Compare commits
80 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
d7c77403fd | ||
|
c8898b5ca0 | ||
|
781257bc64 | ||
|
dec083dcc1 | ||
|
cdd9507493 | ||
|
dba877311e | ||
|
31fd3be6eb | ||
|
2b4284df81 | ||
|
d84e2d6e29 | ||
|
56355159c6 | ||
|
a7135d429b | ||
|
3b0a40cd5d | ||
|
83c74802f8 | ||
|
adc17933cd | ||
|
68c52673d6 | ||
|
2aa35577f2 | ||
|
14ffc66c45 | ||
|
2ea0832e0f | ||
|
ab050878e9 | ||
|
707a04022e | ||
|
d12c357793 | ||
|
ddf8668e16 | ||
|
3491e49c5f | ||
|
d322e495b2 | ||
|
5d80f7006a | ||
|
3e7a9e5d20 | ||
|
33e8769226 | ||
|
59842edbcb | ||
|
507e1e436e | ||
|
b27447ef48 | ||
|
c9a3ba99be | ||
|
967942460e | ||
|
bfa257902e | ||
|
3f103c91f0 | ||
|
2fd9971f41 | ||
|
a3063a9392 | ||
|
d8a02bbbdb | ||
|
76d4a395d1 | ||
|
c515bfb5fb | ||
|
83430be580 | ||
|
9bd9f91722 | ||
|
e6ef43e51a | ||
|
16bca67f2d | ||
|
d65eea550c | ||
|
46080b367a | ||
|
317afae37c | ||
|
930a608236 | ||
|
6e3c45580c | ||
|
e3df7d7bc8 | ||
|
c1fca91103 | ||
|
d3c56a76e7 | ||
|
4194cdda5b | ||
|
f5f999d7bf | ||
|
b4b607681c | ||
|
1e75eba27b | ||
|
f3f3d202ac | ||
|
c90fa530db | ||
|
aeb8097cbc | ||
|
04bea72787 | ||
|
ce95f56ac8 | ||
|
aff45fd455 | ||
|
c8f28d9d09 | ||
|
f3697e5e02 | ||
|
557ba20ff4 | ||
|
dd0e5c26d1 | ||
|
c9a3f41152 | ||
|
d13ffa0aba | ||
|
fb0be29604 | ||
|
7ca1550775 | ||
|
665a71b471 | ||
|
9268a4b28c | ||
|
529bbfad10 | ||
|
e7945c2277 | ||
|
5ee91c73ed | ||
|
2116e4202b | ||
|
19521d16cd | ||
|
057302b936 | ||
|
d62619c9c8 | ||
|
9c80a89597 | ||
|
00834ef03d |
44
.github/workflows/test-builds.yml
vendored
44
.github/workflows/test-builds.yml
vendored
@@ -56,29 +56,31 @@ jobs:
|
||||
|
||||
# STM32F1 (Maple) Environments
|
||||
|
||||
- STM32F103RC_btt
|
||||
- STM32F103RC_btt_USB
|
||||
- STM32F103RE_btt
|
||||
- STM32F103RE_btt_USB
|
||||
#- STM32F103RC_btt_maple
|
||||
- STM32F103RC_btt_USB_maple
|
||||
- STM32F103RC_fysetc
|
||||
- STM32F103RC_meeb
|
||||
- jgaurora_a5s_a1
|
||||
- STM32F103VE_longer
|
||||
- mks_robin
|
||||
#- mks_robin_maple
|
||||
- mks_robin_lite
|
||||
- mks_robin_pro
|
||||
- STM32F103RET6_creality
|
||||
- mks_robin_nano35
|
||||
#- mks_robin_nano35_maple
|
||||
#- STM32F103RET6_creality_maple
|
||||
|
||||
# STM32 (ST) Environments
|
||||
|
||||
- STM32F103RC_btt_stm32
|
||||
- STM32F103RC_btt
|
||||
#- STM32F103RC_btt_USB
|
||||
- STM32F103RE_btt
|
||||
- STM32F103RE_btt_USB
|
||||
- STM32F103RET6_creality
|
||||
- STM32F407VE_black
|
||||
- STM32F401VE_STEVAL
|
||||
- BIGTREE_BTT002
|
||||
- BIGTREE_SKR_PRO
|
||||
- BIGTREE_GTR_V1_0
|
||||
- mks_robin_stm32
|
||||
- mks_robin
|
||||
- ARMED
|
||||
- FYSETC_S6
|
||||
- STM32F070CB_malyan
|
||||
@@ -88,7 +90,7 @@ jobs:
|
||||
- rumba32
|
||||
- LERDGEX
|
||||
- LERDGEK
|
||||
- mks_robin_nano35_stm32
|
||||
- mks_robin_nano35
|
||||
- NUCLEO_F767ZI
|
||||
- REMRAM_V1
|
||||
- BTT_SKR_SE_BX
|
||||
@@ -107,8 +109,25 @@ jobs:
|
||||
|
||||
steps:
|
||||
|
||||
- name: Check out the PR
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Cache pip
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pip-
|
||||
|
||||
- name: Cache PlatformIO
|
||||
uses: actions/cache@v2
|
||||
with:
|
||||
path: ~/.platformio
|
||||
key: ${{ runner.os }}-${{ hashFiles('**/lockfiles') }}
|
||||
|
||||
- name: Select Python 3.7
|
||||
uses: actions/setup-python@v1
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: '3.7' # Version range or exact version of a Python version to use, using semvers version range syntax.
|
||||
architecture: 'x64' # optional x64 or x86. Defaults to x64 if not specified
|
||||
@@ -118,9 +137,6 @@ jobs:
|
||||
pip install -U https://github.com/platformio/platformio-core/archive/develop.zip
|
||||
platformio update
|
||||
|
||||
- name: Check out the PR
|
||||
uses: actions/checkout@v2
|
||||
|
||||
- name: Run ${{ matrix.test-platform }} Tests
|
||||
run: |
|
||||
make tests-single-ci TEST_TARGET=${{ matrix.test-platform }}
|
||||
|
@@ -35,7 +35,7 @@
|
||||
*
|
||||
* Advanced settings can be found in Configuration_adv.h
|
||||
*/
|
||||
#define CONFIGURATION_H_VERSION 02000801
|
||||
#define CONFIGURATION_H_VERSION 02000900
|
||||
|
||||
//===========================================================================
|
||||
//============================= Getting Started =============================
|
||||
@@ -149,6 +149,45 @@
|
||||
// Choose your own or use a service like https://www.uuidgenerator.net/version4
|
||||
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
|
||||
|
||||
/**
|
||||
* Define the number of coordinated linear axes.
|
||||
* See https://github.com/DerAndere1/Marlin/wiki
|
||||
* Each linear axis gets its own stepper control and endstop:
|
||||
*
|
||||
* Steppers: *_STEP_PIN, *_ENABLE_PIN, *_DIR_PIN, *_ENABLE_ON
|
||||
* Endstops: *_STOP_PIN, USE_*MIN_PLUG, USE_*MAX_PLUG
|
||||
* Axes: *_MIN_POS, *_MAX_POS, INVERT_*_DIR
|
||||
* Planner: DEFAULT_AXIS_STEPS_PER_UNIT, DEFAULT_MAX_FEEDRATE
|
||||
* DEFAULT_MAX_ACCELERATION, AXIS_RELATIVE_MODES,
|
||||
* MICROSTEP_MODES, MANUAL_FEEDRATE
|
||||
*
|
||||
* :[3, 4, 5, 6]
|
||||
*/
|
||||
//#define LINEAR_AXES 3
|
||||
|
||||
/**
|
||||
* Axis codes for additional axes:
|
||||
* This defines the axis code that is used in G-code commands to
|
||||
* reference a specific axis.
|
||||
* 'A' for rotational axis parallel to X
|
||||
* 'B' for rotational axis parallel to Y
|
||||
* 'C' for rotational axis parallel to Z
|
||||
* 'U' for secondary linear axis parallel to X
|
||||
* 'V' for secondary linear axis parallel to Y
|
||||
* 'W' for secondary linear axis parallel to Z
|
||||
* Regardless of the settings, firmware-internal axis IDs are
|
||||
* I (AXIS4), J (AXIS5), K (AXIS6).
|
||||
*/
|
||||
#if LINEAR_AXES >= 4
|
||||
#define AXIS4_NAME 'A' // :['A', 'B', 'C', 'U', 'V', 'W']
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
#define AXIS5_NAME 'B' // :['A', 'B', 'C', 'U', 'V', 'W']
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
#define AXIS6_NAME 'C' // :['A', 'B', 'C', 'U', 'V', 'W']
|
||||
#endif
|
||||
|
||||
// @section extruder
|
||||
|
||||
// This defines the number of extruders
|
||||
@@ -433,6 +472,7 @@
|
||||
#define TEMP_SENSOR_PROBE 0
|
||||
#define TEMP_SENSOR_CHAMBER 0
|
||||
#define TEMP_SENSOR_COOLER 0
|
||||
#define TEMP_SENSOR_REDUNDANT 0
|
||||
|
||||
// Dummy thermistor constant temperature readings, for use with 998 and 999
|
||||
#define DUMMY_THERMISTOR_998_VALUE 25
|
||||
@@ -444,11 +484,6 @@
|
||||
//#define MAX31865_SENSOR_OHMS_1 100
|
||||
//#define MAX31865_CALIBRATION_OHMS_1 430
|
||||
|
||||
// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings
|
||||
// from the two sensors differ too much the print will be aborted.
|
||||
//#define TEMP_SENSOR_1_AS_REDUNDANT
|
||||
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
|
||||
|
||||
#define TEMP_RESIDENCY_TIME 10 // (seconds) Time to wait for hotend to "settle" in M109
|
||||
#define TEMP_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
|
||||
#define TEMP_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
|
||||
@@ -461,6 +496,28 @@
|
||||
#define TEMP_CHAMBER_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
|
||||
#define TEMP_CHAMBER_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
|
||||
|
||||
/**
|
||||
* Redundant Temperature Sensor (TEMP_SENSOR_REDUNDANT)
|
||||
*
|
||||
* Use a temp sensor as a redundant sensor for another reading. Select an unused temperature sensor, and another
|
||||
* sensor you'd like it to be redundant for. If the two thermistors differ by TEMP_SENSOR_REDUNDANT_MAX_DIFF (°C),
|
||||
* the print will be aborted. Whichever sensor is selected will have its normal functions disabled; i.e. selecting
|
||||
* the Bed sensor (-1) will disable bed heating/monitoring.
|
||||
*
|
||||
* Use the following to select temp sensors:
|
||||
* -5 : Cooler
|
||||
* -4 : Probe
|
||||
* -3 : not used
|
||||
* -2 : Chamber
|
||||
* -1 : Bed
|
||||
* 0-7 : E0 through E7
|
||||
*/
|
||||
#if TEMP_SENSOR_REDUNDANT
|
||||
#define TEMP_SENSOR_REDUNDANT_SOURCE 1 // The sensor that will provide the redundant reading.
|
||||
#define TEMP_SENSOR_REDUNDANT_TARGET 0 // The sensor that we are providing a redundant reading for.
|
||||
#define TEMP_SENSOR_REDUNDANT_MAX_DIFF 10 // (°C) Temperature difference that will trigger a print abort.
|
||||
#endif
|
||||
|
||||
// Below this temperature the heater will be switched off
|
||||
// because it probably indicates a broken thermistor wire.
|
||||
#define HEATER_0_MINTEMP 5
|
||||
@@ -691,9 +748,15 @@
|
||||
#define USE_XMIN_PLUG
|
||||
#define USE_YMIN_PLUG
|
||||
#define USE_ZMIN_PLUG
|
||||
//#define USE_IMIN_PLUG
|
||||
//#define USE_JMIN_PLUG
|
||||
//#define USE_KMIN_PLUG
|
||||
//#define USE_XMAX_PLUG
|
||||
//#define USE_YMAX_PLUG
|
||||
//#define USE_ZMAX_PLUG
|
||||
//#define USE_IMAX_PLUG
|
||||
//#define USE_JMAX_PLUG
|
||||
//#define USE_KMAX_PLUG
|
||||
|
||||
// Enable pullup for all endstops to prevent a floating state
|
||||
#define ENDSTOPPULLUPS
|
||||
@@ -702,9 +765,15 @@
|
||||
//#define ENDSTOPPULLUP_XMAX
|
||||
//#define ENDSTOPPULLUP_YMAX
|
||||
//#define ENDSTOPPULLUP_ZMAX
|
||||
//#define ENDSTOPPULLUP_IMAX
|
||||
//#define ENDSTOPPULLUP_JMAX
|
||||
//#define ENDSTOPPULLUP_KMAX
|
||||
//#define ENDSTOPPULLUP_XMIN
|
||||
//#define ENDSTOPPULLUP_YMIN
|
||||
//#define ENDSTOPPULLUP_ZMIN
|
||||
//#define ENDSTOPPULLUP_IMIN
|
||||
//#define ENDSTOPPULLUP_JMIN
|
||||
//#define ENDSTOPPULLUP_KMIN
|
||||
//#define ENDSTOPPULLUP_ZMIN_PROBE
|
||||
#endif
|
||||
|
||||
@@ -715,9 +784,15 @@
|
||||
//#define ENDSTOPPULLDOWN_XMAX
|
||||
//#define ENDSTOPPULLDOWN_YMAX
|
||||
//#define ENDSTOPPULLDOWN_ZMAX
|
||||
//#define ENDSTOPPULLDOWN_IMAX
|
||||
//#define ENDSTOPPULLDOWN_JMAX
|
||||
//#define ENDSTOPPULLDOWN_KMAX
|
||||
//#define ENDSTOPPULLDOWN_XMIN
|
||||
//#define ENDSTOPPULLDOWN_YMIN
|
||||
//#define ENDSTOPPULLDOWN_ZMIN
|
||||
//#define ENDSTOPPULLDOWN_IMIN
|
||||
//#define ENDSTOPPULLDOWN_JMIN
|
||||
//#define ENDSTOPPULLDOWN_KMIN
|
||||
//#define ENDSTOPPULLDOWN_ZMIN_PROBE
|
||||
#endif
|
||||
|
||||
@@ -725,9 +800,15 @@
|
||||
#define X_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define Y_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define Z_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define I_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define J_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define K_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define X_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define Y_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define Z_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define I_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define J_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define K_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
|
||||
#define Z_MIN_PROBE_ENDSTOP_INVERTING false // Set to true to invert the logic of the probe.
|
||||
|
||||
/**
|
||||
@@ -756,6 +837,9 @@
|
||||
//#define Z2_DRIVER_TYPE A4988
|
||||
//#define Z3_DRIVER_TYPE A4988
|
||||
//#define Z4_DRIVER_TYPE A4988
|
||||
//#define I_DRIVER_TYPE A4988
|
||||
//#define J_DRIVER_TYPE A4988
|
||||
//#define K_DRIVER_TYPE A4988
|
||||
#define E0_DRIVER_TYPE A4988
|
||||
//#define E1_DRIVER_TYPE A4988
|
||||
//#define E2_DRIVER_TYPE A4988
|
||||
@@ -809,14 +893,14 @@
|
||||
/**
|
||||
* Default Axis Steps Per Unit (steps/mm)
|
||||
* Override with M92
|
||||
* X, Y, Z, E0 [, E1[, E2...]]
|
||||
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
|
||||
*/
|
||||
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 400, 500 }
|
||||
|
||||
/**
|
||||
* Default Max Feed Rate (mm/s)
|
||||
* Override with M203
|
||||
* X, Y, Z, E0 [, E1[, E2...]]
|
||||
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
|
||||
*/
|
||||
#define DEFAULT_MAX_FEEDRATE { 300, 300, 5, 25 }
|
||||
|
||||
@@ -829,7 +913,7 @@
|
||||
* Default Max Acceleration (change/s) change = mm/s
|
||||
* (Maximum start speed for accelerated moves)
|
||||
* Override with M201
|
||||
* X, Y, Z, E0 [, E1[, E2...]]
|
||||
* X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
|
||||
*/
|
||||
#define DEFAULT_MAX_ACCELERATION { 3000, 3000, 100, 10000 }
|
||||
|
||||
@@ -863,6 +947,9 @@
|
||||
#define DEFAULT_XJERK 10.0
|
||||
#define DEFAULT_YJERK 10.0
|
||||
#define DEFAULT_ZJERK 0.3
|
||||
//#define DEFAULT_IJERK 0.3
|
||||
//#define DEFAULT_JJERK 0.3
|
||||
//#define DEFAULT_KJERK 0.3
|
||||
|
||||
//#define TRAVEL_EXTRA_XYJERK 0.0 // Additional jerk allowance for all travel moves
|
||||
|
||||
@@ -1177,12 +1264,18 @@
|
||||
#define Y_ENABLE_ON 0
|
||||
#define Z_ENABLE_ON 0
|
||||
#define E_ENABLE_ON 0 // For all extruders
|
||||
//#define I_ENABLE_ON 0
|
||||
//#define J_ENABLE_ON 0
|
||||
//#define K_ENABLE_ON 0
|
||||
|
||||
// Disable axis steppers immediately when they're not being stepped.
|
||||
// WARNING: When motors turn off there is a chance of losing position accuracy!
|
||||
#define DISABLE_X false
|
||||
#define DISABLE_Y false
|
||||
#define DISABLE_Z false
|
||||
//#define DISABLE_I false
|
||||
//#define DISABLE_J false
|
||||
//#define DISABLE_K false
|
||||
|
||||
// Turn off the display blinking that warns about possible accuracy reduction
|
||||
//#define DISABLE_REDUCED_ACCURACY_WARNING
|
||||
@@ -1198,6 +1291,9 @@
|
||||
#define INVERT_X_DIR false
|
||||
#define INVERT_Y_DIR true
|
||||
#define INVERT_Z_DIR false
|
||||
//#define INVERT_I_DIR false
|
||||
//#define INVERT_J_DIR false
|
||||
//#define INVERT_K_DIR false
|
||||
|
||||
// @section extruder
|
||||
|
||||
@@ -1233,6 +1329,9 @@
|
||||
#define X_HOME_DIR -1
|
||||
#define Y_HOME_DIR -1
|
||||
#define Z_HOME_DIR -1
|
||||
//#define I_HOME_DIR -1
|
||||
//#define J_HOME_DIR -1
|
||||
//#define K_HOME_DIR -1
|
||||
|
||||
// @section machine
|
||||
|
||||
@@ -1247,6 +1346,12 @@
|
||||
#define X_MAX_POS X_BED_SIZE
|
||||
#define Y_MAX_POS Y_BED_SIZE
|
||||
#define Z_MAX_POS 200
|
||||
//#define I_MIN_POS 0
|
||||
//#define I_MAX_POS 50
|
||||
//#define J_MIN_POS 0
|
||||
//#define J_MAX_POS 50
|
||||
//#define K_MIN_POS 0
|
||||
//#define K_MAX_POS 50
|
||||
|
||||
/**
|
||||
* Software Endstops
|
||||
@@ -1263,6 +1368,9 @@
|
||||
#define MIN_SOFTWARE_ENDSTOP_X
|
||||
#define MIN_SOFTWARE_ENDSTOP_Y
|
||||
#define MIN_SOFTWARE_ENDSTOP_Z
|
||||
#define MIN_SOFTWARE_ENDSTOP_I
|
||||
#define MIN_SOFTWARE_ENDSTOP_J
|
||||
#define MIN_SOFTWARE_ENDSTOP_K
|
||||
#endif
|
||||
|
||||
// Max software endstops constrain movement within maximum coordinate bounds
|
||||
@@ -1271,6 +1379,9 @@
|
||||
#define MAX_SOFTWARE_ENDSTOP_X
|
||||
#define MAX_SOFTWARE_ENDSTOP_Y
|
||||
#define MAX_SOFTWARE_ENDSTOP_Z
|
||||
#define MAX_SOFTWARE_ENDSTOP_I
|
||||
#define MAX_SOFTWARE_ENDSTOP_J
|
||||
#define MAX_SOFTWARE_ENDSTOP_K
|
||||
#endif
|
||||
|
||||
#if EITHER(MIN_SOFTWARE_ENDSTOPS, MAX_SOFTWARE_ENDSTOPS)
|
||||
@@ -1582,6 +1693,9 @@
|
||||
//#define MANUAL_X_HOME_POS 0
|
||||
//#define MANUAL_Y_HOME_POS 0
|
||||
//#define MANUAL_Z_HOME_POS 0
|
||||
//#define MANUAL_I_HOME_POS 0
|
||||
//#define MANUAL_J_HOME_POS 0
|
||||
//#define MANUAL_K_HOME_POS 0
|
||||
|
||||
// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
|
||||
//
|
||||
@@ -1824,11 +1938,20 @@
|
||||
/**
|
||||
* Print Job Timer
|
||||
*
|
||||
* Automatically start and stop the print job timer on M104/M109/M190.
|
||||
* Automatically start and stop the print job timer on M104/M109/M140/M190/M141/M191.
|
||||
* The print job timer will only be stopped if the bed/chamber target temp is
|
||||
* below BED_MINTEMP/CHAMBER_MINTEMP.
|
||||
*
|
||||
* M104 (hotend, no wait) - high temp = none, low temp = stop timer
|
||||
* M109 (hotend, wait) - high temp = start timer, low temp = stop timer
|
||||
* M190 (bed, wait) - high temp = start timer, low temp = none
|
||||
* M104 (hotend, no wait) - high temp = none, low temp = stop timer
|
||||
* M109 (hotend, wait) - high temp = start timer, low temp = stop timer
|
||||
* M140 (bed, no wait) - high temp = none, low temp = stop timer
|
||||
* M190 (bed, wait) - high temp = start timer, low temp = none
|
||||
* M141 (chamber, no wait) - high temp = none, low temp = stop timer
|
||||
* M191 (chamber, wait) - high temp = start timer, low temp = none
|
||||
*
|
||||
* For M104/M109, high temp is anything over EXTRUDE_MINTEMP / 2.
|
||||
* For M140/M190, high temp is anything over BED_MINTEMP.
|
||||
* For M141/M191, high temp is anything over CHAMBER_MINTEMP.
|
||||
*
|
||||
* The timer can also be controlled with the following commands:
|
||||
*
|
||||
|
@@ -30,7 +30,7 @@
|
||||
*
|
||||
* Basic settings can be found in Configuration.h
|
||||
*/
|
||||
#define CONFIGURATION_ADV_H_VERSION 02000801
|
||||
#define CONFIGURATION_ADV_H_VERSION 02000900
|
||||
|
||||
//===========================================================================
|
||||
//============================= Thermal Settings ============================
|
||||
@@ -125,6 +125,12 @@
|
||||
#define PROBE_BETA 3950 // Beta value
|
||||
#endif
|
||||
|
||||
#if TEMP_SENSOR_REDUNDANT == 1000
|
||||
#define REDUNDANT_PULLUP_RESISTOR_OHMS 4700 // Pullup resistor
|
||||
#define REDUNDANT_RESISTANCE_25C_OHMS 100000 // Resistance at 25C
|
||||
#define REDUNDANT_BETA 3950 // Beta value
|
||||
#endif
|
||||
|
||||
//
|
||||
// Hephestos 2 24V heated bed upgrade kit.
|
||||
// https://store.bq.com/en/heated-bed-kit-hephestos2
|
||||
@@ -196,7 +202,7 @@
|
||||
#define COOLER_MAXTEMP 26 // (°C)
|
||||
#define COOLER_DEFAULT_TEMP 16 // (°C)
|
||||
#define TEMP_COOLER_HYSTERESIS 1 // (°C) Temperature proximity considered "close enough" to the target
|
||||
#define COOLER_PIN 8 // Laser cooler on/off pin used to control power to the cooling element e.g. TEC, External chiller via relay
|
||||
#define COOLER_PIN 8 // Laser cooler on/off pin used to control power to the cooling element (e.g., TEC, External chiller via relay)
|
||||
#define COOLER_INVERTING false
|
||||
#define TEMP_COOLER_PIN 15 // Laser/Cooler temperature sensor pin. ADC is required.
|
||||
#define COOLER_FAN // Enable a fan on the cooler, Fan# 0,1,2,3 etc.
|
||||
@@ -526,6 +532,11 @@
|
||||
//#define USE_OCR2A_AS_TOP
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Use one of the PWM fans as a redundant part-cooling fan
|
||||
*/
|
||||
//#define REDUNDANT_PART_COOLING_FAN 2 // Index of the fan to sync with FAN 0.
|
||||
|
||||
// @section extruder
|
||||
|
||||
/**
|
||||
@@ -671,6 +682,12 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Drive the E axis with two synchronized steppers
|
||||
//#define E_DUAL_STEPPER_DRIVERS
|
||||
#if ENABLED(E_DUAL_STEPPER_DRIVERS)
|
||||
//#define INVERT_E1_VS_E0_DIR // Enable if the E motors need opposite DIR states
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Dual X Carriage
|
||||
*
|
||||
@@ -734,7 +751,7 @@
|
||||
* the position of the toolhead relative to the workspace.
|
||||
*/
|
||||
|
||||
//#define SENSORLESS_BACKOFF_MM { 2, 2 } // (mm) Backoff from endstops before sensorless homing
|
||||
//#define SENSORLESS_BACKOFF_MM { 2, 2, 0 } // (mm) Backoff from endstops before sensorless homing
|
||||
|
||||
#define HOMING_BUMP_MM { 5, 5, 2 } // (mm) Backoff from endstops after first bump
|
||||
#define HOMING_BUMP_DIVISOR { 2, 2, 4 } // Re-Bump Speed Divisor (Divides the Homing Feedrate)
|
||||
@@ -918,6 +935,9 @@
|
||||
#define INVERT_X_STEP_PIN false
|
||||
#define INVERT_Y_STEP_PIN false
|
||||
#define INVERT_Z_STEP_PIN false
|
||||
#define INVERT_I_STEP_PIN false
|
||||
#define INVERT_J_STEP_PIN false
|
||||
#define INVERT_K_STEP_PIN false
|
||||
#define INVERT_E_STEP_PIN false
|
||||
|
||||
/**
|
||||
@@ -929,6 +949,9 @@
|
||||
#define DISABLE_INACTIVE_X true
|
||||
#define DISABLE_INACTIVE_Y true
|
||||
#define DISABLE_INACTIVE_Z true // Set 'false' if the nozzle could fall onto your printed part!
|
||||
#define DISABLE_INACTIVE_I true
|
||||
#define DISABLE_INACTIVE_J true
|
||||
#define DISABLE_INACTIVE_K true
|
||||
#define DISABLE_INACTIVE_E true
|
||||
|
||||
// Default Minimum Feedrates for printing and travel moves
|
||||
@@ -969,7 +992,7 @@
|
||||
#if ENABLED(BACKLASH_COMPENSATION)
|
||||
// Define values for backlash distance and correction.
|
||||
// If BACKLASH_GCODE is enabled these values are the defaults.
|
||||
#define BACKLASH_DISTANCE_MM { 0, 0, 0 } // (mm)
|
||||
#define BACKLASH_DISTANCE_MM { 0, 0, 0 } // (mm) One value for each linear axis
|
||||
#define BACKLASH_CORRECTION 0.0 // 0.0 = no correction; 1.0 = full correction
|
||||
|
||||
// Add steps for motor direction changes on CORE kinematics
|
||||
@@ -1040,6 +1063,13 @@
|
||||
#define CALIBRATION_MEASURE_LEFT
|
||||
#define CALIBRATION_MEASURE_BACK
|
||||
|
||||
//#define CALIBRATION_MEASURE_IMIN
|
||||
//#define CALIBRATION_MEASURE_IMAX
|
||||
//#define CALIBRATION_MEASURE_JMIN
|
||||
//#define CALIBRATION_MEASURE_JMAX
|
||||
//#define CALIBRATION_MEASURE_KMIN
|
||||
//#define CALIBRATION_MEASURE_KMAX
|
||||
|
||||
// Probing at the exact top center only works if the center is flat. If
|
||||
// probing on a screwhead or hollow washer, probe near the edges.
|
||||
//#define CALIBRATION_MEASURE_AT_TOP_EDGES
|
||||
@@ -1942,21 +1972,21 @@
|
||||
//#define USE_TEMP_EXT_COMPENSATION
|
||||
|
||||
// Probe temperature calibration generates a table of values starting at PTC_SAMPLE_START
|
||||
// (e.g. 30), in steps of PTC_SAMPLE_RES (e.g. 5) with PTC_SAMPLE_COUNT (e.g. 10) samples.
|
||||
// (e.g., 30), in steps of PTC_SAMPLE_RES (e.g., 5) with PTC_SAMPLE_COUNT (e.g., 10) samples.
|
||||
|
||||
//#define PTC_SAMPLE_START 30.0f
|
||||
//#define PTC_SAMPLE_RES 5.0f
|
||||
//#define PTC_SAMPLE_COUNT 10U
|
||||
//#define PTC_SAMPLE_START 30 // (°C)
|
||||
//#define PTC_SAMPLE_RES 5 // (°C)
|
||||
//#define PTC_SAMPLE_COUNT 10
|
||||
|
||||
// Bed temperature calibration builds a similar table.
|
||||
|
||||
//#define BTC_SAMPLE_START 60.0f
|
||||
//#define BTC_SAMPLE_RES 5.0f
|
||||
//#define BTC_SAMPLE_COUNT 10U
|
||||
//#define BTC_SAMPLE_START 60 // (°C)
|
||||
//#define BTC_SAMPLE_RES 5 // (°C)
|
||||
//#define BTC_SAMPLE_COUNT 10
|
||||
|
||||
// The temperature the probe should be at while taking measurements during bed temperature
|
||||
// calibration.
|
||||
//#define BTC_PROBE_TEMP 30.0f
|
||||
//#define BTC_PROBE_TEMP 30 // (°C)
|
||||
|
||||
// Height above Z=0.0f to raise the nozzle. Lowering this can help the probe to heat faster.
|
||||
// Note: the Z=0.0f offset is determined by the probe offset which can be set using M851.
|
||||
@@ -1965,7 +1995,7 @@
|
||||
// Height to raise the Z-probe between heating and taking the next measurement. Some probes
|
||||
// may fail to untrigger if they have been triggered for a long time, which can be solved by
|
||||
// increasing the height the probe is raised to.
|
||||
//#define PTC_PROBE_RAISE 15U
|
||||
//#define PTC_PROBE_RAISE 15
|
||||
|
||||
// If the probe is outside of the defined range, use linear extrapolation using the closest
|
||||
// point and the PTC_LINEAR_EXTRAPOLATION'th next point. E.g. if set to 4 it will use data[0]
|
||||
@@ -2080,7 +2110,7 @@
|
||||
// @section motion
|
||||
|
||||
// The number of linear moves that can be in the planner at once.
|
||||
// The value of BLOCK_BUFFER_SIZE must be a power of 2 (e.g. 8, 16, 32)
|
||||
// The value of BLOCK_BUFFER_SIZE must be a power of 2 (e.g., 8, 16, 32)
|
||||
#if BOTH(SDSUPPORT, DIRECT_STEPPING)
|
||||
#define BLOCK_BUFFER_SIZE 8
|
||||
#elif ENABLED(SDSUPPORT)
|
||||
@@ -2236,6 +2266,13 @@
|
||||
//#define EVENT_GCODE_AFTER_TOOLCHANGE "G12X" // Extra G-code to run after tool-change
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Extra G-code to run while executing tool-change commands. Can be used to use an additional
|
||||
* stepper motor (I axis, see option LINEAR_AXES in Configuration.h) to drive the tool-changer.
|
||||
*/
|
||||
//#define EVENT_GCODE_TOOLCHANGE_T0 "G28 A\nG1 A0" // Extra G-code to run while executing tool-change command T0
|
||||
//#define EVENT_GCODE_TOOLCHANGE_T1 "G1 A10" // Extra G-code to run while executing tool-change command T1
|
||||
|
||||
/**
|
||||
* Tool Sensors detect when tools have been picked up or dropped.
|
||||
* Requires the pins TOOL_SENSOR1_PIN, TOOL_SENSOR2_PIN, etc.
|
||||
@@ -2413,6 +2450,24 @@
|
||||
#define Z4_MICROSTEPS Z_MICROSTEPS
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_I(TMC26X)
|
||||
#define I_MAX_CURRENT 1000
|
||||
#define I_SENSE_RESISTOR 91
|
||||
#define I_MICROSTEPS 16
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_J(TMC26X)
|
||||
#define J_MAX_CURRENT 1000
|
||||
#define J_SENSE_RESISTOR 91
|
||||
#define J_MICROSTEPS 16
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_K(TMC26X)
|
||||
#define K_MAX_CURRENT 1000
|
||||
#define K_SENSE_RESISTOR 91
|
||||
#define K_MICROSTEPS 16
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_E0(TMC26X)
|
||||
#define E0_MAX_CURRENT 1000
|
||||
#define E0_SENSE_RESISTOR 91
|
||||
@@ -2563,6 +2618,33 @@
|
||||
//#define Z4_INTERPOLATE true
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(I)
|
||||
#define I_CURRENT 800
|
||||
#define I_CURRENT_HOME I_CURRENT
|
||||
#define I_MICROSTEPS 16
|
||||
#define I_RSENSE 0.11
|
||||
#define I_CHAIN_POS -1
|
||||
//#define I_INTERPOLATE true
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(J)
|
||||
#define J_CURRENT 800
|
||||
#define J_CURRENT_HOME J_CURRENT
|
||||
#define J_MICROSTEPS 16
|
||||
#define J_RSENSE 0.11
|
||||
#define J_CHAIN_POS -1
|
||||
//#define J_INTERPOLATE true
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(K)
|
||||
#define K_CURRENT 800
|
||||
#define K_CURRENT_HOME K_CURRENT
|
||||
#define K_MICROSTEPS 16
|
||||
#define K_RSENSE 0.11
|
||||
#define K_CHAIN_POS -1
|
||||
//#define K_INTERPOLATE true
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(E0)
|
||||
#define E0_CURRENT 800
|
||||
#define E0_MICROSTEPS 16
|
||||
@@ -2638,6 +2720,10 @@
|
||||
//#define Y2_CS_PIN -1
|
||||
//#define Z2_CS_PIN -1
|
||||
//#define Z3_CS_PIN -1
|
||||
//#define Z4_CS_PIN -1
|
||||
//#define I_CS_PIN -1
|
||||
//#define J_CS_PIN -1
|
||||
//#define K_CS_PIN -1
|
||||
//#define E0_CS_PIN -1
|
||||
//#define E1_CS_PIN -1
|
||||
//#define E2_CS_PIN -1
|
||||
@@ -2677,6 +2763,9 @@
|
||||
//#define Z2_SLAVE_ADDRESS 0
|
||||
//#define Z3_SLAVE_ADDRESS 0
|
||||
//#define Z4_SLAVE_ADDRESS 0
|
||||
//#define I_SLAVE_ADDRESS 0
|
||||
//#define J_SLAVE_ADDRESS 0
|
||||
//#define K_SLAVE_ADDRESS 0
|
||||
//#define E0_SLAVE_ADDRESS 0
|
||||
//#define E1_SLAVE_ADDRESS 0
|
||||
//#define E2_SLAVE_ADDRESS 0
|
||||
@@ -2701,6 +2790,9 @@
|
||||
*/
|
||||
#define STEALTHCHOP_XY
|
||||
#define STEALTHCHOP_Z
|
||||
#define STEALTHCHOP_I
|
||||
#define STEALTHCHOP_J
|
||||
#define STEALTHCHOP_K
|
||||
#define STEALTHCHOP_E
|
||||
|
||||
/**
|
||||
@@ -2772,6 +2864,9 @@
|
||||
#define Z2_HYBRID_THRESHOLD 3
|
||||
#define Z3_HYBRID_THRESHOLD 3
|
||||
#define Z4_HYBRID_THRESHOLD 3
|
||||
#define I_HYBRID_THRESHOLD 3
|
||||
#define J_HYBRID_THRESHOLD 3
|
||||
#define K_HYBRID_THRESHOLD 3
|
||||
#define E0_HYBRID_THRESHOLD 30
|
||||
#define E1_HYBRID_THRESHOLD 30
|
||||
#define E2_HYBRID_THRESHOLD 30
|
||||
@@ -2818,6 +2913,9 @@
|
||||
//#define Z2_STALL_SENSITIVITY Z_STALL_SENSITIVITY
|
||||
//#define Z3_STALL_SENSITIVITY Z_STALL_SENSITIVITY
|
||||
//#define Z4_STALL_SENSITIVITY Z_STALL_SENSITIVITY
|
||||
//#define I_STALL_SENSITIVITY 8
|
||||
//#define J_STALL_SENSITIVITY 8
|
||||
//#define K_STALL_SENSITIVITY 8
|
||||
//#define SPI_ENDSTOPS // TMC2130 only
|
||||
//#define IMPROVE_HOMING_RELIABILITY
|
||||
#endif
|
||||
@@ -2958,6 +3056,33 @@
|
||||
#define Z4_SLEW_RATE 1
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_I(L6470)
|
||||
#define I_MICROSTEPS 128
|
||||
#define I_OVERCURRENT 2000
|
||||
#define I_STALLCURRENT 1500
|
||||
#define I_MAX_VOLTAGE 127
|
||||
#define I_CHAIN_POS -1
|
||||
#define I_SLEW_RATE 1
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_J(L6470)
|
||||
#define J_MICROSTEPS 128
|
||||
#define J_OVERCURRENT 2000
|
||||
#define J_STALLCURRENT 1500
|
||||
#define J_MAX_VOLTAGE 127
|
||||
#define J_CHAIN_POS -1
|
||||
#define J_SLEW_RATE 1
|
||||
#endif
|
||||
|
||||
#if AXIS_DRIVER_TYPE_K(L6470)
|
||||
#define K_MICROSTEPS 128
|
||||
#define K_OVERCURRENT 2000
|
||||
#define K_STALLCURRENT 1500
|
||||
#define K_MAX_VOLTAGE 127
|
||||
#define K_CHAIN_POS -1
|
||||
#define K_SLEW_RATE 1
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_L64XX(E0)
|
||||
#define E0_MICROSTEPS 128
|
||||
#define E0_OVERCURRENT 2000
|
||||
@@ -3307,8 +3432,18 @@
|
||||
#define SPINDLE_LASER_POWERDOWN_DELAY 50 // (ms) Delay to allow the spindle to stop
|
||||
|
||||
#endif
|
||||
|
||||
//
|
||||
// Laser I2C Ammeter (High precision INA226 low/high side module)
|
||||
//
|
||||
//#define I2C_AMMETER
|
||||
#if ENABLED(I2C_AMMETER)
|
||||
#define I2C_AMMETER_IMAX 0.1 // (Amps) Calibration value for the expected current range
|
||||
#define I2C_AMMETER_SHUNT_RESISTOR 0.1 // (Ohms) Calibration shunt resistor value
|
||||
#endif
|
||||
|
||||
#endif
|
||||
#endif
|
||||
#endif // SPINDLE_FEATURE || LASER_FEATURE
|
||||
|
||||
/**
|
||||
* Synchronous Laser Control with M106/M107
|
||||
|
@@ -28,7 +28,7 @@
|
||||
/**
|
||||
* Marlin release version identifier
|
||||
*/
|
||||
//#define SHORT_BUILD_VERSION "2.0.8.2"
|
||||
//#define SHORT_BUILD_VERSION "2.0.9"
|
||||
|
||||
/**
|
||||
* Verbose version identifier which should contain a reference to the location
|
||||
@@ -41,7 +41,7 @@
|
||||
* here we define this default string as the date where the latest release
|
||||
* version was tagged.
|
||||
*/
|
||||
//#define STRING_DISTRIBUTION_DATE "2021-05-29"
|
||||
//#define STRING_DISTRIBUTION_DATE "2021-06-15"
|
||||
|
||||
/**
|
||||
* Defines a generic printer name to be output to the LCD after booting Marlin.
|
||||
|
@@ -186,7 +186,7 @@ inline void HAL_adc_init() {
|
||||
#define GET_PIN_MAP_INDEX(pin) pin
|
||||
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
|
||||
|
||||
#define HAL_SENSITIVE_PINS 0, 1
|
||||
#define HAL_SENSITIVE_PINS 0, 1,
|
||||
|
||||
#ifdef __AVR_AT90USB1286__
|
||||
#define JTAG_DISABLE() do{ MCUCR = 0x80; MCUCR = 0x80; }while(0)
|
||||
|
@@ -168,6 +168,51 @@ void setup_endstop_interrupts() {
|
||||
pciSetup(Z_MIN_PIN);
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_I_MAX
|
||||
#if (digitalPinToInterrupt(I_MAX_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(I_MAX_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(I_MAX_PIN), "I_MAX_PIN is not interrupt-capable");
|
||||
pciSetup(I_MAX_PIN);
|
||||
#endif
|
||||
#elif HAS_I_MIN
|
||||
#if (digitalPinToInterrupt(I_MIN_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(I_MIN_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(I_MIN_PIN), "I_MIN_PIN is not interrupt-capable");
|
||||
pciSetup(I_MIN_PIN);
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_J_MAX
|
||||
#if (digitalPinToInterrupt(J_MAX_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(J_MAX_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(J_MAX_PIN), "J_MAX_PIN is not interrupt-capable");
|
||||
pciSetup(J_MAX_PIN);
|
||||
#endif
|
||||
#elif HAS_J_MIN
|
||||
#if (digitalPinToInterrupt(J_MIN_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(J_MIN_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(J_MIN_PIN), "J_MIN_PIN is not interrupt-capable");
|
||||
pciSetup(J_MIN_PIN);
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_K_MAX
|
||||
#if (digitalPinToInterrupt(K_MAX_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(K_MAX_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(K_MAX_PIN), "K_MAX_PIN is not interrupt-capable");
|
||||
pciSetup(K_MAX_PIN);
|
||||
#endif
|
||||
#elif HAS_K_MIN
|
||||
#if (digitalPinToInterrupt(K_MIN_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(K_MIN_PIN);
|
||||
#else
|
||||
static_assert(digitalPinHasPCICR(K_MIN_PIN), "K_MIN_PIN is not interrupt-capable");
|
||||
pciSetup(K_MIN_PIN);
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_X2_MAX
|
||||
#if (digitalPinToInterrupt(X2_MAX_PIN) != NOT_AN_INTERRUPT)
|
||||
_ATTACH(X2_MAX_PIN);
|
||||
@@ -256,6 +301,5 @@ void setup_endstop_interrupts() {
|
||||
pciSetup(Z_MIN_PROBE_PIN);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// If we arrive here without raising an assertion, each pin has either an EXT-interrupt or a PCI.
|
||||
}
|
||||
|
@@ -64,4 +64,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -59,4 +59,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -25,43 +25,6 @@
|
||||
|
||||
#include "../../../gcode/parser.h"
|
||||
|
||||
uint8_t analog_offset = NUM_DIGITAL_PINS - NUM_ANALOG_INPUTS;
|
||||
|
||||
// Get the digital pin for an analog index
|
||||
pin_t analogInputToDigitalPin(const int8_t p) {
|
||||
return (WITHIN(p, 0, NUM_ANALOG_INPUTS) ? analog_offset + p : P_NC);
|
||||
}
|
||||
|
||||
// Return the index of a pin number
|
||||
int16_t GET_PIN_MAP_INDEX(const pin_t pin) {
|
||||
return pin;
|
||||
}
|
||||
|
||||
// Test whether the pin is valid
|
||||
bool VALID_PIN(const pin_t p) {
|
||||
return WITHIN(p, 0, NUM_DIGITAL_PINS);
|
||||
}
|
||||
|
||||
// Get the analog index for a digital pin
|
||||
int8_t DIGITAL_PIN_TO_ANALOG_PIN(const pin_t p) {
|
||||
return (WITHIN(p, analog_offset, NUM_DIGITAL_PINS) ? p - analog_offset : P_NC);
|
||||
}
|
||||
|
||||
// Test whether the pin is PWM
|
||||
bool PWM_PIN(const pin_t p) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Test whether the pin is interruptable
|
||||
bool INTERRUPT_PIN(const pin_t p) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Get the pin number at the given index
|
||||
pin_t GET_PIN_MAP_PIN(const int16_t ind) {
|
||||
return ind;
|
||||
}
|
||||
|
||||
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval) {
|
||||
return parser.intval(code, dval);
|
||||
}
|
||||
|
@@ -34,26 +34,32 @@ constexpr uint8_t NUM_ANALOG_INPUTS = 16;
|
||||
|
||||
#define HAL_SENSITIVE_PINS
|
||||
|
||||
constexpr uint8_t analog_offset = NUM_DIGITAL_PINS - NUM_ANALOG_INPUTS;
|
||||
|
||||
// Get the digital pin for an analog index
|
||||
pin_t analogInputToDigitalPin(const int8_t p);
|
||||
|
||||
// Return the index of a pin number
|
||||
int16_t GET_PIN_MAP_INDEX(const pin_t pin);
|
||||
|
||||
// Test whether the pin is valid
|
||||
bool VALID_PIN(const pin_t p);
|
||||
constexpr pin_t analogInputToDigitalPin(const int8_t p) {
|
||||
return (WITHIN(p, 0, NUM_ANALOG_INPUTS) ? analog_offset + p : P_NC);
|
||||
}
|
||||
|
||||
// Get the analog index for a digital pin
|
||||
int8_t DIGITAL_PIN_TO_ANALOG_PIN(const pin_t p);
|
||||
constexpr int8_t DIGITAL_PIN_TO_ANALOG_PIN(const pin_t p) {
|
||||
return (WITHIN(p, analog_offset, NUM_DIGITAL_PINS) ? p - analog_offset : P_NC);
|
||||
}
|
||||
|
||||
// Return the index of a pin number
|
||||
constexpr int16_t GET_PIN_MAP_INDEX(const pin_t pin) { return pin; }
|
||||
|
||||
// Test whether the pin is valid
|
||||
constexpr bool VALID_PIN(const pin_t p) { return WITHIN(p, 0, NUM_DIGITAL_PINS); }
|
||||
|
||||
// Test whether the pin is PWM
|
||||
bool PWM_PIN(const pin_t p);
|
||||
constexpr bool PWM_PIN(const pin_t p) { return false; }
|
||||
|
||||
// Test whether the pin is interruptable
|
||||
bool INTERRUPT_PIN(const pin_t p);
|
||||
constexpr bool INTERRUPT_PIN(const pin_t p) { return false; }
|
||||
|
||||
// Get the pin number at the given index
|
||||
pin_t GET_PIN_MAP_PIN(const int16_t ind);
|
||||
constexpr pin_t GET_PIN_MAP_PIN(const int16_t ind) { return ind; }
|
||||
|
||||
// Parse a G-code word into a pin index
|
||||
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval);
|
||||
|
@@ -198,7 +198,7 @@ constexpr pin_t GET_PIN_MAP_PIN(const int16_t index) {
|
||||
// Parse a G-code word into a pin index
|
||||
int16_t PARSED_PIN_INDEX(const char code, const int16_t dval);
|
||||
// P0.6 thru P0.9 are for the onboard SD card
|
||||
#define HAL_SENSITIVE_PINS P0_06, P0_07, P0_08, P0_09
|
||||
#define HAL_SENSITIVE_PINS P0_06, P0_07, P0_08, P0_09,
|
||||
|
||||
#define HAL_IDLETASK 1
|
||||
void HAL_idletask();
|
||||
|
@@ -66,11 +66,7 @@
|
||||
|
||||
#include <SoftwareSPI.h>
|
||||
|
||||
#ifndef HAL_SPI_SPEED
|
||||
#define HAL_SPI_SPEED SPI_FULL_SPEED
|
||||
#endif
|
||||
|
||||
static uint8_t SPI_speed = HAL_SPI_SPEED;
|
||||
static uint8_t SPI_speed = SPI_FULL_SPEED;
|
||||
|
||||
static uint8_t spiTransfer(uint8_t b) {
|
||||
return swSpiTransfer(b, SPI_speed, SD_SCK_PIN, SD_MISO_PIN, SD_MOSI_PIN);
|
||||
@@ -106,15 +102,13 @@
|
||||
|
||||
#else
|
||||
|
||||
#ifndef HAL_SPI_SPEED
|
||||
#ifdef SD_SPI_SPEED
|
||||
#define HAL_SPI_SPEED SD_SPI_SPEED
|
||||
#else
|
||||
#define HAL_SPI_SPEED SPI_FULL_SPEED
|
||||
#endif
|
||||
#ifdef SD_SPI_SPEED
|
||||
#define INIT_SPI_SPEED SD_SPI_SPEED
|
||||
#else
|
||||
#define INIT_SPI_SPEED SPI_FULL_SPEED
|
||||
#endif
|
||||
|
||||
void spiBegin() { spiInit(HAL_SPI_SPEED); } // Set up SCK, MOSI & MISO pins for SSP0
|
||||
void spiBegin() { spiInit(INIT_SPI_SPEED); } // Set up SCK, MOSI & MISO pins for SSP0
|
||||
|
||||
void spiInit(uint8_t spiRate) {
|
||||
#if SD_MISO_PIN == BOARD_SPI1_MISO_PIN
|
||||
|
@@ -122,4 +122,37 @@ void setup_endstop_interrupts() {
|
||||
#endif
|
||||
_ATTACH(Z_MIN_PROBE_PIN);
|
||||
#endif
|
||||
#if HAS_I_MAX
|
||||
#if !LPC1768_PIN_INTERRUPT_M(I_MAX_PIN)
|
||||
#error "I_MAX_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(I_MAX_PIN);
|
||||
#elif HAS_I_MIN
|
||||
#if !LPC1768_PIN_INTERRUPT_M(I_MIN_PIN)
|
||||
#error "I_MIN_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(I_MIN_PIN);
|
||||
#endif
|
||||
#if HAS_J_MAX
|
||||
#if !LPC1768_PIN_INTERRUPT_M(J_MAX_PIN)
|
||||
#error "J_MAX_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(J_MAX_PIN);
|
||||
#elif HAS_J_MIN
|
||||
#if !LPC1768_PIN_INTERRUPT_M(J_MIN_PIN)
|
||||
#error "J_MIN_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(J_MIN_PIN);
|
||||
#endif
|
||||
#if HAS_K_MAX
|
||||
#if !LPC1768_PIN_INTERRUPT_M(K_MAX_PIN)
|
||||
#error "K_MAX_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(K_MAX_PIN);
|
||||
#elif HAS_K_MIN
|
||||
#if !LPC1768_PIN_INTERRUPT_M(K_MIN_PIN)
|
||||
#error "K_MIN_PIN is not INTERRUPT-capable."
