPIXEL 1
|
||||
#endif
|
||||
|
||||
#if NEOPIXEL_TYPE == NEO_RGB || NEOPIXEL_TYPE == NEO_RBG || NEOPIXEL_TYPE == NEO_GRB || NEOPIXEL_TYPE == NEO_GBR || NEOPIXEL_TYPE == NEO_BRG || NEOPIXEL_TYPE == NEO_BGR
|
||||
#define NEOPIXEL_IS_RGB 1
|
||||
#else
|
||||
#define NEOPIXEL_IS_RGBW 1
|
||||
#endif
|
||||
|
||||
#if NEOPIXEL_IS_RGB
|
||||
#define NEO_WHITE 255, 255, 255, 0
|
||||
#else
|
||||
#define NEO_WHITE 0, 0, 0, 255
|
||||
#endif
|
||||
|
||||
// ------------------------
|
||||
// Function prototypes
|
||||
// ------------------------
|
||||
|
||||
class Marlin_NeoPixel {
|
||||
private:
|
||||
static Adafruit_NeoPixel adaneo1
|
||||
#if CONJOINED_NEOPIXEL
|
||||
, adaneo2
|
||||
#endif
|
||||
;
|
||||
static Adafruit_NeoPixel adaneo1;
|
||||
#if CONJOINED_NEOPIXEL
|
||||
static Adafruit_NeoPixel adaneo2;
|
||||
#endif
|
||||
|
||||
public:
|
||||
static int8_t neoindex;
|
||||
@@ -78,8 +81,9 @@ public:
|
||||
|
||||
static void set_color(const uint32_t c);
|
||||
|
||||
#ifdef NEOPIXEL_BKGD_LED_INDEX
|
||||
static void set_color_background();
|
||||
#ifdef NEOPIXEL_BKGD_INDEX_FIRST
|
||||
static void set_background_color(uint8_t r, uint8_t g, uint8_t b, uint8_t w);
|
||||
static void reset_background_color();
|
||||
#endif
|
||||
|
||||
static inline void begin() {
|
||||
@@ -93,9 +97,7 @@ public:
|
||||
else adaneo1.setPixelColor(n, c);
|
||||
#else
|
||||
adaneo1.setPixelColor(n, c);
|
||||
#if MULTIPLE_NEOPIXEL_TYPES
|
||||
adaneo2.setPixelColor(n, c);
|
||||
#endif
|
||||
TERN_(MULTIPLE_NEOPIXEL_TYPES, adaneo2.setPixelColor(n, c));
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -120,15 +122,13 @@ public:
|
||||
TERN_(HAS_PAUSE_SERVO_OUTPUT, RESUME_SERVO_OUTPUT());
|
||||
}
|
||||
|
||||
#if 0
|
||||
bool set_led_color(const uint8_t r, const uint8_t g, const uint8_t b, const uint8_t w, const uint8_t p);
|
||||
#endif
|
||||
|
||||
// Accessors
|
||||
static inline uint16_t pixels() { TERN(NEOPIXEL2_INSERIES, return adaneo1.numPixels() * 2, return adaneo1.numPixels()); }
|
||||
static inline uint16_t pixels() { return adaneo1.numPixels() * TERN1(NEOPIXEL2_INSERIES, 2); }
|
||||
|
||||
static inline uint8_t brightness() { return adaneo1.getBrightness(); }
|
||||
static inline uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
|
||||
return adaneo1.Color(r, g, b, w);
|
||||
|
||||
static inline uint32_t Color(uint8_t r, uint8_t g, uint8_t b OPTARG(HAS_WHITE_LED, uint8_t w)) {
|
||||
return adaneo1.Color(r, g, b OPTARG(HAS_WHITE_LED, w));
|
||||
}
|
||||
};
|
||||
|
||||
@@ -137,15 +137,12 @@ extern Marlin_NeoPixel neo;
|
||||
// Neo pixel channel 2
|
||||
#if ENABLED(NEOPIXEL2_SEPARATE)
|
||||
|
||||
#if NEOPIXEL2_TYPE == NEO_RGB || NEOPIXEL2_TYPE == NEO_RBG || NEOPIXEL2_TYPE == NEO_GRB || NEOPIXEL2_TYPE == NEO_GBR || NEOPIXEL2_TYPE == NEO_BRG || NEOPIXEL2_TYPE == NEO_BGR
|
||||
#if _NEO_IS_RGB(NEOPIXEL2_TYPE)
|
||||
#define NEOPIXEL2_IS_RGB 1
|
||||
#define NEO2_WHITE 255, 255, 255
|
||||
#else
|
||||
#define NEOPIXEL2_IS_RGBW 1
|
||||
#endif
|
||||
|
||||
#if NEOPIXEL2_IS_RGB
|
||||
#define NEO2_WHITE 255, 255, 255, 0
|
||||
#else
|
||||
#define HAS_WHITE_LED2 1 // A white component can be passed for NEOPIXEL2
|
||||
#define NEO2_WHITE 0, 0, 0, 255
|
||||
#endif
|
||||
|
||||
@@ -172,11 +169,13 @@ extern Marlin_NeoPixel neo;
|
||||
// Accessors
|
||||
static inline uint16_t pixels() { return adaneo.numPixels();}
|
||||
static inline uint8_t brightness() { return adaneo.getBrightness(); }
|
||||
static inline uint32_t Color(uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
|
||||
return adaneo.Color(r, g, b, w);
|
||||
static inline uint32_t Color(uint8_t r, uint8_t g, uint8_t b OPTARG(HAS_WHITE_LED2, uint8_t w)) {
|
||||
return adaneo.Color(r, g, b OPTARG(HAS_WHITE_LED2, w));
|
||||
}
|
||||
};
|
||||
|
||||
extern Marlin_NeoPixel2 neo2;
|
||||
|
||||
#endif // NEOPIXEL2_SEPARATE
|
||||
|
||||
#undef _NEO_IS_RGB
|
||||
|
@@ -93,9 +93,7 @@ static void PCA9632_WriteRegister(const byte addr, const byte regadd, const byte
|
||||
}
|
||||
|
||||
static void PCA9632_WriteAllRegisters(const byte addr, const byte regadd, const byte vr, const byte vg, const byte vb
|
||||
#if ENABLED(PCA9632_RGBW)
|
||||
, const byte vw
|
||||
#endif
|
||||
OPTARG(PCA9632_RGBW, const byte vw)
|
||||
) {
|
||||
#if DISABLED(PCA9632_NO_AUTO_INC)
|
||||
uint8_t data[4];
|
||||
@@ -143,9 +141,7 @@ void PCA9632_set_led_color(const LEDColor &color) {
|
||||
;
|
||||
|
||||
PCA9632_WriteAllRegisters(PCA9632_ADDRESS,PCA9632_PWM0, color.r, color.g, color.b
|
||||
#if ENABLED(PCA9632_RGBW)
|
||||
, color.w
|
||||
#endif
|
||||
OPTARG(PCA9632_RGBW, color.w)
|
||||
);
|
||||
PCA9632_WriteRegister(PCA9632_ADDRESS,PCA9632_LEDOUT, LEDOUT);
|
||||
}
|
||||
|
@@ -45,12 +45,10 @@ PrinterEventLEDs printerEventLEDs;
|
||||
return (uint8_t)map(constrain(current, start, target), start, target, 0, 255);
|
||||
}
|
||||
|
||||
inline void pel_set_rgb(const uint8_t r, const uint8_t g, const uint8_t b) {
|
||||
inline void pel_set_rgb(const uint8_t r, const uint8_t g, const uint8_t b OPTARG(HAS_WHITE_LED, const uint8_t w=0)) {
|
||||
leds.set_color(
|
||||
MakeLEDColor(r, g, b, 0, neo.brightness())
|
||||
#if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
|
||||
, true
|
||||
#endif
|
||||
LEDColor(r, g, b OPTARG(HAS_WHITE_LED, w) OPTARG(NEOPIXEL_LED, neo.brightness()))
|
||||
OPTARG(NEOPIXEL_IS_SEQUENTIAL, true)
|
||||
);
|
||||
}
|
||||
|
||||
|
@@ -24,7 +24,14 @@
|
||||
|
||||
#if HAS_PRUSA_MMU1
|
||||
|
||||
#include "../module/stepper.h"
|
||||
#include "../MarlinCore.h"
|
||||
#include "../module/planner.h"
|
||||
|
||||
void mmu_init() {
|
||||
SET_OUTPUT(E_MUX0_PIN);
|
||||
SET_OUTPUT(E_MUX1_PIN);
|
||||
SET_OUTPUT(E_MUX2_PIN);
|
||||
}
|
||||
|
||||
void select_multiplexed_stepper(const uint8_t e) {
|
||||
planner.synchronize();
|
||||
|
@@ -21,4 +21,5 @@
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
void mmu_init();
|
||||
void select_multiplexed_stepper(const uint8_t e);
|
||||
|
@@ -197,7 +197,7 @@ void PrintJobRecovery::save(const bool force/*=false*/, const float zraise/*=POW
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if EXTRUDERS
|
||||
#if HAS_EXTRUDERS
|
||||
HOTEND_LOOP() info.target_temperature[e] = thermalManager.degTargetHotend(e);
|
||||
#endif
|
||||
|
||||
@@ -375,7 +375,7 @@ void PrintJobRecovery::resume() {
|
||||
|
||||
gcode.process_subcommands_now_P(PSTR("G92.9E0")); // Reset E to 0
|
||||
|
||||
#if Z_HOME_DIR > 0
|
||||
#if Z_HOME_TO_MAX
|
||||
|
||||
float z_now = z_raised;
|
||||
|
||||
@@ -549,7 +549,7 @@ void PrintJobRecovery::resume() {
|
||||
TERN_(HAS_HOME_OFFSET, home_offset = info.home_offset);
|
||||
TERN_(HAS_POSITION_SHIFT, position_shift = info.position_shift);
|
||||
#if HAS_HOME_OFFSET || HAS_POSITION_SHIFT
|
||||
LOOP_XYZ(i) update_workspace_offset((AxisEnum)i);
|
||||
LOOP_LINEAR_AXES(i) update_workspace_offset((AxisEnum)i);
|
||||
#endif
|
||||
|
||||
// Relative axis modes
|
||||
@@ -581,7 +581,7 @@ void PrintJobRecovery::resume() {
|
||||
if (info.valid_head) {
|
||||
if (info.valid_head == info.valid_foot) {
|
||||
DEBUG_ECHOPGM("current_position: ");
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (i) DEBUG_CHAR(',');
|
||||
DEBUG_DECIMAL(info.current_position[i]);
|
||||
}
|
||||
@@ -599,7 +599,7 @@ void PrintJobRecovery::resume() {
|
||||
|
||||
#if HAS_HOME_OFFSET
|
||||
DEBUG_ECHOPGM("home_offset: ");
|
||||
LOOP_XYZ(i) {
|
||||
LOOP_LINEAR_AXES(i) {
|
||||
if (i) DEBUG_CHAR(',');
|
||||
DEBUG_DECIMAL(info.home_offset[i]);
|
||||
}
|
||||
@@ -608,7 +608,7 @@ void PrintJobRecovery::resume() {
|
||||
|
||||
#if HAS_POSITION_SHIFT
|
||||
DEBUG_ECHOPGM("position_shift: ");
|
||||
LOOP_XYZ(i) {
|
||||
LOOP_LINEAR_AXES(i) {
|
||||
if (i) DEBUG_CHAR(',');
|
||||
DEBUG_DECIMAL(info.position_shift[i]);
|
||||
}
|
||||
|
@@ -88,7 +88,7 @@ typedef struct {
|
||||
uint8_t fan_speed[FAN_COUNT];
|
||||
#endif
|
||||
|
||||
#if ENABLED(HAS_LEVELING)
|
||||
#if HAS_LEVELING
|
||||
float fade;
|
||||
#endif
|
||||
|
||||
@@ -120,7 +120,7 @@ typedef struct {
|
||||
bool raised:1; // Raised before saved
|
||||
bool dryrun:1; // M111 S8
|
||||
bool allow_cold_extrusion:1; // M302 P1
|
||||
#if ENABLED(HAS_LEVELING)
|
||||
#if HAS_LEVELING
|
||||
bool leveling:1; // M420 S
|
||||
#endif
|
||||
#if DISABLED(NO_VOLUMETRICS)
|
||||
|
@@ -47,7 +47,7 @@ typedef struct {
|
||||
|
||||
// Probe temperature calibration constants
|
||||
#ifndef PTC_SAMPLE_COUNT
|
||||
#define PTC_SAMPLE_COUNT 10U
|
||||
#define PTC_SAMPLE_COUNT 10
|
||||
#endif
|
||||
#ifndef PTC_SAMPLE_RES
|
||||
#define PTC_SAMPLE_RES 5
|
||||
@@ -55,22 +55,22 @@ typedef struct {
|
||||
#ifndef PTC_SAMPLE_START
|
||||
#define PTC_SAMPLE_START 30
|
||||
#endif
|
||||
#define PTC_SAMPLE_END ((PTC_SAMPLE_START) + (PTC_SAMPLE_COUNT) * (PTC_SAMPLE_RES))
|
||||
#define PTC_SAMPLE_END (PTC_SAMPLE_START + (PTC_SAMPLE_COUNT) * PTC_SAMPLE_RES)
|
||||
|
||||
// Bed temperature calibration constants
|
||||
#ifndef BTC_PROBE_TEMP
|
||||
#define BTC_PROBE_TEMP 30
|
||||
#endif
|
||||
#ifndef BTC_SAMPLE_COUNT
|
||||
#define BTC_SAMPLE_COUNT 10U
|
||||
#define BTC_SAMPLE_COUNT 10
|
||||
#endif
|
||||
#ifndef BTC_SAMPLE_STEP
|
||||
#ifndef BTC_SAMPLE_RES
|
||||
#define BTC_SAMPLE_RES 5
|
||||
#endif
|
||||
#ifndef BTC_SAMPLE_START
|
||||
#define BTC_SAMPLE_START 60
|
||||
#endif
|
||||
#define BTC_SAMPLE_END ((BTC_SAMPLE_START) + (BTC_SAMPLE_COUNT) * (BTC_SAMPLE_RES))
|
||||
#define BTC_SAMPLE_END (BTC_SAMPLE_START + (BTC_SAMPLE_COUNT) * BTC_SAMPLE_RES)
|
||||
|
||||
#ifndef PTC_PROBE_HEATING_OFFSET
|
||||
#define PTC_PROBE_HEATING_OFFSET 0.5f
|
||||
|
@@ -34,6 +34,10 @@
|
||||
#include "../module/servo.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2C_AMMETER)
|
||||
