mirror of
https://github.com/Mobile-Robotics-W20-Team-9/UMICH-NCLT-SLAP.git
synced 2025-09-08 12:13:13 +00:00
Adding basic chatbot to be modified for our usage. This is partially from: https://data-flair.training/blogs/python-chatbot-project/
This commit is contained in:
BIN
src/semantic/chatbot_model.h5
Normal file
BIN
src/semantic/chatbot_model.h5
Normal file
Binary file not shown.
BIN
src/semantic/classes.pkl
Normal file
BIN
src/semantic/classes.pkl
Normal file
Binary file not shown.
9
src/semantic/classes.txt
Normal file
9
src/semantic/classes.txt
Normal file
@@ -0,0 +1,9 @@
|
||||
adverse_drug
|
||||
blood_pressure
|
||||
blood_pressure_search
|
||||
goodbye
|
||||
greeting
|
||||
hospital_search
|
||||
options
|
||||
pharmacy_search
|
||||
thanks
|
114
src/semantic/gui_chatbot.py
Normal file
114
src/semantic/gui_chatbot.py
Normal file
@@ -0,0 +1,114 @@
|
||||
import nltk
|
||||
from nltk.stem import WordNetLemmatizer
|
||||
lemmatizer = WordNetLemmatizer()
|
||||
import pickle
|
||||
import numpy as np
|
||||
|
||||
from keras.models import load_model
|
||||
model = load_model('chatbot_model.h5')
|
||||
import json
|
||||
import random
|
||||
intents = json.loads(open('intents.json').read())
|
||||
words = pickle.load(open('words.pkl','rb'))
|
||||
classes = pickle.load(open('classes.pkl','rb'))
|
||||
|
||||
|
||||
def clean_up_sentence(sentence):
|
||||
# tokenize the pattern - splitting words into array
|
||||
sentence_words = nltk.word_tokenize(sentence)
|
||||
# stemming every word - reducing to base form
|
||||
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
|
||||
return sentence_words
|
||||
|
||||
|
||||
# return bag of words array: 0 or 1 for words that exist in sentence
|
||||
def bag_of_words(sentence, words, show_details=True):
|
||||
# tokenizing patterns
|
||||
sentence_words = clean_up_sentence(sentence)
|
||||
# bag of words - vocabulary matrix
|
||||
bag = [0]*len(words)
|
||||
for s in sentence_words:
|
||||
for i,word in enumerate(words):
|
||||
if word == s:
|
||||
# assign 1 if current word is in the vocabulary position
|
||||
bag[i] = 1
|
||||
if show_details:
|
||||
print ("found in bag: %s" % word)
|
||||
return(np.array(bag))
|
||||
|
||||
def predict_class(sentence):
|
||||
# filter below threshold predictions
|
||||
p = bag_of_words(sentence, words,show_details=False)
|
||||
res = model.predict(np.array([p]))[0]
|
||||
ERROR_THRESHOLD = 0.25
|
||||
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
|
||||
# sorting strength probability
|
||||
results.sort(key=lambda x: x[1], reverse=True)
|
||||
return_list = []
|
||||
for r in results:
|
||||
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
|
||||
return return_list
|
||||
|
||||
def getResponse(ints, intents_json):
|
||||
tag = ints[0]['intent']
|
||||
list_of_intents = intents_json['intents']
|
||||
for i in list_of_intents:
|
||||
if(i['tag']== tag):
|
||||
result = random.choice(i['responses'])
|
||||
break
|
||||
return result
|
||||
|
||||
|
||||
#Creating tkinter GUI
|
||||
import tkinter
|
||||
from tkinter import *
|
||||
|
||||
def send():
|
||||
msg = EntryBox.get("1.0",'end-1c').strip()
|
||||
EntryBox.delete("0.0",END)
|
||||
|
||||
if msg != '':
|
||||
ChatBox.config(state=NORMAL)
|
||||
ChatBox.insert(END, "You: " + msg + '\n\n')
|
||||
ChatBox.config(foreground="#446665", font=("Verdana", 12 ))
|
||||
|
||||
ints = predict_class(msg)
|
||||
res = getResponse(ints, intents)
|
||||
|
||||
ChatBox.insert(END, "Bot: " + res + '\n\n')
|
||||
|
||||
ChatBox.config(state=DISABLED)
|
||||
ChatBox.yview(END)
|
||||
|
||||
|
||||
root = Tk()
|
||||
root.title("Chatbot")
|
||||
root.geometry("400x500")
|
||||
root.resizable(width=FALSE, height=FALSE)
|
||||
|
||||
#Create Chat window
|
||||
ChatBox = Text(root, bd=0, bg="white", height="8", width="50", font="Arial",)
|
||||
|
||||
ChatBox.config(state=DISABLED)
|
||||
|
||||
#Bind scrollbar to Chat window
|
||||
scrollbar = Scrollbar(root, command=ChatBox.yview, cursor="heart")
|
||||
ChatBox['yscrollcommand'] = scrollbar.set
|
||||
|
||||
#Create Button to send message
|
||||
SendButton = Button(root, font=("Verdana",12,'bold'), text="Send", width="12", height=5,