|
||||
#endif
|
||||
_ATTACH(K_MIN_PIN);
|
||||
#endif
|
||||
}
|
||||
|
@@ -54,7 +54,7 @@ enum XPTCoordinate : uint8_t {
|
||||
XPT2046_Z2 = 0x40 | XPT2046_CONTROL | XPT2046_DFR_MODE,
|
||||
};
|
||||
|
||||
#if !defined(XPT2046_Z1_THRESHOLD)
|
||||
#ifndef XPT2046_Z1_THRESHOLD
|
||||
#define XPT2046_Z1_THRESHOLD 10
|
||||
#endif
|
||||
|
||||
|
@@ -47,80 +47,38 @@
|
||||
|
||||
#include "../../module/endstops.h"
|
||||
|
||||
#define MATCH_EILINE(P1,P2) (P1 != P2 && PIN_TO_EILINE(P1) == PIN_TO_EILINE(P2))
|
||||
#if HAS_X_MAX
|
||||
#define MATCH_X_MAX_EILINE(P) MATCH_EILINE(P, X_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_X_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_X_MIN
|
||||
#define MATCH_X_MIN_EILINE(P) MATCH_EILINE(P, X_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_X_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Y_MAX
|
||||
#define MATCH_Y_MAX_EILINE(P) MATCH_EILINE(P, Y_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_Y_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Y_MIN
|
||||
#define MATCH_Y_MIN_EILINE(P) MATCH_EILINE(P, Y_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_Y_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z_MAX
|
||||
#define MATCH_Z_MAX_EILINE(P) MATCH_EILINE(P, Z_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_Z_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z_MIN
|
||||
#define MATCH_Z_MIN_EILINE(P) MATCH_EILINE(P, Z_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_Z_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z2_MAX
|
||||
#define MATCH_Z2_MAX_EILINE(P) MATCH_EILINE(P, Z2_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_Z2_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z2_MIN
|
||||
#define MATCH_Z2_MIN_EILINE(P) MATCH_EILINE(P, Z2_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_Z2_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z3_MAX
|
||||
#define MATCH_Z3_MAX_EILINE(P) MATCH_EILINE(P, Z3_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_Z3_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z3_MIN
|
||||
#define MATCH_Z3_MIN_EILINE(P) MATCH_EILINE(P, Z3_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_Z3_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z4_MAX
|
||||
#define MATCH_Z4_MAX_EILINE(P) MATCH_EILINE(P, Z4_MAX_PIN)
|
||||
#else
|
||||
#define MATCH_Z4_MAX_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z4_MIN
|
||||
#define MATCH_Z4_MIN_EILINE(P) MATCH_EILINE(P, Z4_MIN_PIN)
|
||||
#else
|
||||
#define MATCH_Z4_MIN_EILINE(P) false
|
||||
#endif
|
||||
#if HAS_Z_MIN_PROBE_PIN
|
||||
#define MATCH_Z_MIN_PROBE_EILINE(P) MATCH_EILINE(P, Z_MIN_PROBE_PIN)
|
||||
#else
|
||||
#define MATCH_Z_MIN_PROBE_EILINE(P) false
|
||||
#endif
|
||||
#define AVAILABLE_EILINE(P) (PIN_TO_EILINE(P) != -1 \
|
||||
&& !MATCH_X_MAX_EILINE(P) && !MATCH_X_MIN_EILINE(P) \
|
||||
&& !MATCH_Y_MAX_EILINE(P) && !MATCH_Y_MIN_EILINE(P) \
|
||||
&& !MATCH_Z_MAX_EILINE(P) && !MATCH_Z_MIN_EILINE(P) \
|
||||
&& !MATCH_Z2_MAX_EILINE(P) && !MATCH_Z2_MIN_EILINE(P) \
|
||||
&& !MATCH_Z3_MAX_EILINE(P) && !MATCH_Z3_MIN_EILINE(P) \
|
||||
&& !MATCH_Z4_MAX_EILINE(P) && !MATCH_Z4_MIN_EILINE(P) \
|
||||
&& !MATCH_Z_MIN_PROBE_EILINE(P))
|
||||
#define MATCH_EILINE(P1,P2) (P1 != P2 && PIN_TO_EILINE(P1) == PIN_TO_EILINE(P2))
|
||||
#define MATCH_X_MAX_EILINE(P) TERN0(HAS_X_MAX, DEFER4(MATCH_EILINE)(P, X_MAX_PIN))
|
||||
#define MATCH_X_MIN_EILINE(P) TERN0(HAS_X_MIN, DEFER4(MATCH_EILINE)(P, X_MIN_PIN))
|
||||
#define MATCH_Y_MAX_EILINE(P) TERN0(HAS_Y_MAX, DEFER4(MATCH_EILINE)(P, Y_MAX_PIN))
|
||||
#define MATCH_Y_MIN_EILINE(P) TERN0(HAS_Y_MIN, DEFER4(MATCH_EILINE)(P, Y_MIN_PIN))
|
||||
#define MATCH_Z_MAX_EILINE(P) TERN0(HAS_Z_MAX, DEFER4(MATCH_EILINE)(P, Z_MAX_PIN))
|
||||
#define MATCH_Z_MIN_EILINE(P) TERN0(HAS_Z_MIN, DEFER4(MATCH_EILINE)(P, Z_MIN_PIN))
|
||||
#define MATCH_I_MAX_EILINE(P) TERN0(HAS_I_MAX, DEFER4(MATCH_EILINE)(P, I_MAX_PIN))
|
||||
#define MATCH_I_MIN_EILINE(P) TERN0(HAS_I_MIN, DEFER4(MATCH_EILINE)(P, I_MIN_PIN))
|
||||
#define MATCH_J_MAX_EILINE(P) TERN0(HAS_J_MAX, DEFER4(MATCH_EILINE)(P, J_MAX_PIN))
|
||||
#define MATCH_J_MIN_EILINE(P) TERN0(HAS_J_MIN, DEFER4(MATCH_EILINE)(P, J_MIN_PIN))
|
||||
#define MATCH_K_MAX_EILINE(P) TERN0(HAS_K_MAX, DEFER4(MATCH_EILINE)(P, K_MAX_PIN))
|
||||
#define MATCH_K_MIN_EILINE(P) TERN0(HAS_K_MIN, DEFER4(MATCH_EILINE)(P, K_MIN_PIN))
|
||||
#define MATCH_Z2_MAX_EILINE(P) TERN0(HAS_Z2_MAX, DEFER4(MATCH_EILINE)(P, Z2_MAX_PIN))
|
||||
#define MATCH_Z2_MIN_EILINE(P) TERN0(HAS_Z2_MIN, DEFER4(MATCH_EILINE)(P, Z2_MIN_PIN))
|
||||
#define MATCH_Z3_MAX_EILINE(P) TERN0(HAS_Z3_MAX, DEFER4(MATCH_EILINE)(P, Z3_MAX_PIN))
|
||||
#define MATCH_Z3_MIN_EILINE(P) TERN0(HAS_Z3_MIN, DEFER4(MATCH_EILINE)(P, Z3_MIN_PIN))
|
||||
#define MATCH_Z4_MAX_EILINE(P) TERN0(HAS_Z4_MAX, DEFER4(MATCH_EILINE)(P, Z4_MAX_PIN))
|
||||
#define MATCH_Z4_MIN_EILINE(P) TERN0(HAS_Z4_MIN, DEFER4(MATCH_EILINE)(P, Z4_MIN_PIN))
|
||||
#define MATCH_Z_MIN_PROBE_EILINE(P) TERN0(HAS_Z_MIN_PROBE_PIN, DEFER4(MATCH_EILINE)(P, Z_MIN_PROBE_PIN))
|
||||
|
||||
#define AVAILABLE_EILINE(P) ( PIN_TO_EILINE(P) != -1 \
|
||||
&& !MATCH_X_MAX_EILINE(P) && !MATCH_X_MIN_EILINE(P) \
|
||||
&& !MATCH_Y_MAX_EILINE(P) && !MATCH_Y_MIN_EILINE(P) \
|
||||
&& !MATCH_Z_MAX_EILINE(P) && !MATCH_Z_MIN_EILINE(P) \
|
||||
&& !MATCH_I_MAX_EILINE(P) && !MATCH_I_MIN_EILINE(P) \
|
||||
&& !MATCH_J_MAX_EILINE(P) && !MATCH_J_MIN_EILINE(P) \
|
||||
&& !MATCH_K_MAX_EILINE(P) && !MATCH_K_MIN_EILINE(P) \
|
||||
&& !MATCH_Z2_MAX_EILINE(P) && !MATCH_Z2_MIN_EILINE(P) \
|
||||
&& !MATCH_Z3_MAX_EILINE(P) && !MATCH_Z3_MIN_EILINE(P) \
|
||||
&& !MATCH_Z4_MAX_EILINE(P) && !MATCH_Z4_MIN_EILINE(P) \
|
||||
&& !MATCH_Z_MIN_PROBE_EILINE(P) )
|
||||
|
||||
// One ISR for all EXT-Interrupts
|
||||
void endstop_ISR() { endstops.update(); }
|
||||
@@ -204,5 +162,37 @@ void setup_endstop_interrupts() {
|
||||
#error "Z_MIN_PROBE_PIN has no EXTINT line available."
|
||||
#endif
|
||||
_ATTACH(Z_MIN_PROBE_PIN);
|
||||
#elif HAS_I_MAX
|
||||
#if !AVAILABLE_EILINE(I_MAX_PIN)
|
||||
#error "I_MAX_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(I_MAX_PIN, endstop_ISR, CHANGE);
|
||||
#elif HAS_I_MIN
|
||||
#if !AVAILABLE_EILINE(I_MIN_PIN)
|
||||
#error "I_MIN_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(I_MIN_PIN, endstop_ISR, CHANGE);
|
||||
#endif
|
||||
#if HAS_J_MAX
|
||||
#if !AVAILABLE_EILINE(J_MAX_PIN)
|
||||
#error "J_MAX_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(J_MAX_PIN, endstop_ISR, CHANGE);
|
||||
#elif HAS_J_MIN
|
||||
#if !AVAILABLE_EILINE(J_MIN_PIN)
|
||||
#error "J_MIN_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(J_MIN_PIN, endstop_ISR, CHANGE);
|
||||
#endif
|
||||
#if HAS_K_MAX
|
||||
#if !AVAILABLE_EILINE(K_MAX_PIN)
|
||||
#error "K_MAX_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(K_MAX_PIN, endstop_ISR, CHANGE);
|
||||
#elif HAS_K_MIN
|
||||
#if !AVAILABLE_EILINE(K_MIN_PIN)
|
||||
#error "K_MIN_PIN has no EXTINT line available."
|
||||
#endif
|
||||
attachInterrupt(K_MIN_PIN, endstop_ISR, CHANGE);
|
||||
#endif
|
||||
}
|
||||
|
@@ -195,6 +195,7 @@ uint16_t HAL_adc_get_result();
|
||||
#ifdef STM32F1xx
|
||||
#define JTAG_DISABLE() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_JTAGDISABLE)
|
||||
#define JTAGSWD_DISABLE() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_DISABLE)
|
||||
#define JTAGSWD_RESET() AFIO_DBGAFR_CONFIG(AFIO_MAPR_SWJ_CFG_RESET); // Reset: FULL SWD+JTAG
|
||||
#endif
|
||||
|
||||
#define PLATFORM_M997_SUPPORT
|
||||
|
@@ -163,11 +163,9 @@ static SPISettings spiConfig;
|
||||
}
|
||||
spiConfig = SPISettings(clock, MSBFIRST, SPI_MODE0);
|
||||
|
||||
#if ENABLED(CUSTOM_SPI_PINS)
|
||||
SPI.setMISO(SD_MISO_PIN);
|
||||
SPI.setMOSI(SD_MOSI_PIN);
|
||||
SPI.setSCLK(SD_SCK_PIN);
|
||||
#endif
|
||||
SPI.setMISO(SD_MISO_PIN);
|
||||
SPI.setMOSI(SD_MOSI_PIN);
|
||||
SPI.setSCLK(SD_SCK_PIN);
|
||||
|
||||
SPI.begin();
|
||||
}
|
||||
|
82
Marlin/src/HAL/STM32/eeprom_bl24cxx.cpp
Normal file
82
Marlin/src/HAL/STM32/eeprom_bl24cxx.cpp
Normal file
@@ -0,0 +1,82 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
#ifdef STM32F1
|
||||
|
||||
/**
|
||||
* PersistentStore for Arduino-style EEPROM interface
|
||||
* with simple implementations supplied by Marlin.
|
||||
*/
|
||||
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(IIC_BL24CXX_EEPROM)
|
||||
|
||||
#include "../shared/eeprom_if.h"
|
||||
#include "../shared/eeprom_api.h"
|
||||
|
||||
//
|
||||
// PersistentStore
|
||||
//
|
||||
|
||||
#ifndef MARLIN_EEPROM_SIZE
|
||||
#error "MARLIN_EEPROM_SIZE is required for IIC_BL24CXX_EEPROM."
|
||||
#endif
|
||||
|
||||
size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE; }
|
||||
|
||||
bool PersistentStore::access_start() { eeprom_init(); return true; }
|
||||
bool PersistentStore::access_finish() { return true; }
|
||||
|
||||
bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
|
||||
uint16_t written = 0;
|
||||
while (size--) {
|
||||
uint8_t v = *value;
|
||||
uint8_t * const p = (uint8_t * const)pos;
|
||||
if (v != eeprom_read_byte(p)) { // EEPROM has only ~100,000 write cycles, so only write bytes that have changed!
|
||||
eeprom_write_byte(p, v);
|
||||
if (++written & 0x7F) delay(2); else safe_delay(2); // Avoid triggering watchdog during long EEPROM writes
|
||||
if (eeprom_read_byte(p) != v) {
|
||||
SERIAL_ECHO_MSG(STR_ERR_EEPROM_WRITE);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
crc16(crc, &v, 1);
|
||||
pos++;
|
||||
value++;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool PersistentStore::read_data(int &pos, uint8_t *value, size_t size, uint16_t *crc, const bool writing/*=true*/) {
|
||||
do {
|
||||
uint8_t * const p = (uint8_t * const)pos;
|
||||
uint8_t c = eeprom_read_byte(p);
|
||||
if (writing) *value = c;
|
||||
crc16(crc, &c, 1);
|
||||
pos++;
|
||||
value++;
|
||||
} while (--size);
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif // IIC_BL24CXX_EEPROM
|
||||
#endif // STM32F1
|
@@ -28,6 +28,10 @@
|
||||
|
||||
#include "../shared/eeprom_api.h"
|
||||
|
||||
// Better: "utility/stm32_eeprom.h", but only after updating stm32duino to 2.0.0
|
||||
// Use EEPROM.h for compatibility, for now.
|
||||
#include <EEPROM.h>
|
||||
|
||||
/**
|
||||
* The STM32 HAL supports chips that deal with "pages" and some with "sectors" and some that
|
||||
* even have multiple "banks" of flash.
|
||||
|
54
Marlin/src/HAL/STM32/eeprom_if_iic.cpp
Normal file
54
Marlin/src/HAL/STM32/eeprom_if_iic.cpp
Normal file
@@ -0,0 +1,54 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
/**
|
||||
* Platform-independent Arduino functions for I2C EEPROM.
|
||||
* Enable USE_SHARED_EEPROM if not supplied by the framework.
|
||||
*/
|
||||
|
||||
#ifdef STM32F1
|
||||
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(IIC_BL24CXX_EEPROM)
|
||||
|
||||
#include "../../libs/BL24CXX.h"
|
||||
#include "../shared/eeprom_if.h"
|
||||
|
||||
void eeprom_init() { BL24CXX::init(); }
|
||||
|
||||
// ------------------------
|
||||
// Public functions
|
||||
// ------------------------
|
||||
|
||||
void eeprom_write_byte(uint8_t *pos, uint8_t value) {
|
||||
const unsigned eeprom_address = (unsigned)pos;
|
||||
return BL24CXX::writeOneByte(eeprom_address, value);
|
||||
}
|
||||
|
||||
uint8_t eeprom_read_byte(uint8_t *pos) {
|
||||
const unsigned eeprom_address = (unsigned)pos;
|
||||
return BL24CXX::readOneByte(eeprom_address);
|
||||
}
|
||||
|
||||
#endif // IIC_BL24CXX_EEPROM
|
||||
#endif // STM32F1
|
@@ -46,4 +46,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -21,7 +21,7 @@
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#if defined(USBD_USE_CDC_MSC) && DISABLED(NO_SD_HOST_DRIVE)
|
||||
#if BOTH(SDSUPPORT, USBD_USE_CDC_MSC) && DISABLED(NO_SD_HOST_DRIVE)
|
||||
#define HAS_SD_HOST_DRIVE 1
|
||||
#endif
|
||||
|
||||
@@ -30,3 +30,6 @@
|
||||
#undef F_CPU
|
||||
#define F_CPU BOARD_F_CPU
|
||||
#endif
|
||||
|
||||
// The Sensitive Pins array is not optimizable
|
||||
#define RUNTIME_ONLY_ANALOG_TO_DIGITAL
|
||||
|
@@ -33,9 +33,9 @@ public:
|
||||
DiskIODriver* diskIODriver() {
|
||||
#if ENABLED(MULTI_VOLUME)
|
||||
#if SHARED_VOLUME_IS(SD_ONBOARD)
|
||||
return &card.media_sd_spi;
|
||||
return &card.media_driver_sdcard;
|
||||
#elif SHARED_VOLUME_IS(USB_FLASH_DRIVE)
|
||||
return &card.media_usbFlashDrive;
|
||||
return &card.media_driver_usbFlash;
|
||||
#endif
|
||||
#else
|
||||
return card.diskIODriver();
|
||||
|
@@ -125,12 +125,20 @@ void TFT_SPI::DataTransferBegin(uint16_t DataSize) {
|
||||
WRITE(TFT_CS_PIN, LOW);
|
||||
}
|
||||
|
||||
#ifdef TFT_DEFAULT_DRIVER
|
||||
#include "../../../lcd/tft_io/tft_ids.h"
|
||||
#endif
|
||||
|
||||
uint32_t TFT_SPI::GetID() {
|
||||
uint32_t id;
|
||||
id = ReadID(LCD_READ_ID);
|
||||
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF) {
|
||||
id = ReadID(LCD_READ_ID4);
|
||||
#ifdef TFT_DEFAULT_DRIVER
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
|
||||
id = TFT_DEFAULT_DRIVER;
|
||||
#endif
|
||||
}
|
||||
return id;
|
||||
}
|
||||
|
||||
|
@@ -56,7 +56,7 @@ enum XPTCoordinate : uint8_t {
|
||||
XPT2046_Z2 = 0x40 | XPT2046_CONTROL | XPT2046_DFR_MODE,
|
||||
};
|
||||
|
||||
#if !defined(XPT2046_Z1_THRESHOLD)
|
||||
#ifndef XPT2046_Z1_THRESHOLD
|
||||
#define XPT2046_Z1_THRESHOLD 10
|
||||
#endif
|
||||
|
||||
|
@@ -167,6 +167,15 @@ constexpr bool IsSerialClassAllowed(const HardwareSerial&) { return false; }
|
||||
#if AXIS_HAS_HW_SERIAL(Z4)
|
||||
CHECK_AXIS_SERIAL(Z4);
|
||||
#endif
|
||||
#if AXIS_HAS_HW_SERIAL(I)
|
||||
CHECK_AXIS_SERIAL(I);
|
||||
#endif
|
||||
#if AXIS_HAS_HW_SERIAL(J)
|
||||
CHECK_AXIS_SERIAL(J);
|
||||
#endif
|
||||
#if AXIS_HAS_HW_SERIAL(K)
|
||||
CHECK_AXIS_SERIAL(K);
|
||||
#endif
|
||||
#if AXIS_HAS_HW_SERIAL(E0)
|
||||
CHECK_AXIS_SERIAL(E0);
|
||||
#endif
|
||||
|
@@ -11,6 +11,7 @@ if __name__ == "__main__":
|
||||
"-fsigned-char",
|
||||
"-fno-move-loop-invariants",
|
||||
"-fno-strict-aliasing",
|
||||
"-fsingle-precision-constant",
|
||||
|
||||
"--specs=nano.specs",
|
||||
"--specs=nosys.specs",
|
||||
|
@@ -71,4 +71,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -90,12 +90,20 @@ void TFT_SPI::DataTransferBegin(uint16_t DataSize) {
|
||||
TFT_CS_L;
|
||||
}
|
||||
|
||||
#ifdef TFT_DEFAULT_DRIVER
|
||||
#include "../../../lcd/tft_io/tft_ids.h"
|
||||
#endif
|
||||
|
||||
uint32_t TFT_SPI::GetID() {
|
||||
uint32_t id;
|
||||
id = ReadID(LCD_READ_ID);
|
||||
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF) {
|
||||
id = ReadID(LCD_READ_ID4);
|
||||
#ifdef TFT_DEFAULT_DRIVER
|
||||
if ((id & 0xFFFF) == 0 || (id & 0xFFFF) == 0xFFFF)
|
||||
id = TFT_DEFAULT_DRIVER;
|
||||
#endif
|
||||
}
|
||||
return id;
|
||||
}
|
||||
|
||||
|
@@ -54,7 +54,7 @@ enum XPTCoordinate : uint8_t {
|
||||
XPT2046_Z2 = 0x40 | XPT2046_CONTROL | XPT2046_DFR_MODE,
|
||||
};
|
||||
|
||||
#if !defined(XPT2046_Z1_THRESHOLD)
|
||||
#ifndef XPT2046_Z1_THRESHOLD
|
||||
#define XPT2046_Z1_THRESHOLD 10
|
||||
#endif
|
||||
|
||||
|
@@ -64,4 +64,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -63,4 +63,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -63,4 +63,10 @@ void setup_endstop_interrupts() {
|
||||
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
|
||||
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
|
||||
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
|
||||
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
|
||||
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
|
||||
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
|
||||
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
|
||||
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
|
||||
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
|
||||
}
|
||||
|
@@ -61,11 +61,24 @@ static constexpr uint8_t eeprom_device_address = I2C_ADDRESS(EEPROM_DEVICE_ADDRE
|
||||
// Public functions
|
||||
// ------------------------
|
||||
|
||||
#define SMALL_EEPROM (MARLIN_EEPROM_SIZE <= 2048)
|
||||
|
||||
// Combine Address high bits into the device address on <=16Kbit (2K) and >512Kbit (64K) EEPROMs.
|
||||
// Note: MARLIN_EEPROM_SIZE is specified in bytes, whereas EEPROM model numbers refer to bits.
|
||||
// e.g., The "16" in BL24C16 indicates a 16Kbit (2KB) size.
|
||||
static uint8_t _eeprom_calc_device_address(uint8_t * const pos) {
|
||||
const unsigned eeprom_address = (unsigned)pos;
|
||||
return (SMALL_EEPROM || MARLIN_EEPROM_SIZE > 65536)
|
||||
? uint8_t(eeprom_device_address | ((eeprom_address >> (SMALL_EEPROM ? 8 : 16)) & 0x07))
|
||||
: eeprom_device_address;
|
||||
}
|
||||
|
||||
static void _eeprom_begin(uint8_t * const pos) {
|
||||
const unsigned eeprom_address = (unsigned)pos;
|
||||
Wire.beginTransmission(eeprom_device_address);
|
||||
Wire.write(int(eeprom_address >> 8)); // Address High
|
||||
Wire.write(int(eeprom_address & 0xFF)); // Address Low
|
||||
Wire.beginTransmission(_eeprom_calc_device_address(pos));
|
||||
if (!SMALL_EEPROM)
|
||||
Wire.write(uint8_t((eeprom_address >> 8) & 0xFF)); // Address High, if needed
|
||||
Wire.write(uint8_t(eeprom_address & 0xFF)); // Address Low
|
||||
}
|
||||
|
||||
void eeprom_write_byte(uint8_t *pos, uint8_t value) {
|
||||
@@ -81,7 +94,7 @@ void eeprom_write_byte(uint8_t *pos, uint8_t value) {
|
||||
uint8_t eeprom_read_byte(uint8_t *pos) {
|
||||
_eeprom_begin(pos);
|
||||
Wire.endTransmission();
|
||||
Wire.requestFrom(eeprom_device_address, (byte)1);
|
||||
Wire.requestFrom(_eeprom_calc_device_address(pos), (byte)1);
|
||||
return Wire.available() ? Wire.read() : 0xFF;
|
||||
}
|
||||
|
||||
|
@@ -282,8 +282,15 @@ bool wait_for_heatup = true;
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wnarrowing"
|
||||
|
||||
#ifdef RUNTIME_ONLY_ANALOG_TO_DIGITAL
|
||||
static const pin_t sensitive_pins[] PROGMEM = { SENSITIVE_PINS };
|
||||
#else
|
||||
template <pin_t ...D>
|
||||
constexpr pin_t OnlyPins<-2, D...>::table[sizeof...(D)];
|
||||
#define sensitive_pins OnlyPins<SENSITIVE_PINS>::table
|
||||
#endif
|
||||
|
||||
bool pin_is_protected(const pin_t pin) {
|
||||
static const pin_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
|
||||
LOOP_L_N(i, COUNT(sensitive_pins)) {
|
||||
pin_t sensitive_pin;
|
||||
memcpy_P(&sensitive_pin, &sensitive_pins[i], sizeof(pin_t));
|
||||
@@ -304,6 +311,9 @@ void enable_all_steppers() {
|
||||
ENABLE_AXIS_X();
|
||||
ENABLE_AXIS_Y();
|
||||
ENABLE_AXIS_Z();
|
||||
ENABLE_AXIS_I(); // Marlin 6-axis support by DerAndere (https://github.com/DerAndere1/Marlin/wiki)
|
||||
ENABLE_AXIS_J();
|
||||
ENABLE_AXIS_K();
|
||||
enable_e_steppers();
|
||||
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onSteppersEnabled());
|
||||
@@ -317,7 +327,7 @@ void disable_e_steppers() {
|
||||
void disable_e_stepper(const uint8_t e) {
|
||||
#define _CASE_DIS_E(N) case N: DISABLE_AXIS_E##N(); break;
|
||||
switch (e) {
|
||||
REPEAT(EXTRUDERS, _CASE_DIS_E)
|
||||
REPEAT(E_STEPPERS, _CASE_DIS_E)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -325,6 +335,9 @@ void disable_all_steppers() {
|
||||
DISABLE_AXIS_X();
|
||||
DISABLE_AXIS_Y();
|
||||
DISABLE_AXIS_Z();
|
||||
DISABLE_AXIS_I();
|
||||
DISABLE_AXIS_J();
|
||||
DISABLE_AXIS_K();
|
||||
disable_e_steppers();
|
||||
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onSteppersDisabled());
|
||||
@@ -408,19 +421,18 @@ void startOrResumeJob() {
|
||||
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
|
||||
* - Pulse FET_SAFETY_PIN if it exists
|
||||
*/
|
||||
inline void manage_inactivity(const bool ignore_stepper_queue=false) {
|
||||
inline void manage_inactivity(const bool no_stepper_sleep=false) {
|
||||
|
||||
queue.get_available_commands();
|
||||
|
||||
const millis_t ms = millis();
|
||||
|
||||
// Prevent steppers timing-out in the middle of M600
|
||||
// unless PAUSE_PARK_NO_STEPPER_TIMEOUT is disabled
|
||||
const bool parked_or_ignoring = ignore_stepper_queue
|
||||
// Prevent steppers timing-out
|
||||
const bool do_reset_timeout = no_stepper_sleep
|
||||
|| TERN0(PAUSE_PARK_NO_STEPPER_TIMEOUT, did_pause_print);
|
||||
|
||||
// Reset both the M18/M84 activity timeout and the M85 max 'kill' timeout
|
||||
if (parked_or_ignoring) gcode.reset_stepper_timeout(ms);
|
||||
if (do_reset_timeout) gcode.reset_stepper_timeout(ms);
|
||||
|
||||
if (gcode.stepper_max_timed_out(ms)) {
|
||||
SERIAL_ERROR_MSG(STR_KILL_INACTIVE_TIME, parser.command_ptr);
|
||||
@@ -436,7 +448,7 @@ inline void manage_inactivity(const bool ignore_stepper_queue=false) {
|
||||
// activity timeout and the M85 max 'kill' timeout
|
||||
if (planner.has_blocks_queued())
|
||||
gcode.reset_stepper_timeout(ms);
|
||||
else if (!parked_or_ignoring && gcode.stepper_inactive_timeout()) {
|
||||
else if (!do_reset_timeout && gcode.stepper_inactive_timeout()) {
|
||||
if (!already_shutdown_steppers) {
|
||||
already_shutdown_steppers = true; // L6470 SPI will consume 99% of free time without this
|
||||
|
||||
@@ -444,6 +456,9 @@ inline void manage_inactivity(const bool ignore_stepper_queue=false) {
|
||||
if (ENABLED(DISABLE_INACTIVE_X)) DISABLE_AXIS_X();
|
||||
if (ENABLED(DISABLE_INACTIVE_Y)) DISABLE_AXIS_Y();
|
||||
if (ENABLED(DISABLE_INACTIVE_Z)) DISABLE_AXIS_Z();
|
||||
if (ENABLED(DISABLE_INACTIVE_I)) DISABLE_AXIS_I();
|
||||
if (ENABLED(DISABLE_INACTIVE_J)) DISABLE_AXIS_J();
|
||||
if (ENABLED(DISABLE_INACTIVE_K)) DISABLE_AXIS_K();
|
||||
if (ENABLED(DISABLE_INACTIVE_E)) disable_e_steppers();
|
||||
|
||||
TERN_(AUTO_BED_LEVELING_UBL, ubl.steppers_were_disabled());
|
||||
@@ -716,14 +731,14 @@ inline void manage_inactivity(const bool ignore_stepper_queue=false) {
|
||||
* - Update the Průša MMU2
|
||||
* - Handle Joystick jogging
|
||||
*/
|
||||
void idle(TERN_(ADVANCED_PAUSE_FEATURE, bool no_stepper_sleep/*=false*/)) {
|
||||
void idle(bool no_stepper_sleep/*=false*/) {
|
||||
#if ENABLED(MARLIN_DEV_MODE)
|
||||
static uint16_t idle_depth = 0;
|
||||
if (++idle_depth > 5) SERIAL_ECHOLNPAIR("idle() call depth: ", idle_depth);
|
||||
#endif
|
||||
|
||||
// Core Marlin activities
|
||||
manage_inactivity(TERN_(ADVANCED_PAUSE_FEATURE, no_stepper_sleep));
|
||||
manage_inactivity(no_stepper_sleep);
|
||||
|
||||
// Manage Heaters (and Watchdog)
|
||||
thermalManager.manage_heater();
|
||||
@@ -935,6 +950,15 @@ inline void tmc_standby_setup() {
|
||||
#if PIN_EXISTS(Z4_STDBY)
|
||||
SET_INPUT_PULLDOWN(Z4_STDBY_PIN);
|
||||
#endif
|
||||
#if PIN_EXISTS(I_STDBY)
|
||||
SET_INPUT_PULLDOWN(I_STDBY_PIN);
|
||||
#endif
|
||||
#if PIN_EXISTS(J_STDBY)
|
||||
SET_INPUT_PULLDOWN(J_STDBY_PIN);
|
||||
#endif
|
||||
#if PIN_EXISTS(K_STDBY)
|
||||
SET_INPUT_PULLDOWN(K_STDBY_PIN);
|
||||
#endif
|
||||
#if PIN_EXISTS(E0_STDBY)
|
||||
SET_INPUT_PULLDOWN(E0_STDBY_PIN);
|
||||
#endif
|
||||
@@ -1101,6 +1125,7 @@ void setup() {
|
||||
#endif
|
||||
|
||||
#if HAS_FREEZE_PIN
|
||||
SETUP_LOG("FREEZE_PIN");
|
||||
SET_INPUT_PULLUP(FREEZE_PIN);
|
||||
#endif
|
||||
|
||||
@@ -1109,11 +1134,19 @@ void setup() {
|
||||
OUT_WRITE(SUICIDE_PIN, !SUICIDE_PIN_INVERTING);
|
||||
#endif
|
||||
|
||||
#ifdef JTAGSWD_RESET
|
||||
SETUP_LOG("JTAGSWD_RESET");
|
||||
JTAGSWD_RESET();
|
||||
#endif
|
||||
|
||||
#if EITHER(DISABLE_DEBUG, DISABLE_JTAG)
|
||||
delay(10);
|
||||
// Disable any hardware debug to free up pins for IO
|
||||
#if ENABLED(DISABLE_DEBUG) && defined(JTAGSWD_DISABLE)
|
||||
SETUP_LOG("JTAGSWD_DISABLE");
|
||||
JTAGSWD_DISABLE();
|
||||
#elif defined(JTAG_DISABLE)
|
||||
SETUP_LOG("JTAG_DISABLE");
|
||||
JTAG_DISABLE();
|
||||
#else
|
||||
#error "DISABLE_(DEBUG|JTAG) is not supported for the selected MCU/Board."
|
||||
@@ -1132,10 +1165,10 @@ void setup() {
|
||||
SETUP_RUN(HAL_init());
|
||||
|
||||
// Init and disable SPI thermocouples; this is still needed
|
||||
#if TEMP_SENSOR_0_IS_MAX_TC
|
||||
#if TEMP_SENSOR_0_IS_MAX_TC || (TEMP_SENSOR_REDUNDANT_IS_MAX_TC && TEMP_SENSOR_REDUNDANT_SOURCE == 0)
|
||||
OUT_WRITE(MAX6675_SS_PIN, HIGH); // Disable
|
||||
#endif
|
||||
#if TEMP_SENSOR_1_IS_MAX_TC
|
||||
#if TEMP_SENSOR_1_IS_MAX_TC || (TEMP_SENSOR_REDUNDANT_IS_MAX_TC && TEMP_SENSOR_REDUNDANT_SOURCE == 1)
|
||||
OUT_WRITE(MAX6675_SS2_PIN, HIGH); // Disable
|
||||
#endif
|
||||
|
||||
@@ -1423,10 +1456,7 @@ void setup() {
|
||||
#endif
|
||||
|
||||
#if HAS_PRUSA_MMU1
|
||||
SETUP_LOG("Prusa MMU1");
|
||||
SET_OUTPUT(E_MUX0_PIN);
|
||||
SET_OUTPUT(E_MUX1_PIN);
|
||||
SET_OUTPUT(E_MUX2_PIN);
|
||||
SETUP_RUN(mmu_init());
|
||||
#endif
|
||||
|
||||
#if HAS_FANMUX
|
||||
|
@@ -34,8 +34,8 @@
|
||||
void stop();
|
||||
|
||||
// Pass true to keep steppers from timing out
|
||||
void idle(TERN_(ADVANCED_PAUSE_FEATURE, bool no_stepper_sleep=false));
|
||||
inline void idle_no_sleep() { idle(TERN_(ADVANCED_PAUSE_FEATURE, true)); }
|
||||
void idle(bool no_stepper_sleep=false);
|
||||
inline void idle_no_sleep() { idle(true); }
|
||||
|
||||
#if ENABLED(G38_PROBE_TARGET)
|
||||
extern uint8_t G38_move; // Flag to tell the ISR that G38 is in progress, and the type
|
||||
|
@@ -321,7 +321,7 @@
|
||||
#define BOARD_BTT_SKR_MINI_V1_1 4023 // BigTreeTech SKR Mini v1.1 (STM32F103RC)
|
||||
#define BOARD_BTT_SKR_MINI_E3_V1_0 4024 // BigTreeTech SKR Mini E3 (STM32F103RC)
|
||||
#define BOARD_BTT_SKR_MINI_E3_V1_2 4025 // BigTreeTech SKR Mini E3 V1.2 (STM32F103RC)
|
||||
#define BOARD_BTT_SKR_MINI_E3_V2_0 4026 // BigTreeTech SKR Mini E3 V2.0 (STM32F103RC)
|
||||
#define BOARD_BTT_SKR_MINI_E3_V2_0 4026 // BigTreeTech SKR Mini E3 V2.0 (STM32F103RC / STM32F103RE)
|
||||
#define BOARD_BTT_SKR_MINI_MZ_V1_0 4027 // BigTreeTech SKR Mini MZ V1.0 (STM32F103RC)
|
||||
#define BOARD_BTT_SKR_E3_DIP 4028 // BigTreeTech SKR E3 DIP V1.0 (STM32F103RC / STM32F103RE)
|
||||
#define BOARD_BTT_SKR_CR6 4029 // BigTreeTech SKR CR6 v1.0 (STM32F103RE)
|
||||
@@ -372,20 +372,21 @@
|
||||
#define BOARD_BTT_SKR_V2_0_REV_B 4212 // BigTreeTech SKR v2.0 Rev B (STM32F407VGT6)
|
||||
#define BOARD_BTT_GTR_V1_0 4213 // BigTreeTech GTR v1.0 (STM32F407IGT)
|
||||
#define BOARD_BTT_OCTOPUS_V1_0 4214 // BigTreeTech Octopus v1.0 (STM32F446ZET6)
|
||||
#define BOARD_LERDGE_K 4215 // Lerdge K (STM32F407ZG)
|
||||
#define BOARD_LERDGE_S 4216 // Lerdge S (STM32F407VE)
|
||||
#define BOARD_LERDGE_X 4217 // Lerdge X (STM32F407VE)
|
||||
#define BOARD_VAKE403D 4218 // VAkE 403D (STM32F446VET6)
|
||||
#define BOARD_FYSETC_S6 4219 // FYSETC S6 (STM32F446VET6)
|
||||
#define BOARD_FYSETC_S6_V2_0 4220 // FYSETC S6 v2.0 (STM32F446VET6)
|
||||
#define BOARD_FYSETC_SPIDER 4221 // FYSETC Spider (STM32F446VET6)
|
||||
#define BOARD_FLYF407ZG 4222 // FLYF407ZG (STM32F407ZG)
|
||||
#define BOARD_MKS_ROBIN2 4223 // MKS_ROBIN2 (STM32F407ZE)
|
||||
#define BOARD_MKS_ROBIN_PRO_V2 4224 // MKS Robin Pro V2 (STM32F407VE)
|
||||
#define BOARD_MKS_ROBIN_NANO_V3 4225 // MKS Robin Nano V3 (STM32F407VG)
|
||||
#define BOARD_ANET_ET4 4226 // ANET ET4 V1.x (STM32F407VGT6)
|
||||
#define BOARD_ANET_ET4P 4227 // ANET ET4P V1.x (STM32F407VGT6)
|
||||
#define BOARD_FYSETC_CHEETAH_V20 4228 // FYSETC Cheetah V2.0
|
||||
#define BOARD_BTT_OCTOPUS_V1_1 4215 // BigTreeTech Octopus v1.1 (STM32F446ZET6)
|
||||
#define BOARD_LERDGE_K 4216 // Lerdge K (STM32F407ZG)
|
||||
#define BOARD_LERDGE_S 4217 // Lerdge S (STM32F407VE)
|
||||
#define BOARD_LERDGE_X 4218 // Lerdge X (STM32F407VE)
|
||||
#define BOARD_VAKE403D 4219 // VAkE 403D (STM32F446VET6)
|
||||
#define BOARD_FYSETC_S6 4220 // FYSETC S6 (STM32F446VET6)
|
||||
#define BOARD_FYSETC_S6_V2_0 4221 // FYSETC S6 v2.0 (STM32F446VET6)
|
||||
#define BOARD_FYSETC_SPIDER 4222 // FYSETC Spider (STM32F446VET6)
|
||||
#define BOARD_FLYF407ZG 4223 // FLYF407ZG (STM32F407ZG)
|
||||
#define BOARD_MKS_ROBIN2 4224 // MKS_ROBIN2 (STM32F407ZE)
|
||||
#define BOARD_MKS_ROBIN_PRO_V2 4225 // MKS Robin Pro V2 (STM32F407VE)
|
||||
#define BOARD_MKS_ROBIN_NANO_V3 4226 // MKS Robin Nano V3 (STM32F407VG)
|
||||
#define BOARD_ANET_ET4 4227 // ANET ET4 V1.x (STM32F407VGT6)
|
||||
#define BOARD_ANET_ET4P 4228 // ANET ET4P V1.x (STM32F407VGT6)
|
||||
#define BOARD_FYSETC_CHEETAH_V20 4229 // FYSETC Cheetah V2.0
|
||||
|
||||
|
||||
//
|
||||
|
@@ -60,6 +60,9 @@
|
||||
#define AXIS_DRIVER_TYPE_X(T) _AXIS_DRIVER_TYPE(X,T)
|
||||
#define AXIS_DRIVER_TYPE_Y(T) _AXIS_DRIVER_TYPE(Y,T)
|
||||
#define AXIS_DRIVER_TYPE_Z(T) _AXIS_DRIVER_TYPE(Z,T)
|
||||
#define AXIS_DRIVER_TYPE_I(T) _AXIS_DRIVER_TYPE(I,T)
|
||||
#define AXIS_DRIVER_TYPE_J(T) _AXIS_DRIVER_TYPE(J,T)
|
||||
#define AXIS_DRIVER_TYPE_K(T) _AXIS_DRIVER_TYPE(K,T)
|
||||
|
||||
#define AXIS_DRIVER_TYPE_X2(T) (EITHER(X_DUAL_STEPPER_DRIVERS, DUAL_X_CARRIAGE) && _AXIS_DRIVER_TYPE(X2,T))
|
||||
#define AXIS_DRIVER_TYPE_Y2(T) (ENABLED(Y_DUAL_STEPPER_DRIVERS) && _AXIS_DRIVER_TYPE(Y2,T))
|
||||
@@ -83,6 +86,7 @@
|
||||
#define HAS_E_DRIVER(T) (0 RREPEAT2(E_STEPPERS, _OR_ADTE, T))
|
||||
|
||||
#define HAS_DRIVER(T) ( AXIS_DRIVER_TYPE_X(T) || AXIS_DRIVER_TYPE_Y(T) || AXIS_DRIVER_TYPE_Z(T) \
|
||||
|| AXIS_DRIVER_TYPE_I(T) || AXIS_DRIVER_TYPE_J(T) || AXIS_DRIVER_TYPE_K(T) \
|
||||
|| AXIS_DRIVER_TYPE_X2(T) || AXIS_DRIVER_TYPE_Y2(T) || AXIS_DRIVER_TYPE_Z2(T) \
|
||||
|| AXIS_DRIVER_TYPE_Z3(T) || AXIS_DRIVER_TYPE_Z4(T) || HAS_E_DRIVER(T) )
|
||||
|
||||
@@ -153,9 +157,11 @@
|
||||
#define _OR_EAH(N,T) || AXIS_HAS_##T(E##N)
|
||||
#define E_AXIS_HAS(T) (0 _OR_EAH(0,T) _OR_EAH(1,T) _OR_EAH(2,T) _OR_EAH(3,T) _OR_EAH(4,T) _OR_EAH(5,T) _OR_EAH(6,T) _OR_EAH(7,T))
|
||||
|
||||
#define ANY_AXIS_HAS(T) ( AXIS_HAS_##T(X) || AXIS_HAS_##T(Y) || AXIS_HAS_##T(Z) \
|
||||
|| AXIS_HAS_##T(X2) || AXIS_HAS_##T(Y2) || AXIS_HAS_##T(Z2) \
|
||||
|| AXIS_HAS_##T(Z3) || AXIS_HAS_##T(Z4) || E_AXIS_HAS(T) )
|
||||
#define ANY_AXIS_HAS(T) ( AXIS_HAS_##T(X) || AXIS_HAS_##T(X2) \
|
||||
|| AXIS_HAS_##T(Y) || AXIS_HAS_##T(Y2) \
|
||||
|| AXIS_HAS_##T(Z) || AXIS_HAS_##T(Z2) || AXIS_HAS_##T(Z3) || AXIS_HAS_##T(Z4) \
|
||||
|| AXIS_HAS_##T(I) || AXIS_HAS_##T(J) || AXIS_HAS_##T(K) \
|
||||
|| E_AXIS_HAS(T) )
|
||||
|
||||
#if ANY_AXIS_HAS(STEALTHCHOP)
|
||||
#define HAS_STEALTHCHOP 1
|
||||
|
@@ -266,18 +266,25 @@
|
||||
#define STR_X_MAX "x_max"
|
||||
#define STR_X2_MIN "x2_min"
|
||||
#define STR_X2_MAX "x2_max"
|
||||
#define STR_Y_MIN "y_min"
|
||||
#define STR_Y_MAX "y_max"
|
||||
#define STR_Y2_MIN "y2_min"
|
||||
#define STR_Y2_MAX "y2_max"
|
||||
#define STR_Z_MIN "z_min"
|
||||
#define STR_Z_MAX "z_max"
|
||||
#define STR_Z2_MIN "z2_min"
|
||||
#define STR_Z2_MAX "z2_max"
|
||||
#define STR_Z3_MIN "z3_min"
|
||||
#define STR_Z3_MAX "z3_max"
|
||||
#define STR_Z4_MIN "z4_min"
|
||||
#define STR_Z4_MAX "z4_max"
|
||||
|
||||
#if HAS_Y_AXIS
|
||||
#define STR_Y_MIN "y_min"
|
||||
#define STR_Y_MAX "y_max"
|
||||
#define STR_Y2_MIN "y2_min"
|
||||
#define STR_Y2_MAX "y2_max"
|
||||
#endif
|
||||
|
||||
#if HAS_Z_AXIS
|
||||
#define STR_Z_MIN "z_min"
|
||||
#define STR_Z_MAX "z_max"
|
||||
#define STR_Z2_MIN "z2_min"
|
||||
#define STR_Z2_MAX "z2_max"
|
||||
#define STR_Z3_MIN "z3_min"
|
||||
#define STR_Z3_MAX "z3_max"
|
||||
#define STR_Z4_MIN "z4_min"
|
||||
#define STR_Z4_MAX "z4_max"
|
||||
#endif
|
||||
|
||||
#define STR_Z_PROBE "z_probe"
|
||||
#define STR_PROBE_EN "probe_en"
|
||||
#define STR_FILAMENT_RUNOUT_SENSOR "filament"
|
||||
@@ -286,6 +293,9 @@
|
||||
#define STR_X "X"
|
||||
#define STR_Y "Y"
|
||||
#define STR_Z "Z"
|
||||
#define STR_I AXIS4_STR
|
||||
#define STR_J AXIS5_STR
|
||||
#define STR_K AXIS6_STR
|
||||
#define STR_E "E"
|
||||
#if IS_KINEMATIC
|
||||
#define STR_A "A"
|
||||
@@ -305,8 +315,114 @@
|
||||
#define LCD_STR_A STR_A
|
||||
#define LCD_STR_B STR_B
|
||||
#define LCD_STR_C STR_C
|
||||
#define LCD_STR_I STR_I
|
||||
#define LCD_STR_J STR_J
|
||||
#define LCD_STR_K STR_K
|
||||
#define LCD_STR_E STR_E
|
||||
|
||||
// Extra Axis and Endstop Names
|
||||
#if LINEAR_AXES >= 4
|
||||
#if AXIS4_NAME == 'A'
|
||||
#define AXIS4_STR "A"
|
||||
#define STR_I_MIN "a_min"
|
||||
#define STR_I_MAX "a_max"
|
||||
#elif AXIS4_NAME == 'B'
|
||||
#define AXIS4_STR "B"
|
||||
#define STR_I_MIN "b_min"
|
||||
#define STR_I_MAX "b_max"
|
||||
#elif AXIS4_NAME == 'C'
|
||||
#define AXIS4_STR "C"
|
||||
#define STR_I_MIN "c_min"
|
||||
#define STR_I_MAX "c_max"
|
||||
#elif AXIS4_NAME == 'U'
|
||||
#define AXIS4_STR "U"
|
||||
#define STR_I_MIN "u_min"
|
||||
#define STR_I_MAX "u_max"
|
||||
#elif AXIS4_NAME == 'V'
|
||||
#define AXIS4_STR "V"
|
||||
#define STR_I_MIN "v_min"
|
||||
#define STR_I_MAX "v_max"
|
||||
#elif AXIS4_NAME == 'W'
|
||||
#define AXIS4_STR "W"
|
||||
#define STR_I_MIN "w_min"
|
||||
#define STR_I_MAX "w_max"
|
||||
#else
|
||||
#define AXIS4_STR "A"
|
||||
#define STR_I_MIN "a_min"
|
||||
#define STR_I_MAX "a_max"
|
||||
#endif
|
||||
#else
|
||||
#define AXIS4_STR ""
|
||||
#endif
|
||||
|
||||
#if LINEAR_AXES >= 5
|
||||
#if AXIS5_NAME == 'A'
|
||||
#define AXIS5_STR "A"
|
||||
#define STR_J_MIN "a_min"
|
||||
#define STR_J_MAX "a_max"
|
||||
#elif AXIS5_NAME == 'B'
|
||||
#define AXIS5_STR "B"
|
||||
#define STR_J_MIN "b_min"
|
||||
#define STR_J_MAX "b_max"
|
||||
#elif AXIS5_NAME == 'C'
|
||||
#define AXIS5_STR "C"
|
||||
#define STR_J_MIN "c_min"
|
||||
#define STR_J_MAX "c_max"
|
||||
#elif AXIS5_NAME == 'U'
|
||||
#define AXIS5_STR "U"
|
||||
#define STR_J_MIN "u_min"
|
||||
#define STR_J_MAX "u_max"
|
||||
#elif AXIS5_NAME == 'V'
|
||||
#define AXIS5_STR "V"
|
||||
#define STR_J_MIN "v_min"
|
||||
#define STR_J_MAX "v_max"
|
||||
#elif AXIS5_NAME == 'W'
|
||||
#define AXIS5_STR "W"
|
||||
#define STR_J_MIN "w_min"
|
||||
#define STR_J_MAX "w_max"
|
||||
#else
|
||||
#define AXIS5_STR "B"
|
||||
#define STR_J_MIN "b_min"
|
||||
#define STR_J_MAX "b_max"
|
||||
#endif
|
||||
#else
|
||||
#define AXIS5_STR ""
|
||||
#endif
|
||||
|
||||
#if LINEAR_AXES >= 6
|
||||
#if AXIS6_NAME == 'A'
|
||||
#define AXIS6_STR "A"
|
||||
#define STR_K_MIN "a_min"
|
||||
#define STR_K_MAX "a_max"
|
||||
#elif AXIS6_NAME == 'B'
|
||||
#define AXIS6_STR "B"
|
||||
#define STR_K_MIN "b_min"
|
||||
#define STR_K_MAX "b_max"
|
||||
#elif AXIS6_NAME == 'C'
|
||||
#define AXIS6_STR "C"
|
||||
#define STR_K_MIN "c_min"
|
||||
#define STR_K_MAX "c_max"
|
||||
#elif AXIS6_NAME == 'U'
|
||||
#define AXIS6_STR "U"
|
||||
#define STR_K_MIN "u_min"
|
||||
#define STR_K_MAX "u_max"
|
||||
#elif AXIS6_NAME == 'V'
|
||||
#define AXIS6_STR "V"
|
||||
#define STR_K_MIN "v_min"
|
||||
#define STR_K_MAX "v_max"
|
||||
#elif AXIS6_NAME == 'W'
|
||||
#define AXIS6_STR "W"
|
||||
#define STR_K_MIN "w_min"
|
||||
#define STR_K_MAX "w_max"
|
||||
#else
|
||||
#define AXIS6_STR "C"
|
||||
#define STR_K_MIN "c_min"
|
||||
#define STR_K_MAX "c_max"
|
||||
#endif
|
||||
#else
|
||||
#define AXIS6_STR ""
|
||||
#endif
|
||||
|
||||
#if EITHER(HAS_MARLINUI_HD44780, IS_TFTGLCD_PANEL)
|
||||
|
||||
// Custom characters defined in the first 8 characters of the LCD
|
||||
|
@@ -36,12 +36,21 @@
|
||||
#define _XMIN_ 100
|
||||
#define _YMIN_ 200
|
||||
#define _ZMIN_ 300
|
||||
#define _IMIN_ 500
|
||||
#define _JMIN_ 600
|
||||
#define _KMIN_ 700
|
||||
#define _XMAX_ 101
|
||||
#define _YMAX_ 201
|
||||
#define _ZMAX_ 301
|
||||
#define _IMAX_ 501
|
||||
#define _JMAX_ 601
|
||||
#define _KMAX_ 701
|
||||
#define _XDIAG_ 102
|
||||
#define _YDIAG_ 202
|
||||
#define _ZDIAG_ 302
|
||||
#define _IDIAG_ 502
|
||||
#define _JDIAG_ 602
|
||||
#define _KDIAG_ 702
|
||||
#define _E0DIAG_ 400
|
||||
#define _E1DIAG_ 401
|
||||
#define _E2DIAG_ 402
|
||||
|
@@ -36,6 +36,10 @@ PGMSTR(X_LBL, "X:"); PGMSTR(Y_LBL, "Y:"); PGMSTR(Z_LBL, "Z:"); PGMST
|
||||
PGMSTR(SP_A_STR, " A"); PGMSTR(SP_B_STR, " B"); PGMSTR(SP_C_STR, " C");
|
||||
PGMSTR(SP_X_STR, " X"); PGMSTR(SP_Y_STR, " Y"); PGMSTR(SP_Z_STR, " Z"); PGMSTR(SP_E_STR, " E");
|
||||
PGMSTR(SP_X_LBL, " X:"); PGMSTR(SP_Y_LBL, " Y:"); PGMSTR(SP_Z_LBL, " Z:"); PGMSTR(SP_E_LBL, " E:");
|
||||
PGMSTR(I_STR, AXIS4_STR); PGMSTR(J_STR, AXIS5_STR); PGMSTR(K_STR, AXIS6_STR);
|
||||
PGMSTR(I_LBL, AXIS4_STR ":"); PGMSTR(J_LBL, AXIS5_STR ":"); PGMSTR(K_LBL, AXIS6_STR ":");
|
||||
PGMSTR(SP_I_STR, " " AXIS4_STR); PGMSTR(SP_J_STR, " " AXIS5_STR); PGMSTR(SP_K_STR, " " AXIS6_STR);
|
||||
PGMSTR(SP_I_LBL, " " AXIS4_STR ":"); PGMSTR(SP_J_LBL, " " AXIS5_STR ":"); PGMSTR(SP_K_LBL, " " AXIS6_STR ":");
|
||||
|
||||
// Hook Meatpack if it's enabled on the first leaf
|
||||
#if ENABLED(MEATPACK_ON_SERIAL_PORT_1)
|
||||
@@ -101,8 +105,10 @@ void print_bin(uint16_t val) {
|
||||
}
|
||||
}
|
||||
|
||||
void print_pos(const_float_t x, const_float_t y, const_float_t z, PGM_P const prefix/*=nullptr*/, PGM_P const suffix/*=nullptr*/) {
|
||||
void print_pos(LINEAR_AXIS_ARGS(const_float_t), PGM_P const prefix/*=nullptr*/, PGM_P const suffix/*=nullptr*/) {
|
||||
if (prefix) serialprintPGM(prefix);
|
||||
SERIAL_ECHOPAIR_P(SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z);
|
||||
SERIAL_ECHOPAIR_P(
|
||||
LIST_N(DOUBLE(LINEAR_AXES), SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z, SP_I_STR, i, SP_J_STR, j, SP_K_STR, k)
|
||||
);
|
||||
if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
|
||||
}
|
||||
|
@@ -29,12 +29,16 @@
|
||||
#endif
|
||||
|
||||
// Commonly-used strings in serial output
|
||||
extern const char NUL_STR[], SP_P_STR[], SP_T_STR[],
|
||||
extern const char NUL_STR[],
|
||||
SP_X_STR[], SP_Y_STR[], SP_Z_STR[],
|
||||
SP_A_STR[], SP_B_STR[], SP_C_STR[], SP_E_STR[],
|
||||
SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[],
|
||||
SP_I_STR[], SP_J_STR[], SP_K_STR[],
|
||||
SP_I_LBL[], SP_J_LBL[], SP_K_LBL[],
|
||||
SP_P_STR[], SP_T_STR[],
|
||||
X_STR[], Y_STR[], Z_STR[], E_STR[],
|
||||
X_LBL[], Y_LBL[], Z_LBL[], E_LBL[],
|
||||
SP_A_STR[], SP_B_STR[], SP_C_STR[],
|
||||
SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[],
|
||||
SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[];
|
||||
I_LBL[], J_LBL[], K_LBL[];
|
||||
|
||||
//
|
||||
// Debugging flags for use by M111
|
||||
@@ -310,10 +314,10 @@ void serialprint_truefalse(const bool tf);
|
||||
void serial_spaces(uint8_t count);
|
||||
|
||||
void print_bin(const uint16_t val);
|
||||
void print_pos(const_float_t x, const_float_t y, const_float_t z, PGM_P const prefix=nullptr, PGM_P const suffix=nullptr);
|
||||
void print_pos(LINEAR_AXIS_ARGS(const_float_t), PGM_P const prefix=nullptr, PGM_P const suffix=nullptr);
|
||||
|
||||
inline void print_pos(const xyz_pos_t &xyz, PGM_P const prefix=nullptr, PGM_P const suffix=nullptr) {
|
||||
print_pos(xyz.x, xyz.y, xyz.z, prefix, suffix);
|
||||
print_pos(LINEAR_AXIS_ELEM(xyz), prefix, suffix);
|
||||
}
|
||||
|
||||
#define SERIAL_POS(SUFFIX,VAR) do { print_pos(VAR, PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n")); }while(0)
|
||||
|
@@ -39,6 +39,32 @@ struct IF { typedef R type; };
|
||||
template <class L, class R>
|
||||
struct IF<true, L, R> { typedef L type; };
|
||||
|
||||
#define LINEAR_AXIS_GANG(V...) GANG_N(LINEAR_AXES, V)
|
||||
#define LINEAR_AXIS_CODE(V...) CODE_N(LINEAR_AXES, V)
|
||||
#define LINEAR_AXIS_LIST(V...) LIST_N(LINEAR_AXES, V)
|
||||
#define LINEAR_AXIS_ARRAY(V...) { LINEAR_AXIS_LIST(V) }
|
||||
#define LINEAR_AXIS_ARGS(T...) LINEAR_AXIS_LIST(T x, T y, T z, T i, T j, T k)
|
||||
#define LINEAR_AXIS_ELEM(O) LINEAR_AXIS_LIST(O.x, O.y, O.z, O.i, O.j, O.k)
|
||||
#define LINEAR_AXIS_DEFS(T,V) LINEAR_AXIS_LIST(T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
|
||||
|
||||
#define LOGICAL_AXIS_GANG(E,V...) LINEAR_AXIS_GANG(V) GANG_ITEM_E(E)
|
||||
#define LOGICAL_AXIS_CODE(E,V...) LINEAR_AXIS_CODE(V) CODE_ITEM_E(E)
|
||||
#define LOGICAL_AXIS_LIST(E,V...) LINEAR_AXIS_LIST(V) LIST_ITEM_E(E)
|
||||
#define LOGICAL_AXIS_ARRAY(E,V...) { LOGICAL_AXIS_LIST(E,V) }
|
||||
#define LOGICAL_AXIS_ARGS(T...) LOGICAL_AXIS_LIST(T e, T x, T y, T z, T i, T j, T k)
|
||||
#define LOGICAL_AXIS_ELEM(O) LOGICAL_AXIS_LIST(O.e, O.x, O.y, O.z, O.i, O.j, O.k)
|
||||
#define LOGICAL_AXIS_DECL(T,V) LOGICAL_AXIS_LIST(T e=V, T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
|
||||
|
||||
#if HAS_EXTRUDERS
|
||||
#define LIST_ITEM_E(N) , N
|
||||
#define CODE_ITEM_E(N) ; N
|
||||
#define GANG_ITEM_E(N) N
|
||||
#else
|
||||
#define LIST_ITEM_E(N)
|
||||
#define CODE_ITEM_E(N)
|
||||
#define GANG_ITEM_E(N)
|
||||
#endif
|
||||
|
||||
//
|
||||
// Enumerated axis indices
|
||||
//
|
||||
@@ -47,16 +73,43 @@ struct IF<true, L, R> { typedef L type; };
|
||||
// - X_HEAD, Y_HEAD, and Z_HEAD should be used for Steppers on Core kinematics
|
||||
//
|
||||
enum AxisEnum : uint8_t {
|
||||
X_AXIS = 0, A_AXIS = X_AXIS,
|
||||
Y_AXIS = 1, B_AXIS = Y_AXIS,
|
||||
Z_AXIS = 2, C_AXIS = Z_AXIS,
|
||||
E_AXIS,
|
||||
X_HEAD, Y_HEAD, Z_HEAD,
|
||||
E0_AXIS = E_AXIS,
|
||||
E1_AXIS, E2_AXIS, E3_AXIS, E4_AXIS, E5_AXIS, E6_AXIS, E7_AXIS,
|
||||
ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF
|
||||
|
||||
// Linear axes may be controlled directly or indirectly
|
||||
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS)
|
||||
|
||||
// Extruder axes may be considered distinctly
|
||||
#define _EN_ITEM(N) , E##N##_AXIS
|
||||
REPEAT(EXTRUDERS, _EN_ITEM)
|
||||
#undef _EN_ITEM
|
||||
|
||||
// Core also keeps toolhead directions
|
||||
#if IS_CORE
|
||||
, X_HEAD, Y_HEAD, Z_HEAD
|
||||
#endif
|
||||
|
||||
// Distinct axes, including all E and Core
|
||||
, NUM_AXIS_ENUMS
|
||||
|
||||
// Most of the time we refer only to the single E_AXIS
|
||||
#if HAS_EXTRUDERS
|
||||
, E_AXIS = E0_AXIS
|
||||
#endif
|
||||
|
||||
// A, B, and C are for DELTA, SCARA, etc.