#include "../feature/ammeter.h"
|
||||
#endif
|
||||
|
||||
SpindleLaser cutter;
|
||||
uint8_t SpindleLaser::power;
|
||||
#if ENABLED(LASER_FEATURE)
|
||||
@@ -74,6 +78,9 @@ void SpindleLaser::init() {
|
||||
#if ENABLED(AIR_ASSIST)
|
||||
OUT_WRITE(AIR_ASSIST_PIN, !AIR_ASSIST_ACTIVE); // Init Air Assist OFF
|
||||
#endif
|
||||
#if ENABLED(I2C_AMMETER)
|
||||
ammeter.init(); // Init I2C Ammeter
|
||||
#endif
|
||||
}
|
||||
|
||||
#if ENABLED(SPINDLE_LASER_PWM)
|
||||
|
@@ -211,7 +211,7 @@
|
||||
SERIAL_PRINTLN(data.drv_status, HEX);
|
||||
if (data.is_ot) SERIAL_ECHOLNPGM("overtemperature");
|
||||
if (data.is_s2g) SERIAL_ECHOLNPGM("coil short circuit");
|
||||
TERN_(TMC_DEBUG, tmc_report_all(true, true, true, true));
|
||||
TERN_(TMC_DEBUG, tmc_report_all());
|
||||
kill(PSTR("Driver error"));
|
||||
}
|
||||
#endif
|
||||
@@ -417,6 +417,21 @@
|
||||
}
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(I)
|
||||
if (monitor_tmc_driver(stepperI, need_update_error_counters, need_debug_reporting))
|
||||
step_current_down(stepperI);
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(J)
|
||||
if (monitor_tmc_driver(stepperJ, need_update_error_counters, need_debug_reporting))
|
||||
step_current_down(stepperJ);
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(K)
|
||||
if (monitor_tmc_driver(stepperK, need_update_error_counters, need_debug_reporting))
|
||||
step_current_down(stepperK);
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(E0)
|
||||
(void)monitor_tmc_driver(stepperE0, need_update_error_counters, need_debug_reporting);
|
||||
#endif
|
||||
@@ -757,128 +772,148 @@
|
||||
}
|
||||
}
|
||||
|
||||
static void tmc_debug_loop(const TMC_debug_enum i, const bool print_x, const bool print_y, const bool print_z, const bool print_e) {
|
||||
if (print_x) {
|
||||
static void tmc_debug_loop(const TMC_debug_enum n, LOGICAL_AXIS_ARGS(const bool)) {
|
||||
if (x) {
|
||||
#if AXIS_IS_TMC(X)
|
||||
tmc_status(stepperX, i);
|
||||
tmc_status(stepperX, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(X2)
|
||||
tmc_status(stepperX2, i);
|
||||
tmc_status(stepperX2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_y) {
|
||||
if (TERN0(HAS_Y_AXIS, y)) {
|
||||
#if AXIS_IS_TMC(Y)
|
||||
tmc_status(stepperY, i);
|
||||
tmc_status(stepperY, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Y2)
|
||||
tmc_status(stepperY2, i);
|
||||
tmc_status(stepperY2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_z) {
|
||||
if (TERN0(HAS_Z_AXIS, z)) {
|
||||
#if AXIS_IS_TMC(Z)
|
||||
tmc_status(stepperZ, i);
|
||||
tmc_status(stepperZ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z2)
|
||||
tmc_status(stepperZ2, i);
|
||||
tmc_status(stepperZ2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z3)
|
||||
tmc_status(stepperZ3, i);
|
||||
tmc_status(stepperZ3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z4)
|
||||
tmc_status(stepperZ4, i);
|
||||
tmc_status(stepperZ4, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_e) {
|
||||
#if AXIS_IS_TMC(I)
|
||||
if (i) tmc_status(stepperI, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(J)
|
||||
if (j) tmc_status(stepperJ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(K)
|
||||
if (k) tmc_status(stepperK, n);
|
||||
#endif
|
||||
|
||||
if (TERN0(HAS_EXTRUDERS, e)) {
|
||||
#if AXIS_IS_TMC(E0)
|
||||
tmc_status(stepperE0, i);
|
||||
tmc_status(stepperE0, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E1)
|
||||
tmc_status(stepperE1, i);
|
||||
tmc_status(stepperE1, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E2)
|
||||
tmc_status(stepperE2, i);
|
||||
tmc_status(stepperE2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E3)
|
||||
tmc_status(stepperE3, i);
|
||||
tmc_status(stepperE3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E4)
|
||||
tmc_status(stepperE4, i);
|
||||
tmc_status(stepperE4, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E5)
|
||||
tmc_status(stepperE5, i);
|
||||
tmc_status(stepperE5, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E6)
|
||||
tmc_status(stepperE6, i);
|
||||
tmc_status(stepperE6, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E7)
|
||||
tmc_status(stepperE7, i);
|
||||
tmc_status(stepperE7, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
static void drv_status_loop(const TMC_drv_status_enum i, const bool print_x, const bool print_y, const bool print_z, const bool print_e) {
|
||||
if (print_x) {
|
||||
static void drv_status_loop(const TMC_drv_status_enum n, LOGICAL_AXIS_ARGS(const bool)) {
|
||||
if (x) {
|
||||
#if AXIS_IS_TMC(X)
|
||||
tmc_parse_drv_status(stepperX, i);
|
||||
tmc_parse_drv_status(stepperX, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(X2)
|
||||
tmc_parse_drv_status(stepperX2, i);
|
||||
tmc_parse_drv_status(stepperX2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_y) {
|
||||
if (TERN0(HAS_Y_AXIS, y)) {
|
||||
#if AXIS_IS_TMC(Y)
|
||||
tmc_parse_drv_status(stepperY, i);
|
||||
tmc_parse_drv_status(stepperY, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Y2)
|
||||
tmc_parse_drv_status(stepperY2, i);
|
||||
tmc_parse_drv_status(stepperY2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_z) {
|
||||
if (TERN0(HAS_Z_AXIS, z)) {
|
||||
#if AXIS_IS_TMC(Z)
|
||||
tmc_parse_drv_status(stepperZ, i);
|
||||
tmc_parse_drv_status(stepperZ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z2)
|
||||
tmc_parse_drv_status(stepperZ2, i);
|
||||
tmc_parse_drv_status(stepperZ2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z3)
|
||||
tmc_parse_drv_status(stepperZ3, i);
|
||||
tmc_parse_drv_status(stepperZ3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z4)
|
||||
tmc_parse_drv_status(stepperZ4, i);
|
||||
tmc_parse_drv_status(stepperZ4, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_e) {
|
||||
#if AXIS_IS_TMC(I)
|
||||
if (i) tmc_parse_drv_status(stepperI, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(J)
|
||||
if (j) tmc_parse_drv_status(stepperJ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(K)
|
||||
if (k) tmc_parse_drv_status(stepperK, n);
|
||||
#endif
|
||||
|
||||
if (TERN0(HAS_EXTRUDERS, e)) {
|
||||
#if AXIS_IS_TMC(E0)
|
||||
tmc_parse_drv_status(stepperE0, i);
|
||||
tmc_parse_drv_status(stepperE0, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E1)
|
||||
tmc_parse_drv_status(stepperE1, i);
|
||||
tmc_parse_drv_status(stepperE1, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E2)
|
||||
tmc_parse_drv_status(stepperE2, i);
|
||||
tmc_parse_drv_status(stepperE2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E3)
|
||||
tmc_parse_drv_status(stepperE3, i);
|
||||
tmc_parse_drv_status(stepperE3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E4)
|
||||
tmc_parse_drv_status(stepperE4, i);
|
||||
tmc_parse_drv_status(stepperE4, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E5)
|
||||
tmc_parse_drv_status(stepperE5, i);
|
||||
tmc_parse_drv_status(stepperE5, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E6)
|
||||
tmc_parse_drv_status(stepperE6, i);
|
||||
tmc_parse_drv_status(stepperE6, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E7)
|
||||
tmc_parse_drv_status(stepperE7, i);
|
||||
tmc_parse_drv_status(stepperE7, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -889,9 +924,10 @@
|
||||
* M122 report functions
|
||||
*/
|
||||
|
||||
void tmc_report_all(bool print_x, const bool print_y, const bool print_z, const bool print_e) {
|
||||
#define TMC_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_debug_loop(ITEM, print_x, print_y, print_z, print_e); }while(0)
|
||||
#define DRV_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); drv_status_loop(ITEM, print_x, print_y, print_z, print_e); }while(0)
|
||||
void tmc_report_all(LOGICAL_AXIS_ARGS(const bool)) {
|
||||
#define TMC_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_debug_loop(ITEM, LOGICAL_AXIS_ARGS()); }while(0)
|
||||
#define DRV_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); drv_status_loop(ITEM, LOGICAL_AXIS_ARGS()); }while(0)
|
||||
|
||||
TMC_REPORT("\t", TMC_CODES);
|
||||
#if HAS_DRIVER(TMC2209)
|
||||
TMC_REPORT("Address\t", TMC_UART_ADDR);
|
||||
@@ -1015,72 +1051,82 @@
|
||||
}
|
||||
#endif
|
||||
|
||||
static void tmc_get_registers(TMC_get_registers_enum i, const bool print_x, const bool print_y, const bool print_z, const bool print_e) {
|
||||
if (print_x) {
|
||||
static void tmc_get_registers(TMC_get_registers_enum n, LOGICAL_AXIS_ARGS(const bool)) {
|
||||
if (x) {
|
||||
#if AXIS_IS_TMC(X)
|
||||
tmc_get_registers(stepperX, i);
|
||||
tmc_get_registers(stepperX, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(X2)
|
||||
tmc_get_registers(stepperX2, i);
|
||||
tmc_get_registers(stepperX2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_y) {
|
||||
if (TERN0(HAS_Y_AXIS, y)) {
|
||||
#if AXIS_IS_TMC(Y)
|
||||
tmc_get_registers(stepperY, i);
|
||||
tmc_get_registers(stepperY, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Y2)
|
||||
tmc_get_registers(stepperY2, i);
|
||||
tmc_get_registers(stepperY2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_z) {
|
||||
if (TERN0(HAS_Z_AXIS, z)) {
|
||||
#if AXIS_IS_TMC(Z)
|
||||
tmc_get_registers(stepperZ, i);
|
||||
tmc_get_registers(stepperZ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z2)
|
||||
tmc_get_registers(stepperZ2, i);
|
||||
tmc_get_registers(stepperZ2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z3)
|
||||
tmc_get_registers(stepperZ3, i);
|
||||
tmc_get_registers(stepperZ3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z4)
|
||||
tmc_get_registers(stepperZ4, i);
|
||||
tmc_get_registers(stepperZ4, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_e) {
|
||||
#if AXIS_IS_TMC(I)
|
||||
