mirror of
https://github.com/ME-561-W20-Quadcopter-Project/Quadcopter-Control.git
synced 2025-08-31 21:03:13 +00:00
Implement Infinite Horizon LQR
- Code and comment formatting cleanup - Add additional comments for clarity - Add cost matrices to each section - Use idare to solve for infinite horizon gains
This commit is contained in:
224
src/LQR.m
224
src/LQR.m
@@ -1,9 +1,14 @@
|
||||
% Clear workspace
|
||||
clear all; close all; clc;
|
||||
clear all;
|
||||
close all;
|
||||
clc;
|
||||
|
||||
% Parameters source: https://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf
|
||||
g = 9.81; m = 0.468; Ix = 4.856*10^-3;
|
||||
Iy = 4.856*10^-3; Iz = 8.801*10^-3;
|
||||
g = 9.81;
|
||||
m = 0.468;
|
||||
Ix = 4.856*10^-3;
|
||||
Iy = 4.856*10^-3;
|
||||
Iz = 8.801*10^-3;
|
||||
|
||||
% States:
|
||||
% X1: x X4: x'
|
||||
@@ -69,112 +74,215 @@ continuous = ss(A, B, C, D);
|
||||
T_s = 0.01;
|
||||
discrete = c2d(continuous, T_s);
|
||||
|
||||
%Check if this works
|
||||
% Check if this works
|
||||
impulse(discrete, 0:T_s:1);
|
||||
|
||||
%We should see that U1 gets us only translation in z, U2 couples Y2 and Y4,
|
||||
%U3 couples Y1 and Y5, and U4 gets us Y6
|
||||
% We should see that U1 gets us only translation in z, U2 couples Y2 and Y4,
|
||||
% U3 couples Y1 and Y5, and U4 gets us Y6
|
||||
|
||||
%% Define goals
|
||||
%Goal 1: settle at 1m height <2s
|
||||
% Goal 1: settle at 1m height <2s
|
||||
% LQR drives states to 0, so we redefine initial
|
||||
% condition to be -1 in z direction such that
|
||||
% controller gives a positive z input as if
|
||||
% quadcopter drives from origin up 1 m in z direction
|
||||
x_0_up = [0, 0, -1, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]'; %Redefine origin!
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]';
|
||||
|
||||
%Goal 2: Stabilize from a 10-degree roll and pitch with <3deg overshoot
|
||||
% Goal 2: Stabilize from a 10-degree roll and pitch with <3deg overshoot
|
||||
x_0_pitch = [0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
10, 0, 0, ...
|
||||
0, 0, 0]'; %Pitch of 10 degrees
|
||||
0, 0, 0, ...
|
||||
10, 0, 0, ...
|
||||
0, 0, 0]'; %Pitch of 10 degrees
|
||||
|
||||
x_0_roll = [0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 10, 0, ...
|
||||
0, 0, 0]'; %Roll of 10 degrees
|
||||
0, 0, 0, ...
|
||||
0, 10, 0, ...
|
||||
0, 0, 0]'; %Roll of 10 degrees
|
||||
|
||||
%Goal 3: Move from position (0,0,0) to within 5 cm of (1,1,1) within 5 seconds.
|
||||
% Goal 3: Move from position (0,0,0) to within 5 cm of (1,1,1) within 5 seconds.
|
||||
% Redefine initial condition to be -1 in x, y, and z direction so
|
||||
% when LQR drives states to 0, it is as if quadcopter drives from
|
||||
% origin to (1,1,1)
|
||||
x_0_trans = [-1, -1, -1, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]'; %Redefine origin!
|
||||
|
||||
%Define Q and R for the cost function. Begin with nominal ones for all.