|
||||
, A_AXIS = X_AXIS
|
||||
#if LINEAR_AXES >= 2
|
||||
, B_AXIS = Y_AXIS
|
||||
#endif
|
||||
#if LINEAR_AXES >= 3
|
||||
, C_AXIS = Z_AXIS
|
||||
#endif
|
||||
|
||||
// To refer to all or none
|
||||
, ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF
|
||||
};
|
||||
|
||||
typedef IF<(NUM_AXIS_ENUMS > 8), uint16_t, uint8_t>::type axis_bits_t;
|
||||
|
||||
//
|
||||
// Loop over axes
|
||||
//
|
||||
@@ -185,7 +238,7 @@ void toNative(xyz_pos_t &raw);
|
||||
void toNative(xyze_pos_t &raw);
|
||||
|
||||
//
|
||||
// XY coordinates, counters, etc.
|
||||
// Paired XY coordinates, counters, flags, etc.
|
||||
//
|
||||
template<typename T>
|
||||
struct XYval {
|
||||
@@ -194,18 +247,34 @@ struct XYval {
|
||||
struct { T a, b; };
|
||||
T pos[2];
|
||||
};
|
||||
FI void set(const T px) { x = px; }
|
||||
FI void set(const T px, const T py) { x = px; y = py; }
|
||||
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
|
||||
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; }
|
||||
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; }
|
||||
#if DISTINCT_AXES > LOGICAL_AXES
|
||||
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; }
|
||||
#endif
|
||||
|
||||
// Set all to 0
|
||||
FI void reset() { x = y = 0; }
|
||||
|
||||
// Setters taking struct types and arrays
|
||||
FI void set(const T px) { x = px; }
|
||||
#if HAS_Y_AXIS
|
||||
FI void set(const T px, const T py) { x = px; y = py; }
|
||||
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
|
||||
#endif
|
||||
#if LINEAR_AXES > XY
|
||||
FI void set(const T (&arr)[LINEAR_AXES]) { x = arr[0]; y = arr[1]; }
|
||||
#endif
|
||||
#if LOGICAL_AXES > LINEAR_AXES
|
||||
FI void set(const T (&arr)[LOGICAL_AXES]) { x = arr[0]; y = arr[1]; }
|
||||
#if DISTINCT_AXES > LOGICAL_AXES
|
||||
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; }
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Length reduced to one dimension
|
||||
FI T magnitude() const { return (T)sqrtf(x*x + y*y); }
|
||||
// Pointer to the data as a simple array
|
||||
FI operator T* () { return pos; }
|
||||
// If any element is true then it's true
|
||||
FI operator bool() { return x || y; }
|
||||
|
||||
// Explicit copy and copies with conversion
|
||||
FI XYval<T> copy() const { return *this; }
|
||||
FI XYval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; }
|
||||
FI XYval<int16_t> asInt() { return { int16_t(x), int16_t(y) }; }
|
||||
@@ -217,17 +286,27 @@ struct XYval {
|
||||
FI XYval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y) }; }
|
||||
FI XYval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y) }; }
|
||||
FI XYval<float> reciprocal() const { return { _RECIP(x), _RECIP(y) }; }
|
||||
|
||||
// Marlin workspace shifting is done with G92 and M206
|
||||
FI XYval<float> asLogical() const { XYval<float> o = asFloat(); toLogical(o); return o; }
|
||||
FI XYval<float> asNative() const { XYval<float> o = asFloat(); toNative(o); return o; }
|
||||
|
||||
// Cast to a type with more fields by making a new object
|
||||
FI operator XYZval<T>() { return { x, y }; }
|
||||
FI operator XYZval<T>() const { return { x, y }; }
|
||||
FI operator XYZEval<T>() { return { x, y }; }
|
||||
FI operator XYZEval<T>() const { return { x, y }; }
|
||||
FI T& operator[](const int i) { return pos[i]; }
|
||||
FI const T& operator[](const int i) const { return pos[i]; }
|
||||
|
||||
// Accessor via an AxisEnum (or any integer) [index]
|
||||
FI T& operator[](const int n) { return pos[n]; }
|
||||
FI const T& operator[](const int n) const { return pos[n]; }
|
||||
|
||||
// Assignment operator overrides do the expected thing
|
||||
FI XYval<T>& operator= (const T v) { set(v, v ); return *this; }
|
||||
FI XYval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y); return *this; }
|
||||
FI XYval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y); return *this; }
|
||||
|
||||
// Override other operators to get intuitive behaviors
|
||||
FI XYval<T> operator+ (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYval<T> operator+ (const XYval<T> &rs) { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYval<T> operator- (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
@@ -264,6 +343,10 @@ struct XYval {
|
||||
FI XYval<T> operator>>(const int &v) { XYval<T> ls = *this; _RS(ls.x); _RS(ls.y); return ls; }
|
||||
FI XYval<T> operator<<(const int &v) const { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
|
||||
FI XYval<T> operator<<(const int &v) { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
|
||||
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
||||
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
||||
|
||||
// Modifier operators
|
||||
FI XYval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
|
||||
FI XYval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
|
||||
FI XYval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
|
||||
@@ -277,6 +360,8 @@ struct XYval {
|
||||
FI XYval<T>& operator*=(const int &v) { x *= v; y *= v; return *this; }
|
||||
FI XYval<T>& operator>>=(const int &v) { _RS(x); _RS(y); return *this; }
|
||||
FI XYval<T>& operator<<=(const int &v) { _LS(x); _LS(y); return *this; }
|
||||
|
||||
// Exact comparisons. For floats a "NEAR" operation may be better.
|
||||
FI bool operator==(const XYval<T> &rs) { return x == rs.x && y == rs.y; }
|
||||
FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y; }
|
||||
FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y; }
|
||||
@@ -289,224 +374,291 @@ struct XYval {
|
||||
FI bool operator!=(const XYval<T> &rs) const { return !operator==(rs); }
|
||||
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
|
||||
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
|
||||
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
||||
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
||||
};
|
||||
|
||||
//
|
||||
// XYZ coordinates, counters, etc.
|
||||
// Linear Axes coordinates, counters, flags, etc.
|
||||
//
|
||||
template<typename T>
|
||||
struct XYZval {
|
||||
union {
|
||||
struct { T x, y, z; };
|
||||
struct { T a, b, c; };
|
||||
T pos[3];
|
||||
struct { T LINEAR_AXIS_ARGS(); };
|
||||
struct { T LINEAR_AXIS_LIST(a, b, c, u, v, w); };
|
||||
T pos[LINEAR_AXES];
|
||||
};
|
||||
|
||||
// Set all to 0
|
||||
FI void reset() { LINEAR_AXIS_GANG(x =, y =, z =, i =, j =, k =) 0; }
|
||||
|
||||
// Setters taking struct types and arrays
|
||||
FI void set(const T px) { x = px; }
|
||||
FI void set(const T px, const T py) { x = px; y = py; }
|
||||
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
|
||||
FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; }
|
||||
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
|
||||
FI void set(const XYval<T> pxy, const T pz) { LINEAR_AXIS_CODE(x = pxy.x, y = pxy.y, z = pz, NOOP, NOOP, NOOP); }
|
||||
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
|
||||
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; z = arr[2]; }
|
||||
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; z = arr[2]; }
|
||||
#if DISTINCT_AXES > XYZE
|
||||
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; z = arr[2]; }
|
||||
#if HAS_Z_AXIS
|
||||
FI void set(const T (&arr)[LINEAR_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
|
||||
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
|
||||
#endif
|
||||
FI void reset() { x = y = z = 0; }
|
||||
FI T magnitude() const { return (T)sqrtf(x*x + y*y + z*z); }
|
||||
#if LOGICAL_AXES > LINEAR_AXES
|
||||
FI void set(const T (&arr)[LOGICAL_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
|
||||
FI void set(LOGICAL_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
|
||||
#if DISTINCT_AXES > LOGICAL_AXES
|
||||
FI void set(const T (&arr)[DISTINCT_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 4
|
||||
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
|
||||
#endif
|
||||
|
||||
// Length reduced to one dimension
|
||||
FI T magnitude() const { return (T)sqrtf(LINEAR_AXIS_GANG(x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
|
||||
// Pointer to the data as a simple array
|
||||
FI operator T* () { return pos; }
|
||||
FI operator bool() { return z || x || y; }
|
||||
// If any element is true then it's true
|
||||
FI operator bool() { return LINEAR_AXIS_GANG(x, || y, || z, || i, || j, || k); }
|
||||
|
||||
// Explicit copy and copies with conversion
|
||||
FI XYZval<T> copy() const { XYZval<T> o = *this; return o; }
|
||||
FI XYZval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)), T(_ABS(z)) }; }
|
||||
FI XYZval<int16_t> asInt() { return { int16_t(x), int16_t(y), int16_t(z) }; }
|
||||
FI XYZval<int16_t> asInt() const { return { int16_t(x), int16_t(y), int16_t(z) }; }
|
||||
FI XYZval<int32_t> asLong() { return { int32_t(x), int32_t(y), int32_t(z) }; }
|
||||
FI XYZval<int32_t> asLong() const { return { int32_t(x), int32_t(y), int32_t(z) }; }
|
||||
FI XYZval<int32_t> ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; }
|
||||
FI XYZval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)) }; }
|
||||
FI XYZval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) }; }
|
||||
FI XYZval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z) }; }
|
||||
FI XYZval<float> reciprocal() const { return { _RECIP(x), _RECIP(y), _RECIP(z) }; }
|
||||
FI XYZval<T> ABS() const { return LINEAR_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
|
||||
FI XYZval<int16_t> asInt() { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
||||
FI XYZval<int16_t> asInt() const { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
||||
FI XYZval<int32_t> asLong() { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
||||
FI XYZval<int32_t> asLong() const { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
||||
FI XYZval<int32_t> ROUNDL() { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
||||
FI XYZval<int32_t> ROUNDL() const { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
||||
FI XYZval<float> asFloat() { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
||||
FI XYZval<float> asFloat() const { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
||||
FI XYZval<float> reciprocal() const { return LINEAR_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
|
||||
|
||||
// Marlin workspace shifting is done with G92 and M206
|
||||
FI XYZval<float> asLogical() const { XYZval<float> o = asFloat(); toLogical(o); return o; }
|
||||
FI XYZval<float> asNative() const { XYZval<float> o = asFloat(); toNative(o); return o; }
|
||||
|
||||
// In-place cast to types having fewer fields
|
||||
FI operator XYval<T>&() { return *(XYval<T>*)this; }
|
||||
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
|
||||
FI operator XYZEval<T>() const { return { x, y, z }; }
|
||||
FI T& operator[](const int i) { return pos[i]; }
|
||||
FI const T& operator[](const int i) const { return pos[i]; }
|
||||
FI XYZval<T>& operator= (const T v) { set(v, v, v ); return *this; }
|
||||
|
||||
// Cast to a type with more fields by making a new object
|
||||
FI operator XYZEval<T>() const { return LINEAR_AXIS_ARRAY(x, y, z, i, j, k); }
|
||||
|
||||
// Accessor via an AxisEnum (or any integer) [index]
|
||||
FI T& operator[](const int n) { return pos[n]; }
|
||||
FI const T& operator[](const int n) const { return pos[n]; }
|
||||
|
||||
// Assignment operator overrides do the expected thing
|
||||
FI XYZval<T>& operator= (const T v) { set(ARRAY_N_1(LINEAR_AXES, v)); return *this; }
|
||||
FI XYZval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y ); return *this; }
|
||||
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y, rs.z); return *this; }
|
||||
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
|
||||
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
|
||||
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
|
||||
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; return ls; }
|
||||
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
|
||||
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
|
||||
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
|
||||
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; return ls; }
|
||||
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); return ls; }
|
||||
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); return ls; }
|
||||
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); return ls; }
|
||||
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); return ls; }
|
||||
FI XYZval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
|
||||
FI XYZval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
|
||||
FI XYZval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
|
||||
FI XYZval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
|
||||
FI XYZval<T>& operator+=(const XYZval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; }
|
||||
FI XYZval<T>& operator-=(const XYZval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; }
|
||||
FI XYZval<T>& operator*=(const XYZval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; }
|
||||
FI XYZval<T>& operator/=(const XYZval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; }
|
||||
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; }
|
||||
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; }
|
||||
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; }
|
||||
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; }
|
||||
FI XYZval<T>& operator*=(const float &v) { x *= v; y *= v; z *= v; return *this; }
|
||||
FI XYZval<T>& operator*=(const int &v) { x *= v; y *= v; z *= v; return *this; }
|
||||
FI XYZval<T>& operator>>=(const int &v) { _RS(x); _RS(y); _RS(z); return *this; }
|
||||
FI XYZval<T>& operator<<=(const int &v) { _LS(x); _LS(y); _LS(z); return *this; }
|
||||
FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y && z == rs.z; }
|
||||
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
|
||||
|
||||
// Override other operators to get intuitive behaviors
|
||||
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
||||
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
||||
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
||||
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
||||
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
||||
FI const XYZval<T> operator-() const { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
|
||||
FI XYZval<T> operator-() { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
|
||||
|
||||
// Modifier operators
|
||||
FI XYZval<T>& operator+=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
||||
FI XYZval<T>& operator-=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
||||
FI XYZval<T>& operator*=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
||||
FI XYZval<T>& operator/=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
||||
FI XYZval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
||||
FI XYZval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
||||
FI XYZval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
||||
FI XYZval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
||||
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
||||
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
||||
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
||||
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
||||
FI XYZval<T>& operator*=(const float &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
|
||||
FI XYZval<T>& operator*=(const int &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
|
||||
FI XYZval<T>& operator>>=(const int &v) { LINEAR_AXIS_CODE(_RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
|
||||
FI XYZval<T>& operator<<=(const int &v) { LINEAR_AXIS_CODE(_LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
|
||||
|
||||
// Exact comparisons. For floats a "NEAR" operation may be better.
|
||||
FI bool operator==(const XYZEval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
||||
FI bool operator==(const XYZEval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
||||
FI bool operator!=(const XYZEval<T> &rs) { return !operator==(rs); }
|
||||
FI bool operator==(const XYZEval<T> &rs) const { return x == rs.x && y == rs.y && z == rs.z; }
|
||||
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
|
||||
FI XYZval<T> operator-() { XYZval<T> o = *this; o.x = -x; o.y = -y; o.z = -z; return o; }
|
||||
FI const XYZval<T> operator-() const { XYZval<T> o = *this; o.x = -x; o.y = -y; o.z = -z; return o; }
|
||||
};
|
||||
|
||||
//
|
||||
// XYZE coordinates, counters, etc.
|
||||
// Logical Axes coordinates, counters, etc.
|
||||
//
|
||||
template<typename T>
|
||||
struct XYZEval {
|
||||
union {
|
||||
struct{ T x, y, z, e; };
|
||||
struct{ T a, b, c; };
|
||||
T pos[4];
|
||||
struct { T LOGICAL_AXIS_ARGS(); };
|
||||
struct { T LOGICAL_AXIS_LIST(_e, a, b, c, u, v, w); };
|
||||
T pos[LOGICAL_AXES];
|
||||
};
|
||||
FI void reset() { x = y = z = e = 0; }
|
||||
FI T magnitude() const { return (T)sqrtf(x*x + y*y + z*z + e*e); }
|
||||
FI operator T* () { return pos; }
|
||||
FI operator bool() { return e || z || x || y; }
|
||||
FI void set(const T px) { x = px; }
|
||||
FI void set(const T px, const T py) { x = px; y = py; }
|
||||
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
|
||||
FI void set(const T px, const T py, const T pz, const T pe) { x = px; y = py; z = pz; e = pe; }
|
||||
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
|
||||
FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; }
|
||||
FI void set(const XYZval<T> pxyz) { x = pxyz.x; y = pxyz.y; z = pxyz.z; }
|
||||
FI void set(const XYval<T> pxy, const T pz, const T pe) { x = pxy.x; y = pxy.y; z = pz; e = pe; }
|
||||
FI void set(const XYval<T> pxy, const XYval<T> pze) { x = pxy.x; y = pxy.y; z = pze.z; e = pze.e; }
|
||||
FI void set(const XYZval<T> pxyz, const T pe) { x = pxyz.x; y = pxyz.y; z = pxyz.z; e = pe; }
|
||||
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
|
||||
FI void set(const T (&arr)[XYZ]) { x = arr[0]; y = arr[1]; z = arr[2]; }
|
||||
FI void set(const T (&arr)[XYZE]) { x = arr[0]; y = arr[1]; z = arr[2]; e = arr[3]; }
|
||||
#if DISTINCT_AXES > XYZE
|
||||
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; z = arr[2]; e = arr[3]; }
|
||||
// Reset all to 0
|
||||
FI void reset() { LOGICAL_AXIS_GANG(e =, x =, y =, z =, i =, j =, k =) 0; }
|
||||
|
||||
// Setters taking struct types and arrays
|
||||
FI void set(const T px) { x = px; }
|
||||
FI void set(const T px, const T py) { x = px; y = py; }
|
||||
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
|
||||
FI void set(const XYZval<T> pxyz) { set(LINEAR_AXIS_ELEM(pxyz)); }
|
||||
#if HAS_Z_AXIS
|
||||
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k); }
|
||||
#endif
|
||||
FI XYZEval<T> copy() const { return *this; }
|
||||
FI XYZEval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(e)) }; }
|
||||
FI XYZEval<int16_t> asInt() { return { int16_t(x), int16_t(y), int16_t(z), int16_t(e) }; }
|
||||
FI XYZEval<int16_t> asInt() const { return { int16_t(x), int16_t(y), int16_t(z), int16_t(e) }; }
|
||||
FI XYZEval<int32_t> asLong() { return { int32_t(x), int32_t(y), int32_t(z), int32_t(e) }; }
|
||||
FI XYZEval<int32_t> asLong() const { return { int32_t(x), int32_t(y), int32_t(z), int32_t(e) }; }
|
||||
FI XYZEval<int32_t> ROUNDL() { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(e)) }; }
|
||||
FI XYZEval<int32_t> ROUNDL() const { return { int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(e)) }; }
|
||||
FI XYZEval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(e) }; }
|
||||
FI XYZEval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(e) }; }
|
||||
FI XYZEval<float> reciprocal() const { return { _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(e) }; }
|
||||
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
|
||||
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; }
|
||||
FI operator XYval<T>&() { return *(XYval<T>*)this; }
|
||||
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
|
||||
FI operator XYZval<T>&() { return *(XYZval<T>*)this; }
|
||||
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; }
|
||||
FI T& operator[](const int i) { return pos[i]; }
|
||||
FI const T& operator[](const int i) const { return pos[i]; }
|
||||
FI XYZEval<T>& operator= (const T v) { set(v, v, v, v); return *this; }
|
||||
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; }
|
||||
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y, rs.z); return *this; }
|
||||
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; return ls; }
|
||||
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; return ls; }
|
||||
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; ls.e += rs.e; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; ls.z += rs.z; ls.e += rs.e; return ls; }
|
||||
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; ls.e -= rs.e; return ls; }
|
||||
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; ls.z -= rs.z; ls.e -= rs.e; return ls; }
|
||||
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; ls.e *= rs.e; return ls; }
|
||||
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; ls.z *= rs.z; ls.e *= rs.e; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; ls.e /= rs.e; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; ls.z /= rs.z; ls.e /= rs.e; return ls; }
|
||||
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
|
||||
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
|
||||
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
|
||||
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; ls.x *= v; ls.y *= v; ls.z *= v; ls.e *= v; return ls; }
|
||||
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
|
||||
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
|
||||
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
|
||||
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; ls.x /= v; ls.y /= v; ls.z /= v; ls.e /= v; return ls; }
|
||||
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); _RS(ls.e); return ls; }
|
||||
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; _RS(ls.x); _RS(ls.y); _RS(ls.z); _RS(ls.e); return ls; }
|
||||
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); _LS(ls.e); return ls; }
|
||||
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; _LS(ls.x); _LS(ls.y); _LS(ls.z); _LS(ls.e); return ls; }
|
||||
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; return *this; }
|
||||
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { x += rs.x; y += rs.y; z += rs.z; e += rs.e; return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { x -= rs.x; y -= rs.y; z -= rs.z; e -= rs.e; return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { x *= rs.x; y *= rs.y; z *= rs.z; e *= rs.e; return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { x /= rs.x; y /= rs.y; z /= rs.z; e /= rs.e; return *this; }
|
||||
FI XYZEval<T>& operator*=(const T &v) { x *= v; y *= v; z *= v; e *= v; return *this; }
|
||||
FI XYZEval<T>& operator>>=(const int &v) { _RS(x); _RS(y); _RS(z); _RS(e); return *this; }
|
||||
FI XYZEval<T>& operator<<=(const int &v) { _LS(x); _LS(y); _LS(z); _LS(e); return *this; }
|
||||
FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y && z == rs.z; }
|
||||
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); }
|
||||
FI bool operator==(const XYZval<T> &rs) const { return x == rs.x && y == rs.y && z == rs.z; }
|
||||
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
|
||||
FI XYZEval<T> operator-() { return { -x, -y, -z, -e }; }
|
||||
FI const XYZEval<T> operator-() const { return { -x, -y, -z, -e }; }
|
||||
#if LOGICAL_AXES > LINEAR_AXES
|
||||
FI void set(const XYval<T> pxy, const T pe) { set(pxy); e = pe; }
|
||||
FI void set(const XYZval<T> pxyz, const T pe) { set(pxyz); e = pe; }
|
||||
FI void set(LOGICAL_AXIS_ARGS(const T)) { LOGICAL_AXIS_CODE(_e = e, a = x, b = y, c = z, u = i, v = j, w = k); }
|
||||
#endif
|
||||
#if LINEAR_AXES >= 4
|
||||
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
|
||||
#endif
|
||||
|
||||
// Length reduced to one dimension
|
||||
FI T magnitude() const { return (T)sqrtf(LOGICAL_AXIS_GANG(+ e*e, + x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
|
||||
// Pointer to the data as a simple array
|
||||
FI operator T* () { return pos; }
|
||||
// If any element is true then it's true
|
||||
FI operator bool() { return 0 LOGICAL_AXIS_GANG(|| e, || x, || y, || z, || i, || j, || k); }
|
||||
|
||||
// Explicit copy and copies with conversion
|
||||
FI XYZEval<T> copy() const { XYZEval<T> o = *this; return o; }
|
||||
FI XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
|
||||
FI XYZEval<int16_t> asInt() { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
||||
FI XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
||||
FI XYZEval<int32_t> asLong() { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
||||
FI XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
||||
FI XYZEval<int32_t> ROUNDL() { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
||||
FI XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
||||
FI XYZEval<float> asFloat() { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
||||
FI XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
||||
FI XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
|
||||
|
||||
// Marlin workspace shifting is done with G92 and M206
|
||||
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
|
||||
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; }
|
||||
|
||||
// In-place cast to types having fewer fields
|
||||
FI operator XYval<T>&() { return *(XYval<T>*)this; }
|
||||
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
|
||||
FI operator XYZval<T>&() { return *(XYZval<T>*)this; }
|
||||
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; }
|
||||
|
||||
// Accessor via an AxisEnum (or any integer) [index]
|
||||
FI T& operator[](const int n) { return pos[n]; }
|
||||
FI const T& operator[](const int n) const { return pos[n]; }
|
||||
|
||||
// Assignment operator overrides do the expected thing
|
||||
FI XYZEval<T>& operator= (const T v) { set(LIST_N_1(LINEAR_AXES, v)); return *this; }
|
||||
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; }
|
||||
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
|
||||
|
||||
// Override other operators to get intuitive behaviors
|
||||
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
||||
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
||||
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
||||
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
||||
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
||||
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
||||
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
||||
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
||||
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
||||
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
||||
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
||||
FI const XYZEval<T> operator-() const { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
|
||||
FI XYZEval<T> operator-() { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
|
||||
|
||||
// Modifier operators
|
||||
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
|
||||
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e += rs.e, x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
||||
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e -= rs.e, x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e *= rs.e, x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e /= rs.e, x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
||||
FI XYZEval<T>& operator*=(const T &v) { LOGICAL_AXIS_CODE(e *= v, x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
|
||||
FI XYZEval<T>& operator>>=(const int &v) { LOGICAL_AXIS_CODE(_RS(e), _RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
|
||||
FI XYZEval<T>& operator<<=(const int &v) { LOGICAL_AXIS_CODE(_LS(e), _LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
|
||||
|
||||
// Exact comparisons. For floats a "NEAR" operation may be better.
|
||||
FI bool operator==(const XYZval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
||||
FI bool operator==(const XYZval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
||||
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); }
|
||||
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
|
||||
};
|
||||
|
||||
#undef _RECIP
|
||||
@@ -514,6 +666,3 @@ struct XYZEval {
|
||||
#undef _LS
|
||||
#undef _RS
|
||||
#undef FI
|
||||
|
||||
const xyze_char_t axis_codes { 'X', 'Y', 'Z', 'E' };
|
||||
#define AXIS_CHAR(A) ((char)('X' + A))
|
||||
|
@@ -122,7 +122,7 @@ void safe_delay(millis_t ms) {
|
||||
SERIAL_ECHOLNPAIR("Z Fade: ", planner.z_fade_height);
|
||||
#endif
|
||||
#if ABL_PLANAR
|
||||
SERIAL_ECHOPGM("ABL Adjustment X");
|
||||
SERIAL_ECHOPGM("ABL Adjustment");
|
||||
LOOP_LINEAR_AXES(a) {
|
||||
const float v = planner.get_axis_position_mm(AxisEnum(a)) - current_position[a];
|
||||
SERIAL_CHAR(' ', AXIS_CHAR(a));
|
||||
|
@@ -76,3 +76,11 @@ public:
|
||||
// Converts from an uint8_t in the range of 0-255 to an uint8_t
|
||||
// in the range 0-100 while avoiding rounding artifacts
|
||||
constexpr uint8_t ui8_to_percent(const uint8_t i) { return (int(i) * 100 + 127) / 255; }
|
||||
|
||||
const xyze_char_t axis_codes LOGICAL_AXIS_ARRAY('E', 'X', 'Y', 'Z', AXIS4_NAME, AXIS5_NAME, AXIS6_NAME);
|
||||
|
||||
#if LINEAR_AXES <= XYZ
|
||||
#define AXIS_CHAR(A) ((char)('X' + A))
|
||||
#else
|
||||
#define AXIS_CHAR(A) axis_codes[A]
|
||||
#endif
|
||||
|
54
Marlin/src/feature/ammeter.cpp
Normal file
54
Marlin/src/feature/ammeter.cpp
Normal file
@@ -0,0 +1,54 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(I2C_AMMETER)
|
||||
|
||||
#include "ammeter.h"
|
||||
|
||||
#ifndef I2C_AMMETER_IMAX
|
||||
#define I2C_AMMETER_IMAX 0.500 // Calibration range 500 Milliamps
|
||||
#endif
|
||||
|
||||
INA226 ina;
|
||||
|
||||
Ammeter ammeter;
|
||||
|
||||
float Ammeter::scale;
|
||||
float Ammeter::current;
|
||||
|
||||
void Ammeter::init() {
|
||||
ina.begin();
|
||||
ina.configure(INA226_AVERAGES_16, INA226_BUS_CONV_TIME_1100US, INA226_SHUNT_CONV_TIME_1100US, INA226_MODE_SHUNT_BUS_CONT);
|
||||
ina.calibrate(I2C_AMMETER_SHUNT_RESISTOR, I2C_AMMETER_IMAX);
|
||||
}
|
||||
|
||||
float Ammeter::read() {
|
||||
scale = 1;
|
||||
current = ina.readShuntCurrent();
|
||||
if (current <= 0.0001f) current = 0; // Clean up least-significant-bit amplification errors
|
||||
if (current < 0.1f) scale = 1000;
|
||||
return current * scale;
|
||||
}
|
||||
|
||||
#endif // I2C_AMMETER
|
39
Marlin/src/feature/ammeter.h
Normal file
39
Marlin/src/feature/ammeter.h
Normal file
@@ -0,0 +1,39 @@
|
||||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include "../inc/MarlinConfigPre.h"
|
||||
|
||||
#include <Wire.h>
|
||||
#include <INA226.h>
|
||||
|
||||
class Ammeter {
|
||||
private:
|
||||
static float scale;
|
||||
|
||||
public:
|
||||
static float current;
|
||||
static void init();
|
||||
static float read();
|
||||
};
|
||||
|
||||
extern Ammeter ammeter;
|
@@ -24,7 +24,7 @@
|
||||
#include "../../inc/MarlinConfigPre.h"
|
||||
|
||||
#if EITHER(RESTORE_LEVELING_AFTER_G28, ENABLE_LEVELING_AFTER_G28)
|
||||
#define G28_L0_ENSURES_LEVELING_OFF 1
|
||||
#define CAN_SET_LEVELING_AFTER_G28 1
|
||||
#endif
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
|
@@ -164,7 +164,7 @@ static void serial_echo_column_labels(const uint8_t sp) {
|
||||
* 2: TODO: Display on Graphical LCD
|
||||
* 4: Compact Human-Readable
|
||||
*/
|
||||
void unified_bed_leveling::display_map(const int map_type) {
|
||||
void unified_bed_leveling::display_map(const uint8_t map_type) {
|
||||
const bool was = gcode.set_autoreport_paused(true);
|
||||
|
||||
constexpr uint8_t eachsp = 1 + 6 + 1, // [-3.567]
|
||||
@@ -263,7 +263,7 @@ bool unified_bed_leveling::sanity_check() {
|
||||
void GcodeSuite::M1004() {
|
||||
|
||||
#define ALIGN_GCODE TERN(Z_STEPPER_AUTO_ALIGN, "G34", "")
|
||||
#define PROBE_GCODE TERN(HAS_BED_PROBE, "G29P1\nG29P3", "G29P4R255")
|
||||
#define PROBE_GCODE TERN(HAS_BED_PROBE, "G29P1\nG29P3", "G29P4R")
|
||||
|
||||
#if HAS_HOTEND
|
||||
if (parser.seenval('H')) { // Handle H# parameter to set Hotend temp
|
||||
|
@@ -47,10 +47,10 @@ struct mesh_index_pair;
|
||||
|
||||
typedef struct {
|
||||
bool C_seen;
|
||||
int8_t V_verbosity,
|
||||
int8_t KLS_storage_slot;
|
||||
uint8_t R_repetition,
|
||||
V_verbosity,
|
||||
P_phase,
|
||||
R_repetition,
|
||||
KLS_storage_slot,
|
||||
T_map_type;
|
||||
float B_shim_thickness,
|
||||
C_constant;
|
||||
@@ -98,7 +98,7 @@ public:
|
||||
static void report_state();
|
||||
static void save_ubl_active_state_and_disable();
|
||||
static void restore_ubl_active_state_and_leave();
|
||||
static void display_map(const int) _O0;
|
||||
static void display_map(const uint8_t) _O0;
|
||||
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const xy_pos_t&, const bool=false, MeshFlags *done_flags=nullptr) _O0;
|
||||
static mesh_index_pair find_furthest_invalid_mesh_point() _O0;
|
||||
static void reset();
|
||||
|
@@ -305,7 +305,7 @@ void unified_bed_leveling::G29() {
|
||||
bool probe_deployed = false;
|
||||
if (G29_parse_parameters()) return; // Abort on parameter error
|
||||
|
||||
const int8_t p_val = parser.intval('P', -1);
|
||||
const uint8_t p_val = parser.byteval('P');
|
||||
const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen_test('J');
|
||||
#if ENABLED(HAS_MULTI_HOTEND)
|
||||
const uint8_t old_tool_index = active_extruder;
|
||||
@@ -321,7 +321,7 @@ void unified_bed_leveling::G29() {
|
||||
|
||||
// Invalidate one or more nearby mesh points, possibly all.
|
||||
if (parser.seen('I')) {
|
||||
int16_t count = parser.has_value() ? parser.value_int() : 1;
|
||||
uint8_t count = parser.has_value() ? parser.value_byte() : 1;
|
||||
bool invalidate_all = count >= GRID_MAX_POINTS;
|
||||
if (!invalidate_all) {
|
||||
while (count--) {
|
||||
@@ -345,7 +345,7 @@ void unified_bed_leveling::G29() {
|
||||
}
|
||||
|
||||
if (parser.seen('Q')) {
|
||||
const int test_pattern = parser.has_value() ? parser.value_int() : -99;
|
||||
const int16_t test_pattern = parser.has_value() ? parser.value_int() : -99;
|
||||
if (!WITHIN(test_pattern, -1, 2)) {
|
||||
SERIAL_ECHOLNPGM("Invalid test_pattern value. (-1 to 2)\n");
|
||||
return;
|
||||
@@ -592,7 +592,7 @@ void unified_bed_leveling::G29() {
|
||||
//
|
||||
|
||||
if (parser.seen('L')) { // Load Current Mesh Data
|
||||
param.KLS_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
|
||||
param.KLS_storage_slot = parser.has_value() ? (int8_t)parser.value_int() : storage_slot;
|
||||
|
||||
int16_t a = settings.calc_num_meshes();
|
||||
|
||||
@@ -617,10 +617,10 @@ void unified_bed_leveling::G29() {
|
||||
//
|
||||
|
||||
if (parser.seen('S')) { // Store (or Save) Current Mesh Data
|
||||
param.KLS_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
|
||||
param.KLS_storage_slot = parser.has_value() ? (int8_t)parser.value_int() : storage_slot;
|
||||
|
||||
if (param.KLS_storage_slot == -1) // Special case, the user wants to 'Export' the mesh to the
|
||||
return report_current_mesh(); // host program to be saved on the user's computer
|
||||
if (param.KLS_storage_slot == -1) // Special case: 'Export' the mesh to the
|
||||
return report_current_mesh(); // host so it can be saved in a file.