if (i) tmc_get_registers(stepperI, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(J)
|
||||
if (j) tmc_get_registers(stepperJ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(K)
|
||||
if (k) tmc_get_registers(stepperK, n);
|
||||
#endif
|
||||
|
||||
if (TERN0(HAS_EXTRUDERS, e)) {
|
||||
#if AXIS_IS_TMC(E0)
|
||||
tmc_get_registers(stepperE0, i);
|
||||
tmc_get_registers(stepperE0, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E1)
|
||||
tmc_get_registers(stepperE1, i);
|
||||
tmc_get_registers(stepperE1, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E2)
|
||||
tmc_get_registers(stepperE2, i);
|
||||
tmc_get_registers(stepperE2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E3)
|
||||
tmc_get_registers(stepperE3, i);
|
||||
tmc_get_registers(stepperE3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E4)
|
||||
tmc_get_registers(stepperE4, i);
|
||||
tmc_get_registers(stepperE4, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E5)
|
||||
tmc_get_registers(stepperE5, i);
|
||||
tmc_get_registers(stepperE5, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E6)
|
||||
tmc_get_registers(stepperE6, i);
|
||||
tmc_get_registers(stepperE6, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E7)
|
||||
tmc_get_registers(stepperE7, i);
|
||||
tmc_get_registers(stepperE7, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
void tmc_get_registers(bool print_x, bool print_y, bool print_z, bool print_e) {
|
||||
#define _TMC_GET_REG(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_get_registers(ITEM, print_x, print_y, print_z, print_e); }while(0)
|
||||
void tmc_get_registers(LOGICAL_AXIS_ARGS(bool)) {
|
||||
#define _TMC_GET_REG(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_get_registers(ITEM, LOGICAL_AXIS_ARGS()); }while(0)
|
||||
#define TMC_GET_REG(NAME, TABS) _TMC_GET_REG(STRINGIFY(NAME) TABS, TMC_GET_##NAME)
|
||||
_TMC_GET_REG("\t", TMC_AXIS_CODES);
|
||||
TMC_GET_REG(GCONF, "\t\t");
|
||||
@@ -1165,6 +1211,15 @@
|
||||
#if AXIS_HAS_SPI(Z4)
|
||||
SET_CS_PIN(Z4);
|
||||
#endif
|
||||
#if AXIS_HAS_SPI(I)
|
||||
SET_CS_PIN(I);
|
||||
#endif
|
||||
#if AXIS_HAS_SPI(J)
|
||||
SET_CS_PIN(J);
|
||||
#endif
|
||||
#if AXIS_HAS_SPI(K)
|
||||
SET_CS_PIN(K);
|
||||
#endif
|
||||
#if AXIS_HAS_SPI(E0)
|
||||
SET_CS_PIN(E0);
|
||||
#endif
|
||||
@@ -1214,10 +1269,10 @@ static bool test_connection(TMC &st) {
|
||||
return test_result;
|
||||
}
|
||||
|
||||
void test_tmc_connection(const bool test_x, const bool test_y, const bool test_z, const bool test_e) {
|
||||
void test_tmc_connection(LOGICAL_AXIS_ARGS(const bool)) {
|
||||
uint8_t axis_connection = 0;
|
||||
|
||||
if (test_x) {
|
||||
if (x) {
|
||||
#if AXIS_IS_TMC(X)
|
||||
axis_connection += test_connection(stepperX);
|
||||
#endif
|
||||
@@ -1226,7 +1281,7 @@ void test_tmc_connection(const bool test_x, const bool test_y, const bool test_z
|
||||
#endif
|
||||
}
|
||||
|
||||
if (test_y) {
|
||||
if (TERN0(HAS_Y_AXIS, y)) {
|
||||
#if AXIS_IS_TMC(Y)
|
||||
axis_connection += test_connection(stepperY);
|
||||
#endif
|
||||
@@ -1235,7 +1290,7 @@ void test_tmc_connection(const bool test_x, const bool test_y, const bool test_z
|
||||
#endif
|
||||
}
|
||||
|
||||
if (test_z) {
|
||||
if (TERN0(HAS_Z_AXIS, z)) {
|
||||
#if AXIS_IS_TMC(Z)
|
||||
axis_connection += test_connection(stepperZ);
|
||||
#endif
|
||||
@@ -1250,7 +1305,17 @@ void test_tmc_connection(const bool test_x, const bool test_y, const bool test_z
|
||||
#endif
|
||||
}
|
||||
|
||||
if (test_e) {
|
||||
#if AXIS_IS_TMC(I)
|
||||
if (i) axis_connection += test_connection(stepperI);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(J)
|
||||
if (j) axis_connection += test_connection(stepperJ);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(K)
|
||||
if (k) axis_connection += test_connection(stepperK);
|
||||
#endif
|
||||
|
||||
if (TERN0(HAS_EXTRUDERS, e)) {
|
||||
#if AXIS_IS_TMC(E0)
|
||||
axis_connection += test_connection(stepperE0);
|
||||
#endif
|
||||
|
@@ -70,15 +70,9 @@ class TMCStorage {
|
||||
}
|
||||
|
||||
struct {
|
||||
#if ENABLED(HAS_STEALTHCHOP)
|
||||
bool stealthChop_enabled = false;
|
||||
#endif
|
||||
#if ENABLED(HYBRID_THRESHOLD)
|
||||
uint8_t hybrid_thrs = 0;
|
||||
#endif
|
||||
#if ENABLED(USE_SENSORLESS)
|
||||
int16_t homing_thrs = 0;
|
||||
#endif
|
||||
OPTCODE(HAS_STEALTHCHOP, bool stealthChop_enabled = false)
|
||||
OPTCODE(HYBRID_THRESHOLD, uint8_t hybrid_thrs = 0)
|
||||
OPTCODE(USE_SENSORLESS, int16_t homing_thrs = 0)
|
||||
} stored;
|
||||
};
|
||||
|
||||
@@ -341,14 +335,14 @@ void tmc_print_current(TMC &st) {
|
||||
#endif
|
||||
|
||||
void monitor_tmc_drivers();
|
||||
void test_tmc_connection(const bool test_x, const bool test_y, const bool test_z, const bool test_e);
|
||||
void test_tmc_connection(LOGICAL_AXIS_DECL(const bool, true));
|
||||
|
||||
#if ENABLED(TMC_DEBUG)
|
||||
#if ENABLED(MONITOR_DRIVER_STATUS)
|
||||
void tmc_set_report_interval(const uint16_t update_interval);
|
||||
#endif
|
||||
void tmc_report_all(const bool print_x, const bool print_y, const bool print_z, const bool print_e);
|
||||
void tmc_get_registers(const bool print_x, const bool print_y, const bool print_z, const bool print_e);
|
||||
void tmc_report_all(LOGICAL_AXIS_DECL(const bool, true));
|
||||
void tmc_get_registers(LOGICAL_AXIS_ARGS(const bool));
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -361,7 +355,7 @@ void test_tmc_connection(const bool test_x, const bool test_y, const bool test_z
|
||||
#if USE_SENSORLESS
|
||||
|
||||
// Track enabled status of stealthChop and only re-enable where applicable
|
||||
struct sensorless_t { bool x, y, z, x2, y2, z2, z3, z4; };
|
||||
struct sensorless_t { bool LINEAR_AXIS_ARGS(), x2, y2, z2, z3, z4; };
|
||||
|
||||
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
|
||||
extern millis_t sg_guard_period;
|
||||
|
@@ -330,12 +330,8 @@ typedef struct {
|
||||
thermalManager.setTargetBed(bed_temp);
|
||||
|
||||
// Wait for the temperature to stabilize
|
||||
if (!thermalManager.wait_for_bed(true
|
||||
#if G26_CLICK_CAN_CANCEL
|
||||
, true
|
||||
#endif
|
||||
)
|
||||
) return G26_ERR;
|
||||
if (!thermalManager.wait_for_bed(true OPTARG(G26_CLICK_CAN_CANCEL, true)))
|
||||
return G26_ERR;
|
||||
}
|
||||
|
||||
#else
|
||||
@@ -352,11 +348,8 @@ typedef struct {
|
||||
thermalManager.setTargetHotend(hotend_temp, active_extruder);
|
||||
|
||||
// Wait for the temperature to stabilize
|
||||
if (!thermalManager.wait_for_hotend(active_extruder, true
|
||||
#if G26_CLICK_CAN_CANCEL
|
||||
, true
|
||||
#endif
|
||||
)) return G26_ERR;
|
||||
if (!thermalManager.wait_for_hotend(active_extruder, true OPTARG(G26_CLICK_CAN_CANCEL, true)))
|
||||
return G26_ERR;
|
||||
|
||||
#if HAS_WIRED_LCD
|
||||
ui.reset_status();
|
||||
|
@@ -91,8 +91,8 @@ void GcodeSuite::G35() {
|
||||
// Disable duplication mode on homing
|
||||
TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false));
|
||||
|
||||
// Home all before this procedure
|
||||
home_all_axes();
|
||||
// Home only Z axis when X and Y is trusted, otherwise all axes, if needed before this procedure
|
||||
if (!all_axes_trusted()) process_subcommands_now_P(PSTR("G28Z"));
|
||||
|
||||
bool err_break = false;
|
||||
|
||||
|
@@ -246,7 +246,7 @@ G29_TYPE GcodeSuite::G29() {
|
||||
|
||||
// Send 'N' to force homing before G29 (internal only)
|
||||
if (parser.seen_test('N'))
|
||||
process_subcommands_now_P(TERN(G28_L0_ENSURES_LEVELING_OFF, PSTR("G28L0"), G28_STR));
|
||||
process_subcommands_now_P(TERN(CAN_SET_LEVELING_AFTER_G28, PSTR("G28L0"), G28_STR));
|
||||
|
||||
// Don't allow auto-leveling without homing first
|
||||
if (homing_needed_error()) G29_RETURN(false);
|
||||
@@ -689,7 +689,7 @@ G29_TYPE GcodeSuite::G29() {
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i + 1)));
|
||||
|
||||
// Retain the last probe position
|
||||
abl.probePos = points[i];
|
||||
abl.probePos = xy_pos_t(points[i]);
|
||||
abl.measured_z = faux ? 0.001 * random(-100, 101) : probe.probe_at_point(abl.probePos, raise_after, abl.verbose_level);
|
||||
if (isnan(abl.measured_z)) {
|
||||
set_bed_leveling_enabled(abl.reenable);
|
||||
@@ -795,7 +795,7 @@ G29_TYPE GcodeSuite::G29() {
|
||||
const int ind = abl.indexIntoAB[xx][yy];
|
||||
xyz_float_t tmp = { abl.eqnAMatrix[ind + 0 * abl.abl_points],
|
||||
abl.eqnAMatrix[ind + 1 * abl.abl_points], 0 };
|
||||
planner.bed_level_matrix.apply_rotation_xyz(tmp);
|
||||
planner.bed_level_matrix.apply_rotation_xyz(tmp.x, tmp.y, tmp.z);
|
||||
if (get_min) NOMORE(min_diff, abl.eqnBVector[ind] - tmp.z);
|
||||
const float subval = get_min ? abl.mean : tmp.z + min_diff,
|
||||
diff = abl.eqnBVector[ind] - subval;
|
||||
|
@@ -70,7 +70,7 @@ void GcodeSuite::G29() {
|
||||
return;
|
||||
}
|
||||
|
||||
int8_t ix, iy;
|
||||
int8_t ix, iy = 0;
|
||||
|
||||
switch (state) {
|
||||
case MeshReport:
|
||||
@@ -87,7 +87,8 @@ void GcodeSuite::G29() {
|
||||
mbl.reset();
|
||||
mbl_probe_index = 0;
|
||||
if (!ui.wait_for_move) {
|
||||
queue.inject_P(parser.seen_test('N') ? PSTR("G28" TERN(G28_L0_ENSURES_LEVELING_OFF, "L0", "") "\nG29S2") : PSTR("G29S2"));
|
||||
queue.inject_P(parser.seen_test('N') ? PSTR("G28" TERN(CAN_SET_LEVELING_AFTER_G28, "L0", "") "\nG29S2") : PSTR("G29S2"));
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onMeshLevelingStart());
|
||||
return;
|
||||
}
|
||||
state = MeshNext;
|
||||
@@ -109,6 +110,7 @@ void GcodeSuite::G29() {
|
||||
else {
|
||||
// Save Z for the previous mesh position
|
||||
mbl.set_zigzag_z(mbl_probe_index - 1, current_position.z);
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(ix, iy, current_position.z));
|
||||
SET_SOFT_ENDSTOP_LOOSE(false);
|
||||
}
|
||||
// If there's another point to sample, move there with optional lift.