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]';
|
||||
|
||||
%% Finite-Time Horizon LQR for Goal 1
|
||||
|
||||
% Cost matrices
|
||||
Q = diag([1000, 1000, 1000, ... % x, y, z
|
||||
1, 1, 100, ... % x', y', z'
|
||||
200, 200, 1, ... % roll, pitch, yaw
|
||||
1, 1, 1]); % roll', pitch', yaw'
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
%% Finite-Time Horizon LQR for Goal 1
|
||||
|
||||
%Calculate number of timesteps.
|
||||
% Calculate number of timesteps.
|
||||
tSpan = 0:T_s:2;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
%Determine gains
|
||||
% Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
|
||||
%Propagate
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_up, K, discrete.A, discrete.B);
|
||||
%States are relative to origin, so we need to add the reference to the
|
||||
%state to get global coordinates
|
||||
% States are relative to origin, so we need to add the reference to the
|
||||
% state to get global coordinates
|
||||
xlqr(3,:) = xlqr(3,:) + 1;
|
||||
%Plot
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
zd = diff(xlqr(6,:))./T_s
|
||||
|
||||
%% Finite-Time Horizon LQR for Goal 2
|
||||
%% Infinite-Time Horizon LQR for Goal 1
|
||||
|
||||
%Calculate number of timesteps.
|
||||
% Cost matrices
|
||||
Q = diag([1, 1, 1000, ... % x, y, z
|
||||
1, 1, 100, ... % x', y', z'
|
||||
1, 1, 1, ... % roll, pitch, yaw
|
||||
1, 1, 1]); % roll', pitch', yaw'
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
|
||||
% Calculate number of timesteps
|
||||
tSpan = 0:T_s:2;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
%Determine gains
|
||||
% Determine Gains
|
||||
[X, K, L, info] = idare(discrete.A, discrete.B, Q, R, [], []);
|
||||
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_up, K, discrete.A, discrete.B);
|
||||
xlqr(3,:) = xlqr(3,:) + 1;
|
||||
plot_states(xlqr, tSpan);
|
||||
zd = diff(xlqr(6,:))./T_s;
|
||||
|
||||
%% Finite-Time Horizon LQR for Goal 2
|
||||
|
||||
% Cost matrices
|
||||
Q = diag([1000, 1000, 1000, ... % x, y, z
|
||||
1, 1, 100, ... % x', y', z'
|
||||
200, 200, 1, ... % roll, pitch, yaw
|
||||
1, 1, 1]); % roll', pitch', yaw'
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
|
||||
% Calculate number of timesteps.
|
||||
tSpan = 0:T_s:2;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
% Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
|
||||
|
||||
%Pitch Goal
|
||||
%Propagate
|
||||
% Pitch Goal
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_pitch, K, discrete.A, discrete.B);
|
||||
|
||||
%Plot
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
yd = diff(xlqr(5,:))./T_s
|
||||
pd = diff(xlqr(7,:))./T_s
|
||||
%Propagate
|
||||
yd = diff(xlqr(5,:))./T_s;
|
||||
pd = diff(xlqr(7,:))./T_s;
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_roll, K, discrete.A, discrete.B);
|
||||
|
||||
%Plot
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
xd = diff(xlqr(4,:))./T_s
|
||||
rd = diff(xlqr(8,:))./T_s
|
||||
xd = diff(xlqr(4,:))./T_s;
|
||||
rd = diff(xlqr(8,:))./T_s;
|
||||
|
||||
%% Infinite-Time Horizon LQR for Goal 2
|
||||
|
||||
% Cost matrices
|
||||
Q = diag([1000, 1000, 1, ... % x, y, z
|
||||
10, 10, 1, ... % x', y', z'
|
||||
1000, 1000, 1, ... % roll, pitch, yaw
|
||||
1, 1, 1]); % roll', pitch', yaw'
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
|
||||
% Calculate number of timesteps.