|
||||
|
||||
int16_t a = settings.calc_num_meshes();
|
||||
|
||||
@@ -673,7 +673,7 @@ void unified_bed_leveling::G29() {
|
||||
*/
|
||||
void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const_float_t offset) {
|
||||
float sum = 0;
|
||||
int n = 0;
|
||||
uint8_t n = 0;
|
||||
GRID_LOOP(x, y)
|
||||
if (!isnan(z_values[x][y])) {
|
||||
sum += z_values[x][y];
|
||||
@@ -734,7 +734,7 @@ void unified_bed_leveling::shift_mesh_height() {
|
||||
do {
|
||||
if (do_ubl_mesh_map) display_map(param.T_map_type);
|
||||
|
||||
const int point_num = (GRID_MAX_POINTS) - count + 1;
|
||||
const uint8_t point_num = (GRID_MAX_POINTS - count) + 1;
|
||||
SERIAL_ECHOLNPAIR("Probing mesh point ", point_num, "/", GRID_MAX_POINTS, ".");
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), point_num, int(GRID_MAX_POINTS)));
|
||||
|
||||
@@ -1025,7 +1025,7 @@ void set_message_with_feedback(PGM_P const msg_P) {
|
||||
SET_SOFT_ENDSTOP_LOOSE(true);
|
||||
|
||||
do {
|
||||
idle();
|
||||
idle_no_sleep();
|
||||
new_z = ui.ubl_mesh_value();
|
||||
TERN_(UBL_MESH_EDIT_MOVES_Z, do_blocking_move_to_z(h_offset + new_z)); // Move the nozzle as the point is edited
|
||||
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
|
||||
@@ -1083,7 +1083,7 @@ bool unified_bed_leveling::G29_parse_parameters() {
|
||||
param.R_repetition = 0;
|
||||
|
||||
if (parser.seen('R')) {
|
||||
param.R_repetition = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
|
||||
param.R_repetition = parser.has_value() ? parser.value_byte() : GRID_MAX_POINTS;
|
||||
NOMORE(param.R_repetition, GRID_MAX_POINTS);
|
||||
if (param.R_repetition < 1) {
|
||||
SERIAL_ECHOLNPGM("?(R)epetition count invalid (1+).\n");
|
||||
@@ -1091,14 +1091,14 @@ bool unified_bed_leveling::G29_parse_parameters() {
|
||||
}
|
||||
}
|
||||
|
||||
param.V_verbosity = parser.intval('V');
|
||||
param.V_verbosity = parser.byteval('V');
|
||||
if (!WITHIN(param.V_verbosity, 0, 4)) {
|
||||
SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).\n");
|
||||
err_flag = true;
|
||||
}
|
||||
|
||||
if (parser.seen('P')) {
|
||||
const int pv = parser.value_int();
|
||||
const uint8_t pv = parser.value_byte();
|
||||
#if !HAS_BED_PROBE
|
||||
if (pv == 1) {
|
||||
SERIAL_ECHOLNPGM("G29 P1 requires a probe.\n");
|
||||
@@ -1181,7 +1181,7 @@ bool unified_bed_leveling::G29_parse_parameters() {
|
||||
}
|
||||
#endif
|
||||
|
||||
param.T_map_type = parser.intval('T');
|
||||
param.T_map_type = parser.byteval('T');
|
||||
if (!WITHIN(param.T_map_type, 0, 2)) {
|
||||
SERIAL_ECHOLNPGM("Invalid map type.\n");
|
||||
return UBL_ERR;
|
||||
@@ -1833,7 +1833,7 @@ void unified_bed_leveling::smart_fill_mesh() {
|
||||
return;
|
||||
}
|
||||
|
||||
param.KLS_storage_slot = parser.value_int();
|
||||
param.KLS_storage_slot = (int8_t)parser.value_int();
|
||||
|
||||
float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
||||
settings.load_mesh(param.KLS_storage_slot, &tmp_z_values);
|
||||
|
@@ -113,20 +113,22 @@
|
||||
const xy_float_t ad = sign * dist;
|
||||
const bool use_x_dist = ad.x > ad.y;
|
||||
|
||||
float on_axis_distance = use_x_dist ? dist.x : dist.y,
|
||||
e_position = end.e - start.e,
|
||||
z_position = end.z - start.z;
|
||||
float on_axis_distance = use_x_dist ? dist.x : dist.y;
|
||||
|
||||
const float e_normalized_dist = e_position / on_axis_distance, // Allow divide by zero
|
||||
z_normalized_dist = z_position / on_axis_distance;
|
||||
const float z_normalized_dist = (end.z - start.z) / on_axis_distance; // Allow divide by zero
|
||||
#if HAS_EXTRUDERS
|
||||
const float e_normalized_dist = (end.e - start.e) / on_axis_distance;
|
||||
const bool inf_normalized_flag = isinf(e_normalized_dist);
|
||||
#endif
|
||||
|
||||
xy_int8_t icell = istart;
|
||||
|
||||
const float ratio = dist.y / dist.x, // Allow divide by zero
|
||||
c = start.y - ratio * start.x;
|
||||
|
||||
const bool inf_normalized_flag = isinf(e_normalized_dist),
|
||||
inf_ratio_flag = isinf(ratio);
|
||||
const bool inf_ratio_flag = isinf(ratio);
|
||||
|
||||
xyze_pos_t dest; // Stores XYZE for segmented moves
|
||||
|
||||
/**
|
||||
* Handle vertical lines that stay within one column.
|
||||
@@ -143,34 +145,36 @@
|
||||
* For others the next X is the same so this can continue.
|
||||
* Calculate X at the next Y mesh line.
|
||||
*/
|
||||
const float rx = inf_ratio_flag ? start.x : (next_mesh_line_y - c) / ratio;
|
||||
dest.x = inf_ratio_flag ? start.x : (next_mesh_line_y - c) / ratio;
|
||||
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x, icell.y)
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(dest.x, icell.x, icell.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
const float ry = mesh_index_to_ypos(icell.y);
|
||||
dest.y = mesh_index_to_ypos(icell.y);
|
||||
|
||||
/**
|
||||
* Without this check, it's possible to generate a zero length move, as in the case where
|
||||
* the line is heading down, starting exactly on a mesh line boundary. Since this is rare
|
||||
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
||||
*/
|
||||
if (ry != start.y) {
|
||||
if (dest.y != start.y) {
|
||||
if (!inf_normalized_flag) { // fall-through faster than branch
|
||||
on_axis_distance = use_x_dist ? rx - start.x : ry - start.y;
|
||||
e_position = start.e + on_axis_distance * e_normalized_dist;
|
||||
z_position = start.z + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = end.e;
|
||||
z_position = end.z;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
|
||||
planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder);
|
||||
dest.z += z0;
|
||||
planner.buffer_segment(dest, scaled_fr_mm_s, extruder);
|
||||
|
||||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
@@ -188,12 +192,13 @@
|
||||
*/
|
||||
if (iadd.y == 0) { // Horizontal line?
|
||||
icell.x += ineg.x; // Heading left? Just go to the left edge of the cell for the first move.
|
||||
|
||||
while (icell.x != iend.x + ineg.x) {
|
||||
icell.x += iadd.x;
|
||||
const float rx = mesh_index_to_xpos(icell.x);
|
||||
const float ry = ratio * rx + c; // Calculate Y at the next X mesh line
|
||||
dest.x = mesh_index_to_xpos(icell.x);
|
||||
dest.y = ratio * dest.x + c; // Calculate Y at the next X mesh line
|
||||
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x, icell.y)
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(dest.y, icell.x, icell.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
@@ -205,19 +210,20 @@
|
||||
* the line is heading left, starting exactly on a mesh line boundary. Since this is rare
|
||||
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
||||
*/
|
||||
if (rx != start.x) {
|
||||
if (dest.x != start.x) {
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? rx - start.x : ry - start.y;
|
||||
e_position = start.e + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
||||
z_position = start.z + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist); // Based on X or Y because the move is horizontal
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = end.e;
|
||||
z_position = end.z;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
|
||||
if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder))
|
||||
break;
|
||||
dest.z += z0;
|
||||
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
|
||||
|
||||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
@@ -239,57 +245,65 @@
|
||||
while (cnt) {
|
||||
|
||||
const float next_mesh_line_x = mesh_index_to_xpos(icell.x + iadd.x),
|
||||
next_mesh_line_y = mesh_index_to_ypos(icell.y + iadd.y),
|
||||
ry = ratio * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
||||
rx = (next_mesh_line_y - c) / ratio; // Calculate X at the next Y mesh line
|
||||
// (No need to worry about ratio == 0.
|
||||
// In that case, it was already detected
|
||||
// as a vertical line move above.)
|
||||
next_mesh_line_y = mesh_index_to_ypos(icell.y + iadd.y);
|
||||
|
||||
if (neg.x == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
|
||||
dest.y = ratio * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
||||
dest.x = (next_mesh_line_y - c) / ratio; // Calculate X at the next Y mesh line
|
||||
// (No need to worry about ratio == 0.
|
||||
// In that case, it was already detected
|
||||
// as a vertical line move above.)
|
||||
|
||||
if (neg.x == (dest.x > next_mesh_line_x)) { // Check if we hit the Y line first
|
||||
// Yes! Crossing a Y Mesh Line next
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, icell.x - ineg.x, icell.y + iadd.y)
|
||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(dest.x, icell.x - ineg.x, icell.y + iadd.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
dest.y = next_mesh_line_y;
|
||||
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? rx - start.x : next_mesh_line_y - start.y;
|
||||
e_position = start.e + on_axis_distance * e_normalized_dist;
|
||||
z_position = start.z + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = end.e;
|
||||
z_position = end.z;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, scaled_fr_mm_s, extruder))
|
||||
break;
|
||||
|
||||
dest.z += z0;
|
||||
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
|
||||
|
||||
icell.y += iadd.y;
|
||||
cnt.y--;
|
||||
}
|
||||
else {
|
||||
// Yes! Crossing a X Mesh Line next
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, icell.x + iadd.x, icell.y - ineg.y)
|
||||
float z0 = z_correction_for_y_on_vertical_mesh_line(dest.y, icell.x + iadd.x, icell.y - ineg.y)
|
||||
* planner.fade_scaling_factor_for_z(end.z);
|
||||
|
||||
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
dest.x = next_mesh_line_x;
|
||||
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? next_mesh_line_x - start.x : ry - start.y;
|
||||
e_position = start.e + on_axis_distance * e_normalized_dist;
|
||||
z_position = start.z + on_axis_distance * z_normalized_dist;
|
||||
on_axis_distance = use_x_dist ? dest.x - start.x : dest.y - start.y;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = start.e + on_axis_distance * e_normalized_dist);
|
||||
dest.z = start.z + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
else {
|
||||
e_position = end.e;
|
||||
z_position = end.z;
|
||||
TERN_(HAS_EXTRUDERS, dest.e = end.e);
|
||||
dest.z = end.z;
|
||||
}
|
||||
|
||||
if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, scaled_fr_mm_s, extruder))
|
||||
break;
|
||||
dest.z += z0;
|
||||
if (!planner.buffer_segment(dest, scaled_fr_mm_s, extruder)) break;
|
||||
|
||||
icell.x += iadd.x;
|
||||
cnt.x--;
|
||||
}
|
||||
@@ -438,11 +452,9 @@
|
||||
#endif
|
||||
;
|
||||
|
||||
planner.buffer_line(raw.x, raw.y, raw.z + z_cxcy, raw.e, scaled_fr_mm_s, active_extruder, segment_xyz_mm
|
||||
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
||||
, inv_duration
|
||||
#endif
|
||||
);
|
||||
const float oldz = raw.z; raw.z += z_cxcy;
|
||||
planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, segment_xyz_mm OPTARG(SCARA_FEEDRATE_SCALING, inv_duration) );
|
||||
raw.z = oldz;
|
||||
|
||||
if (segments == 0) // done with last segment
|
||||
return false; // didn't set current from destination
|
||||
|
@@ -24,9 +24,11 @@
|
||||
#include "../inc/MarlinConfig.h"
|
||||
|
||||
#define BINARY_STREAM_COMPRESSION
|
||||
|
||||
#if ENABLED(BINARY_STREAM_COMPRESSION)
|
||||
#include "../libs/heatshrink/heatshrink_decoder.h"
|
||||
// STM32 (and others?) require a word-aligned buffer for SD card transfers via DMA
|
||||
static __attribute__((aligned(sizeof(size_t)))) uint8_t decode_buffer[512] = {};
|
||||
static heatshrink_decoder hsd;
|
||||
#endif
|
||||
|
||||
inline bool bs_serial_data_available(const serial_index_t index) {
|
||||
@@ -37,16 +39,6 @@ inline int bs_read_serial(const serial_index_t index) {
|
||||
return SERIAL_IMPL.read(index);
|
||||
}
|
||||
|
||||
#if ENABLED(BINARY_STREAM_COMPRESSION)
|
||||
static heatshrink_decoder hsd;
|
||||
#if BOTH(ARDUINO_ARCH_STM32F1, SDIO_SUPPORT)
|
||||
// STM32 requires a word-aligned buffer for SD card transfers via DMA
|
||||
static __attribute__((aligned(sizeof(size_t)))) uint8_t decode_buffer[512] = {};
|
||||
#else
|
||||
static uint8_t decode_buffer[512] = {};
|
||||
#endif
|
||||
#endif
|
||||
|
||||
class SDFileTransferProtocol {
|
||||
private:
|
||||
struct Packet {
|
||||
|
@@ -327,7 +327,7 @@ int32_t I2CPositionEncoder::get_raw_count() {
|
||||
}
|
||||
|
||||
bool I2CPositionEncoder::test_axis() {
|
||||
//only works on XYZ cartesian machines for the time being
|
||||
// Only works on XYZ Cartesian machines for the time being
|
||||
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false;
|
||||
|
||||
const float startPosition = soft_endstop.min[encoderAxis] + 10,
|
||||
@@ -345,9 +345,12 @@ bool I2CPositionEncoder::test_axis() {
|
||||
endCoord[encoderAxis] = endPosition;
|
||||
|
||||
planner.synchronize();
|
||||
startCoord.e = planner.get_axis_position_mm(E_AXIS);
|
||||
planner.buffer_line(startCoord, fr_mm_s, 0);
|
||||
planner.synchronize();
|
||||
|
||||
#if HAS_EXTRUDERS
|
||||
startCoord.e = planner.get_axis_position_mm(E_AXIS);
|
||||
planner.buffer_line(startCoord, fr_mm_s, 0);
|
||||
planner.synchronize();
|
||||
#endif
|
||||
|
||||
// if the module isn't currently trusted, wait until it is (or until it should be if things are working)
|
||||
if (!trusted) {
|
||||
@@ -357,7 +360,7 @@ bool I2CPositionEncoder::test_axis() {
|
||||
}
|
||||
|
||||
if (trusted) { // if trusted, commence test
|
||||
endCoord.e = planner.get_axis_position_mm(E_AXIS);
|
||||
TERN_(HAS_EXTRUDERS, endCoord.e = planner.get_axis_position_mm(E_AXIS));
|
||||
planner.buffer_line(endCoord, fr_mm_s, 0);
|
||||
planner.synchronize();
|
||||
}
|
||||
@@ -402,7 +405,7 @@ void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
|
||||
planner.synchronize();
|
||||
|
||||
LOOP_L_N(i, iter) {
|
||||
startCoord.e = planner.get_axis_position_mm(E_AXIS);
|
||||
TERN_(HAS_EXTRUDERS, startCoord.e = planner.get_axis_position_mm(E_AXIS));
|
||||
planner.buffer_line(startCoord, fr_mm_s, 0);
|
||||
planner.synchronize();
|
||||
|
||||
@@ -411,7 +414,7 @@ void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
|
||||
|
||||
//do_blocking_move_to(endCoord);
|
||||
|
||||
endCoord.e = planner.get_axis_position_mm(E_AXIS);
|
||||
TERN_(HAS_EXTRUDERS, endCoord.e = planner.get_axis_position_mm(E_AXIS));
|
||||
planner.buffer_line(endCoord, fr_mm_s, 0);
|
||||
planner.synchronize();
|
||||
|
||||
@@ -497,9 +500,7 @@ void I2CPositionEncodersMgr::init() {
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_1_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_1_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 1
|
||||
@@ -528,9 +529,7 @@ void I2CPositionEncodersMgr::init() {
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_2_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_2_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 2
|
||||
@@ -557,11 +556,9 @@ void I2CPositionEncodersMgr::init() {
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH);
|
||||
#endif
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_3_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_3_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 3
|
||||
@@ -590,9 +587,7 @@ void I2CPositionEncodersMgr::init() {
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_4_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_4_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 4
|
||||
@@ -621,9 +616,7 @@ void I2CPositionEncodersMgr::init() {
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_5_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_5_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 5
|
||||
@@ -652,9 +645,7 @@ void I2CPositionEncodersMgr::init() {
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_6_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
TERN_(HAS_EXTRUDERS, if (I2CPE_ENC_6_AXIS == E_AXIS) encoders[i].set_homed());
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@@ -24,7 +24,14 @@
|
||||
|
||||
#if HAS_PRUSA_MMU1
|
||||
|
||||
#include "../module/stepper.h"
|
||||
#include "../MarlinCore.h"
|
||||
#include "../module/planner.h"
|
||||
|
||||
void mmu_init() {
|
||||
SET_OUTPUT(E_MUX0_PIN);
|
||||
SET_OUTPUT(E_MUX1_PIN);
|
||||
SET_OUTPUT(E_MUX2_PIN);
|
||||
}
|
||||
|
||||
void select_multiplexed_stepper(const uint8_t e) {
|
||||
planner.synchronize();
|
||||
|
@@ -21,4 +21,5 @@
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
void mmu_init();
|
||||
void select_multiplexed_stepper(const uint8_t e);
|
||||
|
@@ -88,7 +88,7 @@ typedef struct {
|
||||
uint8_t fan_speed[FAN_COUNT];
|
||||
#endif
|
||||
|
||||
#if ENABLED(HAS_LEVELING)
|
||||
#if HAS_LEVELING
|
||||
float fade;
|
||||
#endif
|
||||
|
||||
@@ -120,7 +120,7 @@ typedef struct {
|
||||
bool raised:1; // Raised before saved
|
||||
bool dryrun:1; // M111 S8
|
||||
bool allow_cold_extrusion:1; // M302 P1
|
||||
#if ENABLED(HAS_LEVELING)
|
||||
#if HAS_LEVELING
|
||||
bool leveling:1; // M420 S
|
||||
#endif
|
||||
#if DISABLED(NO_VOLUMETRICS)
|
||||
|
@@ -47,7 +47,7 @@ typedef struct {
|
||||
|
||||
// Probe temperature calibration constants
|
||||
#ifndef PTC_SAMPLE_COUNT
|
||||
#define PTC_SAMPLE_COUNT 10U
|
||||
#define PTC_SAMPLE_COUNT 10
|
||||
#endif
|
||||
#ifndef PTC_SAMPLE_RES
|
||||
#define PTC_SAMPLE_RES 5
|
||||
@@ -55,22 +55,22 @@ typedef struct {
|
||||
#ifndef PTC_SAMPLE_START
|
||||
#define PTC_SAMPLE_START 30
|
||||
#endif
|
||||
#define PTC_SAMPLE_END ((PTC_SAMPLE_START) + (PTC_SAMPLE_COUNT) * (PTC_SAMPLE_RES))
|
||||
#define PTC_SAMPLE_END (PTC_SAMPLE_START + (PTC_SAMPLE_COUNT) * PTC_SAMPLE_RES)
|
||||
|
||||
// Bed temperature calibration constants
|
||||
#ifndef BTC_PROBE_TEMP
|
||||
#define BTC_PROBE_TEMP 30
|
||||
#endif
|
||||
#ifndef BTC_SAMPLE_COUNT
|
||||
#define BTC_SAMPLE_COUNT 10U
|
||||
#define BTC_SAMPLE_COUNT 10
|
||||
#endif
|
||||
#ifndef BTC_SAMPLE_STEP
|
||||
#ifndef BTC_SAMPLE_RES
|
||||
#define BTC_SAMPLE_RES 5
|
||||
#endif
|
||||
#ifndef BTC_SAMPLE_START
|
||||
#define BTC_SAMPLE_START 60
|
||||
#endif
|
||||
#define BTC_SAMPLE_END ((BTC_SAMPLE_START) + (BTC_SAMPLE_COUNT) * (BTC_SAMPLE_RES))
|
||||
#define BTC_SAMPLE_END (BTC_SAMPLE_START + (BTC_SAMPLE_COUNT) * BTC_SAMPLE_RES)
|
||||
|
||||
#ifndef PTC_PROBE_HEATING_OFFSET
|
||||
#define PTC_PROBE_HEATING_OFFSET 0.5f
|
||||
|
@@ -34,6 +34,10 @@
|
||||
#include "../module/servo.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2C_AMMETER)
|
||||
#include "../feature/ammeter.h"
|
||||
#endif
|
||||
|
||||
SpindleLaser cutter;
|
||||
uint8_t SpindleLaser::power;
|
||||
#if ENABLED(LASER_FEATURE)
|
||||
@@ -74,6 +78,9 @@ void SpindleLaser::init() {
|
||||
#if ENABLED(AIR_ASSIST)
|
||||
OUT_WRITE(AIR_ASSIST_PIN, !AIR_ASSIST_ACTIVE); // Init Air Assist OFF
|
||||
#endif
|
||||
#if ENABLED(I2C_AMMETER)
|
||||
ammeter.init(); // Init I2C Ammeter
|
||||
#endif
|
||||
}
|
||||
|
||||
#if ENABLED(SPINDLE_LASER_PWM)
|
||||
|
@@ -417,6 +417,21 @@
|
||||
}
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(I)
|
||||
if (monitor_tmc_driver(stepperI, need_update_error_counters, need_debug_reporting))
|
||||
step_current_down(stepperI);
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(J)
|
||||
if (monitor_tmc_driver(stepperJ, need_update_error_counters, need_debug_reporting))
|
||||
step_current_down(stepperJ);
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(K)
|
||||
if (monitor_tmc_driver(stepperK, need_update_error_counters, need_debug_reporting))
|
||||
step_current_down(stepperK);
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(E0)
|
||||
(void)monitor_tmc_driver(stepperE0, need_update_error_counters, need_debug_reporting);
|
||||
#endif
|
||||
@@ -757,128 +772,148 @@
|
||||
}
|
||||
}
|
||||
|
||||
static void tmc_debug_loop(const TMC_debug_enum i, const bool print_x, const bool print_y, const bool print_z, const bool print_e) {
|
||||
if (print_x) {
|
||||
static void tmc_debug_loop(const TMC_debug_enum n, LOGICAL_AXIS_ARGS(const bool)) {
|
||||
if (x) {
|
||||
#if AXIS_IS_TMC(X)
|
||||
tmc_status(stepperX, i);
|
||||
tmc_status(stepperX, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(X2)
|
||||
tmc_status(stepperX2, i);
|
||||
tmc_status(stepperX2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_y) {
|
||||
if (TERN0(HAS_Y_AXIS, y)) {
|
||||
#if AXIS_IS_TMC(Y)
|
||||
tmc_status(stepperY, i);
|
||||
tmc_status(stepperY, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Y2)
|
||||
tmc_status(stepperY2, i);
|
||||
tmc_status(stepperY2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_z) {
|
||||
if (TERN0(HAS_Z_AXIS, z)) {
|
||||
#if AXIS_IS_TMC(Z)
|
||||
tmc_status(stepperZ, i);
|
||||
tmc_status(stepperZ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z2)
|
||||
tmc_status(stepperZ2, i);
|
||||
tmc_status(stepperZ2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z3)
|
||||
tmc_status(stepperZ3, i);
|
||||
tmc_status(stepperZ3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z4)
|
||||
tmc_status(stepperZ4, i);
|
||||
tmc_status(stepperZ4, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_e) {
|
||||
#if AXIS_IS_TMC(I)
|
||||
if (i) tmc_status(stepperI, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(J)
|
||||
if (j) tmc_status(stepperJ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(K)
|
||||
if (k) tmc_status(stepperK, n);
|
||||
#endif
|
||||
|
||||
if (TERN0(HAS_EXTRUDERS, e)) {
|
||||
#if AXIS_IS_TMC(E0)
|
||||
tmc_status(stepperE0, i);
|
||||
tmc_status(stepperE0, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E1)
|
||||
tmc_status(stepperE1, i);
|
||||
tmc_status(stepperE1, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E2)
|
||||
tmc_status(stepperE2, i);
|
||||
tmc_status(stepperE2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E3)
|
||||
tmc_status(stepperE3, i);
|
||||
tmc_status(stepperE3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E4)
|
||||
tmc_status(stepperE4, i);
|
||||
tmc_status(stepperE4, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E5)
|
||||
tmc_status(stepperE5, i);
|
||||
tmc_status(stepperE5, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E6)
|
||||
tmc_status(stepperE6, i);
|
||||
tmc_status(stepperE6, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E7)
|
||||
tmc_status(stepperE7, i);
|
||||
tmc_status(stepperE7, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
static void drv_status_loop(const TMC_drv_status_enum i, const bool print_x, const bool print_y, const bool print_z, const bool print_e) {
|
||||
if (print_x) {
|
||||
static void drv_status_loop(const TMC_drv_status_enum n, LOGICAL_AXIS_ARGS(const bool)) {
|
||||
if (x) {
|
||||
#if AXIS_IS_TMC(X)
|
||||
tmc_parse_drv_status(stepperX, i);
|
||||
tmc_parse_drv_status(stepperX, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(X2)
|
||||
tmc_parse_drv_status(stepperX2, i);
|
||||
tmc_parse_drv_status(stepperX2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_y) {
|
||||
if (TERN0(HAS_Y_AXIS, y)) {
|
||||
#if AXIS_IS_TMC(Y)
|
||||
tmc_parse_drv_status(stepperY, i);
|
||||
tmc_parse_drv_status(stepperY, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Y2)
|
||||
tmc_parse_drv_status(stepperY2, i);
|
||||
tmc_parse_drv_status(stepperY2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_z) {
|
||||
if (TERN0(HAS_Z_AXIS, z)) {
|
||||
#if AXIS_IS_TMC(Z)
|
||||
tmc_parse_drv_status(stepperZ, i);
|
||||
tmc_parse_drv_status(stepperZ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z2)
|
||||
tmc_parse_drv_status(stepperZ2, i);
|
||||
tmc_parse_drv_status(stepperZ2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z3)
|
||||
tmc_parse_drv_status(stepperZ3, i);
|
||||
tmc_parse_drv_status(stepperZ3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z4)
|
||||
tmc_parse_drv_status(stepperZ4, i);
|
||||
tmc_parse_drv_status(stepperZ4, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_e) {
|
||||
#if AXIS_IS_TMC(I)
|
||||
if (i) tmc_parse_drv_status(stepperI, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(J)
|
||||
if (j) tmc_parse_drv_status(stepperJ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(K)
|
||||
if (k) tmc_parse_drv_status(stepperK, n);
|
||||
#endif
|
||||
|
||||
if (TERN0(HAS_EXTRUDERS, e)) {
|
||||
#if AXIS_IS_TMC(E0)
|
||||
tmc_parse_drv_status(stepperE0, i);
|
||||
tmc_parse_drv_status(stepperE0, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E1)
|
||||
tmc_parse_drv_status(stepperE1, i);
|
||||
tmc_parse_drv_status(stepperE1, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E2)
|
||||
tmc_parse_drv_status(stepperE2, i);
|
||||
tmc_parse_drv_status(stepperE2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E3)
|
||||
tmc_parse_drv_status(stepperE3, i);
|
||||
tmc_parse_drv_status(stepperE3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E4)
|
||||
tmc_parse_drv_status(stepperE4, i);
|
||||
tmc_parse_drv_status(stepperE4, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E5)
|
||||
tmc_parse_drv_status(stepperE5, i);
|
||||
tmc_parse_drv_status(stepperE5, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E6)
|
||||
tmc_parse_drv_status(stepperE6, i);
|
||||
tmc_parse_drv_status(stepperE6, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E7)
|
||||
tmc_parse_drv_status(stepperE7, i);
|
||||
tmc_parse_drv_status(stepperE7, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -889,9 +924,10 @@
|
||||
* M122 report functions
|
||||
*/
|
||||
|
||||
void tmc_report_all(const bool print_x/*=true*/, const bool print_y/*=true*/, const bool print_z/*=true*/, const bool print_e/*=true*/) {
|
||||
#define TMC_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_debug_loop(ITEM, print_x, print_y, print_z, print_e); }while(0)
|
||||
#define DRV_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); drv_status_loop(ITEM, print_x, print_y, print_z, print_e); }while(0)
|
||||
void tmc_report_all(LOGICAL_AXIS_ARGS(const bool)) {
|
||||
#define TMC_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_debug_loop(ITEM, LOGICAL_AXIS_ARGS()); }while(0)
|
||||
#define DRV_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); drv_status_loop(ITEM, LOGICAL_AXIS_ARGS()); }while(0)
|
||||
|
||||
TMC_REPORT("\t", TMC_CODES);
|
||||
#if HAS_DRIVER(TMC2209)
|
||||
TMC_REPORT("Address\t", TMC_UART_ADDR);
|
||||
@@ -1015,72 +1051,82 @@
|
||||
}
|
||||
#endif
|
||||
|
||||
static void tmc_get_registers(TMC_get_registers_enum i, const bool print_x, const bool print_y, const bool print_z, const bool print_e) {
|
||||
if (print_x) {
|
||||
static void tmc_get_registers(TMC_get_registers_enum n, LOGICAL_AXIS_ARGS(const bool)) {
|
||||
if (x) {
|
||||
#if AXIS_IS_TMC(X)
|
||||
tmc_get_registers(stepperX, i);
|
||||
tmc_get_registers(stepperX, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(X2)
|
||||
tmc_get_registers(stepperX2, i);
|
||||
tmc_get_registers(stepperX2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_y) {
|
||||
if (TERN0(HAS_Y_AXIS, y)) {
|
||||
#if AXIS_IS_TMC(Y)
|
||||
tmc_get_registers(stepperY, i);
|
||||
tmc_get_registers(stepperY, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Y2)
|
||||
tmc_get_registers(stepperY2, i);
|
||||
tmc_get_registers(stepperY2, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_z) {
|
||||
if (TERN0(HAS_Z_AXIS, z)) {
|
||||
#if AXIS_IS_TMC(Z)
|
||||
tmc_get_registers(stepperZ, i);
|
||||
tmc_get_registers(stepperZ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z2)
|
||||
tmc_get_registers(stepperZ2, i);
|
||||
tmc_get_registers(stepperZ2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z3)
|
||||
tmc_get_registers(stepperZ3, i);
|
||||
tmc_get_registers(stepperZ3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z4)
|
||||
tmc_get_registers(stepperZ4, i);
|
||||
tmc_get_registers(stepperZ4, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (print_e) {
|
||||
#if AXIS_IS_TMC(I)
|
||||
if (i) tmc_get_registers(stepperI, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(J)
|
||||
if (j) tmc_get_registers(stepperJ, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(K)
|
||||
if (k) tmc_get_registers(stepperK, n);
|
||||
#endif
|
||||
|
||||
if (TERN0(HAS_EXTRUDERS, e)) {
|
||||
#if AXIS_IS_TMC(E0)
|
||||
tmc_get_registers(stepperE0, i);
|
||||
tmc_get_registers(stepperE0, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E1)
|
||||
tmc_get_registers(stepperE1, i);
|
||||
tmc_get_registers(stepperE1, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E2)
|
||||
tmc_get_registers(stepperE2, i);
|
||||
tmc_get_registers(stepperE2, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E3)
|
||||
tmc_get_registers(stepperE3, i);
|
||||
tmc_get_registers(stepperE3, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E4)
|
||||
tmc_get_registers(stepperE4, i);
|
||||
tmc_get_registers(stepperE4, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E5)
|
||||
tmc_get_registers(stepperE5, i);
|
||||
tmc_get_registers(stepperE5, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E6)
|
||||
tmc_get_registers(stepperE6, i);
|
||||
tmc_get_registers(stepperE6, n);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E7)
|
||||
tmc_get_registers(stepperE7, i);
|
||||
tmc_get_registers(stepperE7, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
void tmc_get_registers(bool print_x, bool print_y, bool print_z, bool print_e) {
|
||||
#define _TMC_GET_REG(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_get_registers(ITEM, print_x, print_y, print_z, print_e); }while(0)
|
||||
void tmc_get_registers(LOGICAL_AXIS_ARGS(bool)) {
|
||||
#define _TMC_GET_REG(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_get_registers(ITEM, LOGICAL_AXIS_ARGS()); }while(0)
|
||||
#define TMC_GET_REG(NAME, TABS) _TMC_GET_REG(STRINGIFY(NAME) TABS, TMC_GET_##NAME)
|
||||
_TMC_GET_REG("\t", TMC_AXIS_CODES);
|
||||
TMC_GET_REG(GCONF, "\t\t");
|
||||
@@ -1165,6 +1211,15 @@
|
||||
#if AXIS_HAS_SPI(Z4)
|
||||
SET_CS_PIN(Z4);
|
||||
#endif
|
||||
#if AXIS_HAS_SPI(I)
|
||||
SET_CS_PIN(I);
|
||||
#endif
|
||||
#if AXIS_HAS_SPI(J)
|
||||
SET_CS_PIN(J);
|
||||
#endif
|
||||
#if AXIS_HAS_SPI(K)
|
||||
SET_CS_PIN(K);
|
||||
#endif
|
||||
#if AXIS_HAS_SPI(E0)
|
||||
SET_CS_PIN(E0);
|
||||
#endif
|
||||
@@ -1214,10 +1269,10 @@ static bool test_connection(TMC &st) {
|
||||
return test_result;
|
||||
}
|
||||
|
||||
void test_tmc_connection(const bool test_x/*=true*/, const bool test_y/*=true*/, const bool test_z/*=true*/, const bool test_e/*=true*/) {
|
||||
void test_tmc_connection(LOGICAL_AXIS_ARGS(const bool)) {
|
||||
uint8_t axis_connection = 0;
|
||||
|
||||
if (test_x) {
|
||||
if (x) {
|
||||
#if AXIS_IS_TMC(X)
|
||||
axis_connection += test_connection(stepperX);
|
||||
#endif
|
||||
@@ -1226,7 +1281,7 @@ void test_tmc_connection(const bool test_x/*=true*/, const bool test_y/*=true*/,
|
||||
#endif
|
||||
}
|
||||
|
||||
if (test_y) {
|
||||
if (TERN0(HAS_Y_AXIS, y)) {
|
||||
#if AXIS_IS_TMC(Y)
|
||||
axis_connection += test_connection(stepperY);
|
||||
#endif
|
||||
@@ -1235,7 +1290,7 @@ void test_tmc_connection(const bool test_x/*=true*/, const bool test_y/*=true*/,
|
||||
#endif
|
||||
}
|
||||
|
||||
if (test_z) {
|
||||
if (TERN0(HAS_Z_AXIS, z)) {
|
||||
#if AXIS_IS_TMC(Z)
|
||||
axis_connection += test_connection(stepperZ);
|
||||
#endif
|
||||
@@ -1250,7 +1305,17 @@ void test_tmc_connection(const bool test_x/*=true*/, const bool test_y/*=true*/,
|
||||
#endif
|
||||
}
|
||||
|
||||
if (test_e) {
|
||||
#if AXIS_IS_TMC(I)
|
||||
if (i) axis_connection += test_connection(stepperI);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(J)
|
||||
if (j) axis_connection += test_connection(stepperJ);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(K)
|
||||
if (k) axis_connection += test_connection(stepperK);
|
||||
#endif
|
||||
|
||||
if (TERN0(HAS_EXTRUDERS, e)) {
|
||||
#if AXIS_IS_TMC(E0)
|
||||
axis_connection += test_connection(stepperE0);
|
||||
#endif
|
||||
|
@@ -335,14 +335,14 @@ void tmc_print_current(TMC &st) {
|
||||
#endif
|
||||
|
||||
void monitor_tmc_drivers();
|
||||
void test_tmc_connection(const bool test_x=true, const bool test_y=true, const bool test_z=true, const bool test_e=true);
|
||||
void test_tmc_connection(LOGICAL_AXIS_DECL(const bool, true));
|
||||
|
||||
#if ENABLED(TMC_DEBUG)
|
||||
#if ENABLED(MONITOR_DRIVER_STATUS)
|
||||
void tmc_set_report_interval(const uint16_t update_interval);
|
||||
#endif
|
||||
void tmc_report_all(const bool print_x=true, const bool print_y=true, const bool print_z=true, const bool print_e=true);
|
||||
void tmc_get_registers(const bool print_x, const bool print_y, const bool print_z, const bool print_e);
|
||||
void tmc_report_all(LOGICAL_AXIS_DECL(const bool, true));
|
||||
void tmc_get_registers(LOGICAL_AXIS_ARGS(const bool));
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -355,7 +355,7 @@ void test_tmc_connection(const bool test_x=true, const bool test_y=true, const b
|
||||
#if USE_SENSORLESS
|
||||
|
||||
// Track enabled status of stealthChop and only re-enable where applicable
|
||||
struct sensorless_t { bool x, y, z, x2, y2, z2, z3, z4; };
|
||||
struct sensorless_t { bool LINEAR_AXIS_ARGS(), x2, y2, z2, z3, z4; };
|
||||
|
||||
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
|
||||
extern millis_t sg_guard_period;
|
||||
|
@@ -91,8 +91,8 @@ void GcodeSuite::G35() {
|
||||
// Disable duplication mode on homing
|
||||
TERN_(HAS_DUPLICATION_MODE, set_duplication_enabled(false));
|
||||
|
||||
// Home all before this procedure
|
||||
home_all_axes();
|
||||
// Home only Z axis when X and Y is trusted, otherwise all axes, if needed before this procedure
|
||||
if (!all_axes_trusted()) process_subcommands_now_P(PSTR("G28Z"));
|
||||
|
||||
bool err_break = false;
|
||||
|
||||
|
@@ -246,7 +246,7 @@ G29_TYPE GcodeSuite::G29() {
|
||||
|
||||
// Send 'N' to force homing before G29 (internal only)
|
||||
if (parser.seen_test('N'))
|
||||
process_subcommands_now_P(TERN(G28_L0_ENSURES_LEVELING_OFF, PSTR("G28L0"), G28_STR));
|
||||
process_subcommands_now_P(TERN(CAN_SET_LEVELING_AFTER_G28, PSTR("G28L0"), G28_STR));
|
||||
|
||||
// Don't allow auto-leveling without homing first
|
||||
if (homing_needed_error()) G29_RETURN(false);
|
||||
@@ -689,7 +689,7 @@ G29_TYPE GcodeSuite::G29() {
|
||||
TERN_(HAS_STATUS_MESSAGE, ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i + 1)));
|
||||
|
||||
// Retain the last probe position
|
||||
abl.probePos = points[i];
|
||||
abl.probePos = xy_pos_t(points[i]);
|
||||
abl.measured_z = faux ? 0.001 * random(-100, 101) : probe.probe_at_point(abl.probePos, raise_after, abl.verbose_level);
|
||||
if (isnan(abl.measured_z)) {
|
||||
set_bed_leveling_enabled(abl.reenable);
|
||||
@@ -795,7 +795,7 @@ G29_TYPE GcodeSuite::G29() {
|
||||
const int ind = abl.indexIntoAB[xx][yy];
|
||||
xyz_float_t tmp = { abl.eqnAMatrix[ind + 0 * abl.abl_points],
|
||||
abl.eqnAMatrix[ind + 1 * abl.abl_points], 0 };
|
||||
planner.bed_level_matrix.apply_rotation_xyz(tmp);
|
||||
planner.bed_level_matrix.apply_rotation_xyz(tmp.x, tmp.y, tmp.z);
|
||||
if (get_min) NOMORE(min_diff, abl.eqnBVector[ind] - tmp.z);
|
||||
const float subval = get_min ? abl.mean : tmp.z + min_diff,
|
||||
diff = abl.eqnBVector[ind] - subval;
|
||||
|
@@ -70,7 +70,7 @@ void GcodeSuite::G29() {
|
||||
return;
|
||||
}
|
||||
|
||||
int8_t ix, iy;
|
||||
int8_t ix, iy = 0;
|
||||
|
||||
switch (state) {
|
||||
case MeshReport:
|
||||
@@ -87,7 +87,8 @@ void GcodeSuite::G29() {
|
||||
mbl.reset();
|
||||
mbl_probe_index = 0;
|
||||
if (!ui.wait_for_move) {
|
||||
queue.inject_P(parser.seen_test('N') ? PSTR("G28" TERN(G28_L0_ENSURES_LEVELING_OFF, "L0", "") "\nG29S2") : PSTR("G29S2"));
|
||||
queue.inject_P(parser.seen_test('N') ? PSTR("G28" TERN(CAN_SET_LEVELING_AFTER_G28, "L0", "") "\nG29S2") : PSTR("G29S2"));
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onMeshLevelingStart());
|
||||
return;
|
||||
}
|
||||
state = MeshNext;
|
||||
@@ -109,6 +110,7 @@ void GcodeSuite::G29() {
|
||||
else {
|
||||
// Save Z for the previous mesh position
|
||||
mbl.set_zigzag_z(mbl_probe_index - 1, current_position.z);
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(ix, iy, current_position.z));
|
||||
SET_SOFT_ENDSTOP_LOOSE(false);
|
||||
}
|
||||
// If there's another point to sample, move there with optional lift.
|
||||
|
@@ -242,12 +242,16 @@ void GcodeSuite::G28() {
|
||||
SET_SOFT_ENDSTOP_LOOSE(false); // Reset a leftover 'loose' motion state
|
||||
|
||||
// Disable the leveling matrix before homing
|
||||
#if HAS_LEVELING
|
||||
const bool leveling_restore_state = parser.boolval('L', TERN(RESTORE_LEVELING_AFTER_G28, planner.leveling_active, ENABLED(ENABLE_LEVELING_AFTER_G28)));
|
||||
IF_ENABLED(PROBE_MANUALLY, g29_in_progress = false); // Cancel the active G29 session
|
||||
set_bed_leveling_enabled(false);
|
||||
#if CAN_SET_LEVELING_AFTER_G28
|
||||
const bool leveling_restore_state = parser.boolval('L', TERN1(RESTORE_LEVELING_AFTER_G28, planner.leveling_active));
|
||||
#endif
|
||||
|
||||
// Cancel any prior G29 session
|
||||
TERN_(PROBE_MANUALLY, g29_in_progress = false);
|
||||
|
||||
// Disable leveling before homing
|
||||
TERN_(HAS_LEVELING, set_bed_leveling_enabled(false));
|
||||
|
||||
// Reset to the XY plane
|
||||
TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
|
||||
|
||||
@@ -321,33 +325,47 @@ void GcodeSuite::G28() {
|
||||
|
||||
#else
|
||||
|
||||
const bool homeZ = parser.seen_test('Z'),
|
||||
needX = homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(X_AXIS))),
|
||||
needY = homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(Y_AXIS))),
|
||||
homeX = needX || parser.seen_test('X'), homeY = needY || parser.seen_test('Y'),
|
||||
home_all = homeX == homeY && homeX == homeZ, // All or None
|
||||
doX = home_all || homeX, doY = home_all || homeY, doZ = home_all || homeZ;
|
||||
#define _UNSAFE(A) (homeZ && TERN0(Z_SAFE_HOMING, axes_should_home(_BV(A##_AXIS))))
|
||||
|
||||
#if ENABLED(HOME_Z_FIRST)
|
||||
|
||||
if (doZ) homeaxis(Z_AXIS);
|
||||
const bool homeZ = TERN0(HAS_Z_AXIS, parser.seen_test('Z')),
|
||||
LINEAR_AXIS_LIST( // Other axes should be homed before Z safe-homing
|
||||
needX = _UNSAFE(X), needY = _UNSAFE(Y), needZ = false, // UNUSED
|
||||
needI = _UNSAFE(I), needJ = _UNSAFE(J), needK = _UNSAFE(K)
|
||||
),
|
||||
LINEAR_AXIS_LIST( // Home each axis if needed or flagged
|
||||
homeX = needX || parser.seen_test('X'),
|
||||
homeY = needY || parser.seen_test('Y'),
|
||||
homeZZ = homeZ,
|
||||
homeI = needI || parser.seen_test(AXIS4_NAME), homeJ = needJ || parser.seen_test(AXIS5_NAME), homeK = needK || parser.seen_test(AXIS6_NAME),
|
||||
),
|
||||
home_all = LINEAR_AXIS_GANG( // Home-all if all or none are flagged
|
||||
homeX == homeX, && homeY == homeX, && homeZ == homeX,
|
||||
&& homeI == homeX, && homeJ == homeX, && homeK == homeX
|
||||
),
|
||||
LINEAR_AXIS_LIST(
|
||||
doX = home_all || homeX, doY = home_all || homeY, doZ = home_all || homeZ,
|
||||
doI = home_all || homeI, doJ = home_all || homeJ, doK = home_all || homeK
|
||||
);
|
||||
|
||||
#if HAS_Z_AXIS
|
||||
UNUSED(needZ); UNUSED(homeZZ);
|
||||
#else
|
||||
constexpr bool doZ = false;
|
||||
#endif
|
||||
|
||||
TERN_(HOME_Z_FIRST, if (doZ) homeaxis(Z_AXIS));
|
||||
|
||||
const float z_homing_height = parser.seenval('R') ? parser.value_linear_units() : Z_HOMING_HEIGHT;
|
||||
|
||||
if (z_homing_height && (doX || doY || TERN0(Z_SAFE_HOMING, doZ))) {
|
||||
if (z_homing_height && (LINEAR_AXIS_GANG(doX, || doY, || TERN0(Z_SAFE_HOMING, doZ), || doI, || doJ, || doK))) {
|
||||
// Raise Z before homing any other axes and z is not already high enough (never lower z)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Raise Z (before homing) by ", z_homing_height);
|
||||
do_z_clearance(z_homing_height);
|
||||
TERN_(BLTOUCH, bltouch.init());
|
||||
}
|
||||
|
||||
#if ENABLED(QUICK_HOME)
|
||||
|
||||
if (doX && doY) quick_home_xy();
|
||||
|
||||
#endif
|
||||
// Diagonal move first if both are homing
|
||||
TERN_(QUICK_HOME, if (doX && doY) quick_home_xy());
|
||||
|
||||
// Home Y (before X)
|
||||
if (ENABLED(HOME_Y_BEFORE_X) && (doY || TERN0(CODEPENDENT_XY_HOMING, doX)))
|
||||
@@ -386,7 +404,7 @@ void GcodeSuite::G28() {
|
||||
TERN_(IMPROVE_HOMING_RELIABILITY, end_slow_homing(slow_homing));
|
||||
|
||||
// Home Z last if homing towards the bed
|
||||
#if DISABLED(HOME_Z_FIRST)
|
||||
#if HAS_Z_AXIS && DISABLED(HOME_Z_FIRST)
|
||||
if (doZ) {
|
||||
#if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
|
||||
stepper.set_all_z_lock(false);
|
||||
@@ -398,6 +416,16 @@ void GcodeSuite::G28() {
|
||||
}
|
||||
#endif
|
||||
|
||||
#if LINEAR_AXES >= 4
|
||||
if (doI) homeaxis(I_AXIS);
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
if (doJ) homeaxis(J_AXIS);
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
if (doK) homeaxis(K_AXIS);
|
||||
#endif
|
||||
|
||||
sync_plan_position();
|
||||
|
||||
#endif
|
||||
@@ -441,12 +469,10 @@ void GcodeSuite::G28() {
|
||||
// Clear endstop state for polled stallGuard endstops
|
||||
TERN_(SPI_ENDSTOPS, endstops.clear_endstop_state());
|
||||
|
||||
#if BOTH(DELTA, DELTA_HOME_TO_SAFE_ZONE)
|
||||
// move to a height where we can use the full xy-area
|
||||
do_blocking_move_to_z(delta_clip_start_height);
|
||||
#endif
|
||||
// Move to a height where we can use the full xy-area
|
||||
TERN_(DELTA_HOME_TO_SAFE_ZONE, do_blocking_move_to_z(delta_clip_start_height));
|
||||
|
||||
TERN_(HAS_LEVELING, set_bed_leveling_enabled(leveling_restore_state));
|
||||
TERN_(CAN_SET_LEVELING_AFTER_G28, if (leveling_restore_state) set_bed_leveling_enabled());
|
||||
|
||||
restore_feedrate_and_scaling();
|
||||
|
||||
@@ -469,7 +495,16 @@ void GcodeSuite::G28() {
|
||||
#if HAS_CURRENT_HOME(Y2)
|
||||
stepperY2.rms_current(tmc_save_current_Y2);
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_CURRENT_HOME(I)
|
||||
stepperI.rms_current(tmc_save_current_I);
|
||||
#endif
|
||||
#if HAS_CURRENT_HOME(J)
|
||||
stepperJ.rms_current(tmc_save_current_J);
|
||||
#endif
|
||||
#if HAS_CURRENT_HOME(K)
|
||||
stepperK.rms_current(tmc_save_current_K);
|
||||
#endif
|
||||
#endif // HAS_HOMING_CURRENT
|
||||
|
||||
ui.refresh();
|
||||
|
||||
@@ -487,11 +522,13 @@ void GcodeSuite::G28() {
|
||||
// Set L6470 absolute position registers to counts
|
||||
// constexpr *might* move this to PROGMEM.
|
||||
// If not, this will need a PROGMEM directive and an accessor.