|
||||
|
@@ -73,7 +73,7 @@
|
||||
current_position.set(0.0, 0.0);
|
||||
sync_plan_position();
|
||||
|
||||
const int x_axis_home_dir = x_home_dir(active_extruder);
|
||||
const int x_axis_home_dir = TOOL_X_HOME_DIR(active_extruder);
|
||||
|
||||
const float mlx = max_length(X_AXIS),
|
||||
mly = max_length(Y_AXIS),
|
||||
@@ -220,7 +220,7 @@ void GcodeSuite::G28() {
|
||||
|
||||
#if ENABLED(MARLIN_DEV_MODE)
|
||||
if (parser.seen_test('S')) {
|
||||
LOOP_XYZ(a) set_axis_is_at_home((AxisEnum)a);
|
||||
LOOP_LINEAR_AXES(a) set_axis_is_at_home((AxisEnum)a);
|
||||
sync_plan_position();
|
||||
SERIAL_ECHOLNPGM("Simulated Homing");
|
||||
report_current_position();
|
||||
@@ -242,12 +242,16 @@ void GcodeSuite::G28() {
|
||||
SET_SOFT_ENDSTOP_LOOSE(false); // Reset a leftover 'loose' motion state
|
||||
|
||||
// Disable the leveling matrix before homing
|
||||
#if HAS_LEVELING
|
||||
const bool leveling_restore_state = parser.boolval('L', TERN(RESTORE_LEVELING_AFTER_G28, planner.leveling_active, ENABLED(ENABLE_LEVELING_AFTER_G28)));
|
||||
IF_ENABLED(PROBE_MANUALLY, g29_in_progress = false); // Cancel the active G29 session
|
||||
set_bed_leveling_enabled(false);
|
||||
#if CAN_SET_LEVELING_AFTER_G28
|
||||
const bool leveling_restore_state = parser.boolval('L', TERN1(RESTORE_LEVELING_AFTER_G28, planner.leveling_active));
|
||||
#endif
|
||||
|
||||
// Cancel any prior G29 session
|
||||
TERN_(PROBE_MANUALLY, g29_in_progress = false);
|
||||
|
||||
// Disable leveling before homing
|
||||
TERN_(HAS_LEVELING, set_bed_leveling_enabled(false));
|
||||
|
||||
// Reset to the XY plane
|
||||
TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
|
||||
|
||||
@@ -321,33 +325,47 @@ void GcodeSuite::G28() {
|
||||
|
||||
#else
|
||||
|
||||
const bool homeZ = parser.seen_test('Z'),
|
||||
needX = homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(X_AXIS))),
|
||||
needY = homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(Y_AXIS))),
|
||||
homeX = needX || parser.seen_test('X'), homeY = needY || parser.seen_test('Y'),
|
||||
home_all = homeX == homeY && homeX == homeZ, // All or None
|
||||
doX = home_all || homeX, doY = home_all || homeY, doZ = home_all || homeZ;
|
||||
#define _UNSAFE(A) (homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(A##_AXIS))))
|
||||
|
||||
#if ENABLED(HOME_Z_FIRST)
|
||||
|
||||
if (doZ) homeaxis(Z_AXIS);
|
||||
const bool homeZ = TERN0(HAS_Z_AXIS, parser.seen_test('Z')),
|
||||
LINEAR_AXIS_LIST( // Other axes should be homed before Z safe-homing
|
||||
needX = _UNSAFE(X), needY = _UNSAFE(Y), needZ = false, // UNUSED
|
||||
needI = _UNSAFE(I), needJ = _UNSAFE(J), needK = _UNSAFE(K)
|
||||
),
|
||||
LINEAR_AXIS_LIST( // Home each axis if needed or flagged
|
||||
homeX = needX || parser.seen_test('X'),
|
||||
homeY = needY || parser.seen_test('Y'),
|
||||
homeZZ = homeZ,
|
||||
homeI = needI || parser.seen_test(AXIS4_NAME), homeJ = needJ || parser.seen_test(AXIS5_NAME), homeK = needK || parser.seen_test(AXIS6_NAME),
|
||||
),
|
||||
home_all = LINEAR_AXIS_GANG( // Home-all if all or none are flagged
|
||||
homeX == homeX, && homeY == homeX, && homeZ == homeX,
|
||||
&& homeI == homeX, && homeJ == homeX, && homeK == homeX
|
||||
),
|
||||
LINEAR_AXIS_LIST(
|
||||
doX = home_all || homeX, doY = home_all || homeY, doZ = home_all || homeZ,
|
||||
doI = home_all || homeI, doJ = home_all || homeJ, doK = home_all || homeK
|
||||
);
|
||||
|
||||
#if HAS_Z_AXIS
|
||||
UNUSED(needZ); UNUSED(homeZZ);
|
||||
#else
|
||||
constexpr bool doZ = false;
|
||||
#endif
|
||||
|
||||
TERN_(HOME_Z_FIRST, if (doZ) homeaxis(Z_AXIS));
|
||||
|
||||
const float z_homing_height = parser.seenval('R') ? parser.value_linear_units() : Z_HOMING_HEIGHT;
|
||||
|
||||
if (z_homing_height && (doX || doY || TERN0(Z_SAFE_HOMING, doZ))) {
|
||||
if (z_homing_height && (LINEAR_AXIS_GANG(doX, || doY, || TERN0(Z_SAFE_HOMING, doZ), || doI, || doJ, || doK))) {
|
||||
// Raise Z before homing any other axes and z is not already high enough (never lower z)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Raise Z (before homing) by ", z_homing_height);
|
||||
do_z_clearance(z_homing_height);
|
||||
TERN_(BLTOUCH, bltouch.init());
|
||||
}
|
||||
|
||||
#if ENABLED(QUICK_HOME)
|
||||
|
||||
if (doX && doY) quick_home_xy();
|
||||
|
||||
#endif
|
||||
// Diagonal move first if both are homing
|
||||
TERN_(QUICK_HOME, if (doX && doY) quick_home_xy());
|
||||
|
||||
// Home Y (before X)
|
||||
if (ENABLED(HOME_Y_BEFORE_X) && (doY || TERN0(CODEPENDENT_XY_HOMING, doX)))
|
||||
@@ -386,7 +404,7 @@ void GcodeSuite::G28() {
|
||||
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(slow_homing));
|
||||
|
||||
// Home Z last if homing towards the bed
|
||||
#if DISABLED(HOME_Z_FIRST)
|
||||
#if HAS_Z_AXIS && DISABLED(HOME_Z_FIRST)
|
||||
if (doZ) {
|
||||
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
|
||||
stepper.set_all_z_lock(false);
|
||||
@@ -398,6 +416,16 @@ void GcodeSuite::G28() {
|
||||
}
|
||||
#endif
|
||||
|
||||
#if LINEAR_AXES >= 4
|
||||
if (doI) homeaxis(I_AXIS);
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
if (doJ) homeaxis(J_AXIS);
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
if (doK) homeaxis(K_AXIS);
|
||||
#endif
|
||||
|
||||
sync_plan_position();
|
||||
|
||||
#endif
|
||||
@@ -441,12 +469,10 @@ void GcodeSuite::G28() {
|
||||
// Clear endstop state for polled stallGuard endstops
|
||||
TERN_(SPI_ENDSTOPS, endstops.clear_endstop_state());
|
||||
|
||||
#if BOTH(DELTA, DELTA_HOME_TO_SAFE_ZONE)
|
||||
// move to a height where we can use the full xy-area
|
||||
do_blocking_move_to_z(delta_clip_start_height);
|
||||
#endif
|
||||
// Move to a height where we can use the full xy-area
|
||||
TERN_(DELTA_HOME_TO_SAFE_ZONE, do_blocking_move_to_z(delta_clip_start_height));
|
||||
|
||||
TERN_(HAS_LEVELING, set_bed_leveling_enabled(leveling_restore_state));
|
||||
TERN_(CAN_SET_LEVELING_AFTER_G28, if (leveling_restore_state) set_bed_leveling_enabled());
|
||||
|
||||
restore_feedrate_and_scaling();
|
||||
|
||||
@@ -469,7 +495,16 @@ void GcodeSuite::G28() {
|
||||
#if HAS_CURRENT_HOME(Y2)
|
||||
stepperY2.rms_current(tmc_save_current_Y2);
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_CURRENT_HOME(I)
|
||||
stepperI.rms_current(tmc_save_current_I);
|
||||
#endif
|
||||
#if HAS_CURRENT_HOME(J)
|
||||
stepperJ.rms_current(tmc_save_current_J);
|
||||
#endif
|
||||
#if HAS_CURRENT_HOME(K)
|
||||
stepperK.rms_current(tmc_save_current_K);
|
||||
#endif
|
||||
#endif // HAS_HOMING_CURRENT
|
||||
|
||||
ui.refresh();
|
||||
|
||||
@@ -487,11 +522,13 @@ void GcodeSuite::G28() {
|
||||
// Set L6470 absolute position registers to counts
|
||||
// constexpr *might* move this to PROGMEM.
|
||||
// If not, this will need a PROGMEM directive and an accessor.