|
||||
tSpan = 0:T_s:2;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
% Determine gains
|
||||
[X, K, L, info] = idare(discrete.A, discrete.B, Q, R, [], []);
|
||||
|
||||
|
||||
% Pitch Goal
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_pitch, K, discrete.A, discrete.B);
|
||||
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
yd = diff(xlqr(5,:))./T_s;
|
||||
pd = diff(xlqr(7,:))./T_s;
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_roll, K, discrete.A, discrete.B);
|
||||
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
xd = diff(xlqr(4,:))./T_s;
|
||||
rd = diff(xlqr(8,:))./T_s;
|
||||
|
||||
%% Finite-Time Horizon For Goal 3
|
||||
|
||||
%Calculate number of timesteps.
|
||||
% Cost matrices
|
||||
Q = diag([1000, 1000, 1000, ... % x, y, z
|
||||
1, 1, 100, ... % x', y', z'
|
||||
200, 200, 1, ... % roll, pitch, yaw
|
||||
1, 1, 1]); % roll', pitch', yaw'
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
|
||||
% Calculate number of timesteps.
|
||||
tSpan = 0:T_s:5;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
%Determine gains
|
||||
% Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
|
||||
%Pitch Goal
|
||||
%Propagate
|
||||
% Pitch Goal
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_trans, K, discrete.A, discrete.B);
|
||||
xlqr(1:3,:) = xlqr(1:3,:) + 1;
|
||||
|
||||
%Plot
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
|
||||
%% Infinite-Time Horizon For Goal 3
|
||||
|
||||
% Cost matrices
|
||||
Q = diag([1000, 1000, 1000, ... % x, y, z
|
||||
10, 10, 10, ... % x', y', z'
|
||||
1000, 1000, 1, ... % roll, pitch, yaw
|
||||
1, 1, 1]); % roll', pitch', yaw'
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
|
||||
% Calculate number of timesteps.
|
||||
tSpan = 0:T_s:5;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
% Determine gains
|
||||
[X, K, L, info] = idare(discrete.A, discrete.B, Q, R, [], []);
|
||||
|
||||
% Pitch Goal
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_trans, K, discrete.A, discrete.B);
|
||||
xlqr(1:3,:) = xlqr(1:3,:) + 1;
|
||||
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
|
||||
%% Helper Functions
|
||||
|
||||
function [K, P] = LQR_LTI(A, B, Q, R, nSteps)
|
||||
%Set P up
|
||||
% Set P up
|
||||
P = zeros(size(Q, 1), size(Q, 2), nSteps);
|
||||
%Initial value of P
|
||||
% Initial value of P
|
||||
P(:, :, nSteps) = 1/2 * Q;
|
||||
%Set K up, initial K is 0, so this is fine.
|
||||
% Set K up, initial K is 0, so this is fine.
|
||||
K = zeros(length(R), length(Q), nSteps);
|
||||
|
||||
for i = nSteps-1:-1:1
|
||||
@@ -186,7 +294,7 @@ function [K, P] = LQR_LTI(A, B, Q, R, nSteps)
|
||||
end
|
||||
|
||||
function [ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0, K, A, B)
|
||||
%Set up for propagation
|
||||
% Set up for propagation
|
||||
ulqr = zeros(nInputs, nSteps);
|
||||
xlqr = zeros(nStates, nSteps);
|
||||
xlqr(:, 1) = x_0;
|
||||
@@ -197,6 +305,18 @@ function [ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0, K, A, B)
|
||||
end
|
||||
end
|
||||
|
||||
function [ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0, K, A, B)
|
||||
% Set up for propagation
|
||||
ulqr = zeros(nInputs, nSteps);
|
||||
xlqr = zeros(nStates, nSteps);
|
||||
xlqr(:, 1) = x_0;
|
||||
|
||||
for i = 1:(nSteps - 1)
|
||||
ulqr(:,i) = K * xlqr(:,i);
|
||||
xlqr(:,i+1) = (A*xlqr(:, i) - B*ulqr(:, i));
|
||||
end
|
||||
end
|
||||
|
||||
function plot_states(xlqr, tSpan)
|
||||
figure();
|
||||
subplot(1, 2, 1);
|
||||
|
Reference in New Issue
Block a user