|
||||
#define _EN_ITEM(N) , E_AXIS
|
||||
static constexpr AxisEnum L64XX_axis_xref[MAX_L64XX] = {
|
||||
X_AXIS, Y_AXIS, Z_AXIS,
|
||||
X_AXIS, Y_AXIS, Z_AXIS, Z_AXIS,
|
||||
E_AXIS, E_AXIS, E_AXIS, E_AXIS, E_AXIS, E_AXIS
|
||||
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS),
|
||||
X_AXIS, Y_AXIS, Z_AXIS, Z_AXIS, Z_AXIS
|
||||
REPEAT(E_STEPPERS, _EN_ITEM)
|
||||
};
|
||||
#undef _EN_ITEM
|
||||
for (uint8_t j = 1; j <= L64XX::chain[0]; j++) {
|
||||
const uint8_t cv = L64XX::chain[j];
|
||||
L64xxManager.set_param((L64XX_axis_t)cv, L6470_ABS_POS, stepper.position(L64XX_axis_xref[cv]));
|
||||
|
@@ -39,7 +39,7 @@
|
||||
void GcodeSuite::G34() {
|
||||
|
||||
// Home before the alignment procedure
|
||||
if (!all_axes_trusted()) home_all_axes();
|
||||
home_if_needed();
|
||||
|
||||
TERN_(HAS_LEVELING, TEMPORARY_BED_LEVELING_STATE(false));
|
||||
|
||||
|
@@ -48,6 +48,13 @@
|
||||
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
#include "../../core/debug_out.h"
|
||||
|
||||
#if NUM_Z_STEPPER_DRIVERS >= 3
|
||||
#define TRIPLE_Z 1
|
||||
#if NUM_Z_STEPPER_DRIVERS >= 4
|
||||
#define QUAD_Z 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* G34: Z-Stepper automatic alignment
|
||||
*
|
||||
@@ -82,9 +89,9 @@ void GcodeSuite::G34() {
|
||||
switch (parser.intval('Z')) {
|
||||
case 1: stepper.set_z1_lock(state); break;
|
||||
case 2: stepper.set_z2_lock(state); break;
|
||||
#if NUM_Z_STEPPER_DRIVERS >= 3
|
||||
#if TRIPLE_Z
|
||||
case 3: stepper.set_z3_lock(state); break;
|
||||
#if NUM_Z_STEPPER_DRIVERS >= 4
|
||||
#if QUAD_Z
|
||||
case 4: stepper.set_z4_lock(state); break;
|
||||
#endif
|
||||
#endif
|
||||
@@ -99,13 +106,6 @@ void GcodeSuite::G34() {
|
||||
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
|
||||
do { // break out on error
|
||||
|
||||
#if NUM_Z_STEPPER_DRIVERS == 4
|
||||
SERIAL_ECHOLNPGM("Alignment for 4 steppers is Experimental!");
|
||||
#elif NUM_Z_STEPPER_DRIVERS > 4
|
||||
SERIAL_ECHOLNPGM("Alignment not supported for over 4 steppers");
|
||||
break;
|
||||
#endif
|
||||
|
||||
const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS);
|
||||
if (!WITHIN(z_auto_align_iterations, 1, 30)) {
|
||||
SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30).");
|
||||
@@ -157,19 +157,17 @@ void GcodeSuite::G34() {
|
||||
const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j];
|
||||
return HYPOT2(diff.x, diff.y);
|
||||
};
|
||||
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(
|
||||
#if NUM_Z_STEPPER_DRIVERS == 3
|
||||
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 0))
|
||||
#elif NUM_Z_STEPPER_DRIVERS == 4
|
||||
_MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 3),
|
||||
magnitude2(3, 0), magnitude2(0, 2), magnitude2(1, 3))
|
||||
#else
|
||||
magnitude2(0, 1)
|
||||
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(_MAX(0, magnitude2(0, 1)
|
||||
#if TRIPLE_Z
|
||||
, magnitude2(2, 1), magnitude2(2, 0)
|
||||
#if QUAD_Z
|
||||
, magnitude2(3, 2), magnitude2(3, 1), magnitude2(3, 0)
|
||||
#endif
|
||||
#endif
|
||||
);
|
||||
));
|
||||
|
||||
// Home before the alignment procedure
|
||||
if (!all_axes_trusted()) home_all_axes();
|
||||
home_if_needed();
|
||||
|
||||
// Move the Z coordinate realm towards the positive - dirty trick
|
||||
current_position.z += z_probe * 0.5f;
|
||||
@@ -178,7 +176,7 @@ void GcodeSuite::G34() {
|
||||
// This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration.
|
||||
|
||||
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
||||
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f, 10000.0f);
|
||||
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N_1(NUM_Z_STEPPER_DRIVERS, 10000.0f);
|
||||
#else
|
||||
float last_z_align_level_indicator = 10000.0f;
|
||||
#endif
|
||||
@@ -280,39 +278,52 @@ void GcodeSuite::G34() {
|
||||
z_measured_min = _MIN(z_measured_min, z_measured[i]);
|
||||
}
|
||||
|
||||
SERIAL_ECHOLNPAIR("CALCULATED STEPPER POSITIONS: Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2]);
|
||||
SERIAL_ECHOLNPAIR(
|
||||
LIST_N(DOUBLE(NUM_Z_STEPPER_DRIVERS),
|
||||
"Calculated Z1=", z_measured[0],
|
||||
" Z2=", z_measured[1],
|
||||
" Z3=", z_measured[2],
|
||||
" Z4=", z_measured[3]
|
||||
)
|
||||
);
|
||||
#endif
|
||||
|
||||
SERIAL_ECHOLNPAIR("\n"
|
||||
"DIFFERENCE Z1-Z2=", ABS(z_measured[0] - z_measured[1])
|
||||
#if NUM_Z_STEPPER_DRIVERS == 3
|
||||
, " Z2-Z3=", ABS(z_measured[1] - z_measured[2])
|
||||
"Z2-Z1=", ABS(z_measured[1] - z_measured[0])
|
||||
#if TRIPLE_Z
|
||||
, " Z3-Z2=", ABS(z_measured[2] - z_measured[1])
|
||||
, " Z3-Z1=", ABS(z_measured[2] - z_measured[0])
|
||||
#if QUAD_Z
|
||||
, " Z4-Z3=", ABS(z_measured[3] - z_measured[2])
|
||||
, " Z4-Z2=", ABS(z_measured[3] - z_measured[1])
|
||||
, " Z4-Z1=", ABS(z_measured[3] - z_measured[0])
|
||||
#endif
|
||||
#endif
|
||||
);
|
||||
|
||||
#if HAS_STATUS_MESSAGE
|
||||
char fstr1[10];
|
||||
#if NUM_Z_STEPPER_DRIVERS == 2
|
||||
char msg[6 + (6 + 5) * 1 + 1];
|
||||
#else
|
||||
char msg[6 + (6 + 5) * 3 + 1], fstr2[10], fstr3[10];
|
||||
#endif
|
||||
sprintf_P(msg,
|
||||
PSTR("Diffs Z1-Z2=%s"
|
||||
#if NUM_Z_STEPPER_DRIVERS == 3
|
||||
" Z2-Z3=%s"
|
||||
" Z3-Z1=%s"
|
||||
char msg[6 + (6 + 5) * NUM_Z_STEPPER_DRIVERS + 1]
|
||||
#if TRIPLE_Z
|
||||
, fstr2[10], fstr3[10]
|
||||
#if QUAD_Z
|
||||
, fstr4[10], fstr5[10], fstr6[10]
|
||||
#endif
|
||||
), dtostrf(ABS(z_measured[0] - z_measured[1]), 1, 3, fstr1)
|
||||
#if NUM_Z_STEPPER_DRIVERS == 3
|
||||
, dtostrf(ABS(z_measured[1] - z_measured[2]), 1, 3, fstr2)
|
||||
, dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3)
|
||||
#endif
|
||||
;
|
||||
sprintf_P(msg,
|
||||
PSTR("1:2=%s" TERN_(TRIPLE_Z, " 3-2=%s 3-1=%s") TERN_(QUAD_Z, " 4-3=%s 4-2=%s 4-1=%s")),
|
||||
dtostrf(ABS(z_measured[1] - z_measured[0]), 1, 3, fstr1)
|
||||
OPTARG(TRIPLE_Z, dtostrf(ABS(z_measured[2] - z_measured[1]), 1, 3, fstr2))
|
||||
OPTARG(TRIPLE_Z, dtostrf(ABS(z_measured[2] - z_measured[0]), 1, 3, fstr3))
|
||||
OPTARG(QUAD_Z, dtostrf(ABS(z_measured[3] - z_measured[2]), 1, 3, fstr4))
|
||||
OPTARG(QUAD_Z, dtostrf(ABS(z_measured[3] - z_measured[1]), 1, 3, fstr5))
|
||||
OPTARG(QUAD_Z, dtostrf(ABS(z_measured[3] - z_measured[0]), 1, 3, fstr6))
|
||||
);
|
||||
ui.set_status(msg);
|
||||
#endif
|
||||
|
||||
auto decreasing_accuracy = [](const_float_t v1, const_float_t v2){
|
||||
auto decreasing_accuracy = [](const_float_t v1, const_float_t v2) {
|
||||
if (v1 < v2 * 0.7f) {
|
||||
SERIAL_ECHOLNPGM("Decreasing Accuracy Detected.");
|
||||
LCD_MESSAGEPGM(MSG_DECREASING_ACCURACY);
|
||||
@@ -437,7 +448,7 @@ void GcodeSuite::G34() {
|
||||
#endif
|
||||
|
||||
}while(0);
|
||||
#endif
|
||||
#endif // Z_STEPPER_AUTO_ALIGN
|
||||
}
|
||||
|
||||
#endif // Z_MULTI_ENDSTOPS || Z_STEPPER_AUTO_ALIGN
|
||||
|
@@ -73,11 +73,23 @@
|
||||
#if BOTH(CALIBRATION_MEASURE_LEFT, CALIBRATION_MEASURE_RIGHT)
|
||||
#define HAS_X_CENTER 1
|
||||
#endif
|
||||
#if BOTH(CALIBRATION_MEASURE_FRONT, CALIBRATION_MEASURE_BACK)
|
||||
#if HAS_Y_AXIS && BOTH(CALIBRATION_MEASURE_FRONT, CALIBRATION_MEASURE_BACK)
|
||||
#define HAS_Y_CENTER 1
|
||||
#endif
|
||||
#if LINEAR_AXES >= 4 && BOTH(CALIBRATION_MEASURE_IMIN, CALIBRATION_MEASURE_IMAX)
|
||||
#define HAS_I_CENTER 1
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5 && BOTH(CALIBRATION_MEASURE_JMIN, CALIBRATION_MEASURE_JMAX)
|
||||
#define HAS_J_CENTER 1
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6 && BOTH(CALIBRATION_MEASURE_KMIN, CALIBRATION_MEASURE_KMAX)
|
||||
#define HAS_K_CENTER 1
|
||||
#endif
|
||||
|
||||
enum side_t : uint8_t { TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES };
|
||||
enum side_t : uint8_t {
|
||||
TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES,
|
||||
LIST_N(DOUBLE(SUB3(LINEAR_AXES)), IMINIMUM, IMAXIMUM, JMINIMUM, JMAXIMUM, KMINIMUM, KMAXIMUM)
|
||||
};
|
||||
|
||||
static constexpr xyz_pos_t true_center CALIBRATION_OBJECT_CENTER;
|
||||
static constexpr xyz_float_t dimensions CALIBRATION_OBJECT_DIMENSIONS;
|
||||
@@ -105,7 +117,7 @@ struct measurements_t {
|
||||
#endif
|
||||
|
||||
inline void calibration_move() {
|
||||
do_blocking_move_to(current_position, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
|
||||
do_blocking_move_to((xyz_pos_t)current_position, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -174,7 +186,7 @@ float measuring_movement(const AxisEnum axis, const int dir, const bool stop_sta
|
||||
destination = current_position;
|
||||
for (float travel = 0; travel < limit; travel += step) {
|
||||
destination[axis] += dir * step;
|
||||
do_blocking_move_to(destination, mms);
|
||||
do_blocking_move_to((xyz_pos_t)destination, mms);
|
||||
planner.synchronize();
|
||||
if (read_calibration_pin() == stop_state) break;
|
||||
}
|
||||
@@ -209,7 +221,7 @@ inline float measure(const AxisEnum axis, const int dir, const bool stop_state,
|
||||
// Move back to the starting position
|
||||
destination = current_position;
|
||||
destination[axis] = start_pos;
|
||||
do_blocking_move_to(destination, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
|
||||
do_blocking_move_to((xyz_pos_t)destination, MMM_TO_MMS(CALIBRATION_FEEDRATE_TRAVEL));
|
||||
return measured_pos;
|
||||
}
|
||||
|
||||
@@ -230,7 +242,15 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
|
||||
park_above_object(m, uncertainty);
|
||||
|
||||
switch (side) {
|
||||
#if AXIS_CAN_CALIBRATE(Z)
|
||||
#if AXIS_CAN_CALIBRATE(X)
|
||||
case RIGHT: dir = -1;
|
||||
case LEFT: axis = X_AXIS; break;
|
||||
#endif
|
||||
#if LINEAR_AXES >= 2 && AXIS_CAN_CALIBRATE(Y)
|
||||
case BACK: dir = -1;
|
||||
case FRONT: axis = Y_AXIS; break;
|
||||
#endif
|
||||
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
|
||||
case TOP: {
|
||||
const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
|
||||
m.obj_center.z = measurement - dimensions.z / 2;
|
||||
@@ -238,13 +258,17 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if AXIS_CAN_CALIBRATE(X)
|
||||
case RIGHT: dir = -1;
|
||||
case LEFT: axis = X_AXIS; break;
|
||||
#if LINEAR_AXES >= 4 && AXIS_CAN_CALIBRATE(I)
|
||||
case IMINIMUM: dir = -1;
|
||||
case IMAXIMUM: axis = I_AXIS; break;
|
||||
#endif
|
||||
#if AXIS_CAN_CALIBRATE(Y)
|
||||
case BACK: dir = -1;
|
||||
case FRONT: axis = Y_AXIS; break;
|
||||
#if LINEAR_AXES >= 5 && AXIS_CAN_CALIBRATE(J)
|
||||
case JMINIMUM: dir = -1;
|
||||
case JMAXIMUM: axis = J_AXIS; break;
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6 && AXIS_CAN_CALIBRATE(K)
|
||||
case KMINIMUM: dir = -1;
|
||||
case KMAXIMUM: axis = K_AXIS; break;
|
||||
#endif
|
||||
default: return;
|
||||
}
|
||||
@@ -289,14 +313,23 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
probe_side(m, uncertainty, TOP);
|
||||
#endif
|
||||
|
||||
TERN_(CALIBRATION_MEASURE_RIGHT, probe_side(m, uncertainty, RIGHT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_FRONT, probe_side(m, uncertainty, FRONT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_LEFT, probe_side(m, uncertainty, LEFT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_BACK, probe_side(m, uncertainty, BACK, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_RIGHT, probe_side(m, uncertainty, RIGHT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_FRONT, probe_side(m, uncertainty, FRONT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_LEFT, probe_side(m, uncertainty, LEFT, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_BACK, probe_side(m, uncertainty, BACK, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_IMIN, probe_side(m, uncertainty, IMINIMUM, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_IMAX, probe_side(m, uncertainty, IMAXIMUM, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_JMIN, probe_side(m, uncertainty, JMINIMUM, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_JMAX, probe_side(m, uncertainty, JMAXIMUM, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_KMIN, probe_side(m, uncertainty, KMINIMUM, probe_top_at_edge));
|
||||
TERN_(CALIBRATION_MEASURE_KMAX, probe_side(m, uncertainty, KMAXIMUM, probe_top_at_edge));
|
||||
|
||||
// Compute the measured center of the calibration object.
|
||||
TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
|
||||
TERN_(HAS_Y_CENTER, m.obj_center.y = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2);
|
||||
TERN_(HAS_X_CENTER, m.obj_center.x = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2);
|
||||
TERN_(HAS_Y_CENTER, m.obj_center.y = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2);
|
||||
TERN_(HAS_I_CENTER, m.obj_center.i = (m.obj_side[IMINIMUM] + m.obj_side[IMAXIMUM]) / 2);
|
||||
TERN_(HAS_J_CENTER, m.obj_center.j = (m.obj_side[JMINIMUM] + m.obj_side[JMAXIMUM]) / 2);
|
||||
TERN_(HAS_K_CENTER, m.obj_center.k = (m.obj_side[KMINIMUM] + m.obj_side[KMAXIMUM]) / 2);
|
||||
|
||||
// Compute the outside diameter of the nozzle at the height
|
||||
// at which it makes contact with the calibration object
|
||||
@@ -307,15 +340,20 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
|
||||
// The difference between the known and the measured location
|
||||
// of the calibration object is the positional error
|
||||
m.pos_error.x = TERN0(HAS_X_CENTER, true_center.x - m.obj_center.x);
|
||||
m.pos_error.y = TERN0(HAS_Y_CENTER, true_center.y - m.obj_center.y);
|
||||
m.pos_error.z = true_center.z - m.obj_center.z;
|
||||
LINEAR_AXIS_CODE(
|
||||
m.pos_error.x = TERN0(HAS_X_CENTER, true_center.x - m.obj_center.x),
|
||||
m.pos_error.y = TERN0(HAS_Y_CENTER, true_center.y - m.obj_center.y),
|
||||
m.pos_error.z = true_center.z - m.obj_center.z,
|
||||
m.pos_error.i = TERN0(HAS_I_CENTER, true_center.i - m.obj_center.i),
|
||||
m.pos_error.j = TERN0(HAS_J_CENTER, true_center.j - m.obj_center.j),
|
||||
m.pos_error.k = TERN0(HAS_K_CENTER, true_center.k - m.obj_center.k)
|
||||
);
|
||||
}
|
||||
|
||||
#if ENABLED(CALIBRATION_REPORTING)
|
||||
inline void report_measured_faces(const measurements_t &m) {
|
||||
SERIAL_ECHOLNPGM("Sides:");
|
||||
#if AXIS_CAN_CALIBRATE(Z)
|
||||
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
|
||||
SERIAL_ECHOLNPAIR(" Top: ", m.obj_side[TOP]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_LEFT)
|
||||
@@ -324,11 +362,37 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
#if ENABLED(CALIBRATION_MEASURE_RIGHT)
|
||||
SERIAL_ECHOLNPAIR(" Right: ", m.obj_side[RIGHT]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_FRONT)
|
||||
SERIAL_ECHOLNPAIR(" Front: ", m.obj_side[FRONT]);
|
||||
#if HAS_Y_AXIS
|
||||
#if ENABLED(CALIBRATION_MEASURE_FRONT)
|
||||
SERIAL_ECHOLNPAIR(" Front: ", m.obj_side[FRONT]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_BACK)
|
||||
SERIAL_ECHOLNPAIR(" Back: ", m.obj_side[BACK]);
|
||||
#endif
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_BACK)
|
||||
SERIAL_ECHOLNPAIR(" Back: ", m.obj_side[BACK]);
|
||||
#if LINEAR_AXES >= 4
|
||||
#if ENABLED(CALIBRATION_MEASURE_IMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_I_MIN ": ", m.obj_side[IMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_IMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_I_MAX ": ", m.obj_side[IMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
#if ENABLED(CALIBRATION_MEASURE_JMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_J_MIN ": ", m.obj_side[JMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_JMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_J_MAX ": ", m.obj_side[JMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
#if ENABLED(CALIBRATION_MEASURE_KMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_K_MIN ": ", m.obj_side[KMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_KMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_K_MAX ": ", m.obj_side[KMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
}
|
||||
@@ -342,6 +406,15 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.obj_center.y);
|
||||
#endif
|
||||
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.obj_center.z);
|
||||
#if HAS_I_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_I_STR, m.obj_center.i);
|
||||
#endif
|
||||
#if HAS_J_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_J_STR, m.obj_center.j);
|
||||
#endif
|
||||
#if HAS_K_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_K_STR, m.obj_center.k);
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
@@ -355,7 +428,7 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
SERIAL_ECHOLNPAIR(" Right: ", m.backlash[RIGHT]);
|
||||
#endif
|
||||
#endif
|
||||
#if AXIS_CAN_CALIBRATE(Y)
|
||||
#if HAS_Y_AXIS && AXIS_CAN_CALIBRATE(Y)
|
||||
#if ENABLED(CALIBRATION_MEASURE_FRONT)
|
||||
SERIAL_ECHOLNPAIR(" Front: ", m.backlash[FRONT]);
|
||||
#endif
|
||||
@@ -363,9 +436,33 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
SERIAL_ECHOLNPAIR(" Back: ", m.backlash[BACK]);
|
||||
#endif
|
||||
#endif
|
||||
#if AXIS_CAN_CALIBRATE(Z)
|
||||
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
|
||||
SERIAL_ECHOLNPAIR(" Top: ", m.backlash[TOP]);
|
||||
#endif
|
||||
#if LINEAR_AXES >= 4 && AXIS_CAN_CALIBRATE(I)
|
||||
#if ENABLED(CALIBRATION_MEASURE_IMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_I_MIN ": ", m.backlash[IMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_IMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_I_MAX ": ", m.backlash[IMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5 && AXIS_CAN_CALIBRATE(J)
|
||||
#if ENABLED(CALIBRATION_MEASURE_JMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_J_MIN ": ", m.backlash[JMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_JMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_J_MAX ": ", m.backlash[JMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6 && AXIS_CAN_CALIBRATE(K)
|
||||
#if ENABLED(CALIBRATION_MEASURE_KMIN)
|
||||
SERIAL_ECHOLNPAIR(" " STR_K_MIN ": ", m.backlash[KMINIMUM]);
|
||||
#endif
|
||||
#if ENABLED(CALIBRATION_MEASURE_KMAX)
|
||||
SERIAL_ECHOLNPAIR(" " STR_K_MAX ": ", m.backlash[KMAXIMUM]);
|
||||
#endif
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
@@ -373,29 +470,37 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
|
||||
SERIAL_CHAR('T');
|
||||
SERIAL_ECHO(active_extruder);
|
||||
SERIAL_ECHOLNPGM(" Positional Error:");
|
||||
#if HAS_X_CENTER
|
||||
#if HAS_X_CENTER && AXIS_CAN_CALIBRATE(X)
|
||||
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.pos_error.x);
|
||||
#endif
|
||||
#if HAS_Y_CENTER
|
||||
#if HAS_Y_CENTER && AXIS_CAN_CALIBRATE(Y)
|
||||
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.pos_error.y);
|
||||
#endif
|
||||
if (AXIS_CAN_CALIBRATE(Z)) SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
|
||||
#if HAS_Z_AXIS && AXIS_CAN_CALIBRATE(Z)
|
||||
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
|
||||
#endif
|
||||
#if HAS_I_CENTER && AXIS_CAN_CALIBRATE(I)
|
||||
SERIAL_ECHOLNPAIR_P(SP_I_STR, m.pos_error.i);
|
||||
#endif
|
||||
#if HAS_J_CENTER && AXIS_CAN_CALIBRATE(J)
|
||||
SERIAL_ECHOLNPAIR_P(SP_J_STR, m.pos_error.j);
|
||||
#endif
|
||||
#if HAS_K_CENTER && AXIS_CAN_CALIBRATE(K)
|
||||
SERIAL_ECHOLNPAIR_P(SP_Z_STR, m.pos_error.z);
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
inline void report_measured_nozzle_dimensions(const measurements_t &m) {
|
||||
SERIAL_ECHOLNPGM("Nozzle Tip Outer Dimensions:");
|
||||
#if HAS_X_CENTER || HAS_Y_CENTER
|
||||
#if HAS_X_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.nozzle_outer_dimension.x);
|
||||
#endif
|
||||
#if HAS_Y_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.nozzle_outer_dimension.y);
|
||||
#endif
|
||||
#else
|
||||
UNUSED(m);
|
||||
#if HAS_X_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_X_STR, m.nozzle_outer_dimension.x);
|
||||
#endif
|
||||
#if HAS_Y_CENTER
|
||||
SERIAL_ECHOLNPAIR_P(SP_Y_STR, m.nozzle_outer_dimension.y);
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
UNUSED(m);
|
||||
}
|
||||
|
||||
#if HAS_HOTEND_OFFSET
|
||||
@@ -444,8 +549,33 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
|
||||
backlash.distance_mm.y = m.backlash[BACK];
|
||||
#endif
|
||||
|
||||
if (AXIS_CAN_CALIBRATE(Z)) backlash.distance_mm.z = m.backlash[TOP];
|
||||
#endif
|
||||
TERN_(HAS_Z_AXIS, if (AXIS_CAN_CALIBRATE(Z)) backlash.distance_mm.z = m.backlash[TOP]);
|
||||
|
||||
#if HAS_I_CENTER
|
||||
backlash.distance_mm.i = (m.backlash[IMINIMUM] + m.backlash[IMAXIMUM]) / 2;
|
||||
#elif ENABLED(CALIBRATION_MEASURE_IMIN)
|
||||
backlash.distance_mm.i = m.backlash[IMINIMUM];
|
||||
#elif ENABLED(CALIBRATION_MEASURE_IMAX)
|
||||
backlash.distance_mm.i = m.backlash[IMAXIMUM];
|
||||
#endif
|
||||
|
||||
#if HAS_J_CENTER
|
||||
backlash.distance_mm.j = (m.backlash[JMINIMUM] + m.backlash[JMAXIMUM]) / 2;
|
||||
#elif ENABLED(CALIBRATION_MEASURE_JMIN)
|
||||
backlash.distance_mm.j = m.backlash[JMINIMUM];
|
||||
#elif ENABLED(CALIBRATION_MEASURE_JMAX)
|
||||
backlash.distance_mm.j = m.backlash[JMAXIMUM];
|
||||
#endif
|
||||
|
||||
#if HAS_K_CENTER
|
||||
backlash.distance_mm.k = (m.backlash[KMINIMUM] + m.backlash[KMAXIMUM]) / 2;
|
||||
#elif ENABLED(CALIBRATION_MEASURE_KMIN)
|
||||
backlash.distance_mm.k = m.backlash[KMINIMUM];
|
||||
#elif ENABLED(CALIBRATION_MEASURE_KMAX)
|
||||
backlash.distance_mm.k = m.backlash[KMAXIMUM];
|
||||
#endif
|
||||
|
||||
#endif // BACKLASH_GCODE
|
||||
}
|
||||
|
||||
#if ENABLED(BACKLASH_GCODE)
|
||||
@@ -455,7 +585,10 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
|
||||
// New scope for TEMPORARY_BACKLASH_CORRECTION
|
||||
TEMPORARY_BACKLASH_CORRECTION(all_on);
|
||||
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
|
||||
const xyz_float_t move = { AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3 };
|
||||
const xyz_float_t move = LINEAR_AXIS_ARRAY(
|
||||
AXIS_CAN_CALIBRATE(X) * 3, AXIS_CAN_CALIBRATE(Y) * 3, AXIS_CAN_CALIBRATE(Z) * 3,
|
||||
AXIS_CAN_CALIBRATE(I) * 3, AXIS_CAN_CALIBRATE(J) * 3, AXIS_CAN_CALIBRATE(K) * 3
|
||||
);
|
||||
current_position += move; calibration_move();
|
||||
current_position -= move; calibration_move();
|
||||
}
|
||||
@@ -483,11 +616,7 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
|
||||
TEMPORARY_BACKLASH_CORRECTION(all_on);
|
||||
TEMPORARY_BACKLASH_SMOOTHING(0.0f);
|
||||
|
||||
#if HAS_MULTI_HOTEND
|
||||
set_nozzle(m, extruder);
|
||||
#else
|
||||
UNUSED(extruder);
|
||||
#endif
|
||||
TERN(HAS_MULTI_HOTEND, set_nozzle(m, extruder), UNUSED(extruder));
|
||||
|
||||
probe_sides(m, uncertainty);
|
||||
|
||||
@@ -506,6 +635,10 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
|
||||
if (ENABLED(HAS_Y_CENTER) && AXIS_CAN_CALIBRATE(Y)) update_measurements(m, Y_AXIS);
|
||||
if (AXIS_CAN_CALIBRATE(Z)) update_measurements(m, Z_AXIS);
|
||||
|
||||
TERN_(HAS_I_CENTER, update_measurements(m, I_AXIS));
|
||||
TERN_(HAS_J_CENTER, update_measurements(m, J_AXIS));
|
||||
TERN_(HAS_K_CENTER, update_measurements(m, K_AXIS));
|
||||
|
||||
sync_plan_position();
|
||||
}
|
||||
|
||||
|
@@ -48,10 +48,15 @@ void GcodeSuite::M425() {
|
||||
|
||||
auto axis_can_calibrate = [](const uint8_t a) {
|
||||
switch (a) {
|
||||
default:
|
||||
case X_AXIS: return AXIS_CAN_CALIBRATE(X);
|
||||
case Y_AXIS: return AXIS_CAN_CALIBRATE(Y);
|
||||
case Z_AXIS: return AXIS_CAN_CALIBRATE(Z);
|
||||
default: return false;
|
||||
LINEAR_AXIS_CODE(
|
||||
case X_AXIS: return AXIS_CAN_CALIBRATE(X),
|
||||
case Y_AXIS: return AXIS_CAN_CALIBRATE(Y),
|
||||
case Z_AXIS: return AXIS_CAN_CALIBRATE(Z),
|
||||
case I_AXIS: return AXIS_CAN_CALIBRATE(I),
|
||||
case J_AXIS: return AXIS_CAN_CALIBRATE(J),
|
||||
case K_AXIS: return AXIS_CAN_CALIBRATE(K),
|
||||
);
|
||||
}
|
||||
};
|
||||
|
||||
|
@@ -88,7 +88,7 @@ void GcodeSuite::M201() {
|
||||
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (parser.seenval(axis_codes[i])) {
|
||||
const uint8_t a = (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i);
|
||||
const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i);
|
||||
planner.set_max_acceleration(a, parser.value_axis_units((AxisEnum)a));
|
||||
}
|
||||
}
|
||||
@@ -106,7 +106,7 @@ void GcodeSuite::M203() {
|
||||
|
||||
LOOP_LOGICAL_AXES(i)
|
||||
if (parser.seenval(axis_codes[i])) {
|
||||
const uint8_t a = (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i);
|
||||
const uint8_t a = TERN(HAS_EXTRUDERS, (i == E_AXIS ? uint8_t(E_AXIS_N(target_extruder)) : i), i);
|
||||
planner.set_max_feedrate(a, parser.value_axis_units((AxisEnum)a));
|
||||
}
|
||||
}
|
||||
@@ -154,6 +154,9 @@ void GcodeSuite::M205() {
|
||||
if (parser.seenval('S')) planner.settings.min_feedrate_mm_s = parser.value_linear_units();
|
||||
if (parser.seenval('T')) planner.settings.min_travel_feedrate_mm_s = parser.value_linear_units();
|
||||
#if HAS_JUNCTION_DEVIATION
|
||||
#if HAS_CLASSIC_JERK && (AXIS4_NAME == 'J' || AXIS5_NAME == 'J' || AXIS6_NAME == 'J')
|
||||
#error "Can't set_max_jerk for 'J' axis because 'J' is used for Junction Deviation."
|
||||
#endif
|
||||
if (parser.seenval('J')) {
|
||||
const float junc_dev = parser.value_linear_units();
|
||||
if (WITHIN(junc_dev, 0.01f, 0.3f)) {
|
||||
@@ -165,17 +168,19 @@ void GcodeSuite::M205() {
|
||||
}
|
||||
#endif
|
||||
#if HAS_CLASSIC_JERK
|
||||
if (parser.seenval('X')) planner.set_max_jerk(X_AXIS, parser.value_linear_units());
|
||||
if (parser.seenval('Y')) planner.set_max_jerk(Y_AXIS, parser.value_linear_units());
|
||||
if (parser.seenval('Z')) {
|
||||
planner.set_max_jerk(Z_AXIS, parser.value_linear_units());
|
||||
#if HAS_MESH && DISABLED(LIMITED_JERK_EDITING)
|
||||
if (planner.max_jerk.z <= 0.1f)
|
||||
SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");
|
||||
#endif
|
||||
}
|
||||
#if HAS_CLASSIC_E_JERK
|
||||
if (parser.seenval('E')) planner.set_max_jerk(E_AXIS, parser.value_linear_units());
|
||||
bool seenZ = false;
|
||||
LOGICAL_AXIS_CODE(
|
||||
if (parser.seenval('E')) planner.set_max_jerk(E_AXIS, parser.value_linear_units()),
|
||||
if (parser.seenval('X')) planner.set_max_jerk(X_AXIS, parser.value_linear_units()),
|
||||
if (parser.seenval('Y')) planner.set_max_jerk(Y_AXIS, parser.value_linear_units()),
|
||||
if ((seenZ = parser.seenval('Z'))) planner.set_max_jerk(Z_AXIS, parser.value_linear_units()),
|
||||
if (parser.seenval(AXIS4_NAME)) planner.set_max_jerk(I_AXIS, parser.value_linear_units()),
|
||||
if (parser.seenval(AXIS5_NAME)) planner.set_max_jerk(J_AXIS, parser.value_linear_units()),
|
||||
if (parser.seenval(AXIS6_NAME)) planner.set_max_jerk(K_AXIS, parser.value_linear_units())
|
||||
);
|
||||
#if HAS_MESH && DISABLED(LIMITED_JERK_EDITING)
|
||||
if (seenZ && planner.max_jerk.z <= 0.1f)
|
||||
SERIAL_ECHOLNPGM("WARNING! Low Z Jerk may lead to unwanted pauses.");
|
||||
#endif
|
||||
#endif
|
||||
#endif // HAS_CLASSIC_JERK
|
||||
}
|
||||
|
@@ -25,10 +25,15 @@
|
||||
|
||||
void report_M92(const bool echo=true, const int8_t e=-1) {
|
||||
if (echo) SERIAL_ECHO_START(); else SERIAL_CHAR(' ');
|
||||
SERIAL_ECHOPAIR_P(PSTR(" M92 X"), LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]),
|
||||
SP_Y_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]),
|
||||
SP_Z_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]));
|
||||
#if DISABLED(DISTINCT_E_FACTORS)
|
||||
SERIAL_ECHOPAIR_P(LIST_N(DOUBLE(LINEAR_AXES),
|
||||
PSTR(" M92 X"), LINEAR_UNIT(planner.settings.axis_steps_per_mm[X_AXIS]),
|
||||
SP_Y_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Y_AXIS]),
|
||||
SP_Z_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[Z_AXIS]),
|
||||
SP_I_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[I_AXIS]),
|
||||
SP_J_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[J_AXIS]),
|
||||
SP_K_STR, LINEAR_UNIT(planner.settings.axis_steps_per_mm[K_AXIS]))
|
||||
);
|
||||
#if HAS_EXTRUDERS && DISABLED(DISTINCT_E_FACTORS)
|
||||
SERIAL_ECHOPAIR_P(SP_E_STR, VOLUMETRIC_UNIT(planner.settings.axis_steps_per_mm[E_AXIS]));
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
@@ -64,25 +69,28 @@ void GcodeSuite::M92() {
|
||||
if (target_extruder < 0) return;
|
||||
|
||||
// No arguments? Show M92 report.
|
||||
if (!parser.seen("XYZE" TERN_(MAGIC_NUMBERS_GCODE, "HL")))
|
||||
return report_M92(true, target_extruder);
|
||||
if (!parser.seen(
|
||||
LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR)
|
||||
TERN_(MAGIC_NUMBERS_GCODE, "HL")
|
||||
)) return report_M92(true, target_extruder);
|
||||
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (parser.seenval(axis_codes[i])) {
|
||||
if (i == E_AXIS) {
|
||||
const float value = parser.value_per_axis_units((AxisEnum)(E_AXIS_N(target_extruder)));
|
||||
if (value < 20) {
|
||||
float factor = planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] / value; // increase e constants if M92 E14 is given for netfab.
|
||||
#if HAS_CLASSIC_JERK && HAS_CLASSIC_E_JERK
|
||||
planner.max_jerk.e *= factor;
|
||||
#endif
|
||||
planner.settings.max_feedrate_mm_s[E_AXIS_N(target_extruder)] *= factor;
|
||||
planner.max_acceleration_steps_per_s2[E_AXIS_N(target_extruder)] *= factor;
|
||||
}
|
||||
planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] = value;
|
||||
}
|
||||
else {
|
||||
if (TERN1(HAS_EXTRUDERS, i != E_AXIS))
|
||||
planner.settings.axis_steps_per_mm[i] = parser.value_per_axis_units((AxisEnum)i);
|
||||
else {
|
||||
#if HAS_EXTRUDERS
|
||||
const float value = parser.value_per_axis_units((AxisEnum)(E_AXIS_N(target_extruder)));
|
||||
if (value < 20) {
|
||||
float factor = planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] / value; // increase e constants if M92 E14 is given for netfab.
|
||||
#if HAS_CLASSIC_JERK && HAS_CLASSIC_E_JERK
|
||||
planner.max_jerk.e *= factor;
|
||||
#endif
|
||||
planner.settings.max_feedrate_mm_s[E_AXIS_N(target_extruder)] *= factor;
|
||||
planner.max_acceleration_steps_per_s2[E_AXIS_N(target_extruder)] *= factor;
|
||||
}
|
||||
planner.settings.axis_steps_per_mm[E_AXIS_N(target_extruder)] = value;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -33,11 +33,16 @@
|
||||
* M17: Enable stepper motors
|
||||
*/
|
||||
void GcodeSuite::M17() {
|
||||
if (parser.seen("XYZE")) {
|
||||
if (parser.seen_test('X')) ENABLE_AXIS_X();
|
||||
if (parser.seen_test('Y')) ENABLE_AXIS_Y();
|
||||
if (parser.seen_test('Z')) ENABLE_AXIS_Z();
|
||||
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) enable_e_steppers();
|
||||
if (parser.seen(LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))) {
|
||||
LOGICAL_AXIS_CODE(
|
||||
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) enable_e_steppers(),
|
||||
if (parser.seen_test('X')) ENABLE_AXIS_X(),
|
||||
if (parser.seen_test('Y')) ENABLE_AXIS_Y(),
|
||||
if (parser.seen_test('Z')) ENABLE_AXIS_Z(),
|
||||
if (parser.seen_test(AXIS4_NAME)) ENABLE_AXIS_I(),
|
||||
if (parser.seen_test(AXIS5_NAME)) ENABLE_AXIS_J(),
|
||||
if (parser.seen_test(AXIS6_NAME)) ENABLE_AXIS_K()
|
||||
);
|
||||
}
|
||||
else {
|
||||
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
||||
@@ -54,12 +59,17 @@ void GcodeSuite::M18_M84() {
|
||||
stepper_inactive_time = parser.value_millis_from_seconds();
|
||||
}
|
||||
else {
|
||||
if (parser.seen("XYZE")) {
|
||||
if (parser.seen(LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))) {
|
||||
planner.synchronize();
|
||||
if (parser.seen_test('X')) DISABLE_AXIS_X();
|
||||
if (parser.seen_test('Y')) DISABLE_AXIS_Y();
|
||||
if (parser.seen_test('Z')) DISABLE_AXIS_Z();
|
||||
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) disable_e_steppers();
|
||||
LOGICAL_AXIS_CODE(
|
||||
if (TERN0(HAS_E_STEPPER_ENABLE, parser.seen_test('E'))) disable_e_steppers(),
|
||||
if (parser.seen_test('X')) DISABLE_AXIS_X(),
|
||||
if (parser.seen_test('Y')) DISABLE_AXIS_Y(),
|
||||
if (parser.seen_test('Z')) DISABLE_AXIS_Z(),
|
||||
if (parser.seen_test(AXIS4_NAME)) DISABLE_AXIS_I(),
|
||||
if (parser.seen_test(AXIS5_NAME)) DISABLE_AXIS_J(),
|
||||
if (parser.seen_test(AXIS6_NAME)) DISABLE_AXIS_K()
|
||||
);
|
||||
}
|
||||
else
|
||||
planner.finish_and_disable();
|
||||
|
@@ -70,26 +70,12 @@
|
||||
dual_x_carriage_mode = (DualXMode)parser.value_byte();
|
||||
idex_set_mirrored_mode(false);
|
||||
|
||||
if (dual_x_carriage_mode == DXC_MIRRORED_MODE) {
|
||||
if (previous_mode != DXC_DUPLICATION_MODE) {
|
||||
SERIAL_ECHOLNPGM("Printer must be in DXC_DUPLICATION_MODE prior to ");
|
||||
SERIAL_ECHOLNPGM("specifying DXC_MIRRORED_MODE.");
|
||||
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
||||
return;
|
||||
}
|
||||
idex_set_mirrored_mode(true);
|
||||
float x_jog = current_position.x - .1;
|
||||
for (uint8_t i = 2; --i;) {
|
||||
planner.buffer_line(x_jog, current_position.y, current_position.z, current_position.e, feedrate_mm_s, 0);
|
||||
x_jog += .1;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
switch (dual_x_carriage_mode) {
|
||||
|
||||
case DXC_FULL_CONTROL_MODE:
|
||||
case DXC_AUTO_PARK_MODE:
|
||||
break;
|
||||
|
||||
case DXC_DUPLICATION_MODE:
|
||||
// Set the X offset, but no less than the safety gap
|
||||
if (parser.seen('X')) duplicate_extruder_x_offset = _MAX(parser.value_linear_units(), (X2_MIN_POS) - (X1_MIN_POS));
|
||||
@@ -97,10 +83,29 @@
|
||||
// Always switch back to tool 0
|
||||
if (active_extruder != 0) tool_change(0);
|
||||
break;
|
||||
|
||||
case DXC_MIRRORED_MODE: {
|
||||
if (previous_mode != DXC_DUPLICATION_MODE) {
|
||||
SERIAL_ECHOLNPGM("Printer must be in DXC_DUPLICATION_MODE prior to ");
|
||||
SERIAL_ECHOLNPGM("specifying DXC_MIRRORED_MODE.");
|
||||
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
||||
return;
|
||||
}
|
||||
idex_set_mirrored_mode(true);
|
||||
|
||||
// Do a small 'jog' motion in the X axis
|
||||
xyze_pos_t dest = current_position; dest.x -= 0.1f;
|
||||
for (uint8_t i = 2; --i;) {
|
||||
planner.buffer_line(dest, feedrate_mm_s, 0);
|
||||
dest.x += 0.1f;
|
||||
}
|
||||
} return;
|
||||
|
||||
default:
|
||||
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
||||
break;
|
||||
}
|
||||
|
||||
idex_set_parked(false);
|
||||
set_duplication_enabled(false);
|
||||
|
||||
|
@@ -252,58 +252,67 @@ void GcodeSuite::M906() {
|
||||
if (index == 1) L6470_SET_KVAL_HOLD(X2);
|
||||
#endif
|
||||
break;
|
||||
case Y_AXIS:
|
||||
#if AXIS_IS_L64XX(Y)
|
||||
if (index == 0) L6470_SET_KVAL_HOLD(Y);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(Y2)
|
||||
if (index == 1) L6470_SET_KVAL_HOLD(Y2);
|
||||
#endif
|
||||
break;
|
||||
case Z_AXIS:
|
||||
#if AXIS_IS_L64XX(Z)
|
||||
if (index == 0) L6470_SET_KVAL_HOLD(Z);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(Z2)
|
||||
if (index == 1) L6470_SET_KVAL_HOLD(Z2);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(Z3)
|
||||
if (index == 2) L6470_SET_KVAL_HOLD(Z3);
|
||||
#endif
|
||||
#if AXIS_DRIVER_TYPE_Z4(L6470)
|
||||
if (index == 3) L6470_SET_KVAL_HOLD(Z4);
|
||||
#endif
|
||||
break;
|
||||
case E_AXIS: {
|
||||
const int8_t target_extruder = get_target_extruder_from_command();
|
||||
if (target_extruder < 0) return;
|
||||
switch (target_extruder) {
|
||||
#if AXIS_IS_L64XX(E0)
|
||||
case 0: L6470_SET_KVAL_HOLD(E0); break;
|
||||
|
||||
#if HAS_Y_AXIS
|
||||
case Y_AXIS:
|
||||
#if AXIS_IS_L64XX(Y)
|
||||
if (index == 0) L6470_SET_KVAL_HOLD(Y);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E1)
|
||||
case 1: L6470_SET_KVAL_HOLD(E1); break;
|
||||
#if AXIS_IS_L64XX(Y2)
|
||||
if (index == 1) L6470_SET_KVAL_HOLD(Y2);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E2)
|
||||
case 2: L6470_SET_KVAL_HOLD(E2); break;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_Z_AXIS
|
||||
case Z_AXIS:
|
||||
#if AXIS_IS_L64XX(Z)
|
||||
if (index == 0) L6470_SET_KVAL_HOLD(Z);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E3)
|
||||
case 3: L6470_SET_KVAL_HOLD(E3); break;
|
||||
#if AXIS_IS_L64XX(Z2)
|
||||
if (index == 1) L6470_SET_KVAL_HOLD(Z2);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E4)
|
||||
case 4: L6470_SET_KVAL_HOLD(E4); break;
|
||||
#if AXIS_IS_L64XX(Z3)
|
||||
if (index == 2) L6470_SET_KVAL_HOLD(Z3);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E5)
|
||||
case 5: L6470_SET_KVAL_HOLD(E5); break;
|
||||
#if AXIS_DRIVER_TYPE_Z4(L6470)
|
||||
if (index == 3) L6470_SET_KVAL_HOLD(Z4);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E6)
|
||||
case 6: L6470_SET_KVAL_HOLD(E6); break;
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E7)
|
||||
case 7: L6470_SET_KVAL_HOLD(E7); break;
|
||||
#endif
|
||||
}
|
||||
} break;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_EXTRUDERS
|
||||
case E_AXIS: {
|
||||
const int8_t target_extruder = get_target_extruder_from_command();
|
||||
if (target_extruder < 0) return;
|
||||
switch (target_extruder) {
|
||||
#if AXIS_IS_L64XX(E0)
|
||||
case 0: L6470_SET_KVAL_HOLD(E0); break;
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E1)
|
||||
case 1: L6470_SET_KVAL_HOLD(E1); break;
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E2)
|
||||
case 2: L6470_SET_KVAL_HOLD(E2); break;
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E3)
|
||||
case 3: L6470_SET_KVAL_HOLD(E3); break;
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E4)
|
||||
case 4: L6470_SET_KVAL_HOLD(E4); break;
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E5)
|
||||
case 5: L6470_SET_KVAL_HOLD(E5); break;
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E6)
|
||||
case 6: L6470_SET_KVAL_HOLD(E6); break;
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E7)
|
||||
case 7: L6470_SET_KVAL_HOLD(E7); break;
|
||||
#endif
|
||||
}
|
||||
} break;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -42,6 +42,7 @@
|
||||
* P0 S<strokes> : Stroke cleaning with S strokes
|
||||
* P1 Sn T<objects> : Zigzag cleaning with S repeats and T zigzags
|
||||
* P2 Sn R<radius> : Circle cleaning with S repeats and R radius
|
||||
* X, Y, Z : Specify axes to move during cleaning. Default: ALL.
|
||||
*/
|
||||
void GcodeSuite::G12() {
|
||||
// Don't allow nozzle cleaning without homing first
|
||||
|
@@ -47,12 +47,13 @@ void GcodeSuite::G60() {
|
||||
SBI(saved_slots[slot >> 3], slot & 0x07);
|
||||
|
||||
#if ENABLED(SAVED_POSITIONS_DEBUG)
|
||||
const xyze_pos_t &pos = stored_position[slot];
|
||||
DEBUG_ECHOPAIR(STR_SAVED_POS " S", slot);
|
||||
DEBUG_ECHOPAIR_F(" : X", pos.x);
|
||||
DEBUG_ECHOPAIR_F_P(SP_Y_STR, pos.y);
|
||||
DEBUG_ECHOPAIR_F_P(SP_Z_STR, pos.z);
|
||||
DEBUG_ECHOLNPAIR_F_P(SP_E_STR, pos.e);
|
||||
const xyze_pos_t &pos = stored_position[slot];
|
||||
DEBUG_ECHOLNPAIR_F_P(
|
||||
LIST_N(DOUBLE(LOGICAL_AXES), SP_E_STR, pos.e,
|
||||
PSTR(" : X"), pos.x, SP_Y_STR, pos.y, SP_Z_STR, pos.z,
|
||||
SP_I_STR, pos.i, SP_J_STR, pos.j, SP_K_STR, pos.k)
|
||||
);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@@ -37,8 +37,7 @@
|
||||
*
|
||||
* F<rate> - Feedrate (optional) for the move back.
|
||||
* S<slot> - Slot # (0-based) to restore from (default 0).
|
||||
* X Y Z - Axes to restore. At least one is required.
|
||||
* E - Restore extruder position
|
||||
* X Y Z E - Axes to restore. At least one is required.
|
||||
*
|
||||
* If XYZE are not given, default restore uses the smart blocking move.