|
||||
#define _EN_ITEM(N) , E_AXIS
|
||||
static constexpr AxisEnum L64XX_axis_xref[MAX_L64XX] = {
|
||||
X_AXIS, Y_AXIS, Z_AXIS,
|
||||
X_AXIS, Y_AXIS, Z_AXIS, Z_AXIS,
|
||||
E_AXIS, E_AXIS, E_AXIS, E_AXIS, E_AXIS, E_AXIS
|
||||
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS),
|
||||
X_AXIS, Y_AXIS, Z_AXIS, Z_AXIS, Z_AXIS
|
||||
REPEAT(E_STEPPERS, _EN_ITEM)
|
||||
};
|
||||
#undef _EN_ITEM
|
||||
for (uint8_t j = 1; j <= L64XX::chain[0]; j++) {
|
||||
const uint8_t cv = L64XX::chain[j];
|
||||
L64xxManager.set_param((L64XX_axis_t)cv, L6470_ABS_POS, stepper.position(L64XX_axis_xref[cv]));
|
||||
|
@@ -347,7 +347,7 @@ static float auto_tune_a() {
|
||||
abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
|
||||
|
||||
delta_t.reset();
|
||||
LOOP_XYZ(axis) {
|
||||
LOOP_LINEAR_AXES(axis) {
|
||||
delta_t[axis] = diff;
|
||||
calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
|
||||
delta_t[axis] = 0;
|
||||
@@ -525,7 +525,7 @@ void GcodeSuite::G33() {
|
||||
|
||||
case 1:
|
||||
test_precision = 0.0f; // forced end
|
||||
LOOP_XYZ(axis) e_delta[axis] = +Z4(CEN);
|
||||
LOOP_LINEAR_AXES(axis) e_delta[axis] = +Z4(CEN);
|
||||
break;
|
||||
|
||||
case 2:
|
||||
@@ -573,14 +573,14 @@ void GcodeSuite::G33() {
|
||||
// Normalize angles to least-squares
|
||||
if (_angle_results) {
|
||||
float a_sum = 0.0f;
|
||||
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
|
||||
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f;
|
||||
LOOP_LINEAR_AXES(axis) a_sum += delta_tower_angle_trim[axis];
|
||||
LOOP_LINEAR_AXES(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f;
|
||||
}
|
||||
|
||||
// adjust delta_height and endstops by the max amount
|
||||
const float z_temp = _MAX(delta_endstop_adj.a, delta_endstop_adj.b, delta_endstop_adj.c);
|
||||
delta_height -= z_temp;
|
||||
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
|
||||
LOOP_LINEAR_AXES(axis) delta_endstop_adj[axis] -= z_temp;
|
||||
}
|
||||
recalc_delta_settings();
|
||||
NOMORE(zero_std_dev_min, zero_std_dev);
|
||||
|
@@ -39,7 +39,7 @@
|
||||
void GcodeSuite::G34() {
|
||||
|
||||
// Home before the alignment procedure
|
||||
if (!all_axes_trusted()) home_all_axes();
|
||||
home_if_needed();
|
||||
|
||||
TERN_(HAS_LEVELING, TEMPORARY_BED_LEVELING_STATE(false));
|
||||
|
||||
|
@@ -48,6 +48,13 @@
|
||||
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
#include "../../core/debug_out.h"
|
||||
|
||||
#if NUM_Z_STEPPER_DRIVERS >= 3
|
||||
#define TRIPLE_Z 1
|
||||
#if NUM_Z_STEPPER_DRIVERS >= 4
|
||||
#define QUAD_Z 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* G34: Z-Stepper automatic alignment
|
||||
*
|
||||
@@ -82,9 +89,9 @@ void GcodeSuite::G34() {
|
||||
switch (parser.intval('Z')) {
|
||||
case 1: stepper.set_z1_lock(state); break;
|
||||
case 2: stepper.set_z2_lock(state); break;
|
||||
#if NUM_Z_STEPPER_DRIVERS >= 3
|
||||
#if TRIPLE_Z
|
||||
case 3: stepper.set_z3_lock(state); break;
|
||||
#if NUM_Z_STEPPER_DRIVERS >= 4
|
||||
#if QUAD_Z
|
||||
case 4: stepper.set_z4_lock(state); break;
|
||||
#endif
|
||||
#endif
|
||||
@@ -99,13 +106,6 @@ void GcodeSuite::G34() {
|
||||
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
|
||||
do { // break out on error
|
||||
|
||||
#if NUM_Z_STEPPER_DRIVERS == 4
|
||||
SERIAL_ECHOLNPGM("Alignment for 4 steppers is Experimental!");
|
||||
#elif NUM_Z_STEPPER_DRIVERS > 4
|
||||
SERIAL_ECHOLNPGM("Alignment not supported for over 4 steppers");
|
||||
break;
|
||||
#endif
|
||||
|
||||
const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS);
|
||||
if (!WITHIN(z_auto_align_iterations, 1, 30)) {
|
||||
SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30).");
|
||||
@@ -157,19 +157,17 @@ void GcodeSuite::G34() {
|
||||
const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j];
|
||||
return HYPOT2(diff.x, diff.y);
|
||||
};
|
||||
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(
|
||||
#if NUM_Z_STEPPER_DRIVERS == 3
|
||||
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 0))
|
||||
#elif NUM_Z_STEPPER_DRIVERS == 4
|
||||
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 3),
|
||||
magnitude2(3, 0), magnitude2(0, 2), magnitude2(1, 3))
|
||||
#else
|
||||
magnitude2(0, 1)
|
||||
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(_MAX(0, magnitude2(0, 1)
|
||||
#if TRIPLE_Z
|
||||
, magnitude2(2, 1), magnitude2(2, 0)
|
||||
#if QUAD_Z
|
||||
, magnitude2(3, 2), magnitude2(3, 1), magnitude2(3, 0)
|
||||
#endif
|
||||
#endif
|
||||
);
|
||||
));
|
||||
|
||||
// Home before the alignment procedure
|
||||
if (!all_axes_trusted()) home_all_axes();
|
||||
home_if_needed();
|
||||
|
||||
// Move the Z coordinate realm towards the positive - dirty trick
|
||||
current_position.z += z_probe * 0.5f;
|
||||
@@ -178,7 +176,7 @@ void GcodeSuite::G34() {
|
||||
// This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration.
|
||||
|
||||
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
||||
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f, 10000.0f);
|
||||
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N_1(NUM_Z_STEPPER_DRIVERS, 10000.0f);
|
||||
#else
|
||||
float last_z_align_level_indicator = 10000.0f;
|
||||
#endif
|
||||
@@ -280,39 +278,52 @@ void GcodeSuite::G34() {
|
||||
z_measured_min = _MIN(z_measured_min, z_measured[i]);
|
||||
}
|
||||
|
||||
SERIAL_ECHOLNPAIR("CALCULATED STEPPER POSITIONS: Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2]);
|
||||
SERIAL_ECHOLNPAIR(
|
||||
LIST_N(DOUBLE(NUM_Z_STEPPER_DRIVERS),
|
||||
"Calculated Z1=", z_measured[0],
|
||||
" Z2=", z_measured[1],
|
||||
" Z3=", z_measured[2],
|
||||
" Z4=", z_measured[3]
|
||||
)
|
||||
);
|
||||
#endif
|
||||
|
||||
SERIAL_ECHOLNPAIR("\n"
|
||||
"DIFFERENCE Z1-Z2=", ABS(z_measured[0] - z_measured[1])
|
||||
#if NUM_Z_STEPPER_DRIVERS == 3
|
||||
, " Z2-Z3=", ABS(z_measured[1] - z_measured[2])
|
||||
"Z2-Z1=", ABS(z_measured[1] - z_measured[0])
|
||||
#if TRIPLE_Z
|
||||
, " Z3-Z2=", ABS(z_measured[2] - z_measured[1])
|
||||
, " Z3-Z1=", ABS(z_measured[2] - z_measured[0])
|
||||
#if QUAD_Z
|
||||
, " Z4-Z3=", ABS(z_measured[3] - z_measured[2])
|
||||
, " Z4-Z2=", ABS(z_measured[3] - z_measured[1])
|
||||
, " Z4-Z1=", ABS(z_measured[3] - z_measured[0])
|
||||
#endif
|
||||
#endif
|
||||
);
|
||||
|
||||
#if HAS_STATUS_MESSAGE
|
||||
char fstr1[10];
|
||||
#if NUM_Z_STEPPER_DRIVERS == 2
|
||||
char msg[6 + (6 + 5) * 1 + 1];
|
||||
#else
|
||||
char msg[6 + (6 + 5) * 3 + 1], fstr2[10], fstr3[10];
|
||||
#endif
|
||||
sprintf_P(msg,
|
||||
PSTR("Diffs Z1-Z2=%s"
|
||||
#if NUM_Z_STEPPER_DRIVERS == 3
|
||||
" Z2-Z3=%s"
|
||||
" Z3-Z1=%s"
|
||||
char msg[6 + (6 + 5) * NUM_Z_STEPPER_DRIVERS + 1]
|
||||
#if TRIPLE_Z
|
||||
, fstr2[10], fstr3[10]
|
||||
#if QUAD_Z
|
||||
, fstr4[10], fstr5[10], fstr6[10]
|
||||
#endif
|
||||
), dtostrf(ABS(z_measured[0] - z_measured[1]), 1, 3, fstr1)
|
||||
#if NUM_Z_STEPPER_DRIVERS == 3
|
||||
, dtostrf(ABS(z_measured[1] - z_measured[2]), 1, 3, fstr2)
|
||||
, dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3)
|
||||
#endif
|
||||
;
|
||||
sprintf_P(msg,
|
||||
PSTR("1:2=%s" TERN_(TRIPLE_Z, " 3-2=%s 3-1=%s") TERN_(QUAD_Z, " 4-3=%s 4-2=%s 4-1=%s")),
|
||||
dtostrf(ABS(z_measured[1] - z_measured[0]), 1, 3, fstr1)
|
||||
OPTARG(TRIPLE_Z, dtostrf(ABS(z_measured[2] - z_measured[1]), 1, 3, fstr2))
|
||||
OPTARG(TRIPLE_Z, dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3))
|
||||
OPTARG(QUAD_Z, dtostrf(ABS(z_measured[3] - z_measured[2]), 1, 3, fstr4))
|
||||
OPTARG(QUAD_Z, dtostrf(ABS(z_measured[3] - z_measured[1]), 1, 3, fstr5))
|
||||
OPTARG(QUAD_Z, dtostrf(ABS(z_measured[3] - z_measured[0]), 1, 3, fstr6))
|
||||
);
|
||||
ui.set_status(msg);
|
||||
#endif
|
||||
|
||||
auto decreasing_accuracy = [](const_float_t v1, const_float_t v2){
|
||||
auto decreasing_accuracy = [](const_float_t v1, const_float_t v2) {
|
||||
if (v1 < v2 * 0.7f) {
|
||||
SERIAL_ECHOLNPGM("Decreasing Accuracy Detected.");
|
||||
LCD_MESSAGEPGM(MSG_DECREASING_ACCURACY);
|
||||
@@ -437,7 +448,7 @@ void GcodeSuite::G34() {
|
||||
#endif
|
||||
|
||||
}while(0);
|
||||
#endif
|
||||
#endif // Z_STEPPER_AUTO_ALIGN
|
||||
}
|
||||
|
||||
#endif // Z_MULTI_ENDSTOPS || Z_STEPPER_AUTO_ALIGN
|
||||
|
@@ -73,11 +73,23 @@
|
||||
#if BOTH(CALIBRATION_MEASURE_LEFT, CALIBRATION_MEASURE_RIGHT)
|
||||
#define HAS_X_CENTER 1
|
||||
#endif
|
||||
#if BOTH(CALIBRATION_MEASURE_FRONT, CALIBRATION_MEASURE_BACK)
|
||||
#if HAS_Y_AXIS && BOTH(CALIBRATION_MEASURE_FRONT, CALIBRATION_MEASURE_BACK)
|
||||
#define HAS_Y_CENTER 1
|
||||
#endif
|
||||
#if LINEAR_AXES >= 4 && BOTH(CALIBRATION_MEASURE_IMIN, CALIBRATION_MEASURE_IMAX)
|
||||
#define HAS_I_CENTER 1
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5 && BOTH(CALIBRATION_MEASURE_JMIN, CALIBRATION_MEASURE_JMAX)
|
||||
#define HAS_J_CENTER 1
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6 && BOTH(CALIBRATION_MEASURE_KMIN, CALIBRATION_MEASURE_KMAX)
|
||||
#define HAS_K_CENTER 1
|
||||
#endif
|
||||
|
||||
enum side_t : uint8_t { TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES };
|
||||
enum side_t : uint8_t {
|
||||
TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES,
|
||||
LIST_N(DOUBLE(SUB3(LINEAR_AXES)), IMINIMUM, IMAXIMUM, JMINIMUM, JMAXIMUM, KMINIMUM, KMAXIMUM)
|
||||
};
|
||||
|
||||
static constexpr xyz_pos_t true_center CALIBRATION_OBJECT_CENTER;
|
||||
static constexpr xyz_float_t dimensions CALIBRATION_OBJECT_DIMENSIONS;
|
||||
@@ -105,7 +117,7 @@ struct measurements_t {
|
||||
#endif
|
||||
|
||||
inline void calibration_move() {
|
||||
do_blocking_move_to(current_position, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
|
||||
do_blocking_move_to((xyz_pos_t)current_position, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -174,7 +186,7 @@ float measuring_movement(const AxisEnum axis, const int dir, const bool stop_sta
|
||||
destination = current_position;
|
||||
for (float travel = 0; travel < limit; travel += step) {
|
||||
destination[axis] += dir * step;
|
||||
do_blocking_move_to(destination, mms);
|
||||
do_blocking_move_to((xyz_pos_t)destination, mms);
|
||||
planner.synchronize();
|
||||
if (read_calibration_pin() == stop_state) break;
|
||||
}
|
||||
@@ -194,18 +206,22 @@ float measuring_movement(const AxisEnum axis, const int dir, const bool stop_sta
|
||||
inline float measure(const AxisEnum axis, const int dir, const bool stop_state, float * const backlash_ptr, const float uncertainty) {
|
||||
const bool fast = uncertainty == CALIBRATION_MEASUREMENT_UNKNOWN;
|
||||
|
||||
// Save position
|
||||
destination = current_position;
|
||||
const float start_pos = destination[axis];
|
||||
// Save the current position of the specified axis
|
||||
const float start_pos = current_position[axis];
|
||||
|
||||
// Take a measurement. Only the specified axis will be affected.