|
||||
*/
|
||||
@@ -46,7 +45,7 @@ void GcodeSuite::G61(void) {
|
||||
|
||||
const uint8_t slot = parser.byteval('S');
|
||||
|
||||
#define SYNC_E(POINT) planner.set_e_position_mm((destination.e = current_position.e = (POINT)))
|
||||
#define SYNC_E(POINT) TERN_(HAS_EXTRUDERS, planner.set_e_position_mm((destination.e = current_position.e = (POINT))))
|
||||
|
||||
#if SAVED_POSITIONS < 256
|
||||
if (slot >= SAVED_POSITIONS) {
|
||||
@@ -69,7 +68,7 @@ void GcodeSuite::G61(void) {
|
||||
SYNC_E(stored_position[slot].e);
|
||||
}
|
||||
else {
|
||||
if (parser.seen("XYZ")) {
|
||||
if (parser.seen(LINEAR_AXIS_GANG("X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))) {
|
||||
DEBUG_ECHOPAIR(STR_RESTORING_POS " S", slot);
|
||||
LOOP_LINEAR_AXES(i) {
|
||||
destination[i] = parser.seen(AXIS_CHAR(i))
|
||||
@@ -82,10 +81,12 @@ void GcodeSuite::G61(void) {
|
||||
// Move to the saved position
|
||||
prepare_line_to_destination();
|
||||
}
|
||||
if (parser.seen_test('E')) {
|
||||
DEBUG_ECHOLNPAIR(STR_RESTORING_POS " S", slot, " E", current_position.e, "=>", stored_position[slot].e);
|
||||
SYNC_E(stored_position[slot].e);
|
||||
}
|
||||
#if HAS_EXTRUDERS
|
||||
if (parser.seen_test('E')) {
|
||||
DEBUG_ECHOLNPAIR(STR_RESTORING_POS " S", slot, " E", current_position.e, "=>", stored_position[slot].e);
|
||||
SYNC_E(stored_position[slot].e);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
feedrate_mm_s = saved_feedrate;
|
||||
|
@@ -99,7 +99,7 @@ void GcodeSuite::M600() {
|
||||
|
||||
#if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
|
||||
// If needed, home before parking for filament change
|
||||
if (!all_axes_trusted()) home_all_axes(true);
|
||||
home_if_needed(true);
|
||||
#endif
|
||||
|
||||
#if HAS_MULTI_EXTRUDER
|
||||
|
@@ -35,7 +35,7 @@ void GcodeSuite::M122() {
|
||||
xyze_bool_t print_axis = ARRAY_N_1(LOGICAL_AXES, false);
|
||||
|
||||
bool print_all = true;
|
||||
LOOP_LOGICAL_AXES(i) if (parser.seen(axis_codes[i])) { print_axis[i] = true; print_all = false; }
|
||||
LOOP_LOGICAL_AXES(i) if (parser.seen_test(axis_codes[i])) { print_axis[i] = true; print_all = false; }
|
||||
|
||||
if (print_all) LOOP_LOGICAL_AXES(i) print_axis[i] = true;
|
||||
|
||||
@@ -50,12 +50,12 @@ void GcodeSuite::M122() {
|
||||
#endif
|
||||
|
||||
if (parser.seen_test('V'))
|
||||
tmc_get_registers(print_axis.x, print_axis.y, print_axis.z, print_axis.e);
|
||||
tmc_get_registers(LOGICAL_AXIS_ELEM(print_axis));
|
||||
else
|
||||
tmc_report_all(print_axis.x, print_axis.y, print_axis.z, print_axis.e);
|
||||
tmc_report_all(LOGICAL_AXIS_ELEM(print_axis));
|
||||
#endif
|
||||
|
||||
test_tmc_connection(print_axis.x, print_axis.y, print_axis.z, print_axis.e);
|
||||
test_tmc_connection(LOGICAL_AXIS_ELEM(print_axis));
|
||||
}
|
||||
|
||||
#endif // HAS_TRINAMIC_CONFIG
|
||||
|
@@ -43,129 +43,83 @@ void tmc_set_stealthChop(TMC &st, const bool enable) {
|
||||
static void set_stealth_status(const bool enable, const int8_t target_extruder) {
|
||||
#define TMC_SET_STEALTH(Q) tmc_set_stealthChop(stepper##Q, enable)
|
||||
|
||||
#if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(X2) \
|
||||
|| AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Y2) \
|
||||
|| AXIS_HAS_STEALTHCHOP(Z) || AXIS_HAS_STEALTHCHOP(Z2) \
|
||||
|| AXIS_HAS_STEALTHCHOP(Z3) || AXIS_HAS_STEALTHCHOP(Z4)
|
||||
#if X_HAS_STEALTHCHOP || Y_HAS_STEALTHCHOP || Z_HAS_STEALTHCHOP \
|
||||
|| I_HAS_STEALTHCHOP || J_HAS_STEALTHCHOP || K_HAS_STEALTHCHOP \
|
||||
|| X2_HAS_STEALTHCHOP || Y2_HAS_STEALTHCHOP || Z2_HAS_STEALTHCHOP || Z3_HAS_STEALTHCHOP || Z4_HAS_STEALTHCHOP
|
||||
const uint8_t index = parser.byteval('I');
|
||||
#endif
|
||||
|
||||
LOOP_LOGICAL_AXES(i) if (parser.seen(axis_codes[i])) {
|
||||
switch (i) {
|
||||
case X_AXIS:
|
||||
#if AXIS_HAS_STEALTHCHOP(X)
|
||||
if (index == 0) TMC_SET_STEALTH(X);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(X2)
|
||||
if (index == 1) TMC_SET_STEALTH(X2);
|
||||
#endif
|
||||
TERN_(X_HAS_STEALTHCHOP, if (index == 0) TMC_SET_STEALTH(X));
|
||||
TERN_(X2_HAS_STEALTHCHOP, if (index == 1) TMC_SET_STEALTH(X2));
|
||||
break;
|
||||
case Y_AXIS:
|
||||
#if AXIS_HAS_STEALTHCHOP(Y)
|
||||
if (index == 0) TMC_SET_STEALTH(Y);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Y2)
|
||||
if (index == 1) TMC_SET_STEALTH(Y2);
|
||||
#endif
|
||||
break;
|
||||
case Z_AXIS:
|
||||
#if AXIS_HAS_STEALTHCHOP(Z)
|
||||
if (index == 0) TMC_SET_STEALTH(Z);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z2)
|
||||
if (index == 1) TMC_SET_STEALTH(Z2);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z3)
|
||||
if (index == 2) TMC_SET_STEALTH(Z3);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z4)
|
||||
if (index == 3) TMC_SET_STEALTH(Z4);
|
||||
#endif
|
||||
break;
|
||||
case E_AXIS: {
|
||||
if (target_extruder < 0) return;
|
||||
switch (target_extruder) {
|
||||
#if AXIS_HAS_STEALTHCHOP(E0)
|
||||
case 0: TMC_SET_STEALTH(E0); break;
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E1)
|
||||
case 1: TMC_SET_STEALTH(E1); break;
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E2)
|
||||
case 2: TMC_SET_STEALTH(E2); break;
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E3)
|
||||
case 3: TMC_SET_STEALTH(E3); break;
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E4)
|
||||
case 4: TMC_SET_STEALTH(E4); break;
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E5)
|
||||
case 5: TMC_SET_STEALTH(E5); break;
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E6)
|
||||
case 6: TMC_SET_STEALTH(E6); break;
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E7)
|
||||
case 7: TMC_SET_STEALTH(E7); break;
|
||||
#endif
|
||||
}
|
||||
} break;
|
||||
|
||||
#if HAS_Y_AXIS
|
||||
case Y_AXIS:
|
||||
TERN_(Y_HAS_STEALTHCHOP, if (index == 0) TMC_SET_STEALTH(Y));
|
||||
TERN_(Y2_HAS_STEALTHCHOP, if (index == 1) TMC_SET_STEALTH(Y2));
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_Z_AXIS
|
||||
case Z_AXIS:
|
||||
TERN_(Z_HAS_STEALTHCHOP, if (index == 0) TMC_SET_STEALTH(Z));
|
||||
TERN_(Z2_HAS_STEALTHCHOP, if (index == 1) TMC_SET_STEALTH(Z2));
|
||||
TERN_(Z3_HAS_STEALTHCHOP, if (index == 2) TMC_SET_STEALTH(Z3));
|
||||
TERN_(Z4_HAS_STEALTHCHOP, if (index == 3) TMC_SET_STEALTH(Z4));
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if I_HAS_STEALTHCHOP
|
||||
case I_AXIS: TMC_SET_STEALTH(I); break;
|
||||
#endif
|
||||
#if J_HAS_STEALTHCHOP
|
||||
case J_AXIS: TMC_SET_STEALTH(J); break;
|
||||
#endif
|
||||
#if K_HAS_STEALTHCHOP
|
||||
case K_AXIS: TMC_SET_STEALTH(K); break;
|
||||
#endif
|
||||
|
||||
#if HAS_EXTRUDERS
|
||||
case E_AXIS: {
|
||||
if (target_extruder < 0) return;
|
||||
OPTCODE(E0_HAS_STEALTHCHOP, else if (target_extruder == 0) TMC_SET_STEALTH(E0))
|
||||
OPTCODE(E1_HAS_STEALTHCHOP, else if (target_extruder == 1) TMC_SET_STEALTH(E1))
|
||||
OPTCODE(E2_HAS_STEALTHCHOP, else if (target_extruder == 2) TMC_SET_STEALTH(E2))
|
||||
OPTCODE(E3_HAS_STEALTHCHOP, else if (target_extruder == 3) TMC_SET_STEALTH(E3))
|
||||
OPTCODE(E4_HAS_STEALTHCHOP, else if (target_extruder == 4) TMC_SET_STEALTH(E4))
|
||||
OPTCODE(E5_HAS_STEALTHCHOP, else if (target_extruder == 5) TMC_SET_STEALTH(E5))
|
||||
OPTCODE(E6_HAS_STEALTHCHOP, else if (target_extruder == 6) TMC_SET_STEALTH(E6))
|
||||
OPTCODE(E7_HAS_STEALTHCHOP, else if (target_extruder == 7) TMC_SET_STEALTH(E7))
|
||||
} break;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void say_stealth_status() {
|
||||
#define TMC_SAY_STEALTH_STATUS(Q) tmc_say_stealth_status(stepper##Q)
|
||||
|
||||
#if AXIS_HAS_STEALTHCHOP(X)
|
||||
TMC_SAY_STEALTH_STATUS(X);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(X2)
|
||||
TMC_SAY_STEALTH_STATUS(X2);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Y)
|
||||
TMC_SAY_STEALTH_STATUS(Y);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Y2)
|
||||
TMC_SAY_STEALTH_STATUS(Y2);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z)
|
||||
TMC_SAY_STEALTH_STATUS(Z);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z2)
|
||||
TMC_SAY_STEALTH_STATUS(Z2);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z3)
|
||||
TMC_SAY_STEALTH_STATUS(Z3);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z4)
|
||||
TMC_SAY_STEALTH_STATUS(Z4);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E0)
|
||||
TMC_SAY_STEALTH_STATUS(E0);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E1)
|
||||
TMC_SAY_STEALTH_STATUS(E1);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E2)
|
||||
TMC_SAY_STEALTH_STATUS(E2);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E3)
|
||||
TMC_SAY_STEALTH_STATUS(E3);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E4)
|
||||
TMC_SAY_STEALTH_STATUS(E4);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E5)
|
||||
TMC_SAY_STEALTH_STATUS(E5);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E6)
|
||||
TMC_SAY_STEALTH_STATUS(E6);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(E7)
|
||||
TMC_SAY_STEALTH_STATUS(E7);
|
||||
#endif
|
||||
OPTCODE( X_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(X))
|
||||
OPTCODE(X2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(X2))
|
||||
OPTCODE( Y_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Y))
|
||||
OPTCODE(Y2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Y2))
|
||||
OPTCODE( Z_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z))
|
||||
OPTCODE(Z2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z2))
|
||||
OPTCODE(Z3_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z3))
|
||||
OPTCODE(Z4_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(Z4))
|
||||
OPTCODE( I_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(I))
|
||||
OPTCODE( J_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(J))
|
||||
OPTCODE( K_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(K))
|
||||
OPTCODE(E0_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E0))
|
||||
OPTCODE(E1_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E1))
|
||||
OPTCODE(E2_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E2))
|
||||
OPTCODE(E3_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E3))
|
||||
OPTCODE(E4_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E4))
|
||||
OPTCODE(E5_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E5))
|
||||
OPTCODE(E6_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E6))
|
||||
OPTCODE(E7_HAS_STEALTHCHOP, TMC_SAY_STEALTH_STATUS(E7))
|
||||
}
|
||||
|
||||
/**
|
||||
|
@@ -48,7 +48,7 @@ void GcodeSuite::M906() {
|
||||
|
||||
bool report = true;
|
||||
|
||||
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z) || AXIS_IS_TMC(Z2) || AXIS_IS_TMC(Z3) || AXIS_IS_TMC(Z4)
|
||||
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z) || AXIS_IS_TMC(Z2) || AXIS_IS_TMC(Z3) || AXIS_IS_TMC(Z4) || AXIS_IS_TMC(I) || AXIS_IS_TMC(J) || AXIS_IS_TMC(K)
|
||||
const uint8_t index = parser.byteval('I');
|
||||
#endif
|
||||
|
||||
@@ -63,58 +63,77 @@ void GcodeSuite::M906() {
|
||||
if (index == 1) TMC_SET_CURRENT(X2);
|
||||
#endif
|
||||
break;
|
||||
case Y_AXIS:
|
||||
#if AXIS_IS_TMC(Y)
|
||||
if (index == 0) TMC_SET_CURRENT(Y);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Y2)
|
||||
if (index == 1) TMC_SET_CURRENT(Y2);
|
||||
#endif
|
||||
break;
|
||||
case Z_AXIS:
|
||||
#if AXIS_IS_TMC(Z)
|
||||
if (index == 0) TMC_SET_CURRENT(Z);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z2)
|
||||
if (index == 1) TMC_SET_CURRENT(Z2);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z3)
|
||||
if (index == 2) TMC_SET_CURRENT(Z3);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(Z4)
|
||||
if (index == 3) TMC_SET_CURRENT(Z4);
|
||||
#endif
|
||||
break;
|
||||
case E_AXIS: {
|
||||
const int8_t target_extruder = get_target_extruder_from_command();
|
||||
if (target_extruder < 0) return;
|
||||
switch (target_extruder) {
|
||||
#if AXIS_IS_TMC(E0)
|
||||
case 0: TMC_SET_CURRENT(E0); break;
|
||||
|
||||
#if HAS_Y_AXIS
|
||||
case Y_AXIS:
|
||||
#if AXIS_IS_TMC(Y)
|
||||
if (index == 0) TMC_SET_CURRENT(Y);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E1)
|
||||
case 1: TMC_SET_CURRENT(E1); break;
|
||||
#if AXIS_IS_TMC(Y2)
|
||||
if (index == 1) TMC_SET_CURRENT(Y2);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E2)
|
||||
case 2: TMC_SET_CURRENT(E2); break;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_Z_AXIS
|
||||
case Z_AXIS:
|
||||
#if AXIS_IS_TMC(Z)
|
||||
if (index == 0) TMC_SET_CURRENT(Z);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E3)
|
||||
case 3: TMC_SET_CURRENT(E3); break;
|
||||
#if AXIS_IS_TMC(Z2)
|
||||
if (index == 1) TMC_SET_CURRENT(Z2);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E4)
|
||||
case 4: TMC_SET_CURRENT(E4); break;
|
||||
#if AXIS_IS_TMC(Z3)
|
||||
if (index == 2) TMC_SET_CURRENT(Z3);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E5)
|
||||
case 5: TMC_SET_CURRENT(E5); break;
|
||||
#if AXIS_IS_TMC(Z4)
|
||||
if (index == 3) TMC_SET_CURRENT(Z4);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E6)
|
||||
case 6: TMC_SET_CURRENT(E6); break;
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E7)
|
||||
case 7: TMC_SET_CURRENT(E7); break;
|
||||
#endif
|
||||
}
|
||||
} break;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if AXIS_IS_TMC(I)
|
||||
case I_AXIS: TMC_SET_CURRENT(I); break;
|
||||
#endif
|
||||
#if AXIS_IS_TMC(J)
|
||||
case J_AXIS: TMC_SET_CURRENT(J); break;
|
||||
#endif
|
||||
#if AXIS_IS_TMC(K)
|
||||
case K_AXIS: TMC_SET_CURRENT(K); break;
|
||||
#endif
|
||||
|
||||
#if HAS_EXTRUDERS
|
||||
case E_AXIS: {
|
||||
const int8_t target_extruder = get_target_extruder_from_command();
|
||||
if (target_extruder < 0) return;
|
||||
switch (target_extruder) {
|
||||
#if AXIS_IS_TMC(E0)
|
||||
case 0: TMC_SET_CURRENT(E0); break;
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E1)
|
||||
case 1: TMC_SET_CURRENT(E1); break;
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E2)
|
||||
case 2: TMC_SET_CURRENT(E2); break;
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E3)
|
||||
case 3: TMC_SET_CURRENT(E3); break;
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E4)
|
||||
case 4: TMC_SET_CURRENT(E4); break;
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E5)
|
||||
case 5: TMC_SET_CURRENT(E5); break;
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E6)
|
||||
case 6: TMC_SET_CURRENT(E6); break;
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E7)
|
||||
case 7: TMC_SET_CURRENT(E7); break;
|
||||
#endif
|
||||
}
|
||||
} break;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@@ -143,6 +162,15 @@ void GcodeSuite::M906() {
|
||||
#if AXIS_IS_TMC(Z4)
|
||||
TMC_SAY_CURRENT(Z4);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(I)
|
||||
TMC_SAY_CURRENT(I);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(J)
|
||||
TMC_SAY_CURRENT(J);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(K)
|
||||
TMC_SAY_CURRENT(K);
|
||||
#endif
|
||||
#if AXIS_IS_TMC(E0)
|
||||
TMC_SAY_CURRENT(E0);
|
||||
#endif
|
||||
|
@@ -38,18 +38,27 @@
|
||||
#if M91x_USE(X) || M91x_USE(X2)
|
||||
#define M91x_SOME_X 1
|
||||
#endif
|
||||
#if M91x_USE(Y) || M91x_USE(Y2)
|
||||
#if LINEAR_AXES >= 2 && (M91x_USE(Y) || M91x_USE(Y2))
|
||||
#define M91x_SOME_Y 1
|
||||
#endif
|
||||
#if M91x_USE(Z) || M91x_USE(Z2) || M91x_USE(Z3) || M91x_USE(Z4)
|
||||
#if HAS_Z_AXIS && (M91x_USE(Z) || M91x_USE(Z2) || M91x_USE(Z3) || M91x_USE(Z4))
|
||||
#define M91x_SOME_Z 1
|
||||
#endif
|
||||
#if LINEAR_AXES >= 4 && M91x_USE(I)
|
||||
#define M91x_USE_I 1
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5 && M91x_USE(J)
|
||||
#define M91x_USE_J 1
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6 && M91x_USE(K)
|
||||
#define M91x_USE_K 1
|
||||
#endif
|
||||
|
||||
#if M91x_USE_E(0) || M91x_USE_E(1) || M91x_USE_E(2) || M91x_USE_E(3) || M91x_USE_E(4) || M91x_USE_E(5) || M91x_USE_E(6) || M91x_USE_E(7)
|
||||
#define M91x_SOME_E 1
|
||||
#endif
|
||||
|
||||
#if !M91x_SOME_X && !M91x_SOME_Y && !M91x_SOME_Z && !M91x_SOME_E
|
||||
#if !M91x_SOME_X && !M91x_SOME_Y && !M91x_SOME_Z && !M91x_USE_I && !M91x_USE_J && !M91x_USE_K && !M91x_SOME_E
|
||||
#error "MONITOR_DRIVER_STATUS requires at least one TMC2130, 2160, 2208, 2209, 2660, 5130, or 5160."
|
||||
#endif
|
||||
|
||||
@@ -82,6 +91,9 @@
|
||||
#if M91x_USE(Z4)
|
||||
tmc_report_otpw(stepperZ4);
|
||||
#endif
|
||||
TERN_(M91x_USE_I, tmc_report_otpw(stepperI));
|
||||
TERN_(M91x_USE_J, tmc_report_otpw(stepperJ));
|
||||
TERN_(M91x_USE_K, tmc_report_otpw(stepperK));
|
||||
#if M91x_USE_E(0)
|
||||
tmc_report_otpw(stepperE0);
|
||||
#endif
|
||||
@@ -124,9 +136,12 @@
|
||||
const bool hasX = TERN0(M91x_SOME_X, parser.seen(axis_codes.x)),
|
||||
hasY = TERN0(M91x_SOME_Y, parser.seen(axis_codes.y)),
|
||||
hasZ = TERN0(M91x_SOME_Z, parser.seen(axis_codes.z)),
|
||||
hasI = TERN0(M91x_USE_I, parser.seen(axis_codes.i)),
|
||||
hasJ = TERN0(M91x_USE_J, parser.seen(axis_codes.j)),
|
||||
hasK = TERN0(M91x_USE_K, parser.seen(axis_codes.k)),
|
||||
hasE = TERN0(M91x_SOME_E, parser.seen(axis_codes.e));
|
||||
|
||||
const bool hasNone = !hasE && !hasX && !hasY && !hasZ;
|
||||
const bool hasNone = !hasE && !hasX && !hasY && !hasZ && !hasI && !hasJ && !hasK;
|
||||
|
||||
#if M91x_SOME_X
|
||||
const int8_t xval = int8_t(parser.byteval(axis_codes.x, 0xFF));
|
||||
@@ -164,6 +179,19 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if M91x_USE_I
|
||||
const int8_t ival = int8_t(parser.byteval(axis_codes.i, 0xFF));
|
||||
if (hasNone || ival == 1 || (hasI && ival < 0)) tmc_clear_otpw(stepperI);
|
||||
#endif
|
||||
#if M91x_USE_J
|
||||
const int8_t jval = int8_t(parser.byteval(axis_codes.j, 0xFF));
|
||||
if (hasNone || jval == 1 || (hasJ && jval < 0)) tmc_clear_otpw(stepperJ);
|
||||
#endif
|
||||
#if M91x_USE_K
|
||||
const int8_t kval = int8_t(parser.byteval(axis_codes.k, 0xFF));
|
||||
if (hasNone || kval == 1 || (hasK && kval < 0)) tmc_clear_otpw(stepperK);
|
||||
#endif
|
||||
|
||||
#if M91x_SOME_E
|
||||
const int8_t eval = int8_t(parser.byteval(axis_codes.e, 0xFF));
|
||||
#if M91x_USE_E(0)
|
||||
@@ -206,126 +234,76 @@
|
||||
#define TMC_SET_PWMTHRS_E(E) stepperE##E.set_pwm_thrs(value)
|
||||
|
||||
bool report = true;
|
||||
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z) || AXIS_IS_TMC(Z2) || AXIS_IS_TMC(Z3) || AXIS_IS_TMC(Z4)
|
||||
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z) || AXIS_IS_TMC(Z2) || AXIS_IS_TMC(Z3) || AXIS_IS_TMC(Z4) || AXIS_IS_TMC(I) || AXIS_IS_TMC(J) || AXIS_IS_TMC(K)
|
||||
const uint8_t index = parser.byteval('I');
|
||||
#endif
|
||||
LOOP_LOGICAL_AXES(i) if (int32_t value = parser.longval(axis_codes[i])) {
|
||||
report = false;
|
||||
switch (i) {
|
||||
case X_AXIS:
|
||||
#if AXIS_HAS_STEALTHCHOP(X)
|
||||
if (index < 2) TMC_SET_PWMTHRS(X,X);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(X2)
|
||||
if (!(index & 1)) TMC_SET_PWMTHRS(X,X2);
|
||||
#endif
|
||||
TERN_(X_HAS_STEALTHCHOP, if (index < 2) TMC_SET_PWMTHRS(X,X));
|
||||
TERN_(X2_HAS_STEALTHCHOP, if (!(index & 1)) TMC_SET_PWMTHRS(X,X2));
|
||||
break;
|
||||
case Y_AXIS:
|
||||
#if AXIS_HAS_STEALTHCHOP(Y)
|
||||
if (index < 2) TMC_SET_PWMTHRS(Y,Y);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Y2)
|
||||
if (!(index & 1)) TMC_SET_PWMTHRS(Y,Y2);
|
||||
#endif
|
||||
TERN_(Y_HAS_STEALTHCHOP, if (index < 2) TMC_SET_PWMTHRS(Y,Y));
|
||||
TERN_(Y2_HAS_STEALTHCHOP, if (!(index & 1)) TMC_SET_PWMTHRS(Y,Y2));
|
||||
break;
|
||||
|
||||
#if I_HAS_STEALTHCHOP
|
||||
case I_AXIS: TMC_SET_PWMTHRS(I,I); break;
|
||||
#endif
|
||||
#if J_HAS_STEALTHCHOP
|
||||
case J_AXIS: TMC_SET_PWMTHRS(J,J); break;
|
||||
#endif
|
||||
#if K_HAS_STEALTHCHOP
|
||||
case K_AXIS: TMC_SET_PWMTHRS(K,K); break;
|
||||
#endif
|
||||
|
||||
case Z_AXIS:
|
||||
#if AXIS_HAS_STEALTHCHOP(Z)
|
||||
if (index < 2) TMC_SET_PWMTHRS(Z,Z);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z2)
|
||||
if (index == 0 || index == 2) TMC_SET_PWMTHRS(Z,Z2);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z3)
|
||||
if (index == 0 || index == 3) TMC_SET_PWMTHRS(Z,Z3);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z4)
|
||||
if (index == 0 || index == 4) TMC_SET_PWMTHRS(Z,Z4);
|
||||
#endif
|
||||
TERN_(Z_HAS_STEALTCHOP, if (index < 2) TMC_SET_PWMTHRS(Z,Z));
|
||||
TERN_(Z2_HAS_STEALTCHOP, if (index == 0 || index == 2) TMC_SET_PWMTHRS(Z,Z2));
|
||||
TERN_(Z3_HAS_STEALTCHOP, if (index == 0 || index == 3) TMC_SET_PWMTHRS(Z,Z3));
|
||||
TERN_(Z4_HAS_STEALTCHOP, if (index == 0 || index == 4) TMC_SET_PWMTHRS(Z,Z4));
|
||||
break;
|
||||
case E_AXIS: {
|
||||
#if E_STEPPERS
|
||||
const int8_t target_extruder = get_target_extruder_from_command();
|
||||
if (target_extruder < 0) return;
|
||||
switch (target_extruder) {
|
||||
#if AXIS_HAS_STEALTHCHOP(E0)
|
||||
case 0: TMC_SET_PWMTHRS_E(0); break;
|
||||
#endif
|
||||
#if E_STEPPERS > 1 && AXIS_HAS_STEALTHCHOP(E1)
|
||||
case 1: TMC_SET_PWMTHRS_E(1); break;
|
||||
#endif
|
||||
#if E_STEPPERS > 2 && AXIS_HAS_STEALTHCHOP(E2)
|
||||
case 2: TMC_SET_PWMTHRS_E(2); break;
|
||||
#endif
|
||||
#if E_STEPPERS > 3 && AXIS_HAS_STEALTHCHOP(E3)
|
||||
case 3: TMC_SET_PWMTHRS_E(3); break;
|
||||
#endif
|
||||
#if E_STEPPERS > 4 && AXIS_HAS_STEALTHCHOP(E4)
|
||||
case 4: TMC_SET_PWMTHRS_E(4); break;
|
||||
#endif
|
||||
#if E_STEPPERS > 5 && AXIS_HAS_STEALTHCHOP(E5)
|
||||
case 5: TMC_SET_PWMTHRS_E(5); break;
|
||||
#endif
|
||||
#if E_STEPPERS > 6 && AXIS_HAS_STEALTHCHOP(E6)
|
||||
case 6: TMC_SET_PWMTHRS_E(6); break;
|
||||
#endif
|
||||
#if E_STEPPERS > 7 && AXIS_HAS_STEALTHCHOP(E7)
|
||||
case 7: TMC_SET_PWMTHRS_E(7); break;
|
||||
#endif
|
||||
}
|
||||
TERN_(E0_HAS_STEALTHCHOP, else if (target_extruder == 0) TMC_SET_PWMTHRS_E(0));
|
||||
TERN_(E1_HAS_STEALTHCHOP, else if (target_extruder == 1) TMC_SET_PWMTHRS_E(1));
|
||||
TERN_(E2_HAS_STEALTHCHOP, else if (target_extruder == 2) TMC_SET_PWMTHRS_E(2));
|
||||
TERN_(E3_HAS_STEALTHCHOP, else if (target_extruder == 3) TMC_SET_PWMTHRS_E(3));
|
||||
TERN_(E4_HAS_STEALTHCHOP, else if (target_extruder == 4) TMC_SET_PWMTHRS_E(4));
|
||||
TERN_(E5_HAS_STEALTHCHOP, else if (target_extruder == 5) TMC_SET_PWMTHRS_E(5));
|
||||
TERN_(E6_HAS_STEALTHCHOP, else if (target_extruder == 6) TMC_SET_PWMTHRS_E(6));
|
||||
TERN_(E7_HAS_STEALTHCHOP, else if (target_extruder == 7) TMC_SET_PWMTHRS_E(7));
|
||||
#endif // E_STEPPERS
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
if (report) {
|
||||
#if AXIS_HAS_STEALTHCHOP(X)
|
||||
TMC_SAY_PWMTHRS(X,X);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(X2)
|
||||
TMC_SAY_PWMTHRS(X,X2);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Y)
|
||||
TMC_SAY_PWMTHRS(Y,Y);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Y2)
|
||||
TMC_SAY_PWMTHRS(Y,Y2);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z)
|
||||
TMC_SAY_PWMTHRS(Z,Z);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z2)
|
||||
TMC_SAY_PWMTHRS(Z,Z2);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z3)
|
||||
TMC_SAY_PWMTHRS(Z,Z3);
|
||||
#endif
|
||||
#if AXIS_HAS_STEALTHCHOP(Z4)
|
||||
TMC_SAY_PWMTHRS(Z,Z4);
|
||||
#endif
|
||||
#if E_STEPPERS && AXIS_HAS_STEALTHCHOP(E0)
|
||||
TMC_SAY_PWMTHRS_E(0);
|
||||
#endif
|
||||
#if E_STEPPERS > 1 && AXIS_HAS_STEALTHCHOP(E1)
|
||||
TMC_SAY_PWMTHRS_E(1);
|
||||
#endif
|
||||
#if E_STEPPERS > 2 && AXIS_HAS_STEALTHCHOP(E2)
|
||||
TMC_SAY_PWMTHRS_E(2);
|
||||
#endif
|
||||
#if E_STEPPERS > 3 && AXIS_HAS_STEALTHCHOP(E3)
|
||||
TMC_SAY_PWMTHRS_E(3);
|
||||
#endif
|
||||
#if E_STEPPERS > 4 && AXIS_HAS_STEALTHCHOP(E4)
|
||||
TMC_SAY_PWMTHRS_E(4);
|
||||
#endif
|
||||
#if E_STEPPERS > 5 && AXIS_HAS_STEALTHCHOP(E5)
|
||||
TMC_SAY_PWMTHRS_E(5);
|
||||
#endif
|
||||
#if E_STEPPERS > 6 && AXIS_HAS_STEALTHCHOP(E6)
|
||||
TMC_SAY_PWMTHRS_E(6);
|
||||
#endif
|
||||
#if E_STEPPERS > 7 && AXIS_HAS_STEALTHCHOP(E7)
|
||||
TMC_SAY_PWMTHRS_E(7);
|
||||
#endif
|
||||
TERN_( X_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(X,X));
|
||||
TERN_(X2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(X,X2));
|
||||
TERN_( Y_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Y,Y));
|
||||
TERN_(Y2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Y,Y2));
|
||||
TERN_( Z_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z));
|
||||
TERN_(Z2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z2));
|
||||
TERN_(Z3_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z3));
|
||||
TERN_(Z4_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(Z,Z4));
|
||||
|
||||
TERN_( I_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(I,I));
|
||||
TERN_( J_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(J,J));
|
||||
TERN_( K_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS(K,K));
|
||||
|
||||
TERN_(E0_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(0));
|
||||
TERN_(E1_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(1));
|
||||
TERN_(E2_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(2));
|
||||
TERN_(E3_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(3));
|
||||
TERN_(E4_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(4));
|
||||
TERN_(E5_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(5));
|
||||
TERN_(E6_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(6));
|
||||
TERN_(E7_HAS_STEALTHCHOP, TMC_SAY_PWMTHRS_E(7));
|
||||
}
|
||||
}
|
||||
#endif // HYBRID_THRESHOLD
|
||||
@@ -378,6 +356,15 @@
|
||||
#endif
|
||||
break;
|
||||
#endif
|
||||
#if I_SENSORLESS && AXIS_HAS_STALLGUARD(I)
|
||||
case I_AXIS: stepperI.homing_threshold(value); break;
|
||||
#endif
|
||||
#if J_SENSORLESS && AXIS_HAS_STALLGUARD(J)
|
||||
case J_AXIS: stepperJ.homing_threshold(value); break;
|
||||
#endif
|
||||
#if K_SENSORLESS && AXIS_HAS_STALLGUARD(K)
|
||||
case K_AXIS: stepperK.homing_threshold(value); break;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
@@ -412,6 +399,15 @@
|
||||
tmc_print_sgt(stepperZ4);
|
||||
#endif
|
||||
#endif
|
||||
#if I_SENSORLESS && AXIS_HAS_STALLGUARD(I)
|
||||
tmc_print_sgt(stepperI);
|
||||
#endif
|
||||
#if J_SENSORLESS && AXIS_HAS_STALLGUARD(J)
|
||||
tmc_print_sgt(stepperJ);
|
||||
#endif
|
||||
#if K_SENSORLESS && AXIS_HAS_STALLGUARD(K)
|
||||
tmc_print_sgt(stepperK);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif // USE_SENSORLESS
|
||||
|
@@ -74,11 +74,14 @@ millis_t GcodeSuite::previous_move_ms = 0,
|
||||
|
||||
// Relative motion mode for each logical axis
|
||||
static constexpr xyze_bool_t ar_init = AXIS_RELATIVE_MODES;
|
||||
uint8_t GcodeSuite::axis_relative = (
|
||||
(ar_init.x ? _BV(REL_X) : 0)
|
||||
| (ar_init.y ? _BV(REL_Y) : 0)
|
||||
| (ar_init.z ? _BV(REL_Z) : 0)
|
||||
| (ar_init.e ? _BV(REL_E) : 0)
|
||||
uint8_t GcodeSuite::axis_relative = 0 LOGICAL_AXIS_GANG(
|
||||
| (ar_init.e << REL_E),
|
||||
| (ar_init.x << REL_X),
|
||||
| (ar_init.y << REL_Y),
|
||||
| (ar_init.z << REL_Z),
|
||||
| (ar_init.i << REL_I),
|
||||
| (ar_init.j << REL_J),
|
||||
| (ar_init.k << REL_K)
|
||||
);
|
||||
|
||||
#if EITHER(HAS_AUTO_REPORTING, HOST_KEEPALIVE_FEATURE)
|
||||
@@ -161,13 +164,15 @@ void GcodeSuite::get_destination_from_command() {
|
||||
destination[i] = current_position[i];
|
||||
}
|
||||
|
||||
// Get new E position, whether absolute or relative
|
||||
if ( (seen.e = parser.seenval('E')) ) {
|
||||
const float v = parser.value_axis_units(E_AXIS);
|
||||
destination.e = axis_is_relative(E_AXIS) ? current_position.e + v : v;
|
||||
}
|
||||
else
|
||||
destination.e = current_position.e;
|
||||
#if HAS_EXTRUDERS
|
||||
// Get new E position, whether absolute or relative
|
||||
if ( (seen.e = parser.seenval('E')) ) {
|
||||
const float v = parser.value_axis_units(E_AXIS);
|
||||
destination.e = axis_is_relative(E_AXIS) ? current_position.e + v : v;
|
||||
}
|
||||
else
|
||||
destination.e = current_position.e;
|
||||
#endif
|
||||
|
||||
#if ENABLED(POWER_LOSS_RECOVERY) && !PIN_EXISTS(POWER_LOSS)
|
||||
// Only update power loss recovery on moves with E
|
||||
|
@@ -314,7 +314,12 @@
|
||||
#define HAS_FAST_MOVES 1
|
||||
#endif
|
||||
|
||||
enum AxisRelative : uint8_t { REL_X, REL_Y, REL_Z, REL_E, E_MODE_ABS, E_MODE_REL };
|
||||
enum AxisRelative : uint8_t {
|
||||
LOGICAL_AXIS_LIST(REL_E, REL_X, REL_Y, REL_Z, REL_I, REL_J, REL_K)
|
||||
#if HAS_EXTRUDERS
|
||||
, E_MODE_ABS, E_MODE_REL
|
||||
#endif
|
||||
};
|
||||
|
||||
extern const char G28_STR[];
|
||||
|
||||
@@ -324,23 +329,31 @@ public:
|
||||
static uint8_t axis_relative;
|
||||
|
||||
static inline bool axis_is_relative(const AxisEnum a) {
|
||||
if (a == E_AXIS) {
|
||||
if (TEST(axis_relative, E_MODE_REL)) return true;
|
||||
if (TEST(axis_relative, E_MODE_ABS)) return false;
|
||||
}
|
||||
#if HAS_EXTRUDERS
|
||||
if (a == E_AXIS) {
|
||||
if (TEST(axis_relative, E_MODE_REL)) return true;
|
||||
if (TEST(axis_relative, E_MODE_ABS)) return false;
|
||||
}
|
||||
#endif
|
||||
return TEST(axis_relative, a);
|
||||
}
|
||||
static inline void set_relative_mode(const bool rel) {
|
||||
axis_relative = rel ? _BV(REL_X) | _BV(REL_Y) | _BV(REL_Z) | _BV(REL_E) : 0;
|
||||
}
|
||||
static inline void set_e_relative() {
|
||||
CBI(axis_relative, E_MODE_ABS);
|
||||
SBI(axis_relative, E_MODE_REL);
|
||||
}
|
||||
static inline void set_e_absolute() {
|
||||
CBI(axis_relative, E_MODE_REL);
|
||||
SBI(axis_relative, E_MODE_ABS);
|
||||
axis_relative = rel ? (0 LOGICAL_AXIS_GANG(
|
||||
| _BV(REL_E),
|
||||
| _BV(REL_X), | _BV(REL_Y), | _BV(REL_Z),
|
||||
| _BV(REL_I), | _BV(REL_J), | _BV(REL_K)
|
||||
)) : 0;
|
||||
}
|
||||
#if HAS_EXTRUDERS
|
||||
static inline void set_e_relative() {
|
||||
CBI(axis_relative, E_MODE_ABS);
|
||||
SBI(axis_relative, E_MODE_REL);
|
||||
}
|
||||
static inline void set_e_absolute() {
|
||||
CBI(axis_relative, E_MODE_REL);
|
||||
SBI(axis_relative, E_MODE_ABS);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(CNC_WORKSPACE_PLANES)
|
||||
/**
|
||||
@@ -379,7 +392,7 @@ public:
|
||||
static void process_subcommands_now(char * gcode);
|
||||
|
||||
static inline void home_all_axes(const bool keep_leveling=false) {
|
||||
process_subcommands_now_P(keep_leveling ? G28_STR : TERN(G28_L0_ENSURES_LEVELING_OFF, PSTR("G28L0"), G28_STR));
|
||||
process_subcommands_now_P(keep_leveling ? G28_STR : TERN(CAN_SET_LEVELING_AFTER_G28, PSTR("G28L0"), G28_STR));
|
||||
}
|
||||
|
||||
#if EITHER(HAS_AUTO_REPORTING, HOST_KEEPALIVE_FEATURE)
|
||||
|
@@ -48,7 +48,10 @@
|
||||
*/
|
||||
void GcodeSuite::G92() {
|
||||
|
||||
bool sync_E = false, sync_XYZE = false;
|
||||
#if HAS_EXTRUDERS
|
||||
bool sync_E = false;
|
||||
#endif
|
||||
bool sync_XYZE = false;
|
||||
|
||||
#if USE_GCODE_SUBCODES
|
||||
const uint8_t subcode_G92 = parser.subcode;
|
||||
@@ -72,7 +75,11 @@ void GcodeSuite::G92() {
|
||||
case 9: // G92.9 - Set Current Position directly (like Marlin 1.0)
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (parser.seenval(axis_codes[i])) {
|
||||
if (i == E_AXIS) sync_E = true; else sync_XYZE = true;
|
||||
if (TERN1(HAS_EXTRUDERS, i != E_AXIS))
|
||||
sync_XYZE = true;
|
||||
else {
|
||||
TERN_(HAS_EXTRUDERS, sync_E = true);
|
||||
}
|
||||
current_position[i] = parser.value_axis_units((AxisEnum)i);
|
||||
}
|
||||
}
|
||||
@@ -83,20 +90,26 @@ void GcodeSuite::G92() {
|
||||
LOOP_LOGICAL_AXES(i) {
|
||||
if (parser.seenval(axis_codes[i])) {
|
||||
const float l = parser.value_axis_units((AxisEnum)i), // Given axis coordinate value, converted to millimeters
|
||||
v = i == E_AXIS ? l : LOGICAL_TO_NATIVE(l, i), // Axis position in NATIVE space (applying the existing offset)
|
||||
v = TERN0(HAS_EXTRUDERS, i == E_AXIS) ? l : LOGICAL_TO_NATIVE(l, i), // Axis position in NATIVE space (applying the existing offset)
|
||||
d = v - current_position[i]; // How much is the current axis position altered by?
|
||||
if (!NEAR_ZERO(d)) {
|
||||
#if HAS_POSITION_SHIFT && !IS_SCARA // When using workspaces...
|
||||
if (i == E_AXIS) {
|
||||
sync_E = true;
|
||||
current_position.e = v; // ...E is still set directly
|
||||
}
|
||||
else {
|
||||
position_shift[i] += d; // ...but other axes offset the workspace.
|
||||
if (TERN1(HAS_EXTRUDERS, i != E_AXIS)) {
|
||||
position_shift[i] += d; // ...most axes offset the workspace...
|
||||
update_workspace_offset((AxisEnum)i);
|
||||
}
|
||||
else {
|
||||
#if HAS_EXTRUDERS
|
||||
sync_E = true;
|
||||
current_position.e = v; // ...but E is set directly
|
||||
#endif
|
||||
}
|
||||
#else // Without workspaces...
|
||||
if (i == E_AXIS) sync_E = true; else sync_XYZE = true;
|
||||
if (TERN1(HAS_EXTRUDERS, i != E_AXIS))
|
||||
sync_XYZE = true;
|
||||
else {
|
||||
TERN_(HAS_EXTRUDERS, sync_E = true);
|
||||
}
|
||||
current_position[i] = v; // ...set Current Position directly (like Marlin 1.0)
|
||||
#endif
|
||||
}
|
||||
@@ -111,8 +124,10 @@ void GcodeSuite::G92() {
|
||||
coordinate_system[active_coordinate_system] = position_shift;
|
||||
#endif
|
||||
|
||||
if (sync_XYZE) sync_plan_position();
|
||||
else if (sync_E) sync_plan_position_e();
|
||||
if (sync_XYZE) sync_plan_position();
|
||||
#if HAS_EXTRUDERS
|
||||
else if (sync_E) sync_plan_position_e();
|
||||
#endif
|
||||
|
||||
IF_DISABLED(DIRECT_STEPPING, report_current_position());
|
||||
}
|
||||
|
@@ -31,7 +31,16 @@
|
||||
#include "../../MarlinCore.h"
|
||||
|
||||
void M206_report() {
|
||||
SERIAL_ECHOLNPAIR_P(PSTR("M206 X"), home_offset.x, SP_Y_STR, home_offset.y, SP_Z_STR, home_offset.z);
|
||||
SERIAL_ECHOLNPAIR_P(
|
||||
LIST_N(DOUBLE(LINEAR_AXES),
|
||||
PSTR("M206 X"), home_offset.x,
|
||||
SP_Y_STR, home_offset.y,
|
||||
SP_Z_STR, home_offset.z,
|
||||
SP_I_STR, home_offset.i,
|
||||
SP_J_STR, home_offset.j,
|
||||
SP_K_STR, home_offset.k,
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -51,7 +60,7 @@ void GcodeSuite::M206() {
|
||||
if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_float()); // Psi
|
||||
#endif
|
||||
|
||||
if (!parser.seen("XYZ"))
|
||||
if (!parser.seen(LINEAR_AXIS_GANG("X", "Y", "Z", "I", "J", "K")))
|
||||
M206_report();
|
||||
else
|
||||
report_current_position();
|
||||
|
@@ -125,6 +125,15 @@
|
||||
#if AXIS_IS_L64XX(Z4)
|
||||
REPORT_ABSOLUTE_POS(Z4);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(I)
|
||||
REPORT_ABSOLUTE_POS(I);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(J)
|
||||
REPORT_ABSOLUTE_POS(J);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(K)
|
||||
REPORT_ABSOLUTE_POS(K);
|
||||
#endif
|
||||
#if AXIS_IS_L64XX(E0)
|
||||
REPORT_ABSOLUTE_POS(E0);
|
||||
#endif
|
||||
@@ -170,7 +179,13 @@
|
||||
|
||||
SERIAL_ECHOPGM("FromStp:");
|
||||
get_cartesian_from_steppers(); // writes 'cartes' (with forward kinematics)
|
||||
xyze_pos_t from_steppers = { cartes.x, cartes.y, cartes.z, planner.get_axis_position_mm(E_AXIS) };
|
||||
xyze_pos_t from_steppers = LOGICAL_AXIS_ARRAY(
|
||||
planner.get_axis_position_mm(E_AXIS),
|
||||
cartes.x, cartes.y, cartes.z,
|
||||
planner.get_axis_position_mm(I_AXIS),
|
||||
planner.get_axis_position_mm(J_AXIS),
|
||||
planner.get_axis_position_mm(K_AXIS)
|
||||
);
|
||||
report_all_axis_pos(from_steppers);
|
||||
|
||||
const xyze_float_t diff = from_steppers - leveled;
|
||||
|
@@ -49,9 +49,14 @@ void GcodeSuite::G0_G1(TERN_(HAS_FAST_MOVES, const bool fast_move/*=false*/)) {
|
||||
if (IsRunning()
|
||||
#if ENABLED(NO_MOTION_BEFORE_HOMING)
|
||||
&& !homing_needed_error(
|
||||
(parser.seen_test('X') ? _BV(X_AXIS) : 0)
|
||||
| (parser.seen_test('Y') ? _BV(Y_AXIS) : 0)
|
||||
| (parser.seen_test('Z') ? _BV(Z_AXIS) : 0) )
|
||||
LINEAR_AXIS_GANG(
|
||||
(parser.seen_test('X') ? _BV(X_AXIS) : 0),
|
||||
| (parser.seen_test('Y') ? _BV(Y_AXIS) : 0),
|
||||
| (parser.seen_test('Z') ? _BV(Z_AXIS) : 0),
|
||||
| (parser.seen_test(AXIS4_NAME) ? _BV(I_AXIS) : 0),
|
||||
| (parser.seen_test(AXIS5_NAME) ? _BV(J_AXIS) : 0),
|
||||
| (parser.seen_test(AXIS6_NAME) ? _BV(K_AXIS) : 0))
|
||||
)
|
||||
#endif
|
||||
) {
|
||||
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_RUNNING));
|
||||
@@ -83,7 +88,9 @@ void GcodeSuite::G0_G1(TERN_(HAS_FAST_MOVES, const bool fast_move/*=false*/)) {
|
||||
|
||||
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
|
||||
// When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
|
||||
if (fwretract.autoretract_enabled && parser.seen('E') && !parser.seen("XYZ")) {
|
||||
if (fwretract.autoretract_enabled && parser.seen_test('E')
|
||||
&& !parser.seen(LINEAR_AXIS_GANG("X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR))
|
||||
) {
|
||||
const float echange = destination.e - current_position.e;
|
||||
// Is this a retract or recover move?
|
||||
if (WITHIN(ABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && fwretract.retracted[active_extruder] == (echange > 0.0)) {
|
||||
|
@@ -63,7 +63,7 @@ void plan_arc(
|
||||
case GcodeSuite::PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
|
||||
}
|
||||
#else
|
||||
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
|
||||
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS OPTARG(HAS_Z_AXIS, l_axis = Z_AXIS);
|
||||
#endif
|
||||
|
||||
// Radius vector from center to current location
|
||||
@@ -73,8 +73,8 @@ void plan_arc(
|
||||
center_P = current_position[p_axis] - rvec.a,
|
||||
center_Q = current_position[q_axis] - rvec.b,
|
||||
rt_X = cart[p_axis] - center_P,
|
||||
rt_Y = cart[q_axis] - center_Q,
|
||||
start_L = current_position[l_axis];
|
||||
rt_Y = cart[q_axis] - center_Q
|
||||
OPTARG(HAS_Z_AXIS, start_L = current_position[l_axis]);
|
||||
|
||||
#ifdef MIN_ARC_SEGMENTS
|
||||
uint16_t min_segments = MIN_ARC_SEGMENTS;
|
||||
@@ -109,27 +109,37 @@ void plan_arc(
|
||||
#endif
|
||||
}
|
||||
|
||||
float linear_travel = cart[l_axis] - start_L,
|
||||
extruder_travel = cart.e - current_position.e;
|
||||
#if HAS_Z_AXIS
|
||||
float linear_travel = cart[l_axis] - start_L;
|
||||
#endif
|
||||
#if HAS_EXTRUDERS
|
||||
float extruder_travel = cart.e - current_position.e;
|
||||
#endif
|
||||
|
||||
// If circling around...
|
||||
if (ENABLED(ARC_P_CIRCLES) && circles) {
|
||||
const float total_angular = angular_travel + circles * RADIANS(360), // Total rotation with all circles and remainder
|
||||
part_per_circle = RADIANS(360) / total_angular, // Each circle's part of the total
|
||||
l_per_circle = linear_travel * part_per_circle, // L movement per circle
|
||||
e_per_circle = extruder_travel * part_per_circle; // E movement per circle
|
||||
part_per_circle = RADIANS(360) / total_angular; // Each circle's part of the total
|
||||
|
||||
#if HAS_Z_AXIS
|
||||
const float l_per_circle = linear_travel * part_per_circle; // L movement per circle
|
||||
#endif
|
||||
#if HAS_EXTRUDERS
|
||||
const float e_per_circle = extruder_travel * part_per_circle; // E movement per circle
|
||||
#endif
|
||||
|
||||
xyze_pos_t temp_position = current_position; // for plan_arc to compare to current_position
|
||||
for (uint16_t n = circles; n--;) {
|
||||
temp_position.e += e_per_circle; // Destination E axis
|
||||
temp_position[l_axis] += l_per_circle; // Destination L axis
|
||||
TERN_(HAS_EXTRUDERS, temp_position.e += e_per_circle); // Destination E axis
|
||||
TERN_(HAS_Z_AXIS, temp_position[l_axis] += l_per_circle); // Destination L axis
|
||||
plan_arc(temp_position, offset, clockwise, 0); // Plan a single whole circle
|
||||
}
|
||||
linear_travel = cart[l_axis] - current_position[l_axis];
|
||||
extruder_travel = cart.e - current_position.e;
|
||||
TERN_(HAS_Z_AXIS, linear_travel = cart[l_axis] - current_position[l_axis]);
|
||||
TERN_(HAS_EXTRUDERS, extruder_travel = cart.e - current_position.e);
|
||||
}
|
||||
|
||||
const float flat_mm = radius * angular_travel,
|
||||
mm_of_travel = linear_travel ? HYPOT(flat_mm, linear_travel) : ABS(flat_mm);
|
||||
mm_of_travel = TERN_(HAS_Z_AXIS, linear_travel ? HYPOT(flat_mm, linear_travel) :) ABS(flat_mm);
|
||||
if (mm_of_travel < 0.001f) return;
|
||||
|
||||
const feedRate_t scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s);
|
||||
@@ -178,17 +188,22 @@ void plan_arc(
|
||||
// Vector rotation matrix values
|
||||
xyze_pos_t raw;
|
||||
const float theta_per_segment = angular_travel / segments,
|
||||
linear_per_segment = linear_travel / segments,
|
||||
extruder_per_segment = extruder_travel / segments,
|
||||
sq_theta_per_segment = sq(theta_per_segment),
|
||||
sin_T = theta_per_segment - sq_theta_per_segment * theta_per_segment / 6,
|
||||
cos_T = 1 - 0.5f * sq_theta_per_segment; // Small angle approximation
|
||||
|
||||
#if HAS_Z_AXIS && DISABLED(AUTO_BED_LEVELING_UBL)
|
||||
const float linear_per_segment = linear_travel / segments;
|
||||
#endif
|
||||
#if HAS_EXTRUDERS
|
||||
const float extruder_per_segment = extruder_travel / segments;
|
||||
#endif
|
||||
|
||||
// Initialize the linear axis
|
||||
raw[l_axis] = current_position[l_axis];
|
||||
TERN_(HAS_Z_AXIS, raw[l_axis] = current_position[l_axis]);
|
||||
|
||||
// Initialize the extruder axis
|
||||
raw.e = current_position.e;
|
||||
TERN_(HAS_EXTRUDERS, raw.e = current_position.e);
|
||||
|
||||
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
||||
const float inv_duration = scaled_fr_mm_s / seg_length;
|
||||
@@ -234,13 +249,11 @@ void plan_arc(
|
||||
// Update raw location
|
||||
raw[p_axis] = center_P + rvec.a;
|
||||
raw[q_axis] = center_Q + rvec.b;
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
raw[l_axis] = start_L;
|
||||
UNUSED(linear_per_segment);
|
||||
#else
|
||||
raw[l_axis] += linear_per_segment;
|
||||
#if HAS_Z_AXIS
|
||||
raw[l_axis] = TERN(AUTO_BED_LEVELING_UBL, start_L, raw[l_axis] + linear_per_segment);
|
||||
#endif
|
||||
raw.e += extruder_per_segment;
|
||||
|
||||
TERN_(HAS_EXTRUDERS, raw.e += extruder_per_segment);
|
||||
|
||||
apply_motion_limits(raw);
|
||||
|
||||
@@ -255,7 +268,7 @@ void plan_arc(
|
||||
|
||||
// Ensure last segment arrives at target location.
|
||||
raw = cart;
|
||||
TERN_(AUTO_BED_LEVELING_UBL, raw[l_axis] = start_L);
|
||||
TERN_(AUTO_BED_LEVELING_UBL, TERN_(HAS_Z_AXIS, raw[l_axis] = start_L));
|
||||
|
||||
apply_motion_limits(raw);
|
||||
|
||||
@@ -267,7 +280,7 @@ void plan_arc(
|
||||
OPTARG(SCARA_FEEDRATE_SCALING, inv_duration)
|
||||
);
|
||||
|
||||
TERN_(AUTO_BED_LEVELING_UBL, raw[l_axis] = start_L);
|
||||
TERN_(AUTO_BED_LEVELING_UBL, TERN_(HAS_Z_AXIS, raw[l_axis] = start_L));
|
||||
current_position = raw;
|
||||
|
||||
} // plan_arc
|
||||
|
@@ -87,7 +87,7 @@ void GcodeSuite::M290() {
|
||||
}
|
||||
#endif
|
||||
|
||||
if (!parser.seen("XYZ") || parser.seen('R')) {
|
||||
if (!parser.seen(LINEAR_AXIS_GANG("X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR)) || parser.seen('R')) {
|
||||
SERIAL_ECHO_START();
|
||||
|
||||
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
|
||||
|
@@ -248,7 +248,8 @@ void GCodeParser::parse(char *p) {
|
||||
case 'R': if (!WITHIN(motion_mode_codenum, 2, 3)) return;
|
||||
#endif
|
||||
|
||||
case 'X' ... 'Z': case 'E' ... 'F':
|
||||
LOGICAL_AXIS_GANG(case 'E':, case 'X':, case 'Y':, case 'Z':, case AXIS4_NAME:, case AXIS5_NAME:, case AXIS6_NAME:)
|
||||
case 'F':
|
||||
if (motion_mode_codenum < 0) return;
|
||||
command_letter = 'G';
|
||||
codenum = motion_mode_codenum;
|
||||
|
@@ -226,7 +226,7 @@ public:
|
||||
|
||||
// Seen any axis parameter
|
||||
static inline bool seen_axis() {
|
||||
return seen("XYZE");
|
||||
return seen(LOGICAL_AXIS_GANG("E", "X", "Y", "Z", AXIS4_STR, AXIS5_STR, AXIS6_STR));
|
||||
}
|
||||
|
||||
#if ENABLED(GCODE_QUOTED_STRINGS)
|
||||
|
@@ -35,11 +35,7 @@ void GcodeSuite::M105() {
|
||||
|
||||
#if HAS_TEMP_SENSOR
|
||||
|
||||
thermalManager.print_heater_states(target_extruder
|
||||
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
||||
, parser.boolval('R')
|
||||
#endif
|
||||
);
|
||||
thermalManager.print_heater_states(target_extruder OPTARG(HAS_TEMP_REDUNDANT, parser.boolval('R')));
|
||||
|
||||
SERIAL_EOL();
|
||||
|
||||
|
@@ -60,37 +60,40 @@
|
||||
*/
|
||||
void GcodeSuite::M106() {
|
||||
const uint8_t pfan = parser.byteval('P', _ALT_P);
|
||||
if (pfan >= _CNT_P) return;
|
||||
#if REDUNDANT_PART_COOLING_FAN
|
||||
if (pfan == REDUNDANT_PART_COOLING_FAN) return;
|
||||
#endif
|
||||
|
||||
if (pfan < _CNT_P) {
|
||||
#if ENABLED(EXTRA_FAN_SPEED)
|
||||
const uint16_t t = parser.intval('T');
|
||||
if (t > 0) return thermalManager.set_temp_fan_speed(pfan, t);
|
||||
#endif
|
||||
|
||||
#if ENABLED(EXTRA_FAN_SPEED)
|
||||
const uint16_t t = parser.intval('T');
|
||||
if (t > 0) return thermalManager.set_temp_fan_speed(pfan, t);
|
||||
#endif
|
||||
const uint16_t dspeed = parser.seen_test('A') ? thermalManager.fan_speed[active_extruder] : 255;
|
||||
|
||||
const uint16_t dspeed = parser.seen_test('A') ? thermalManager.fan_speed[active_extruder] : 255;
|
||||
uint16_t speed = dspeed;
|
||||
|
||||
uint16_t speed = dspeed;
|
||||
// Accept 'I' if temperature presets are defined
|
||||
#if PREHEAT_COUNT
|
||||
const bool got_preset = parser.seenval('I');
|
||||
if (got_preset) speed = ui.material_preset[_MIN(parser.value_byte(), PREHEAT_COUNT - 1)].fan_speed;
|
||||
#else
|
||||
constexpr bool got_preset = false;
|
||||
#endif
|
||||
|
||||
// Accept 'I' if temperature presets are defined
|
||||
#if PREHEAT_COUNT
|
||||
const bool got_preset = parser.seenval('I');
|
||||
if (got_preset) speed = ui.material_preset[_MIN(parser.value_byte(), PREHEAT_COUNT - 1)].fan_speed;
|
||||
#else
|
||||
constexpr bool got_preset = false;
|
||||
#endif
|
||||
if (!got_preset && parser.seenval('S'))
|
||||
speed = parser.value_ushort();
|
||||
|
||||
if (!got_preset && parser.seenval('S'))
|
||||
speed = parser.value_ushort();
|
||||
TERN_(FOAMCUTTER_XYUV, speed *= 2.55); // Get command in % of max heat
|
||||
|
||||
// Set speed, with constraint
|
||||
thermalManager.set_fan_speed(pfan, speed);
|
||||
// Set speed, with constraint
|
||||
thermalManager.set_fan_speed(pfan, speed);
|
||||
|
||||
TERN_(LASER_SYNCHRONOUS_M106_M107, planner.buffer_sync_block(BLOCK_FLAG_SYNC_FANS));
|
||||
TERN_(LASER_SYNCHRONOUS_M106_M107, planner.buffer_sync_block(BLOCK_FLAG_SYNC_FANS));
|
||||
|
||||
if (TERN0(DUAL_X_CARRIAGE, idex_is_duplicating())) // pfan == 0 when duplicating
|
||||
thermalManager.set_fan_speed(1 - pfan, speed);
|
||||
}
|
||||
if (TERN0(DUAL_X_CARRIAGE, idex_is_duplicating())) // pfan == 0 when duplicating
|
||||
thermalManager.set_fan_speed(1 - pfan, speed);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -99,6 +102,9 @@ void GcodeSuite::M106() {
|
||||
void GcodeSuite::M107() {
|
||||
const uint8_t pfan = parser.byteval('P', _ALT_P);
|
||||
if (pfan >= _CNT_P) return;
|
||||
#if REDUNDANT_PART_COOLING_FAN
|
||||
if (pfan == REDUNDANT_PART_COOLING_FAN) return;
|
||||
#endif
|
||||
|
||||
thermalManager.set_fan_speed(pfan, 0);
|
||||
|
||||
|
@@ -83,10 +83,11 @@ void GcodeSuite::M140_M190(const bool isM190) {
|
||||
|
||||
thermalManager.setTargetBed(temp);
|
||||
|
||||
TERN_(PRINTJOB_TIMER_AUTOSTART, thermalManager.auto_job_check_timer(true, false));
|
||||
|
||||
ui.set_status_P(thermalManager.isHeatingBed() ? GET_TEXT(MSG_BED_HEATING) : GET_TEXT(MSG_BED_COOLING));
|
||||
|
||||
// with PRINTJOB_TIMER_AUTOSTART, M190 can start the timer, and M140 can stop it
|
||||
TERN_(PRINTJOB_TIMER_AUTOSTART, thermalManager.auto_job_check_timer(isM190, !isM190));
|
||||
|
||||
if (isM190)
|
||||
thermalManager.wait_for_bed(no_wait_for_cooling);
|
||||
}
|
||||
|
@@ -405,6 +405,10 @@
|
||||
|
||||
#endif
|
||||
|
||||
#if EITHER(LCD_I2C_TYPE_MCP23017, LCD_I2C_TYPE_MCP23008) && DISABLED(NO_LCD_DETECT)
|
||||
#define DETECT_I2C_LCD_DEVICE 1
|
||||
#endif
|
||||
|
||||
#ifndef STD_ENCODER_PULSES_PER_STEP
|
||||
#if ENABLED(TOUCH_SCREEN)
|
||||
#define STD_ENCODER_PULSES_PER_STEP 2
|
||||
@@ -517,7 +521,7 @@
|
||||
#define HAS_PRUSA_MMU2 1
|
||||
#define HAS_PRUSA_MMU2S 1
|
||||
#endif
|
||||
#if MMU_MODEL == EXTENDABLE_EMU_MMU2 || MMU_MODEL == EXTENDABLE_EMU_MMU2S
|
||||
#if MMU_MODEL >= EXTENDABLE_EMU_MMU2
|
||||
#define HAS_EXTENDABLE_MMU 1
|
||||
#endif
|
||||
#endif
|
||||
@@ -537,12 +541,12 @@
|
||||
* E_STEPPERS - Number of actual E stepper motors
|
||||
* E_MANUAL - Number of E steppers for LCD move options
|
||||
*/
|
||||
|
||||
#if EXTRUDERS
|
||||
#define HAS_EXTRUDERS 1
|
||||
#if EXTRUDERS > 1
|
||||
#define HAS_MULTI_EXTRUDER 1
|
||||
#endif
|
||||
#define E_AXIS_N(E) AxisEnum(E_AXIS + E_INDEX_N(E))
|
||||
#else
|
||||
#undef EXTRUDERS
|
||||
#define EXTRUDERS 0
|
||||
@@ -551,9 +555,15 @@
|
||||
#undef SWITCHING_NOZZLE
|
||||
#undef MIXING_EXTRUDER
|
||||
#undef HOTEND_IDLE_TIMEOUT
|
||||
#undef DISABLE_E
|
||||
#endif
|
||||
|
||||
#if ENABLED(SWITCHING_EXTRUDER) // One stepper for every two EXTRUDERS
|
||||
#if ENABLED(E_DUAL_STEPPER_DRIVERS) // E0/E1 steppers act in tandem as E0
|
||||
|
||||
#define E_STEPPERS 2
|
||||
|
||||
#elif ENABLED(SWITCHING_EXTRUDER) // One stepper for every two EXTRUDERS
|
||||
|
||||
#if EXTRUDERS > 4
|
||||
#define E_STEPPERS 3
|
||||
#elif EXTRUDERS > 2
|
||||
@@ -564,17 +574,24 @@
|
||||
#if DISABLED(SWITCHING_NOZZLE)
|
||||
#define HOTENDS E_STEPPERS
|
||||
#endif
|
||||
#elif ENABLED(MIXING_EXTRUDER)
|
||||
|
||||
#elif ENABLED(MIXING_EXTRUDER) // Multiple feeds are mixed proportionally
|
||||
|
||||
#define E_STEPPERS MIXING_STEPPERS
|
||||
#define E_MANUAL 1
|
||||
#if MIXING_STEPPERS == 2
|
||||
#define HAS_DUAL_MIXING 1
|
||||
#endif
|
||||
#elif ENABLED(SWITCHING_TOOLHEAD)
|
||||
|
||||
#elif ENABLED(SWITCHING_TOOLHEAD) // Toolchanger
|
||||
|
||||
#define E_STEPPERS EXTRUDERS
|
||||
#define E_MANUAL EXTRUDERS
|
||||
#elif HAS_PRUSA_MMU2
|
||||
|
||||
#elif HAS_PRUSA_MMU2 // Průša Multi-Material Unit v2
|
||||
|
||||
#define E_STEPPERS 1
|
||||
|
||||
#endif
|
||||
|
||||
// No inactive extruders with SWITCHING_NOZZLE or Průša MMU1
|
||||
@@ -604,6 +621,56 @@
|
||||
#define E_MANUAL EXTRUDERS
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Number of Linear Axes (e.g., XYZ)
|
||||
* All the logical axes except for the tool (E) axis
|
||||
*/
|
||||
#ifndef LINEAR_AXES
|
||||
#define LINEAR_AXES XYZ
|
||||
#endif
|
||||
#if LINEAR_AXES >= XY
|
||||
#define HAS_Y_AXIS 1
|
||||
#if LINEAR_AXES >= XYZ
|
||||
#define HAS_Z_AXIS 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Number of Logical Axes (e.g., XYZE)
|
||||
* All the logical axes that can be commanded directly by G-code.
|
||||
* Delta maps stepper-specific values to ABC steppers.
|
||||
*/
|
||||
#if HAS_EXTRUDERS
|
||||
#define LOGICAL_AXES INCREMENT(LINEAR_AXES)
|
||||
#else
|
||||
#define LOGICAL_AXES LINEAR_AXES
|
||||
#endif
|
||||
|
||||
/**
|
||||
* DISTINCT_E_FACTORS is set to give extruders (some) individual settings.
|
||||
*
|
||||
* DISTINCT_AXES is the number of distinct addressable axes (not steppers).
|
||||
* Includes all linear axes plus all distinguished extruders.
|
||||
* The default behavior is to treat all extruders as a single E axis
|
||||
* with shared motion and temperature settings.
|
||||
*
|
||||
* DISTINCT_E is the number of distinguished extruders. By default this
|
||||
* well be 1 which indicates all extruders share the same settings.
|
||||
*
|
||||
* E_INDEX_N(E) should be used to get the E index of any item that might be
|
||||
* distinguished.
|
||||
*/
|
||||
#if ENABLED(DISTINCT_E_FACTORS) && E_STEPPERS > 1
|
||||
#define DISTINCT_AXES (LINEAR_AXES + E_STEPPERS)
|
||||
#define DISTINCT_E E_STEPPERS
|
||||
#define E_INDEX_N(E) (E)
|
||||
#else
|
||||
#undef DISTINCT_E_FACTORS
|
||||
#define DISTINCT_AXES LOGICAL_AXES
|
||||
#define DISTINCT_E 1
|
||||
#define E_INDEX_N(E) 0
|
||||
#endif
|
||||
|
||||
#if HOTENDS
|
||||
#define HAS_HOTEND 1
|
||||
#ifndef HOTEND_OVERSHOOT
|
||||
@@ -624,10 +691,6 @@
|
||||
#define ARRAY_BY_HOTENDS(V...) ARRAY_N(HOTENDS, V)
|
||||
#define ARRAY_BY_HOTENDS1(v1) ARRAY_N_1(HOTENDS, v1)
|
||||
|
||||
#if ENABLED(SWITCHING_EXTRUDER) && (DISABLED(SWITCHING_NOZZLE) || SWITCHING_EXTRUDER_SERVO_NR != SWITCHING_NOZZLE_SERVO_NR)
|
||||
#define DO_SWITCH_EXTRUDER 1
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Default hotend offsets, if not defined
|
||||
*/
|
||||
@@ -653,40 +716,11 @@
|
||||
#undef SINGLENOZZLE_STANDBY_FAN
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Number of Linear Axes (e.g., XYZ)
|
||||
* All the logical axes except for the tool (E) axis
|
||||
*/
|
||||
#ifndef LINEAR_AXES
|
||||
#define LINEAR_AXES XYZ
|
||||
// Switching extruder has its own servo?
|
||||
#if ENABLED(SWITCHING_EXTRUDER) && (DISABLED(SWITCHING_NOZZLE) || SWITCHING_EXTRUDER_SERVO_NR != SWITCHING_NOZZLE_SERVO_NR)
|
||||
#define DO_SWITCH_EXTRUDER 1
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Number of Logical Axes (e.g., XYZE)
|
||||
* All the logical axes that can be commanded directly by G-code.
|
||||
* Delta maps stepper-specific values to ABC steppers.
|
||||
*/
|
||||
#if HAS_EXTRUDERS
|
||||
#define LOGICAL_AXES INCREMENT(LINEAR_AXES)
|
||||
#else
|
||||
#define LOGICAL_AXES LINEAR_AXES
|
||||
#endif
|
||||
|
||||
/**
|
||||
* DISTINCT_E_FACTORS affects whether Extruders use different settings
|
||||
*/
|
||||
#if ENABLED(DISTINCT_E_FACTORS) && E_STEPPERS > 1
|
||||
#define DISTINCT_E E_STEPPERS
|
||||
#define DISTINCT_AXES (LINEAR_AXES + E_STEPPERS)
|
||||
#define E_INDEX_N(E) (E)
|
||||
#else
|
||||
#undef DISTINCT_E_FACTORS
|
||||
#define DISTINCT_E 1
|
||||
#define DISTINCT_AXES LOGICAL_AXES
|
||||
#define E_INDEX_N(E) 0
|
||||
#endif
|
||||
#define E_AXIS_N(E) AxisEnum(E_AXIS + E_INDEX_N(E))
|
||||
|
||||
/**
|
||||
* The BLTouch Probe emulates a servo probe
|
||||
* and uses "special" angles for its state.
|
||||
@@ -695,14 +729,19 @@
|
||||
#ifndef Z_PROBE_SERVO_NR
|
||||
#define Z_PROBE_SERVO_NR 0
|
||||
#endif
|
||||
#undef DEACTIVATE_SERVOS_AFTER_MOVE
|
||||
#ifdef DEACTIVATE_SERVOS_AFTER_MOVE
|
||||
#error "BLTOUCH requires DEACTIVATE_SERVOS_AFTER_MOVE to be to disabled. Please update your Configuration.h file."
|
||||
#endif
|
||||
|
||||
// Always disable probe pin inverting for BLTouch
|
||||
#undef Z_MIN_PROBE_ENDSTOP_INVERTING
|
||||
#define Z_MIN_PROBE_ENDSTOP_INVERTING false
|
||||
#if Z_MIN_PROBE_ENDSTOP_INVERTING
|
||||
#error "BLTOUCH requires Z_MIN_PROBE_ENDSTOP_INVERTING set to false. Please update your Configuration.h file."
|
||||
#endif
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
|
||||
#undef Z_MIN_ENDSTOP_INVERTING
|
||||
#define Z_MIN_ENDSTOP_INVERTING false
|
||||
#if Z_MIN_ENDSTOP_INVERTING
|
||||
#error "BLTOUCH requires Z_MIN_ENDSTOP_INVERTING set to false. Please update your Configuration.h file."
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@@ -726,6 +765,9 @@
|
||||
#define HAS_BED_PROBE 1
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Fill in undefined Filament Sensor options
|
||||
*/
|
||||
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
||||
#if NUM_RUNOUT_SENSORS >= 1
|
||||
#ifndef FIL_RUNOUT1_STATE
|
||||
@@ -833,7 +875,25 @@
|
||||
#elif Z_HOME_DIR < 0
|
||||
#define Z_HOME_TO_MIN 1
|
||||
#endif
|
||||
#if I_HOME_DIR > 0
|
||||
#define I_HOME_TO_MAX 1
|
||||
#elif I_HOME_DIR < 0
|
||||
#define I_HOME_TO_MIN 1
|
||||
#endif
|
||||
#if J_HOME_DIR > 0
|
||||
#define J_HOME_TO_MAX 1
|
||||
#elif J_HOME_DIR < 0
|
||||
#define J_HOME_TO_MIN 1
|
||||
#endif
|
||||
#if K_HOME_DIR > 0
|
||||
#define K_HOME_TO_MAX 1
|
||||
#elif K_HOME_DIR < 0
|
||||
#define K_HOME_TO_MIN 1
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Conditionals based on the type of Bed Probe
|
||||
*/
|
||||
#if HAS_BED_PROBE
|
||||
#if DISABLED(NOZZLE_AS_PROBE)
|
||||
#define HAS_PROBE_XY_OFFSET 1
|
||||
@@ -868,7 +928,7 @@
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Set granular options based on the specific type of leveling
|
||||
* Conditionals based on the type of Bed Leveling
|
||||
*/
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
#undef LCD_BED_LEVELING
|
||||
@@ -974,6 +1034,10 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if DISABLED(DELTA)
|
||||
#undef DELTA_HOME_TO_SAFE_ZONE
|
||||
#endif
|
||||
|
||||
// This flag indicates some kind of jerk storage is needed
|
||||
#if EITHER(CLASSIC_JERK, IS_KINEMATIC)
|
||||
#define HAS_CLASSIC_JERK 1
|
||||
@@ -1088,13 +1152,22 @@
|
||||
#ifndef INVERT_X_DIR
|
||||
#define INVERT_X_DIR false
|
||||
#endif
|
||||
#ifndef INVERT_Y_DIR
|
||||
#if HAS_Y_AXIS && !defined(INVERT_Y_DIR)
|
||||
#define INVERT_Y_DIR false
|
||||
#endif
|
||||
#ifndef INVERT_Z_DIR
|
||||
#if HAS_Z_AXIS && !defined(INVERT_Z_DIR)
|
||||
#define INVERT_Z_DIR false
|
||||
#endif
|
||||
#ifndef INVERT_E_DIR
|
||||
#if LINEAR_AXES >= 4 && !defined(INVERT_I_DIR)
|
||||
#define INVERT_I_DIR false
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5 && !defined(INVERT_J_DIR)
|
||||
#define INVERT_J_DIR false
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6 && !defined(INVERT_K_DIR)
|
||||
#define INVERT_K_DIR false
|
||||
#endif
|
||||
#if HAS_EXTRUDERS && !defined(INVERT_E_DIR)
|
||||
#define INVERT_E_DIR false
|
||||
#endif
|
||||
|
||||
@@ -1118,29 +1191,38 @@
|
||||
* - TFT_COLOR
|
||||
* - GRAPHICAL_TFT_UPSCALE
|
||||
*/
|
||||
#if ENABLED(MKS_TS35_V2_0) // Most common: ST7796
|
||||
#if ENABLED(MKS_TS35_V2_0) // ST7796
|
||||
#define TFT_DEFAULT_DRIVER ST7796
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY)
|
||||
#define TFT_RES_480x320
|
||||
#define TFT_INTERFACE_SPI
|
||||
#elif ENABLED(MKS_ROBIN_TFT24) // Most common: ST7789
|
||||
#elif ENABLED(ANET_ET5_TFT35) // ST7796
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY)
|
||||
#define TFT_RES_480x320
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif ENABLED(ANET_ET4_TFT28) // ST7789
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY | TFT_INVERT_Y)
|
||||
#define TFT_RES_320x240
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif ENABLED(MKS_ROBIN_TFT28) // Most common: ST7789
|
||||
#elif ENABLED(MKS_ROBIN_TFT24) // ST7789
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY | TFT_INVERT_Y)
|
||||
#define TFT_RES_320x240
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif ENABLED(MKS_ROBIN_TFT32) // Most common: ST7789
|
||||
#elif ENABLED(MKS_ROBIN_TFT28) // ST7789
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY | TFT_INVERT_Y)
|
||||
#define TFT_RES_320x240
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif ENABLED(MKS_ROBIN_TFT35) // Most common: ILI9488
|
||||
#elif ENABLED(MKS_ROBIN_TFT32) // ST7789
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY | TFT_INVERT_Y)
|
||||
#define TFT_RES_320x240
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif ENABLED(MKS_ROBIN_TFT35) // ILI9488
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY | TFT_INVERT_X | TFT_INVERT_Y)
|
||||
#define TFT_RES_480x320
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif ENABLED(MKS_ROBIN_TFT43)
|
||||
#define TFT_DEFAULT_ORIENTATION 0
|
||||
#define TFT_DRIVER SSD1963
|
||||
#define TFT_DEFAULT_ORIENTATION 0
|
||||
#define TFT_RES_480x272
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif ENABLED(MKS_ROBIN_TFT_V1_1R) // ILI9328 or R61505
|
||||
@@ -1148,22 +1230,14 @@
|
||||
#define TFT_RES_320x240
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif EITHER(TFT_TRONXY_X5SA, ANYCUBIC_TFT35) // ILI9488
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY | TFT_INVERT_X | TFT_INVERT_Y)
|
||||
#define TFT_DRIVER ILI9488
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY | TFT_INVERT_X | TFT_INVERT_Y)
|
||||
#define TFT_RES_480x320
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif ENABLED(LONGER_LK_TFT28)
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY | TFT_INVERT_X | TFT_INVERT_Y)
|
||||
#define TFT_RES_320x240
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif ENABLED(ANET_ET4_TFT28) // ST7789
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY | TFT_INVERT_Y)
|
||||
#define TFT_RES_320x240
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif ENABLED(ANET_ET5_TFT35) // ST7796
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY)
|
||||
#define TFT_RES_480x320
|
||||
#define TFT_INTERFACE_FSMC
|
||||
#elif ENABLED(BIQU_BX_TFT70) // RGB
|
||||
#define TFT_DEFAULT_ORIENTATION (TFT_EXCHANGE_XY)
|
||||
#define TFT_RES_1024x600
|
||||
|
@@ -26,6 +26,10 @@
|
||||
* Defines that depend on advanced configuration.
|
||||
*/
|
||||
|
||||
#ifndef AXIS_RELATIVE_MODES
|
||||
#define AXIS_RELATIVE_MODES {}
|
||||
#endif
|
||||
|
||||
#ifdef SWITCHING_NOZZLE_E1_SERVO_NR
|
||||
#define SWITCHING_NOZZLE_TWO_SERVOS 1
|
||||
#endif
|
||||
@@ -103,6 +107,9 @@
|
||||
#undef THERMAL_PROTECTION_PERIOD
|
||||
#undef WATCH_TEMP_PERIOD
|
||||
#undef SHOW_TEMP_ADC_VALUES
|
||||
#undef LCD_SHOW_E_TOTAL
|
||||
#undef MANUAL_E_MOVES_RELATIVE
|
||||
#undef STEALTHCHOP_E
|
||||
#endif
|
||||
|
||||
#if TEMP_SENSOR_BED == 0
|
||||
@@ -482,6 +489,37 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Remove unused STEALTHCHOP flags
|
||||
#if LINEAR_AXES < 6
|
||||
#undef STEALTHCHOP_K
|
||||
#undef CALIBRATION_MEASURE_KMIN
|
||||
#undef CALIBRATION_MEASURE_KMAX
|
||||
#if LINEAR_AXES < 5
|
||||
#undef STEALTHCHOP_J
|
||||
#undef CALIBRATION_MEASURE_JMIN
|
||||
#undef CALIBRATION_MEASURE_JMAX
|
||||
#if LINEAR_AXES < 4
|
||||
#undef STEALTHCHOP_I
|
||||
#undef CALIBRATION_MEASURE_IMIN
|
||||
#undef CALIBRATION_MEASURE_IMAX
|
||||
#if LINEAR_AXES < 3
|
||||
#undef Z_IDLE_HEIGHT
|
||||
#undef STEALTHCHOP_Z
|
||||
#undef Z_PROBE_SLED
|
||||
#undef Z_SAFE_HOMING
|
||||
#undef HOME_Z_FIRST
|
||||
#undef HOMING_Z_WITH_PROBE
|
||||
#undef ENABLE_LEVELING_FADE_HEIGHT
|
||||
#undef NUM_Z_STEPPER_DRIVERS
|
||||
#undef CNC_WORKSPACE_PLANES
|
||||
#if LINEAR_AXES < 2
|
||||
#undef STEALTHCHOP_Y
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
//
|
||||
// SD Card connection methods
|
||||
// Defined here so pins and sanity checks can use them
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -34,6 +34,10 @@
|
||||
#error "Marlin requires C++11 support (gcc >= 4.7, Arduino IDE >= 1.6.8). Please upgrade your toolchain."
|
||||
#endif
|
||||
|
||||
// Strings for sanity check messages
|
||||
#define _LINEAR_AXES_STR LINEAR_AXIS_GANG("X ", "Y ", "Z ", "I ", "J ", "K ")
|
||||
#define _LOGICAL_AXES_STR LOGICAL_AXIS_GANG("E ", "X ", "Y ", "Z ", "I ", "J ", "K ")
|
||||
|
||||
// Make sure macros aren't borked
|
||||
#define TEST1
|
||||
#define TEST2 1
|
||||
@@ -564,11 +568,19 @@
|
||||
#error "MKS_LCD12864 is now MKS_LCD12864A or MKS_LCD12864B."
|
||||
#elif defined(NEOPIXEL_BKGD_LED_INDEX)
|
||||
#error "NEOPIXEL_BKGD_LED_INDEX is now NEOPIXEL_BKGD_INDEX_FIRST."
|
||||
#elif defined(TEMP_SENSOR_1_AS_REDUNDANT)
|
||||
#error "TEMP_SENSOR_1_AS_REDUNDANT is now TEMP_SENSOR_REDUNDANT, with associated TEMP_SENSOR_REDUNDANT_* config."
|
||||
#elif defined(MAX_REDUNDANT_TEMP_SENSOR_DIFF)
|
||||
#error "MAX_REDUNDANT_TEMP_SENSOR_DIFF is now TEMP_SENSOR_REDUNDANT_MAX_DIFF"
|
||||
#endif
|
||||
|
||||
constexpr float arm[] = AXIS_RELATIVE_MODES;
|
||||
static_assert(COUNT(arm) == LOGICAL_AXES, "AXIS_RELATIVE_MODES must contain " _LOGICAL_AXES_STR "elements.");
|
||||
|
||||
/**
|
||||
* Probe temp compensation requirements
|
||||
*/
|
||||
|
||||
#if ENABLED(PROBE_TEMP_COMPENSATION)
|
||||
#if defined(PTC_PARK_POS_X) || defined(PTC_PARK_POS_Y) || defined(PTC_PARK_POS_Z)
|
||||
#error "PTC_PARK_POS_[XYZ] is now PTC_PARK_POS (array)."
|
||||
@@ -579,6 +591,27 @@
|
||||
#elif !defined(PTC_PROBE_POS)
|
||||
#error "PROBE_TEMP_COMPENSATION requires PTC_PROBE_POS."
|
||||
#endif
|
||||
|
||||
#ifdef PTC_SAMPLE_START
|
||||
constexpr int _ptc_sample_start = PTC_SAMPLE_START;
|
||||
static_assert(_test_ptc_sample_start != PTC_SAMPLE_START, "PTC_SAMPLE_START must be a whole number.");
|
||||
#endif
|
||||
#ifdef PTC_SAMPLE_RES
|
||||
constexpr int _ptc_sample_res = PTC_SAMPLE_END;
|
||||
static_assert(_test_ptc_sample_res != PTC_SAMPLE_END, "PTC_SAMPLE_RES must be a whole number.");
|
||||
#endif
|
||||
#ifdef BTC_SAMPLE_START
|
||||
constexpr int _btc_sample_start = BTC_SAMPLE_START;
|
||||
static_assert(_test_btc_sample_start != BTC_SAMPLE_START, "BTC_SAMPLE_START must be a whole number.");
|
||||
#endif
|
||||
#ifdef BTC_SAMPLE_RES
|
||||
constexpr int _btc_sample_res = BTC_SAMPLE_END;
|
||||
static_assert(_test_btc_sample_res != BTC_SAMPLE_END, "BTC_SAMPLE_RES must be a whole number.");
|
||||
#endif
|
||||
#ifdef BTC_PROBE_TEMP
|
||||
constexpr int _btc_probe_temp = BTC_PROBE_TEMP;
|
||||
static_assert(_test_btc_probe_temp != BTC_PROBE_TEMP, "BTC_PROBE_TEMP must be a whole number.");
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -644,14 +677,18 @@
|
||||
|
||||
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) && !GOOD_AXIS_PINS(Y)
|
||||
#error "Y_DUAL_STEPPER_DRIVERS requires Y2 pins to be defined."
|
||||
#elif !WITHIN(NUM_Z_STEPPER_DRIVERS, 1, 4)
|
||||
#error "NUM_Z_STEPPER_DRIVERS must be an integer from 1 to 4."
|
||||
#elif NUM_Z_STEPPER_DRIVERS == 2 && !GOOD_AXIS_PINS(Z2)
|
||||
#error "If NUM_Z_STEPPER_DRIVERS is 2, you must define stepper pins for Z2."
|
||||
#elif NUM_Z_STEPPER_DRIVERS == 3 && !(GOOD_AXIS_PINS(Z2) && GOOD_AXIS_PINS(Z3))
|
||||
#error "If NUM_Z_STEPPER_DRIVERS is 3, you must define stepper pins for Z2 and Z3."
|
||||
#elif NUM_Z_STEPPER_DRIVERS == 4 && !(GOOD_AXIS_PINS(Z2) && GOOD_AXIS_PINS(Z3) && GOOD_AXIS_PINS(Z4))
|
||||
#error "If NUM_Z_STEPPER_DRIVERS is 4, you must define stepper pins for Z2, Z3, and Z4."
|
||||
#endif
|
||||
|
||||
#if HAS_Z_AXIS
|
||||
#if !WITHIN(NUM_Z_STEPPER_DRIVERS, 1, 4)
|
||||
#error "NUM_Z_STEPPER_DRIVERS must be an integer from 1 to 4."
|
||||
#elif NUM_Z_STEPPER_DRIVERS == 2 && !GOOD_AXIS_PINS(Z2)
|
||||
#error "If NUM_Z_STEPPER_DRIVERS is 2, you must define stepper pins for Z2."
|
||||
#elif NUM_Z_STEPPER_DRIVERS == 3 && !(GOOD_AXIS_PINS(Z2) && GOOD_AXIS_PINS(Z3))
|
||||
#error "If NUM_Z_STEPPER_DRIVERS is 3, you must define stepper pins for Z2 and Z3."
|
||||
#elif NUM_Z_STEPPER_DRIVERS == 4 && !(GOOD_AXIS_PINS(Z2) && GOOD_AXIS_PINS(Z3) && GOOD_AXIS_PINS(Z4))
|
||||
#error "If NUM_Z_STEPPER_DRIVERS is 4, you must define stepper pins for Z2, Z3, and Z4."
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -704,6 +741,12 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
|
||||
#error "Enable only one of ENDSTOPPULLUP_Y_MIN or ENDSTOPPULLDOWN_Y_MIN."
|
||||
#elif BOTH(ENDSTOPPULLUP_ZMIN, ENDSTOPPULLDOWN_ZMIN)
|
||||
#error "Enable only one of ENDSTOPPULLUP_Z_MIN or ENDSTOPPULLDOWN_Z_MIN."
|
||||
#elif BOTH(ENDSTOPPULLUP_IMIN, ENDSTOPPULLDOWN_IMIN)
|
||||
#error "Enable only one of ENDSTOPPULLUP_I_MIN or ENDSTOPPULLDOWN_I_MIN."
|
||||
#elif BOTH(ENDSTOPPULLUP_JMIN, ENDSTOPPULLDOWN_JMIN)
|
||||
#error "Enable only one of ENDSTOPPULLUP_J_MIN or ENDSTOPPULLDOWN_J_MIN."
|
||||
#elif BOTH(ENDSTOPPULLUP_KMIN, ENDSTOPPULLDOWN_KMIN)
|
||||
#error "Enable only one of ENDSTOPPULLUP_K_MIN or ENDSTOPPULLDOWN_K_MIN."
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -926,6 +969,13 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
|
||||
static_assert(WITHIN(npp_xyz.z, Z_MIN_POS, Z_MAX_POS), "NOZZLE_PARK_POINT.Z is out of bounds (Z_MIN_POS, Z_MAX_POS).");
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Instant Freeze
|
||||
*/
|
||||
#if ENABLED(FREEZE_FEATURE) && !PIN_EXISTS(FREEZE)
|
||||
#error "FREEZE_FEATURE requires a FREEZE_PIN to be defined."
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Individual axis homing is useless for DELTAS
|
||||
*/
|
||||
@@ -954,9 +1004,11 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
|
||||
* Multi-Material-Unit 2 / EXTENDABLE_EMU_MMU2 requirements
|
||||
*/
|
||||
#if HAS_PRUSA_MMU2
|
||||
#if EXTRUDERS != 5
|
||||
#if !HAS_EXTENDABLE_MMU && EXTRUDERS != 5
|
||||
#undef SINGLENOZZLE
|
||||
#error "PRUSA_MMU2(S) requires exactly 5 EXTRUDERS. Please update your Configuration."
|
||||
#elif HAS_EXTENDABLE_MMU && EXTRUDERS > 15
|
||||
#error "EXTRUDERS is too large for MMU(S) emulation mode. The maximum value is 15."
|
||||
#elif DISABLED(NOZZLE_PARK_FEATURE)
|
||||
#error "PRUSA_MMU2(S) requires NOZZLE_PARK_FEATURE. Enable it to continue."
|
||||
#elif HAS_PRUSA_MMU2S && DISABLED(FILAMENT_RUNOUT_SENSOR)
|
||||
@@ -969,18 +1021,19 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
|
||||
static_assert(nullptr == strstr(MMU2_FILAMENT_RUNOUT_SCRIPT, "M600"), "ADVANCED_PAUSE_FEATURE is required to use M600 with PRUSA_MMU2(S) / HAS_EXTENDABLE_MMU(S).");
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_EXTENDABLE_MMU && EXTRUDERS > 15
|
||||
#error "Too many extruders for MMU(S) emulation mode. (15 maximum)."
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Options only for EXTRUDERS > 1
|
||||
*/
|
||||
#if HAS_MULTI_EXTRUDER
|
||||
|
||||
#if EXTRUDERS > 8
|
||||
#error "Marlin supports a maximum of 8 EXTRUDERS."
|
||||
#if HAS_EXTENDABLE_MMU
|
||||
#define MAX_EXTRUDERS 15
|
||||
#else
|
||||
#define MAX_EXTRUDERS 8
|
||||
#endif
|
||||
static_assert(EXTRUDERS <= MAX_EXTRUDERS, "Marlin supports a maximum of " STRINGIFY(MAX_EXTRUDERS) " EXTRUDERS.");
|
||||
#undef MAX_EXTRUDERS
|
||||
|
||||
#if ENABLED(HEATERS_PARALLEL)
|
||||
#error "EXTRUDERS must be 1 with HEATERS_PARALLEL."
|
||||
@@ -1108,6 +1161,19 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Dual E Steppers requirements
|
||||
*/
|
||||
#if ENABLED(E_DUAL_STEPPER_DRIVERS)
|
||||
#if EXTRUDERS > 1
|
||||
#error "E_DUAL_STEPPER_DRIVERS can only be used with EXTRUDERS set to 1."
|
||||
#elif ENABLED(MIXING_EXTRUDER)
|
||||
#error "E_DUAL_STEPPER_DRIVERS is incompatible with MIXING_EXTRUDER."
|
||||
#elif ENABLED(SWITCHING_EXTRUDER)
|
||||
#error "E_DUAL_STEPPER_DRIVERS is incompatible with SWITCHING_EXTRUDER."
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Linear Advance 1.5 - Check K value range
|
||||
*/
|
||||
@@ -1263,6 +1329,42 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
|
||||
#error "To use CHAMBER_LIMIT_SWITCHING you must disable PIDTEMPCHAMBER."
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Features that require a min/max/specific LINEAR_AXES
|
||||
*/
|
||||
#if HAS_LEVELING && !HAS_Z_AXIS
|
||||
#error "Leveling in Marlin requires three or more axes, with Z as the vertical axis."
|
||||
#elif ENABLED(CNC_WORKSPACE_PLANES) && !HAS_Z_AXIS
|
||||
#error "CNC_WORKSPACE_PLANES currently requires LINEAR_AXES >= 3"
|
||||
#elif ENABLED(DIRECT_STEPPING) && LINEAR_AXES > XYZ
|
||||
#error "DIRECT_STEPPING currently requires LINEAR_AXES 3"
|
||||
#elif ENABLED(FOAMCUTTER_XYUV) && LINEAR_AXES < 5
|
||||
#error "FOAMCUTTER_XYUV requires LINEAR_AXES >= 5."
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Allow only extra axis codes that do not conflict with G-code parameter names
|
||||
*/
|
||||
#if LINEAR_AXES >= 4
|
||||
#if AXIS4_NAME != 'A' && AXIS4_NAME != 'B' && AXIS4_NAME != 'C' && AXIS4_NAME != 'U' && AXIS4_NAME != 'V' && AXIS4_NAME != 'W'
|
||||
#error "AXIS4_NAME can only be one of 'A', 'B', 'C', 'U', 'V', or 'W'."
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
#if AXIS5_NAME == AXIS4_NAME || AXIS5_NAME == AXIS6_NAME
|
||||
#error "AXIS5_NAME must be different from AXIS4_NAME and AXIS6_NAME"
|
||||
#elif AXIS5_NAME != 'A' && AXIS5_NAME != 'B' && AXIS5_NAME != 'C' && AXIS5_NAME != 'U' && AXIS5_NAME != 'V' && AXIS5_NAME != 'W'
|
||||
#error "AXIS5_NAME can only be one of 'A', 'B', 'C', 'U', 'V', or 'W'."
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
#if AXIS6_NAME == AXIS5_NAME || AXIS6_NAME == AXIS4_NAME
|
||||
#error "AXIS6_NAME must be different from AXIS5_NAME and AXIS4_NAME."
|
||||
#elif AXIS6_NAME != 'A' && AXIS6_NAME != 'B' && AXIS6_NAME != 'C' && AXIS6_NAME != 'U' && AXIS6_NAME != 'V' && AXIS6_NAME != 'W'
|
||||
#error "AXIS6_NAME can only be one of 'A', 'B', 'C', 'U', 'V', or 'W'."
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Kinematics
|
||||
*/
|
||||
@@ -1270,8 +1372,8 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
|
||||
/**
|
||||
* Allow only one kinematic type to be defined
|
||||
*/
|
||||
#if MANY(DELTA, MORGAN_SCARA, MP_SCARA, AXEL_TPARA, COREXY, COREXZ, COREYZ, COREYX, COREZX, COREZY, MARKFORGED_XY)
|
||||
#error "Please enable only one of DELTA, MORGAN_SCARA, AXEL_TPARA, COREXY, COREYX, COREXZ, COREZX, COREYZ, COREZY, or MARKFORGED_XY."
|
||||
#if MANY(DELTA, MORGAN_SCARA, MP_SCARA, AXEL_TPARA, COREXY, COREXZ, COREYZ, COREYX, COREZX, COREZY, MARKFORGED_XY, FOAMCUTTER_XYUV)
|
||||
#error "Please enable only one of DELTA, MORGAN_SCARA, MP_SCARA, AXEL_TPARA, COREXY, COREXZ, COREYZ, COREYX, COREZX, COREZY, MARKFORGED_XY, or FOAMCUTTER_XYUV."
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -1568,12 +1670,8 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
|
||||
#error "MESH_EDIT_GFX_OVERLAY requires AUTO_BED_LEVELING_UBL and a Graphical LCD."
|
||||
#endif
|
||||
|
||||
#if ENABLED(G29_RETRY_AND_RECOVER)
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
#error "G29_RETRY_AND_RECOVER is not compatible with UBL."
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
#error "G29_RETRY_AND_RECOVER is not compatible with MESH_BED_LEVELING."
|
||||
#endif
|
||||
#if ENABLED(G29_RETRY_AND_RECOVER) && NONE(AUTO_BED_LEVELING_3POINT, AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR)
|
||||
#error "G29_RETRY_AND_RECOVER requires AUTO_BED_LEVELING_3POINT, LINEAR, or BILINEAR."