|
||||
const float measured_pos = measuring_movement(axis, dir, stop_state, fast);
|
||||
|
||||
// Measure backlash
|
||||
if (backlash_ptr && !fast) {
|
||||
const float release_pos = measuring_movement(axis, -dir, !stop_state, fast);
|
||||
*backlash_ptr = ABS(release_pos - measured_pos);
|
||||
}
|
||||
// Return to starting position
|
||||
|
||||
// Move back to the starting position
|
||||
destination = current_position;
|
||||
destination[axis] = start_pos;
|
||||
do_blocking_move_to(destination, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
|
||||
do_blocking_move_to((xyz_pos_t)destination, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
|
||||
return measured_pos;
|
||||
}
|
||||
|
||||
@@ -226,7 +242,15 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
|
||||
park_above_object(m, uncertainty);
|
||||
|
||||
switch (side) {
|
||||
#if AXIS_CAN_CALIBRATE(Z)
|
||||
#if AXIS_CAN_CALIBRATE(X)
|
||||
case RIGHT: dir = -1;
|
||||
case LEFT: axis = X_AXIS; break;
|
||||
#endif
|
||||
#if LINEAR_AXES >= 2 && AXIS_CAN_CALIBRATE(Y)
|
||||
case BACK: dir = -1;
|
||||
case FRONT: axis = Y_AXIS; break;
|
||||
#endif
|
||||
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
|
||||
case TOP: {
|
||||
const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
|
||||
m.obj_center.z = measurement - dimensions.z / 2;
|
||||
@@ -234,13 +258,17 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if AXIS_CAN_CALIBRATE(X)
|
||||
case LEFT: axis = X_AXIS; break;
|
||||
case RIGHT: axis = X_AXIS; dir = -1; break;
|
||||
#if LINEAR_AXES >= 4 && AXIS_CAN_CALIBRATE(I)
|
||||
case IMINIMUM: dir = -1;
|
||||
case IMAXIMUM: axis = I_AXIS; break;
|
||||
#endif
|
||||
#if AXIS_CAN_CALIBRATE(Y)
|
||||
case FRONT: axis = Y_AXIS; break;
|
||||
case BACK: axis = Y_AXIS; dir = -1; break;
|
||||
#if LINEAR_AXES >= 5 && AXIS_CAN_CALIBRATE(J)
|
||||
case JMINIMUM: dir = -1;
|
||||
case JMAXIMUM: axis = J_AXIS; break;
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6 && AXIS_CAN_CALIBRATE(K)
|
||||
case KMINIMUM: dir = -1;
|
||||
case KMAXIMUM: axis = K_AXIS; break;
|
||||
#endif
|
||||
default: return;
|
||||
}
|
||||
@@ -285,14 +313,23 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
probe_side(m, uncertainty, TOP);
|
||||
#endif
|
||||
|
||||
TERN_(CALIBRATION_MEASURE_RIGHT, probe_side(m, uncertainty, RIGHT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_FRONT, probe_side(m, uncertainty, FRONT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_LEFT, probe_side(m, uncertainty, LEFT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_BACK, probe_side(m, uncertainty, BACK, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_RIGHT, probe_side(m, uncertainty, RIGHT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_FRONT, probe_side(m, uncertainty, FRONT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_LEFT, probe_side(m, uncertainty, LEFT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_BACK, probe_side(m, uncertainty, BACK, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_IMIN, probe_side(m, uncertainty, IMINIMUM, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_IMAX, probe_side(m, uncertainty, IMAXIMUM, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_JMIN, probe_side(m, uncertainty, JMINIMUM, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_JMAX, probe_side(m, uncertainty, JMAXIMUM, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_KMIN, probe_side(m, uncertainty, KMINIMUM, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_KMAX, probe_side(m, uncertainty, KMAXIMUM, probe_top_at_edge));
|
||||
|
||||
// Compute the measured center of the calibration object.
|
||||
TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
|
||||
TERN_(HAS_Y_CENTER, m.obj_center.y = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2);
|
||||
TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
|
||||
TERN_(HAS_Y_CENTER, m.obj_center.y = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2);
|
||||
TERN_(HAS_I_CENTER, m.obj_center.i = (m.obj_side[IMINIMUM] + m.obj_side[IMAXIMUM]) / 2);
|
||||
TERN_(HAS_J_CENTER, m.obj_center.j = (m.obj_side[JMINIMUM] + m.obj_side[JMAXIMUM]) / 2);
|
||||
TERN_(HAS_K_CENTER, m.obj_center.k = (m.obj_side[KMINIMUM] + m.obj_side[KMAXIMUM]) / 2);
|
||||
|
||||
// Compute the outside diameter of the nozzle at the height
|
||||
// at which it makes contact with the calibration object
|
||||
@@ -303,23 +340,20 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
|
||||
// The difference between the known and the measured location
|
||||
// of the calibration object is the positional error
|
||||
m.pos_error.x = (0
|
||||
#if HAS_X_CENTER
|
||||
+ true_center.x - m.obj_center.x
|
||||
#endif
|
||||
LINEAR_AXIS_CODE(
|
||||
m.pos_error.x = TERN0(HAS_X_CENTER, true_center.x - m.obj_center.x),
|
||||
m.pos_error.y = TERN0(HAS_Y_CENTER, true_center.y - m.obj_center.y),
|
||||
m.pos_error.z = true_center.z - m.obj_center.z,
|
||||
m.pos_error.i = TERN0(HAS_I_CENTER, true_center.i - m.obj_center.i),
|
||||
m.pos_error.j = TERN0(HAS_J_CENTER, true_center.j - m.obj_center.j),
|
||||
m.pos_error.k = TERN0(HAS_K_CENTER, true_center.k - m.obj_center.k)
|
||||
);
|
||||
m.pos_error.y = (0
|
||||
#if HAS_Y_CENTER
|
||||
+ true_center.y - m.obj_center.y
|
||||
#endif
|
||||
);
|
||||
m.pos_error.z = true_center.z - m.obj_center.z;
|
||||
}
|
||||
|
||||
#if ENABLED(CALIBRATION_REPORTING)
|
||||
inline void report_measured_faces(const measurements_t &m) {
|
||||
SERIAL_ECHOLNPGM("Sides:");
|
||||
#if AXIS_CAN_CALIBRATE(Z)
|
||||
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
|
||||
SERIAL_ECHOLNPAIR(" Top: ", m.obj_side[TOP]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_LEFT)
|
||||
@@ -328,11 +362,37 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
#if ENABLED(CALIBRATION_MEASURE_RIGHT)
|
||||
SERIAL_ECHOLNPAIR(" Right: ", m.obj_side[RIGHT]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_FRONT)
|
||||
SERIAL_ECHOLNPAIR(" Front: ", m.obj_side[FRONT]);
|
||||
#if HAS_Y_AXIS
|
||||
#if ENABLED(CALIBRATION_MEASURE_FRONT)
|
||||
SERIAL_ECHOLNPAIR(" Front: ", m.obj_side[FRONT]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_BACK)
|
||||
SERIAL_ECHOLNPAIR(" Back: ", m.obj_side[BACK]);
|
||||
#endif
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_BACK)
|
||||
SERIAL_ECHOLNPAIR(" Back: ", m.obj_side[BACK]);
|
||||
#if LINEAR_AXES >= 4
|
||||
#if ENABLED(CALIBRATION_MEASURE_IMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_I_MIN ": ", m.obj_side[IMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_IMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_I_MAX ": ", m.obj_side[IMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
#if ENABLED(CALIBRATION_MEASURE_JMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_J_MIN ": ", m.obj_side[JMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_JMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_J_MAX ": ", m.obj_side[JMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
#if ENABLED(CALIBRATION_MEASURE_KMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_K_MIN ": ", m.obj_side[KMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_KMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_K_MAX ": ", m.obj_side[KMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
}
|
||||
@@ -346,6 +406,15 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.obj_center.y);
|
||||
#endif
|
||||
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.obj_center.z);
|
||||
#if HAS_I_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_I_STR, m.obj_center.i);
|
||||
#endif
|
||||
#if HAS_J_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_J_STR, m.obj_center.j);
|
||||
#endif
|
||||
#if HAS_K_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_K_STR, m.obj_center.k);
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
@@ -359,7 +428,7 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
SERIAL_ECHOLNPAIR(" Right: ", m.backlash[RIGHT]);
|
||||
#endif
|
||||
#endif
|
||||
#if AXIS_CAN_CALIBRATE(Y)
|
||||
#if HAS_Y_AXIS && AXIS_CAN_CALIBRATE(Y)
|
||||
#if ENABLED(CALIBRATION_MEASURE_FRONT)
|
||||
SERIAL_ECHOLNPAIR(" Front: ", m.backlash[FRONT]);
|
||||
#endif
|
||||
@@ -367,9 +436,33 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
SERIAL_ECHOLNPAIR(" Back: ", m.backlash[BACK]);
|
||||
#endif
|
||||
#endif
|
||||
#if AXIS_CAN_CALIBRATE(Z)
|
||||
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
|
||||
SERIAL_ECHOLNPAIR(" Top: ", m.backlash[TOP]);
|
||||
#endif
|
||||
#if LINEAR_AXES >= 4 && AXIS_CAN_CALIBRATE(I)
|
||||
#if ENABLED(CALIBRATION_MEASURE_IMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_I_MIN ": ", m.backlash[IMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_IMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_I_MAX ": ", m.backlash[IMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5 && AXIS_CAN_CALIBRATE(J)
|
||||
#if ENABLED(CALIBRATION_MEASURE_JMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_J_MIN ": ", m.backlash[JMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_JMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_J_MAX ": ", m.backlash[JMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6 && AXIS_CAN_CALIBRATE(K)
|
||||
#if ENABLED(CALIBRATION_MEASURE_KMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_K_MIN ": ", m.backlash[KMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_KMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_K_MAX ": ", m.backlash[KMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
@@ -377,29 +470,37 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
SERIAL_CHAR('T');
|
||||
SERIAL_ECHO(active_extruder);
|
||||
SERIAL_ECHOLNPGM(" Positional Error:");
|
||||
#if HAS_X_CENTER
|
||||
#if HAS_X_CENTER && AXIS_CAN_CALIBRATE(X)
|
||||
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.pos_error.x);
|
||||
#endif
|
||||
#if HAS_Y_CENTER
|
||||
#if HAS_Y_CENTER && AXIS_CAN_CALIBRATE(Y)
|
||||
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.pos_error.y);
|
||||
#endif
|
||||
if (AXIS_CAN_CALIBRATE(Z)) SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
|
||||
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
|
||||
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
|
||||
#endif
|
||||
#if HAS_I_CENTER && AXIS_CAN_CALIBRATE(I)
|
||||
SERIAL_ECHOLNPAIR_P(SP_I_STR, m.pos_error.i);
|
||||
#endif
|
||||
#if HAS_J_CENTER && AXIS_CAN_CALIBRATE(J)
|
||||
SERIAL_ECHOLNPAIR_P(SP_J_STR, m.pos_error.j);
|
||||
#endif
|
||||
#if HAS_K_CENTER && AXIS_CAN_CALIBRATE(K)
|
||||
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
inline void report_measured_nozzle_dimensions(const measurements_t &m) {
|
||||
SERIAL_ECHOLNPGM("Nozzle Tip Outer Dimensions:");
|
||||
#if HAS_X_CENTER || HAS_Y_CENTER
|
||||
#if HAS_X_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.nozzle_outer_dimension.x);
|
||||
#endif
|
||||
#if HAS_Y_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.nozzle_outer_dimension.y);
|
||||
#endif
|
||||
#else
|
||||
UNUSED(m);
|
||||
#if HAS_X_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.nozzle_outer_dimension.x);
|
||||
#endif
|
||||
#if HAS_Y_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.nozzle_outer_dimension.y);
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
UNUSED(m);
|
||||
}
|
||||
|
||||
#if HAS_HOTEND_OFFSET
|
||||
@@ -448,8 +549,33 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
|
||||
backlash.distance_mm.y = m.backlash[BACK];
|
||||
#endif
|
||||
|
||||
if (AXIS_CAN_CALIBRATE(Z)) backlash.distance_mm.z = m.backlash[TOP];
|
||||
#endif
|
||||
TERN_(HAS_Z_AXIS, if (AXIS_CAN_CALIBRATE(Z)) backlash.distance_mm.z = m.backlash[TOP]);
|
||||
|
||||
#if HAS_I_CENTER
|
||||
backlash.distance_mm.i = (m.backlash[IMINIMUM] + m.backlash[IMAXIMUM]) / 2;
|
||||
#elif ENABLED(CALIBRATION_MEASURE_IMIN)
|
||||
backlash.distance_mm.i = m.backlash[IMINIMUM];
|
||||
#elif ENABLED(CALIBRATION_MEASURE_IMAX)
|
||||
backlash.distance_mm.i = m.backlash[IMAXIMUM];
|
||||
#endif
|
||||
|
||||
#if HAS_J_CENTER
|
||||
backlash.distance_mm.j = (m.backlash[JMINIMUM] + m.backlash[JMAXIMUM]) / 2;
|
||||
#elif ENABLED(CALIBRATION_MEASURE_JMIN)
|
||||
backlash.distance_mm.j = m.backlash[JMINIMUM];
|
||||
#elif ENABLED(CALIBRATION_MEASURE_JMAX)
|
||||
backlash.distance_mm.j = m.backlash[JMAXIMUM];
|
||||
#endif
|
||||
|
||||
#if HAS_K_CENTER
|
||||
backlash.distance_mm.k = (m.backlash[KMINIMUM] + m.backlash[KMAXIMUM]) / 2;
|
||||
#elif ENABLED(CALIBRATION_MEASURE_KMIN)
|
||||
backlash.distance_mm.k = m.backlash[KMINIMUM];
|
||||
#elif ENABLED(CALIBRATION_MEASURE_KMAX)
|
||||
backlash.distance_mm.k = m.backlash[KMAXIMUM];
|
||||
#endif
|
||||
|
||||
#endif // BACKLASH_GCODE
|
||||
}
|
||||
|
||||
#if ENABLED(BACKLASH_GCODE)
|
||||
@@ -459,7 +585,10 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
|
||||
// New scope for TEMPORARY_BACKLASH_CORRECTION
|
||||
TEMPORARY_BACKLASH_CORRECTION(all_on);
|
||||
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
|
||||
const xyz_float_t move = { AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3 };
|
||||
const xyz_float_t move = LINEAR_AXIS_ARRAY(
|
||||
AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3,
|
||||
AXIS_CAN_CALIBRATE(I) * 3, AXIS_CAN_CALIBRATE(J) * 3, AXIS_CAN_CALIBRATE(K) * 3
|
||||
);
|
||||
current_position += move; calibration_move();
|
||||
current_position -= move; calibration_move();
|
||||
}
|
||||
@@ -487,11 +616,7 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
|
||||
TEMPORARY_BACKLASH_CORRECTION(all_on);
|
||||
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
|
||||
|
||||
#if HAS_MULTI_HOTEND
|
||||
set_nozzle(m, extruder);
|
||||
#else
|
||||
UNUSED(extruder);
|
||||
#endif
|
||||
TERN(HAS_MULTI_HOTEND, set_nozzle(m, extruder), UNUSED(extruder));
|
||||
|
||||
probe_sides(m, uncertainty);
|
||||
|
||||
@@ -510,6 +635,10 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
|
||||
if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) update_measurements(m, Y_AXIS);
|
||||
if (AXIS_CAN_CALIBRATE(Z)) update_measurements(m, Z_AXIS);
|
||||
|
||||
TERN_(HAS_I_CENTER, update_measurements(m, I_AXIS));
|
||||
TERN_(HAS_J_CENTER, update_measurements(m, J_AXIS));
|
||||
TERN_(HAS_K_CENTER, update_measurements(m, K_AXIS));
|
||||
|
||||
sync_plan_position();
|
||||
}
|
||||
|
||||
@@ -589,12 +718,12 @@ void GcodeSuite::G425() {
|
||||
SET_SOFT_ENDSTOP_LOOSE(true);
|
||||
|
||||
measurements_t m;
|
||||
float uncertainty = parser.seenval('U') ? parser.value_float() : CALIBRATION_MEASUREMENT_UNCERTAIN;
|
||||
const float uncertainty = parser.floatval('U', CALIBRATION_MEASUREMENT_UNCERTAIN);
|
||||
|
||||
if (parser.seen('B'))
|
||||
if (parser.seen_test('B'))
|
||||
calibrate_backlash(m, uncertainty);
|
||||
else if (parser.seen('T'))
|
||||
calibrate_toolhead(m, uncertainty, parser.has_value() ? parser.value_int() : active_extruder);
|
||||
else if (parser.seen_test('T'))
|
||||
calibrate_toolhead(m, uncertainty, parser.intval('T', active_extruder));
|
||||
#if ENABLED(CALIBRATION_REPORTING)
|
||||
else if (parser.seen('V')) {
|
||||
probe_sides(m, uncertainty);
|
||||
|
@@ -48,15 +48,20 @@ void GcodeSuite::M425() {
|
||||
|
||||
auto axis_can_calibrate = [](const uint8_t a) {
|
||||
switch (a) {
|
||||
default:
|
||||
case X_AXIS: return AXIS_CAN_CALIBRATE(X);
|
||||
case Y_AXIS: return AXIS_CAN_CALIBRATE(Y);
|
||||
case Z_AXIS: return AXIS_CAN_CALIBRATE(Z);
|
||||
default: return false;
|
||||
LINEAR_AXIS_CODE(
|
||||
case X_AXIS: return AXIS_CAN_CALIBRATE(X),
|
||||
case Y_AXIS: return AXIS_CAN_CALIBRATE(Y),
|
||||
case Z_AXIS: return AXIS_CAN_CALIBRATE(Z),
|
||||
case I_AXIS: return AXIS_CAN_CALIBRATE(I),
|
||||
case J_AXIS: return AXIS_CAN_CALIBRATE(J),
|
||||
case K_AXIS: return AXIS_CAN_CALIBRATE(K),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
LOOP_XYZ(a) {
|
||||
if (axis_can_calibrate(a) && parser.seen(XYZ_CHAR(a))) {
|
||||
LOOP_LINEAR_AXES(a) {
|
||||
if (axis_can_calibrate(a) && parser.seen(AXIS_CHAR(a))) {
|
||||
planner.synchronize();
|
||||
backlash.distance_mm[a] = parser.has_value() ? parser.value_linear_units() : backlash.get_measurement(AxisEnum(a));
|
||||
noArgs = false;
|
||||
@@ -83,8 +88,8 @@ void GcodeSuite::M425() {
|
||||
SERIAL_ECHOLNPGM("active:");
|
||||
SERIAL_ECHOLNPAIR(" Correction Amount/Fade-out: F", backlash.get_correction(), " (F1.0 = full, F0.0 = none)");
|
||||
SERIAL_ECHOPGM(" Backlash Distance (mm): ");
|
||||
LOOP_XYZ(a) if (axis_can_calibrate(a)) {
|
||||
SERIAL_CHAR(' ', XYZ_CHAR(a));
|
||||
LOOP_LINEAR_AXES(a) if (axis_can_calibrate(a)) {
|
||||
SERIAL_CHAR(' ', AXIS_CHAR(a));
|
||||
SERIAL_ECHO(backlash.distance_mm[a]);
|
||||
SERIAL_EOL();
|
||||
}
|
||||
@@ -96,8 +101,8 @@ void GcodeSuite::M425() {
|
||||
#if ENABLED(MEASURE_BACKLASH_WHEN_PROBING)
|
||||
SERIAL_ECHOPGM(" Average measured backlash (mm):");
|
||||
if (backlash.has_any_measurement()) {
|
||||
LOOP_XYZ(a) if (axis_can_calibrate(a) && backlash.has_measurement(AxisEnum(a))) {
|
||||
SERIAL_CHAR(' ', XYZ_CHAR(a));
|
||||
LOOP_LINEAR_AXES(a) if (axis_can_calibrate(a) && backlash.has_measurement(AxisEnum(a))) {
|
||||
SERIAL_CHAR(' ', AXIS_CHAR(a));
|
||||
SERIAL_ECHO(backlash.get_measurement(AxisEnum(a)));
|
||||
}
|
||||
}
|
||||
|
@@ -39,11 +39,11 @@
|
||||
*/
|
||||
void GcodeSuite::M666() {
|
||||
DEBUG_SECTION(log_M666, "M666", DEBUGGING(LEVELING));
|
||||
LOOP_XYZ(i) {
|
||||
if (parser.seen(XYZ_CHAR(i))) {
|
||||
LOOP_LINEAR_AXES(i) {
|
||||
if (parser.seen(AXIS_CHAR(i))) {
|
||||
const float v = parser.value_linear_units();
|
||||
if (v * Z_HOME_DIR <= 0) delta_endstop_adj[i] = v;
|
||||
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("delta_endstop_adj[", AS_CHAR(XYZ_CHAR(i)), "] = ", delta_endstop_adj[i]);
|
||||
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("delta_endstop_adj[", AS_CHAR(AXIS_CHAR(i)), "] = ", delta_endstop_adj[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -86,7 +86,7 @@ void GcodeSuite::M852() {
|
||||
|
||||
// When skew is changed the current position changes
|
||||
if (setval) {
|
||||
set_current_from_steppers_for_axis(ALL_AXES);
|
||||
set_current_from_steppers_for_axis(ALL_AXES_ENUM);
|
||||
sync_plan_position();
|
||||
report_current_position();
|
||||
}
|
||||
|
@@ -86,9 +86,9 @@ void GcodeSuite::M201() {
|
||||
if (parser.seenval('G')) planner.xy_freq_min_speed_factor = constrain(parser.value_float(), 1, 100) / 100;
|
||||
#endif
|
||||
|
||||
LOOP_XYZE(i) {
|
||||
if (parser.seen(axis_codes[i])) {
|
||||
const uint8_t a = (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i);
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (parser.seenval(axis_codes[i])) {
|
||||
const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i);
|
||||
planner.set_max_acceleration(a, parser.value_axis_units((AxisEnum)a));
|
||||
}
|
||||
}
|
||||
@@ -104,9 +104,9 @@ void GcodeSuite::M203() {
|
||||
const int8_t target_extruder = get_target_extruder_from_command();
|
||||
if (target_extruder < 0) return;
|
||||
|
||||
LOOP_XYZE(i)
|
||||
if (parser.seen(axis_codes[i])) {
|
||||
const uint8_t a = (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i);
|
||||
LOOP_LOGICAL_AXES(i)
|
||||
if (parser.seenval(axis_codes[i])) {
|
||||
const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i);
|
||||
planner.set_max_feedrate(a, parser.value_axis_units((AxisEnum)a));
|
||||
}
|
||||
}
|
||||
@@ -147,24 +147,17 @@ void GcodeSuite::M204() {
|
||||
* J = Junction Deviation (mm) (If not using CLASSIC_JERK)
|
||||
*/
|
||||
void GcodeSuite::M205() {
|
||||
#if HAS_JUNCTION_DEVIATION
|
||||
#define J_PARAM "J"
|
||||
#else
|
||||
#define J_PARAM
|
||||
#endif
|
||||
#if HAS_CLASSIC_JERK
|
||||
#define XYZE_PARAM "XYZE"
|
||||
#else
|
||||
#define XYZE_PARAM
|
||||
#endif
|
||||
if (!parser.seen("BST" J_PARAM XYZE_PARAM)) return;
|
||||
if (!parser.seen("BST" TERN_(HAS_JUNCTION_DEVIATION, "J") TERN_(HAS_CLASSIC_JERK, "XYZE"))) return;
|
||||
|
||||
//planner.synchronize();
|
||||
if (parser.seen('B')) planner.settings.min_segment_time_us = parser.value_ulong();
|
||||
if (parser.seen('S')) planner.settings.min_feedrate_mm_s = parser.value_linear_units();
|
||||
if (parser.seen('T')) planner.settings.min_travel_feedrate_mm_s = parser.value_linear_units();
|
||||
if (parser.seenval('B')) planner.settings.min_segment_time_us = parser.value_ulong();
|
||||
if (parser.seenval('S')) planner.settings.min_feedrate_mm_s = parser.value_linear_units();
|
||||
if (parser.seenval('T')) planner.settings.min_travel_feedrate_mm_s = parser.value_linear_units();
|
||||
#if HAS_JUNCTION_DEVIATION
|
||||
if (parser.seen('J')) {
|
||||
#if HAS_CLASSIC_JERK && (AXIS4_NAME == 'J' || AXIS5_NAME == 'J' || AXIS6_NAME == 'J')
|
||||
#error "Can't set_max_jerk for 'J' axis because 'J' is used for Junction Deviation."