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -1594,13 +1692,59 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Homing
|
||||
* Homing checks
|
||||
*/
|
||||
constexpr float hbm[] = HOMING_BUMP_MM;
|
||||
static_assert(COUNT(hbm) == XYZ, "HOMING_BUMP_MM requires X, Y, and Z elements.");
|
||||
static_assert(hbm[X_AXIS] >= 0, "HOMING_BUMP_MM.X must be greater than or equal to 0.");
|
||||
static_assert(hbm[Y_AXIS] >= 0, "HOMING_BUMP_MM.Y must be greater than or equal to 0.");
|
||||
static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal to 0.");
|
||||
#ifndef HOMING_BUMP_MM
|
||||
#error "Required setting HOMING_BUMP_MM is missing!"
|
||||
#elif !defined(HOMING_BUMP_DIVISOR)
|
||||
#error "Required setting HOMING_BUMP_DIVISOR is missing!"
|
||||
#else
|
||||
constexpr float hbm[] = HOMING_BUMP_MM, hbd[] = HOMING_BUMP_DIVISOR;
|
||||
static_assert(COUNT(hbm) == LINEAR_AXES, "HOMING_BUMP_MM must have " _LINEAR_AXES_STR "elements (and no others).");
|
||||
LINEAR_AXIS_CODE(
|
||||
static_assert(hbm[X_AXIS] >= 0, "HOMING_BUMP_MM.X must be greater than or equal to 0."),
|
||||
static_assert(hbm[Y_AXIS] >= 0, "HOMING_BUMP_MM.Y must be greater than or equal to 0."),
|
||||
static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal to 0."),
|
||||
static_assert(hbm[I_AXIS] >= 0, "HOMING_BUMP_MM.I must be greater than or equal to 0."),
|
||||
static_assert(hbm[J_AXIS] >= 0, "HOMING_BUMP_MM.J must be greater than or equal to 0."),
|
||||
static_assert(hbm[K_AXIS] >= 0, "HOMING_BUMP_MM.K must be greater than or equal to 0.")
|
||||
);
|
||||
static_assert(COUNT(hbd) == LINEAR_AXES, "HOMING_BUMP_DIVISOR must have " _LINEAR_AXES_STR "elements (and no others).");
|
||||
LINEAR_AXIS_CODE(
|
||||
static_assert(hbd[X_AXIS] >= 1, "HOMING_BUMP_DIVISOR.X must be greater than or equal to 1."),
|
||||
static_assert(hbd[Y_AXIS] >= 1, "HOMING_BUMP_DIVISOR.Y must be greater than or equal to 1."),
|
||||
static_assert(hbd[Z_AXIS] >= 1, "HOMING_BUMP_DIVISOR.Z must be greater than or equal to 1."),
|
||||
static_assert(hbd[I_AXIS] >= 1, "HOMING_BUMP_DIVISOR.I must be greater than or equal to 1."),
|
||||
static_assert(hbd[J_AXIS] >= 1, "HOMING_BUMP_DIVISOR.J must be greater than or equal to 1."),
|
||||
static_assert(hbd[K_AXIS] >= 1, "HOMING_BUMP_DIVISOR.K must be greater than or equal to 1.")
|
||||
);
|
||||
#endif
|
||||
|
||||
#ifdef HOMING_BACKOFF_POST_MM
|
||||
constexpr float hbp[] = HOMING_BACKOFF_POST_MM;
|
||||
static_assert(COUNT(hbp) == LINEAR_AXES, "HOMING_BACKOFF_POST_MM must have " _LINEAR_AXES_STR "elements (and no others).");
|
||||
LINEAR_AXIS_CODE(
|
||||
static_assert(hbp[X_AXIS] >= 0, "HOMING_BACKOFF_POST_MM.X must be greater than or equal to 0."),
|
||||
static_assert(hbp[Y_AXIS] >= 0, "HOMING_BACKOFF_POST_MM.Y must be greater than or equal to 0."),
|
||||
static_assert(hbp[Z_AXIS] >= 0, "HOMING_BACKOFF_POST_MM.Z must be greater than or equal to 0."),
|
||||
static_assert(hbp[I_AXIS] >= 0, "HOMING_BACKOFF_POST_MM.I must be greater than or equal to 0."),
|
||||
static_assert(hbp[J_AXIS] >= 0, "HOMING_BACKOFF_POST_MM.J must be greater than or equal to 0."),
|
||||
static_assert(hbp[K_AXIS] >= 0, "HOMING_BACKOFF_POST_MM.K must be greater than or equal to 0.")
|
||||
);
|
||||
#endif
|
||||
|
||||
#ifdef SENSORLESS_BACKOFF_MM
|
||||
constexpr float sbm[] = SENSORLESS_BACKOFF_MM;
|
||||
static_assert(COUNT(sbm) == LINEAR_AXES, "SENSORLESS_BACKOFF_MM must have " _LINEAR_AXES_STR "elements (and no others).");
|
||||
LINEAR_AXIS_CODE(
|
||||
static_assert(sbm[X_AXIS] >= 0, "SENSORLESS_BACKOFF_MM.X must be greater than or equal to 0."),
|
||||
static_assert(sbm[Y_AXIS] >= 0, "SENSORLESS_BACKOFF_MM.Y must be greater than or equal to 0."),
|
||||
static_assert(sbm[Z_AXIS] >= 0, "SENSORLESS_BACKOFF_MM.Z must be greater than or equal to 0."),
|
||||
static_assert(sbm[I_AXIS] >= 0, "SENSORLESS_BACKOFF_MM.I must be greater than or equal to 0."),
|
||||
static_assert(sbm[J_AXIS] >= 0, "SENSORLESS_BACKOFF_MM.J must be greater than or equal to 0."),
|
||||
static_assert(sbm[K_AXIS] >= 0, "SENSORLESS_BACKOFF_MM.K must be greater than or equal to 0.")
|
||||
);
|
||||
#endif
|
||||
|
||||
#if ENABLED(CODEPENDENT_XY_HOMING)
|
||||
#if ENABLED(QUICK_HOME)
|
||||
@@ -1621,9 +1765,9 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
/**
|
||||
* Make sure DISABLE_[XYZ] compatible with selected homing options
|
||||
*/
|
||||
#if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z)
|
||||
#if ANY(DISABLE_X, DISABLE_Y, DISABLE_Z, DISABLE_I, DISABLE_J, DISABLE_K)
|
||||
#if EITHER(HOME_AFTER_DEACTIVATE, Z_SAFE_HOMING)
|
||||
#error "DISABLE_[XYZ] is not compatible with HOME_AFTER_DEACTIVATE or Z_SAFE_HOMING."
|
||||
#error "DISABLE_[XYZIJK] is not compatible with HOME_AFTER_DEACTIVATE or Z_SAFE_HOMING."
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@@ -1746,6 +1890,14 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef REDUNDANT_PART_COOLING_FAN
|
||||
#if FAN_COUNT < 2
|
||||
#error "REDUNDANT_PART_COOLING_FAN requires a board with at least two PWM fans."
|
||||
#else
|
||||
static_assert(WITHIN(REDUNDANT_PART_COOLING_FAN, 1, FAN_COUNT - 1), "REDUNDANT_PART_COOLING_FAN must be between 1 and " STRINGIFY(DECREMENT(FAN_COUNT)) ".");
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Case Light requirements
|
||||
*/
|
||||
@@ -1782,19 +1934,88 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#error "TEMP_SENSOR_CHAMBER 1000 requires CHAMBER_PULLUP_RESISTOR_OHMS, CHAMBER_RESISTANCE_25C_OHMS and CHAMBER_BETA in Configuration_adv.h."
|
||||
#elif TEMP_SENSOR_PROBE_IS_CUSTOM && !(defined(PROBE_PULLUP_RESISTOR_OHMS) && defined(PROBE_RESISTANCE_25C_OHMS) && defined(PROBE_BETA))
|
||||
#error "TEMP_SENSOR_PROBE 1000 requires PROBE_PULLUP_RESISTOR_OHMS, PROBE_RESISTANCE_25C_OHMS and PROBE_BETA in Configuration_adv.h."
|
||||
#elif TEMP_SENSOR_REDUNDANT_IS_CUSTOM && !(defined(REDUNDANT_PULLUP_RESISTOR_OHMS) && defined(REDUNDANT_RESISTANCE_25C_OHMS) && defined(REDUNDANT_BETA))
|
||||
#error "TEMP_SENSOR_REDUNDANT 1000 requires REDUNDANT_PULLUP_RESISTOR_OHMS, REDUNDANT_RESISTANCE_25C_OHMS and REDUNDANT_BETA in Configuration_adv.h."
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Pins and Sensor IDs must be set for each heater
|
||||
*/
|
||||
#if TEMP_SENSOR_0_IS_MAX6675 && !ANY_PIN(MAX6675_SS, MAX31855_CS, MAX31865_CS, MAX6675_CS)
|
||||
#error "TEMP_SENSOR_0 requires a MAX6675_SS_PIN, MAX6675_CS_PIN, MAX31855_CS_PIN, or MAX31865_CS_PIN."
|
||||
#error "TEMP_SENSOR_0 -2 requires a MAX6675_SS_PIN, MAX6675_CS_PIN, MAX31855_CS_PIN, or MAX31865_CS_PIN."
|
||||
#elif HAS_HOTEND && !HAS_TEMP_HOTEND && !TEMP_SENSOR_0_IS_DUMMY
|
||||
#error "TEMP_0_PIN (required for TEMP_SENSOR_0) not defined for this board."
|
||||
#elif EITHER(HAS_MULTI_HOTEND, HEATERS_PARALLEL) && !HAS_HEATER_1
|
||||
#error "HEATER_1_PIN is not defined. TEMP_SENSOR_1 might not be set, or the board (not EEB / EEF?) doesn't define a pin."
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Redundant temperature sensor config
|
||||
*/
|
||||
#if HAS_TEMP_REDUNDANT
|
||||
#if !defined(TEMP_SENSOR_REDUNDANT_SOURCE)
|
||||
#error "TEMP_SENSOR_REDUNDANT requires TEMP_SENSOR_REDUNDANT_SOURCE."
|
||||
#elif !defined(TEMP_SENSOR_REDUNDANT_TARGET)
|
||||
#error "TEMP_SENSOR_REDUNDANT requires TEMP_SENSOR_REDUNDANT_TARGET."
|
||||
#elif TEMP_SENSOR_REDUNDANT_SOURCE == TEMP_SENSOR_REDUNDANT_TARGET
|
||||
#error "TEMP_SENSOR_REDUNDANT_SOURCE can't be the same as TEMP_SENSOR_REDUNDANT_TARGET."
|
||||
#elif TEMP_SENSOR_REDUNDANT_SOURCE < -5 || TEMP_SENSOR_REDUNDANT_SOURCE > 7
|
||||
#error "TEMP_SENSOR_REDUNDANT_SOURCE must be between -5 and 7."
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET < -5 || TEMP_SENSOR_REDUNDANT_TARGET > 7
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET must be between -5 and 7."
|
||||
#elif TEMP_SENSOR_REDUNDANT_SOURCE == -3
|
||||
#error "TEMP_SENSOR_REDUNDANT_SOURCE can't be -3 (not used)."
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == -3
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be -3 (not used)."
|
||||
#elif HAS_MULTI_HOTEND && TEMP_SENSOR_REDUNDANT_SOURCE < HOTENDS
|
||||
#error "TEMP_SENSOR_REDUNDANT_SOURCE must be after the last TEMP_SENSOR used with a hotend; you can't use a sensor in the middle of two hotends."
|
||||
#endif
|
||||
|
||||
#if TEMP_SENSOR_REDUNDANT_SOURCE == 0 && HAS_HOTEND
|
||||
#error "TEMP_SENSOR_REDUNDANT_SOURCE can not be 0 if a hotend is used. E0 always uses TEMP_SENSOR_0."
|
||||
#elif TEMP_SENSOR_REDUNDANT_SOURCE == -5 && HAS_TEMP_COOLER
|
||||
#error "TEMP_SENSOR_REDUNDANT_SOURCE can't be Cooler (-5): TEMP_SENSOR_COOLER has already defined the sensor."
|
||||
#elif TEMP_SENSOR_REDUNDANT_SOURCE == -4 && HAS_TEMP_PROBE
|
||||
#error "TEMP_SENSOR_REDUNDANT_SOURCE can't be Probe (-4): TEMP_SENSOR_PROBE has already defined the sensor."
|
||||
#elif TEMP_SENSOR_REDUNDANT_SOURCE == -2 && HAS_TEMP_CHAMBER
|
||||
#error "TEMP_SENSOR_REDUNDANT_SOURCE can't be Chamber (-2): TEMP_SENSOR_CHAMBER has already defined the sensor."
|
||||
#elif TEMP_SENSOR_REDUNDANT_SOURCE == -1 && HAS_TEMP_BED
|
||||
#error "TEMP_SENSOR_REDUNDANT_SOURCE can't be Bed (-1): TEMP_SENSOR_BED has already defined the sensor."
|
||||
#endif
|
||||
|
||||
#if TEMP_SENSOR_REDUNDANT_TARGET == 0 && !PIN_EXISTS(TEMP_0)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be E0 (0): requires TEMP_0_PIN"
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == 1 && !PIN_EXISTS(TEMP_1)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be E1 (1): requires TEMP_1_PIN"
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == 2 && !PIN_EXISTS(TEMP_2)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be E2 (2): requires TEMP_2_PIN"
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == 3 && !PIN_EXISTS(TEMP_3)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be E3 (3): requires TEMP_3_PIN"
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == 4 && !PIN_EXISTS(TEMP_4)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be E4 (4): requires TEMP_4_PIN"
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == 5 && !PIN_EXISTS(TEMP_5)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be E5 (5): requires TEMP_5_PIN"
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == 6 && !PIN_EXISTS(TEMP_6)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be E6 (6): requires TEMP_6_PIN"
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == 7 && !PIN_EXISTS(TEMP_7)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be E7 (7): requires TEMP_7_PIN"
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == -1 && !PIN_EXISTS(TEMP_BED)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be Bed (-1): requires TEMP_BED_PIN"
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == -2 && !PIN_EXISTS(TEMP_CHAMBER)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be Chamber (-2): requires TEMP_CHAMBER_PIN"
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == -4 && !PIN_EXISTS(TEMP_PROBE)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be Probe (-4): requires TEMP_PROBE_PIN"
|
||||
#elif TEMP_SENSOR_REDUNDANT_TARGET == -5 && !PIN_EXISTS(TEMP_COOLER)
|
||||
#error "TEMP_SENSOR_REDUNDANT_TARGET can't be Cooler (-5): requires TEMP_COOLER_PIN"
|
||||
#endif
|
||||
|
||||
#if TEMP_SENSOR_REDUNDANT_IS_MAX_TC && TEMP_SENSOR_REDUNDANT_SOURCE == 0 && !PIN_EXISTS(MAX6675_SS)
|
||||
#error "TEMP_SENSOR_REDUNDANT MAX Thermocouple with TEMP_SENSOR_REDUNDANT_SOURCE 0 requires a MAX6675_SS_PIN, MAX6675_CS_PIN, MAX31855_CS_PIN, or MAX31865_CS_PIN."
|
||||
#elif TEMP_SENSOR_REDUNDANT_IS_MAX_TC && TEMP_SENSOR_REDUNDANT_SOURCE == 1 && !PIN_EXISTS(MAX6675_SS2)
|
||||
#error "TEMP_SENSOR_REDUNDANT MAX Thermocouple with TEMP_SENSOR_REDUNDANT_SOURCE 1 requires a MAX6675_SS2_PIN, MAX6675_CS_PIN, MAX31855_CS_PIN, or MAX31865_CS_PIN."
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_MULTI_HOTEND
|
||||
#if TEMP_SENSOR_1_IS_MAX6675 && !ANY_PIN(MAX6675_SS2, MAX31855_CS2, MAX31865_CS2, MAX6675_CS2)
|
||||
#error "TEMP_SENSOR_1 requires a MAX6675_SS2_PIN, MAX6675_CS2_PIN, MAX31855_CS2_PIN, or MAX31865_CS2_PIN."
|
||||
@@ -1802,8 +2023,6 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#error "TEMP_SENSOR_1 is required with 2 or more HOTENDS."
|
||||
#elif !ANY_PIN(TEMP_1, MAX6675_SS2) && !TEMP_SENSOR_1_IS_DUMMY
|
||||
#error "TEMP_1_PIN or MAX6675_SS2_PIN not defined for this board."
|
||||
#elif ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
||||
#error "HOTENDS must be 1 with TEMP_SENSOR_1_AS_REDUNDANT."
|
||||
#endif
|
||||
#if HOTENDS > 2
|
||||
#if TEMP_SENSOR_2 == 0
|
||||
@@ -1901,7 +2120,7 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#elif TEMP_SENSOR_7 != 0
|
||||
#error "TEMP_SENSOR_7 shouldn't be set with only 2 HOTENDS."
|
||||
#endif
|
||||
#elif TEMP_SENSOR_1 != 0 && DISABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
||||
#elif TEMP_SENSOR_1 != 0
|
||||
#error "TEMP_SENSOR_1 shouldn't be set with only 1 HOTEND."
|
||||
#elif TEMP_SENSOR_2 != 0
|
||||
#error "TEMP_SENSOR_2 shouldn't be set with only 1 HOTEND."
|
||||
@@ -1963,14 +2182,10 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) && TEMP_SENSOR_1 == 0
|
||||
#error "TEMP_SENSOR_1 is required with TEMP_SENSOR_1_AS_REDUNDANT."
|
||||
#endif
|
||||
|
||||
#if TEMP_SENSOR_0_IS_MAX31865 && !(defined(MAX31865_SENSOR_OHMS_0) && defined(MAX31865_CALIBRATION_OHMS_0))
|
||||
#error "MAX31865_SENSOR_OHMS_0 and MAX31865_CALIBRATION_OHMS_0 must be set if TEMP_SENSOR_0 is MAX31865."
|
||||
#elif TEMP_SENSOR_1_IS_MAX31865 && !(defined(MAX31865_SENSOR_OHMS_1) && defined(MAX31865_CALIBRATION_OHMS_1))
|
||||
#error "MAX31865_SENSOR_OHMS_1 and MAX31865_CALIBRATION_OHMS_1 must be set if TEMP_SENSOR_1 is MAX31865."
|
||||
#if TEMP_SENSOR_IS_MAX(0, MAX31865) && !(defined(MAX31865_SENSOR_OHMS_0) && defined(MAX31865_CALIBRATION_OHMS_0))
|
||||
#error "MAX31865_SENSOR_OHMS_0 and MAX31865_CALIBRATION_OHMS_0 must be set if TEMP_SENSOR_0/TEMP_SENSOR_REDUNDANT is MAX31865."
|
||||
#elif TEMP_SENSOR_IS_MAX(1, MAX31865) && !(defined(MAX31865_SENSOR_OHMS_1) && defined(MAX31865_CALIBRATION_OHMS_1))
|
||||
#error "MAX31865_SENSOR_OHMS_1 and MAX31865_CALIBRATION_OHMS_1 must be set if TEMP_SENSOR_1/TEMP_SENSOR_REDUNDANT is MAX31865."
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -1980,12 +2195,16 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#error "HEATER_0_PIN not defined for this board."
|
||||
#elif !ANY_PIN(TEMP_0, MAX6675_SS)
|
||||
#error "TEMP_0_PIN or MAX6675_SS not defined for this board."
|
||||
#elif ((defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284P__)) && !PINS_EXIST(E0_STEP, E0_DIR))
|
||||
#error "E0_STEP_PIN or E0_DIR_PIN not defined for this board."
|
||||
#elif ( !(defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284P__)) && (!PINS_EXIST(E0_STEP, E0_DIR) || !HAS_E0_ENABLE))
|
||||
#error "E0_STEP_PIN, E0_DIR_PIN, or E0_ENABLE_PIN not defined for this board."
|
||||
#elif EXTRUDERS && TEMP_SENSOR_0 == 0
|
||||
#error "TEMP_SENSOR_0 is required if there are any extruders."
|
||||
#endif
|
||||
|
||||
#if HAS_EXTRUDERS
|
||||
#if ((defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284P__)) && !PINS_EXIST(E0_STEP, E0_DIR))
|
||||
#error "E0_STEP_PIN or E0_DIR_PIN not defined for this board."
|
||||
#elif ( !(defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284P__)) && (!PINS_EXIST(E0_STEP, E0_DIR) || !HAS_E0_ENABLE))
|
||||
#error "E0_STEP_PIN, E0_DIR_PIN, or E0_ENABLE_PIN not defined for this board."
|
||||
#elif EXTRUDERS && TEMP_SENSOR_0 == 0
|
||||
#error "TEMP_SENSOR_0 is required if there are any extruders."
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -2077,7 +2296,7 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#define _PLUG_UNUSED_TEST(A,P) (DISABLED(USE_##P##MIN_PLUG, USE_##P##MAX_PLUG) \
|
||||
&& !(ENABLED(A##_DUAL_ENDSTOPS) && WITHIN(A##2_USE_ENDSTOP, _##P##MAX_, _##P##MIN_)) \
|
||||
&& !(ENABLED(A##_MULTI_ENDSTOPS) && WITHIN(A##2_USE_ENDSTOP, _##P##MAX_, _##P##MIN_)) )
|
||||
#define _AXIS_PLUG_UNUSED_TEST(A) (_PLUG_UNUSED_TEST(A,X) && _PLUG_UNUSED_TEST(A,Y) && _PLUG_UNUSED_TEST(A,Z))
|
||||
#define _AXIS_PLUG_UNUSED_TEST(A) (1 LINEAR_AXIS_GANG(&& _PLUG_UNUSED_TEST(A,X), && _PLUG_UNUSED_TEST(A,Y), && _PLUG_UNUSED_TEST(A,Z), && _PLUG_UNUSED_TEST(A,I), && _PLUG_UNUSED_TEST(A,J), && _PLUG_UNUSED_TEST(A,K) ) )
|
||||
|
||||
// A machine with endstops must have a minimum of 3
|
||||
#if HAS_ENDSTOPS
|
||||
@@ -2090,6 +2309,15 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#if _AXIS_PLUG_UNUSED_TEST(Z)
|
||||
#error "You must enable USE_ZMIN_PLUG or USE_ZMAX_PLUG."
|
||||
#endif
|
||||
#if LINEAR_AXES >= 4 && _AXIS_PLUG_UNUSED_TEST(I)
|
||||
#error "You must enable USE_IMIN_PLUG or USE_IMAX_PLUG."
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5 && _AXIS_PLUG_UNUSED_TEST(J)
|
||||
#error "You must enable USE_JMIN_PLUG or USE_JMAX_PLUG."
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6 && _AXIS_PLUG_UNUSED_TEST(K)
|
||||
#error "You must enable USE_KMIN_PLUG or USE_KMAX_PLUG."
|
||||
#endif
|
||||
|
||||
// Delta and Cartesian use 3 homing endstops
|
||||
#if NONE(IS_SCARA, SPI_ENDSTOPS)
|
||||
@@ -2101,6 +2329,18 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#error "Enable USE_YMIN_PLUG when homing Y to MIN."
|
||||
#elif Y_HOME_TO_MAX && DISABLED(USE_YMAX_PLUG)
|
||||
#error "Enable USE_YMAX_PLUG when homing Y to MAX."
|
||||
#elif LINEAR_AXES >= 4 && I_HOME_TO_MIN && DISABLED(USE_IMIN_PLUG)
|
||||
#error "Enable USE_IMIN_PLUG when homing I to MIN."
|
||||
#elif LINEAR_AXES >= 4 && I_HOME_TO_MAX && DISABLED(USE_IMAX_PLUG)
|
||||
#error "Enable USE_IMAX_PLUG when homing I to MAX."
|
||||
#elif LINEAR_AXES >= 5 && J_HOME_TO_MIN && DISABLED(USE_JMIN_PLUG)
|
||||
#error "Enable USE_JMIN_PLUG when homing J to MIN."
|
||||
#elif LINEAR_AXES >= 5 && J_HOME_TO_MAX && DISABLED(USE_JMAX_PLUG)
|
||||
#error "Enable USE_JMAX_PLUG when homing J to MAX."
|
||||
#elif LINEAR_AXES >= 6 && K_HOME_TO_MIN && DISABLED(USE_KMIN_PLUG)
|
||||
#error "Enable USE_KMIN_PLUG when homing K to MIN."
|
||||
#elif LINEAR_AXES >= 6 && K_HOME_TO_MAX && DISABLED(USE_KMAX_PLUG)
|
||||
#error "Enable USE_KMAX_PLUG when homing K to MAX."
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@@ -2495,6 +2735,12 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#error "An SPI driven TMC driver on E6 requires E6_CS_PIN."
|
||||
#elif INVALID_TMC_SPI(E7)
|
||||
#error "An SPI driven TMC driver on E7 requires E7_CS_PIN."
|
||||
#elif INVALID_TMC_SPI(I)
|
||||
#error "An SPI driven TMC on I requires I_CS_PIN."
|
||||
#elif INVALID_TMC_SPI(J)
|
||||
#error "An SPI driven TMC on J requires J_CS_PIN."
|
||||
#elif INVALID_TMC_SPI(K)
|
||||
#error "An SPI driven TMC on K requires K_CS_PIN."
|
||||
#endif
|
||||
#undef INVALID_TMC_SPI
|
||||
|
||||
@@ -2534,6 +2780,12 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#error "TMC2208 or TMC2209 on E6 requires E6_HARDWARE_SERIAL or E6_SERIAL_(RX|TX)_PIN."
|
||||
#elif INVALID_TMC_UART(E7)
|
||||
#error "TMC2208 or TMC2209 on E7 requires E7_HARDWARE_SERIAL or E7_SERIAL_(RX|TX)_PIN."
|
||||
#elif LINEAR_AXES >= 4 && INVALID_TMC_UART(I)
|
||||
#error "TMC2208 or TMC2209 on I requires I_HARDWARE_SERIAL or I_SERIAL_(RX|TX)_PIN."
|
||||
#elif LINEAR_AXES >= 5 && INVALID_TMC_UART(J)
|
||||
#error "TMC2208 or TMC2209 on J requires J_HARDWARE_SERIAL or J_SERIAL_(RX|TX)_PIN."
|
||||
#elif LINEAR_AXES >= 6 && INVALID_TMC_UART(K)
|
||||
#error "TMC2208 or TMC2209 on K requires K_HARDWARE_SERIAL or K_SERIAL_(RX|TX)_PIN."
|
||||
#endif
|
||||
#undef INVALID_TMC_UART
|
||||
|
||||
@@ -2557,6 +2809,12 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
INVALID_TMC_ADDRESS(Z3);
|
||||
#elif AXIS_DRIVER_TYPE_Z4(TMC2209)
|
||||
INVALID_TMC_ADDRESS(Z4);
|
||||
#elif AXIS_DRIVER_TYPE_I(TMC2209)
|
||||
INVALID_TMC_ADDRESS(I);
|
||||
#elif AXIS_DRIVER_TYPE_J(TMC2209)
|
||||
INVALID_TMC_ADDRESS(J);
|
||||
#elif AXIS_DRIVER_TYPE_K(TMC2209)
|
||||
INVALID_TMC_ADDRESS(K);
|
||||
#elif AXIS_DRIVER_TYPE_E0(TMC2209)
|
||||
INVALID_TMC_ADDRESS(E0);
|
||||
#elif AXIS_DRIVER_TYPE_E1(TMC2209)
|
||||
@@ -2612,6 +2870,12 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
INVALID_TMC_MS(E6)
|
||||
#elif !TMC_MICROSTEP_IS_VALID(E7)
|
||||
INVALID_TMC_MS(E7)
|
||||
#elif LINEAR_AXES >= 4 && !TMC_MICROSTEP_IS_VALID(I)
|
||||
INVALID_TMC_MS(I)
|
||||
#elif LINEAR_AXES >= 5 && !TMC_MICROSTEP_IS_VALID(J)
|
||||
INVALID_TMC_MS(J)
|
||||
#elif LINEAR_AXES >= 6 && !TMC_MICROSTEP_IS_VALID(K)
|
||||
INVALID_TMC_MS(K)
|
||||
#endif
|
||||
#undef INVALID_TMC_MS
|
||||
#undef TMC_MICROSTEP_IS_VALID
|
||||
@@ -2632,6 +2896,15 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#define X_ENDSTOP_INVERTING !AXIS_DRIVER_TYPE(X,TMC2209)
|
||||
#define Y_ENDSTOP_INVERTING !AXIS_DRIVER_TYPE(Y,TMC2209)
|
||||
#define Z_ENDSTOP_INVERTING !AXIS_DRIVER_TYPE(Z,TMC2209)
|
||||
#if LINEAR_AXES >= 4
|
||||
#define I_ENDSTOP_INVERTING !AXIS_DRIVER_TYPE(I,TMC2209)
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
#define J_ENDSTOP_INVERTING !AXIS_DRIVER_TYPE(J,TMC2209)
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
#define K_ENDSTOP_INVERTING !AXIS_DRIVER_TYPE(K,TMC2209)
|
||||
#endif
|
||||
|
||||
#if NONE(SPI_ENDSTOPS, ONBOARD_ENDSTOPPULLUPS, ENDSTOPPULLUPS)
|
||||
#if X_SENSORLESS && X_HOME_TO_MIN && DISABLED(ENDSTOPPULLUP_XMIN)
|
||||
@@ -2646,6 +2919,12 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#error "SENSORLESS_HOMING requires ENDSTOPPULLUP_ZMIN (or ENDSTOPPULLUPS) when homing to Z_MIN."
|
||||
#elif Z_SENSORLESS && Z_HOME_TO_MAX && DISABLED(ENDSTOPPULLUP_ZMAX)
|
||||
#error "SENSORLESS_HOMING requires ENDSTOPPULLUP_ZMAX (or ENDSTOPPULLUPS) when homing to Z_MAX."
|
||||
#elif LINEAR_AXES >= 4 && I_SENSORLESS && I_HOME_TO_MAX && DISABLED(ENDSTOPPULLUP_IMAX)
|
||||
#error "SENSORLESS_HOMING requires ENDSTOPPULLUP_IMAX (or ENDSTOPPULLUPS) when homing to I_MAX."
|
||||
#elif LINEAR_AXES >= 5 && J_SENSORLESS && J_HOME_TO_MAX && DISABLED(ENDSTOPPULLUP_JMAX)
|
||||
#error "SENSORLESS_HOMING requires ENDSTOPPULLUP_JMAX (or ENDSTOPPULLUPS) when homing to J_MAX."
|
||||
#elif LINEAR_AXES >= 6 && K_SENSORLESS && K_HOME_TO_MAX && DISABLED(ENDSTOPPULLUP_KMAX)
|
||||
#error "SENSORLESS_HOMING requires ENDSTOPPULLUP_KMAX (or ENDSTOPPULLUPS) when homing to K_MAX."
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@@ -2690,6 +2969,42 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#else
|
||||
#error "SENSORLESS_HOMING requires Z_MAX_ENDSTOP_INVERTING = false when homing TMC2209 to Z_MAX."
|
||||
#endif
|
||||
#elif LINEAR_AXES >= 4 && I_SENSORLESS && I_HOME_TO_MIN && I_MIN_ENDSTOP_INVERTING != I_ENDSTOP_INVERTING
|
||||
#if I_ENDSTOP_INVERTING
|
||||
#error "SENSORLESS_HOMING requires I_MIN_ENDSTOP_INVERTING = true when homing to I_MIN."
|
||||
#else
|
||||
#error "SENSORLESS_HOMING requires I_MIN_ENDSTOP_INVERTING = false when homing TMC2209 to I_MIN."
|
||||
#endif
|
||||
#elif LINEAR_AXES >= 4 && I_SENSORLESS && I_HOME_TO_MAX && I_MAX_ENDSTOP_INVERTING != I_ENDSTOP_INVERTING
|
||||
#if I_ENDSTOP_INVERTING
|
||||
#error "SENSORLESS_HOMING requires I_MAX_ENDSTOP_INVERTING = true when homing to I_MAX."
|
||||
#else
|
||||
#error "SENSORLESS_HOMING requires I_MAX_ENDSTOP_INVERTING = false when homing TMC2209 to I_MAX."
|
||||
#endif
|
||||
#elif LINEAR_AXES >= 5 && J_SENSORLESS && J_HOME_TO_MIN && J_MIN_ENDSTOP_INVERTING != J_ENDSTOP_INVERTING
|
||||
#if J_ENDSTOP_INVERTING
|
||||
#error "SENSORLESS_HOMING requires J_MIN_ENDSTOP_INVERTING = true when homing to J_MIN."
|
||||
#else
|
||||
#error "SENSORLESS_HOMING requires J_MIN_ENDSTOP_INVERTING = false when homing TMC2209 to J_MIN."
|
||||
#endif
|
||||
#elif LINEAR_AXES >= 5 && J_SENSORLESS && J_HOME_TO_MAX && J_MAX_ENDSTOP_INVERTING != J_ENDSTOP_INVERTING
|
||||
#if J_ENDSTOP_INVERTING
|
||||
#error "SENSORLESS_HOMING requires J_MAX_ENDSTOP_INVERTING = true when homing to J_MAX."
|
||||
#else
|
||||
#error "SENSORLESS_HOMING requires J_MAX_ENDSTOP_INVERTING = false when homing TMC2209 to J_MAX."
|
||||
#endif
|
||||
#elif LINEAR_AXES >= 6 && K_SENSORLESS && K_HOME_TO_MIN && K_MIN_ENDSTOP_INVERTING != K_ENDSTOP_INVERTING
|
||||
#if K_ENDSTOP_INVERTING
|
||||
#error "SENSORLESS_HOMING requires K_MIN_ENDSTOP_INVERTING = true when homing to K_MIN."
|
||||
#else
|
||||
#error "SENSORLESS_HOMING requires K_MIN_ENDSTOP_INVERTING = false when homing TMC2209 to K_MIN."
|
||||
#endif
|
||||
#elif LINEAR_AXES >= 6 && K_SENSORLESS && K_HOME_TO_MAX && K_MAX_ENDSTOP_INVERTING != K_ENDSTOP_INVERTING
|
||||
#if K_ENDSTOP_INVERTING
|
||||
#error "SENSORLESS_HOMING requires K_MAX_ENDSTOP_INVERTING = true when homing to K_MAX."
|
||||
#else
|
||||
#error "SENSORLESS_HOMING requires K_MAX_ENDSTOP_INVERTING = false when homing TMC2209 to K_MAX."
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
@@ -2704,6 +3019,9 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#undef X_ENDSTOP_INVERTING
|
||||
#undef Y_ENDSTOP_INVERTING
|
||||
#undef Z_ENDSTOP_INVERTING
|
||||
#undef I_ENDSTOP_INVERTING
|
||||
#undef J_ENDSTOP_INVERTING
|
||||
#undef K_ENDSTOP_INVERTING
|
||||
#endif
|
||||
|
||||
// Sensorless probing requirements
|
||||
@@ -2766,6 +3084,12 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#define CS_COMPARE Z2_CS_PIN
|
||||
#elif IN_CHAIN(Z3)
|
||||
#define CS_COMPARE Z3_CS_PIN
|
||||
#elif IN_CHAIN(I)
|
||||
#define CS_COMPARE I_CS_PIN
|
||||
#elif IN_CHAIN(J)
|
||||
#define CS_COMPARE J_CS_PIN
|
||||
#elif IN_CHAIN(K)
|
||||
#define CS_COMPARE K_CS_PIN
|
||||
#elif IN_CHAIN(E0)
|
||||
#define CS_COMPARE E0_CS_PIN
|
||||
#elif IN_CHAIN(E1)
|
||||
@@ -2785,6 +3109,7 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#endif
|
||||
#define BAD_CS_PIN(A) (IN_CHAIN(A) && A##_CS_PIN != CS_COMPARE)
|
||||
#if BAD_CS_PIN(X ) || BAD_CS_PIN(Y ) || BAD_CS_PIN(Z ) || BAD_CS_PIN(X2) || BAD_CS_PIN(Y2) || BAD_CS_PIN(Z2) || BAD_CS_PIN(Z3) || BAD_CS_PIN(Z4) \
|
||||
|| BAD_CS_PIN(I) || BAD_CS_PIN(J) || BAD_CS_PIN(K) \
|
||||
|| BAD_CS_PIN(E0) || BAD_CS_PIN(E1) || BAD_CS_PIN(E2) || BAD_CS_PIN(E3) || BAD_CS_PIN(E4) || BAD_CS_PIN(E5) || BAD_CS_PIN(E6) || BAD_CS_PIN(E7)
|
||||
#error "All chained TMC drivers must use the same CS pin."
|
||||
#endif
|
||||
@@ -2795,6 +3120,13 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
#endif
|
||||
#undef IN_CHAIN
|
||||
|
||||
/**
|
||||
* L64XX requirement
|
||||
*/
|
||||
#if HAS_L64XX && LINEAR_AXES >= 4
|
||||
#error "L64XX requires LINEAR_AXES 3. Homing with L64XX is not yet implemented for LINEAR_AXES > 3."
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Digipot requirement
|
||||
*/
|
||||
@@ -2812,43 +3144,48 @@ static_assert(hbm[Z_AXIS] >= 0, "HOMING_BUMP_MM.Z must be greater than or equal
|
||||
*/
|
||||
constexpr float sanity_arr_1[] = DEFAULT_AXIS_STEPS_PER_UNIT,
|
||||
sanity_arr_2[] = DEFAULT_MAX_FEEDRATE,
|
||||
sanity_arr_3[] = DEFAULT_MAX_ACCELERATION;
|
||||
sanity_arr_3[] = DEFAULT_MAX_ACCELERATION,
|
||||
sanity_arr_7[] = HOMING_FEEDRATE_MM_M;
|
||||
|
||||
#define _ARR_TEST(N,I) (sanity_arr_##N[_MIN(I,int(COUNT(sanity_arr_##N))-1)] > 0)
|
||||
#if HAS_MULTI_EXTRUDER
|
||||
#define _EXTRA_NOTE " (Did you forget to enable DISTINCT_E_FACTORS?)"
|
||||
#elif EXTRUDERS == 0
|
||||
#define _EXTRA_NOTE " (Note: EXTRUDERS is set to 0.)"
|
||||
#else
|
||||
#define _EXTRA_NOTE ""
|
||||
#define _EXTRA_NOTE " (Should be " STRINGIFY(LINEAR_AXES) "+" STRINGIFY(E_STEPPERS) ")"
|
||||
#endif
|
||||
|
||||
static_assert(COUNT(sanity_arr_1) >= LOGICAL_AXES, "DEFAULT_AXIS_STEPS_PER_UNIT requires X, Y, Z and E elements.");
|
||||
static_assert(COUNT(sanity_arr_1) >= LOGICAL_AXES, "DEFAULT_AXIS_STEPS_PER_UNIT requires " _LOGICAL_AXES_STR "elements.");
|
||||
static_assert(COUNT(sanity_arr_1) <= DISTINCT_AXES, "DEFAULT_AXIS_STEPS_PER_UNIT has too many elements." _EXTRA_NOTE);
|
||||
static_assert( _ARR_TEST(1,0) && _ARR_TEST(1,1) && _ARR_TEST(1,2)
|
||||
&& _ARR_TEST(1,3) && _ARR_TEST(1,4) && _ARR_TEST(1,5)
|
||||
&& _ARR_TEST(1,6) && _ARR_TEST(1,7) && _ARR_TEST(1,8),
|
||||
"DEFAULT_AXIS_STEPS_PER_UNIT values must be positive.");
|
||||
|
||||
static_assert(COUNT(sanity_arr_2) >= LOGICAL_AXES, "DEFAULT_MAX_FEEDRATE requires X, Y, Z and E elements.");
|
||||
static_assert(COUNT(sanity_arr_2) >= LOGICAL_AXES, "DEFAULT_MAX_FEEDRATE requires " _LOGICAL_AXES_STR "elements.");
|
||||
static_assert(COUNT(sanity_arr_2) <= DISTINCT_AXES, "DEFAULT_MAX_FEEDRATE has too many elements." _EXTRA_NOTE);
|
||||
static_assert( _ARR_TEST(2,0) && _ARR_TEST(2,1) && _ARR_TEST(2,2)
|
||||
&& _ARR_TEST(2,3) && _ARR_TEST(2,4) && _ARR_TEST(2,5)
|
||||
&& _ARR_TEST(2,6) && _ARR_TEST(2,7) && _ARR_TEST(2,8),
|
||||
"DEFAULT_MAX_FEEDRATE values must be positive.");
|
||||
|
||||
static_assert(COUNT(sanity_arr_3) >= LOGICAL_AXES, "DEFAULT_MAX_ACCELERATION requires X, Y, Z and E elements.");
|
||||
static_assert(COUNT(sanity_arr_3) >= LOGICAL_AXES, "DEFAULT_MAX_ACCELERATION requires " _LOGICAL_AXES_STR "elements.");
|
||||
static_assert(COUNT(sanity_arr_3) <= DISTINCT_AXES, "DEFAULT_MAX_ACCELERATION has too many elements." _EXTRA_NOTE);
|
||||
static_assert( _ARR_TEST(3,0) && _ARR_TEST(3,1) && _ARR_TEST(3,2)
|
||||
&& _ARR_TEST(3,3) && _ARR_TEST(3,4) && _ARR_TEST(3,5)
|
||||
&& _ARR_TEST(3,6) && _ARR_TEST(3,7) && _ARR_TEST(3,8),
|
||||
"DEFAULT_MAX_ACCELERATION values must be positive.");
|
||||
|
||||
static_assert(COUNT(sanity_arr_7) == LINEAR_AXES, "HOMING_FEEDRATE_MM_M requires " _LINEAR_AXES_STR "elements (and no others).");
|
||||
static_assert( _ARR_TEST(3,0) && _ARR_TEST(3,1) && _ARR_TEST(3,2)
|
||||
&& _ARR_TEST(3,3) && _ARR_TEST(3,4) && _ARR_TEST(3,5)
|
||||
&& _ARR_TEST(3,6) && _ARR_TEST(3,7) && _ARR_TEST(3,8),
|
||||
"HOMING_FEEDRATE_MM_M values must be positive.");
|
||||
|
||||
#if ENABLED(LIMITED_MAX_ACCEL_EDITING)
|
||||
#ifdef MAX_ACCEL_EDIT_VALUES
|
||||
constexpr float sanity_arr_4[] = MAX_ACCEL_EDIT_VALUES;
|
||||
static_assert(COUNT(sanity_arr_4) >= LOGICAL_AXES, "MAX_ACCEL_EDIT_VALUES requires X, Y, Z and E elements.");
|
||||
static_assert(COUNT(sanity_arr_4) <= LOGICAL_AXES, "MAX_ACCEL_EDIT_VALUES has too many elements. X, Y, Z and E elements only.");
|
||||
static_assert(COUNT(sanity_arr_4) >= LOGICAL_AXES, "MAX_ACCEL_EDIT_VALUES requires " _LOGICAL_AXES_STR "elements.");
|
||||
static_assert(COUNT(sanity_arr_4) <= LOGICAL_AXES, "MAX_ACCEL_EDIT_VALUES has too many elements. " _LOGICAL_AXES_STR "elements only.");
|
||||
static_assert( _ARR_TEST(4,0) && _ARR_TEST(4,1) && _ARR_TEST(4,2)
|
||||
&& _ARR_TEST(4,3) && _ARR_TEST(4,4) && _ARR_TEST(4,5)
|
||||
&& _ARR_TEST(4,6) && _ARR_TEST(4,7) && _ARR_TEST(4,8),
|
||||
@@ -2859,8 +3196,8 @@ static_assert( _ARR_TEST(3,0) && _ARR_TEST(3,1) && _ARR_TEST(3,2)
|
||||
#if ENABLED(LIMITED_MAX_FR_EDITING)
|
||||
#ifdef MAX_FEEDRATE_EDIT_VALUES
|
||||
constexpr float sanity_arr_5[] = MAX_FEEDRATE_EDIT_VALUES;
|
||||
static_assert(COUNT(sanity_arr_5) >= LOGICAL_AXES, "MAX_FEEDRATE_EDIT_VALUES requires X, Y, Z and E elements.");
|
||||
static_assert(COUNT(sanity_arr_5) <= LOGICAL_AXES, "MAX_FEEDRATE_EDIT_VALUES has too many elements. X, Y, Z and E elements only.");
|
||||
static_assert(COUNT(sanity_arr_5) >= LOGICAL_AXES, "MAX_FEEDRATE_EDIT_VALUES requires " _LOGICAL_AXES_STR "elements.");
|
||||
static_assert(COUNT(sanity_arr_5) <= LOGICAL_AXES, "MAX_FEEDRATE_EDIT_VALUES has too many elements. " _LOGICAL_AXES_STR "elements only.");
|
||||
static_assert( _ARR_TEST(5,0) && _ARR_TEST(5,1) && _ARR_TEST(5,2)
|
||||
&& _ARR_TEST(5,3) && _ARR_TEST(5,4) && _ARR_TEST(5,5)
|
||||
&& _ARR_TEST(5,6) && _ARR_TEST(5,7) && _ARR_TEST(5,8),
|
||||
@@ -2871,8 +3208,8 @@ static_assert( _ARR_TEST(3,0) && _ARR_TEST(3,1) && _ARR_TEST(3,2)
|
||||
#if ENABLED(LIMITED_JERK_EDITING)
|
||||
#ifdef MAX_JERK_EDIT_VALUES
|
||||
constexpr float sanity_arr_6[] = MAX_JERK_EDIT_VALUES;
|
||||
static_assert(COUNT(sanity_arr_6) >= LOGICAL_AXES, "MAX_JERK_EDIT_VALUES requires X, Y, Z and E elements.");
|
||||
static_assert(COUNT(sanity_arr_6) <= LOGICAL_AXES, "MAX_JERK_EDIT_VALUES has too many elements. X, Y, Z and E elements only.");
|
||||
static_assert(COUNT(sanity_arr_6) >= LOGICAL_AXES, "MAX_JERK_EDIT_VALUES requires " _LOGICAL_AXES_STR "elements.");
|
||||
static_assert(COUNT(sanity_arr_6) <= LOGICAL_AXES, "MAX_JERK_EDIT_VALUES has too many elements. " _LOGICAL_AXES_STR "elements only.");
|
||||
static_assert( _ARR_TEST(6,0) && _ARR_TEST(6,1) && _ARR_TEST(6,2)
|
||||
&& _ARR_TEST(6,3) && _ARR_TEST(6,4) && _ARR_TEST(6,5)
|
||||
&& _ARR_TEST(6,6) && _ARR_TEST(6,7) && _ARR_TEST(6,8),
|
||||
@@ -2951,6 +3288,10 @@ static_assert( _ARR_TEST(3,0) && _ARR_TEST(3,1) && _ARR_TEST(3,2)
|
||||
#error "MECHANICAL_GANTRY_CALIBRATION Requires GANTRY_CALIBRATION_EXTRA_HEIGHT to be set."
|
||||
#elif !defined(GANTRY_CALIBRATION_FEEDRATE)
|
||||
#error "MECHANICAL_GANTRY_CALIBRATION Requires GANTRY_CALIBRATION_FEEDRATE to be set."
|
||||
#elif ENABLED(Z_MULTI_ENDSTOPS)
|
||||
#error "Sorry! MECHANICAL_GANTRY_CALIBRATION cannot be used with Z_MULTI_ENDSTOPS."
|
||||
#elif ENABLED(Z_STEPPER_AUTO_ALIGN)
|
||||
#error "Sorry! MECHANICAL_GANTRY_CALIBRATION cannot be used with Z_STEPPER_AUTO_ALIGN."
|
||||
#endif
|
||||
#if defined(GANTRY_CALIBRATION_SAFE_POSITION) && !defined(GANTRY_CALIBRATION_XY_PARK_FEEDRATE)
|
||||
#error "GANTRY_CALIBRATION_SAFE_POSITION Requires GANTRY_CALIBRATION_XY_PARK_FEEDRATE to be set."
|
||||
@@ -3268,6 +3609,22 @@ static_assert( _ARR_TEST(3,0) && _ARR_TEST(3,1) && _ARR_TEST(3,2)
|
||||
#if _BAD_DRIVER(Z)
|
||||
#error "Z_DRIVER_TYPE is not recognized."
|
||||
#endif
|
||||
#if LINEAR_AXES >= 4
|
||||
#if _BAD_DRIVER(I)
|
||||
#error "I_DRIVER_TYPE is not recognized."
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 5
|
||||
#if _BAD_DRIVER(J)
|
||||
#error "J_DRIVER_TYPE is not recognized."
|
||||
#endif
|
||||
#endif
|
||||
#if LINEAR_AXES >= 6
|
||||
#if _BAD_DRIVER(K)
|
||||
#error "K_DRIVER_TYPE is not recognized."
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if _BAD_DRIVER(X2)
|
||||
#error "X2_DRIVER_TYPE is not recognized."
|
||||
#endif
|
||||
@@ -3311,7 +3668,5 @@ static_assert( _ARR_TEST(3,0) && _ARR_TEST(3,1) && _ARR_TEST(3,2)
|
||||
|
||||
// Misc. Cleanup
|
||||
#undef _TEST_PWM
|
||||
|
||||
#if ENABLED(FREEZE_FEATURE) && !PIN_EXISTS(FREEZE)
|
||||
#error "FREEZE_FEATURE requires a FREEZE_PIN to be defined."
|
||||
#endif
|
||||
#undef _LINEAR_AXES_STR
|
||||
#undef _LOGICAL_AXES_STR
|
||||
|
@@ -25,7 +25,7 @@
|
||||
* Release version. Leave the Marlin version or apply a custom scheme.
|
||||
*/
|
||||
#ifndef SHORT_BUILD_VERSION
|
||||
#define SHORT_BUILD_VERSION "2.0.8.2"
|
||||
#define SHORT_BUILD_VERSION "2.0.9"
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -42,7 +42,7 @@
|
||||
* version was tagged.
|
||||
*/
|
||||
#ifndef STRING_DISTRIBUTION_DATE
|
||||
#define STRING_DISTRIBUTION_DATE "2021-05-29"
|
||||
#define STRING_DISTRIBUTION_DATE "2021-06-15"
|
||||
#endif
|
||||
|
||||
/**
|
||||
@@ -52,7 +52,7 @@
|
||||
* to alert users to major changes.
|
||||
*/
|
||||
|
||||
#define MARLIN_HEX_VERSION 02000801
|
||||
#define MARLIN_HEX_VERSION 02000900
|
||||
#ifndef REQUIRED_CONFIGURATION_H_VERSION
|
||||
#define REQUIRED_CONFIGURATION_H_VERSION MARLIN_HEX_VERSION
|
||||
#endif
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user