|
||||
#endif
|
||||
if (parser.seenval('J')) {
|
||||
const float junc_dev = parser.value_linear_units();
|
||||
if (WITHIN(junc_dev, 0.01f, 0.3f)) {
|
||||
planner.junction_deviation_mm = junc_dev;
|
||||
@@ -175,17 +168,19 @@ void GcodeSuite::M205() {
|
||||
}
|
||||
#endif
|
||||
#if HAS_CLASSIC_JERK
|
||||
if (parser.seen('X')) planner.set_max_jerk(X_AXIS, parser.value_linear_units());
|
||||
if (parser.seen('Y')) planner.set_max_jerk(Y_AXIS, parser.value_linear_units());
|
||||
if (parser.seen('Z')) {
|
||||
planner.set_max_jerk(Z_AXIS, parser.value_linear_units());
|
||||
#if HAS_MESH && DISABLED(LIMITED_JERK_EDITING)
|
||||
if (planner.max_jerk.z <= 0.1f)
|
||||
SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");
|
||||
#endif
|
||||
}
|
||||
#if HAS_CLASSIC_E_JERK
|
||||
if (parser.seen('E')) planner.set_max_jerk(E_AXIS, parser.value_linear_units());
|
||||
bool seenZ = false;
|
||||
LOGICAL_AXIS_CODE(
|
||||
if (parser.seenval('E')) planner.set_max_jerk(E_AXIS, parser.value_linear_units()),
|
||||
if (parser.seenval('X')) planner.set_max_jerk(X_AXIS, parser.value_linear_units()),
|
||||
if (parser.seenval('Y')) planner.set_max_jerk(Y_AXIS, parser.value_linear_units()),
|
||||
if ((seenZ = parser.seenval('Z'))) planner.set_max_jerk(Z_AXIS, parser.value_linear_units()),
|
||||
if (parser.seenval(AXIS4_NAME)) planner.set_max_jerk(I_AXIS, parser.value_linear_units()),
|
||||
if (parser.seenval(AXIS5_NAME)) planner.set_max_jerk(J_AXIS, parser.value_linear_units()),
|
||||
if (parser.seenval(AXIS6_NAME)) planner.set_max_jerk(K_AXIS, parser.value_linear_units())
|
||||
);
|
||||
#if HAS_MESH && DISABLED(LIMITED_JERK_EDITING)
|
||||
if (seenZ && planner.max_jerk.z <= 0.1f)
|
||||
SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");
|
||||
#endif
|
||||
#endif
|
||||
#endif // HAS_CLASSIC_JERK
|
||||
}
|
||||
|
@@ -23,7 +23,7 @@
|
||||
#include "../gcode.h"
|
||||
#include "../../module/planner.h"
|
||||
|
||||
#if EXTRUDERS
|
||||
#if HAS_EXTRUDERS
|
||||
|
||||
/**
|
||||
* M221: Set extrusion percentage (M221 T0 S95)
|
||||
|
@@ -25,10 +25,15 @@
|
||||
|
||||
void report_M92(const bool echo=true, const int8_t e=-1) {
|
||||
if (echo) SERIAL_ECHO_START(); else SERIAL_CHAR(' ');
|
||||
SERIAL_ECHOPAIR_P(PSTR(" M92 X"), LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]),
|
||||
SP_Y_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]),
|
||||
SP_Z_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]));
|
||||
#if DISABLED(DISTINCT_E_FACTORS)
|
||||
SERIAL_ECHOPAIR_P(LIST_N(DOUBLE(LINEAR_AXES),
|
||||
PSTR(" M92 X"), LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]),
|
||||
SP_Y_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]),
|
||||
SP_Z_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]),
|
||||
SP_I_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[I_AXIS]),
|
||||
SP_J_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[J_AXIS]),
|
||||
SP_K_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[K_AXIS]))
|
||||
);
|
||||
#if HAS_EXTRUDERS && DISABLED(DISTINCT_E_FACTORS)
|
||||
SERIAL_ECHOPAIR_P(SP_E_STR, VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS]));
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
@@ -42,7 +47,7 @@ void report_M92(const bool echo=true, const int8_t e=-1) {
|
||||
}
|
||||
#endif
|
||||
|
||||
UNUSED_E(e);
|
||||
UNUSED(e);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -64,28 +69,28 @@ void GcodeSuite::M92() {
|
||||
if (target_extruder < 0) return;
|
||||
|
||||
// No arguments? Show M92 report.
|
||||
if (!parser.seen("XYZE"
|
||||
#if ENABLED(MAGIC_NUMBERS_GCODE)
|
||||
"HL"
|
||||
#endif
|
||||
if (!parser.seen(
|
||||
LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR)
|
||||
TERN_(MAGIC_NUMBERS_GCODE, "HL")
|
||||
)) return report_M92(true, target_extruder);
|
||||
|
||||
LOOP_XYZE(i) {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (parser.seenval(axis_codes[i])) {
|
||||
if (i == E_AXIS) {
|
||||
const float value = parser.value_per_axis_units((AxisEnum)(E_AXIS_N(target_extruder)));
|
||||
if (value < 20) {
|
||||
float factor = planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] / value; // increase e constants if M92 E14 is given for netfab.
|
||||
#if HAS_CLASSIC_JERK && HAS_CLASSIC_E_JERK
|
||||
planner.max_jerk.e *= factor;
|
||||
#endif
|
||||
planner.settings.max_feedrate_mm_s[E_AXIS_N(target_extruder)] *= factor;
|
||||
planner.max_acceleration_steps_per_s2[E_AXIS_N(target_extruder)] *= factor;
|
||||
}
|
||||
planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] = value;
|
||||
}
|
||||
else {
|
||||
if (TERN1(HAS_EXTRUDERS, i != E_AXIS))
|
||||
planner.settings.axis_steps_per_mm[i] = parser.value_per_axis_units((AxisEnum)i);
|
||||
else {
|
||||
#if HAS_EXTRUDERS
|
||||
const float value = parser.value_per_axis_units((AxisEnum)(E_AXIS_N(target_extruder)));
|
||||
if (value < 20) {
|
||||
float factor = planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] / value; // increase e constants if M92 E14 is given for netfab.
|
||||
#if HAS_CLASSIC_JERK && HAS_CLASSIC_E_JERK
|
||||
planner.max_jerk.e *= factor;
|
||||
#endif
|
||||
planner.settings.max_feedrate_mm_s[E_AXIS_N(target_extruder)] *= factor;
|
||||
planner.max_acceleration_steps_per_s2[E_AXIS_N(target_extruder)] *= factor;
|
||||
}
|
||||
planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] = value;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -33,11 +33,16 @@
|
||||
* M17: Enable stepper motors
|
||||
*/
|
||||
void GcodeSuite::M17() {
|
||||
if (parser.seen("XYZE")) {
|
||||
if (parser.seen('X')) ENABLE_AXIS_X();
|
||||
if (parser.seen('Y')) ENABLE_AXIS_Y();
|
||||
if (parser.seen('Z')) ENABLE_AXIS_Z();
|
||||
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen('E'))) enable_e_steppers();
|
||||
if (parser.seen(LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))) {
|
||||
LOGICAL_AXIS_CODE(
|
||||
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) enable_e_steppers(),
|
||||
if (parser.seen_test('X')) ENABLE_AXIS_X(),
|
||||
if (parser.seen_test('Y')) ENABLE_AXIS_Y(),
|
||||
if (parser.seen_test('Z')) ENABLE_AXIS_Z(),
|
||||
if (parser.seen_test(AXIS4_NAME)) ENABLE_AXIS_I(),
|
||||
if (parser.seen_test(AXIS5_NAME)) ENABLE_AXIS_J(),
|
||||
if (parser.seen_test(AXIS6_NAME)) ENABLE_AXIS_K()
|
||||
);
|
||||
}
|
||||
else {
|
||||
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
||||
@@ -54,12 +59,17 @@ void GcodeSuite::M18_M84() {
|
||||
stepper_inactive_time = parser.value_millis_from_seconds();
|
||||
}
|
||||
else {
|
||||
if (parser.seen("XYZE")) {
|
||||
if (parser.seen(LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))) {
|
||||
planner.synchronize();
|
||||
if (parser.seen('X')) DISABLE_AXIS_X();
|
||||
if (parser.seen('Y')) DISABLE_AXIS_Y();
|
||||
if (parser.seen('Z')) DISABLE_AXIS_Z();
|
||||
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen('E'))) disable_e_steppers();
|
||||
LOGICAL_AXIS_CODE(
|
||||
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) disable_e_steppers(),
|
||||
if (parser.seen_test('X')) DISABLE_AXIS_X(),
|
||||
if (parser.seen_test('Y')) DISABLE_AXIS_Y(),
|
||||
if (parser.seen_test('Z')) DISABLE_AXIS_Z(),
|
||||
if (parser.seen_test(AXIS4_NAME)) DISABLE_AXIS_I(),
|
||||
if (parser.seen_test(AXIS5_NAME)) DISABLE_AXIS_J(),
|
||||
if (parser.seen_test(AXIS6_NAME)) DISABLE_AXIS_K()
|
||||
);
|
||||
}
|
||||
else
|
||||
planner.finish_and_disable();
|
||||
|
@@ -39,8 +39,8 @@ void GcodeSuite::M211() {
|
||||
SERIAL_ECHOPGM(STR_SOFT_ENDSTOPS);
|
||||
if (parser.seen('S')) soft_endstop._enabled = parser.value_bool();
|
||||
serialprint_onoff(soft_endstop._enabled);
|
||||
print_xyz(l_soft_min, PSTR(STR_SOFT_MIN), PSTR(" "));
|
||||
print_xyz(l_soft_max, PSTR(STR_SOFT_MAX));
|
||||
print_pos(l_soft_min, PSTR(STR_SOFT_MIN), PSTR(" "));
|
||||
print_pos(l_soft_max, PSTR(STR_SOFT_MAX));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@@ -34,7 +34,7 @@
|
||||
*/
|
||||
void GcodeSuite::M350() {
|
||||
if (parser.seen('S')) LOOP_LE_N(i, 4) stepper.microstep_mode(i, parser.value_byte());
|
||||
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
|
||||
LOOP_LOGICAL_AXES(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
|
||||
if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
|
||||
stepper.microstep_readings();
|
||||
}
|
||||
@@ -46,15 +46,15 @@ void GcodeSuite::M350() {
|
||||
void GcodeSuite::M351() {
|
||||
if (parser.seenval('S')) switch (parser.value_byte()) {
|
||||
case 1:
|
||||
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1, -1);
|
||||
LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1, -1);
|
||||
if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1, -1);
|
||||
break;
|
||||
case 2:
|
||||
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte(), -1);
|
||||
LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte(), -1);
|
||||
if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte(), -1);
|
||||
break;
|
||||
case 3:
|
||||
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, -1, parser.value_byte());
|
||||
LOOP_LOGICAL_AXES(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, -1, parser.value_byte());
|
||||
if (parser.seenval('B')) stepper.microstep_ms(4, -1, -1, parser.value_byte());
|
||||
break;
|
||||
}
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user