|
||||
bd=0, bg="#f9a602", activebackground="#3c9d9b",fg='#000000',
|
||||
command= send )
|
||||
|
||||
#Create the box to enter message
|
||||
EntryBox = Text(root, bd=0, bg="white",width="29", height="5", font="Arial")
|
||||
#EntryBox.bind("<Return>", send)
|
||||
|
||||
|
||||
#Place all components on the screen
|
||||
scrollbar.place(x=376,y=6, height=386)
|
||||
ChatBox.place(x=6,y=6, height=386, width=370)
|
||||
EntryBox.place(x=128, y=401, height=90, width=265)
|
||||
SendButton.place(x=6, y=401, height=90)
|
||||
|
||||
root.mainloop()
|
73
src/semantic/intents.json
Normal file
73
src/semantic/intents.json
Normal file
@@ -0,0 +1,73 @@
|
||||
{"intents": [
|
||||
{"tag": "greeting",
|
||||
"patterns": ["Hi there", "How are you", "Is anyone there?","Hey","Hola", "Hello", "Good day"],
|
||||
"responses": ["Hello, thanks for asking", "Good to see you again", "Hi there, how can I help?"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "goodbye",
|
||||
"patterns": ["Bye", "See you later", "Goodbye", "Nice chatting to you, bye", "Till next time"],
|
||||
"responses": ["See you!", "Have a nice day", "Bye! Come back again soon."],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "thanks",
|
||||
"patterns": ["Thanks", "Thank you", "That's helpful", "Awesome, thanks", "Thanks for helping me"],
|
||||
"responses": ["Happy to help!", "Any time!", "My pleasure"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "noanswer",
|
||||
"patterns": [],
|
||||
"responses": ["Sorry, can't understand you", "Please give me more info", "Not sure I understand"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "options",
|
||||
"patterns": ["How you could help me?", "What you can do?", "What help you provide?", "How you can be helpful?", "What support is offered"],
|
||||
"responses": ["I can guide you through Adverse drug reaction list, Blood pressure tracking, Hospitals and Pharmacies", "Offering support for Adverse drug reaction, Blood pressure, Hospitals and Pharmacies"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "navigation",
|
||||
"patterns": ["How to check Adverse drug reaction?", "Open adverse drugs module", "Give me a list of drugs causing adverse behavior", "List all drugs suitable for patient with adverse reaction", "Which drugs dont have adverse reaction?" ],
|
||||
"responses": ["Navigating to Adverse drug reaction module"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "exit",
|
||||
"patterns": ["Open blood pressure module", "Task related to blood pressure", "Blood pressure data entry", "I want to log blood pressure results", "Blood pressure data management" ],
|
||||
"responses": ["Navigating to Blood Pressure module"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "blood_pressure_search",
|
||||
"patterns": ["I want to search for blood pressure result history", "Blood pressure for patient", "Load patient blood pressure result", "Show blood pressure results for patient", "Find blood pressure results by ID" ],
|
||||
"responses": ["Please provide Patient ID", "Patient ID?"],
|
||||
"context": ["search_blood_pressure_by_patient_id"]
|
||||
},
|
||||
{"tag": "search_blood_pressure_by_patient_id",
|
||||
"patterns": [],
|
||||
"responses": ["Loading Blood pressure result for Patient"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "pharmacy_search",
|
||||
"patterns": ["Find me a pharmacy", "Find pharmacy", "List of pharmacies nearby", "Locate pharmacy", "Search pharmacy" ],
|
||||
"responses": ["Please provide pharmacy name"],
|
||||
"context": ["search_pharmacy_by_name"]
|
||||
},
|
||||
{"tag": "search_pharmacy_by_name",
|
||||
"patterns": [],
|
||||
"responses": ["Loading pharmacy details"],
|
||||
"context": [""]
|
||||
},
|
||||
{"tag": "hospital_search",
|
||||
"patterns": ["Lookup for hospital", "Searching for hospital to transfer patient", "I want to search hospital data", "Hospital lookup for patient", "Looking up hospital details" ],
|
||||
"responses": ["Please provide hospital name or location"],
|
||||
"context": ["search_hospital_by_params"]
|
||||
},
|
||||
{"tag": "search_hospital_by_params",
|
||||
"patterns": [],
|
||||
"responses": ["Please provide hospital type"],
|
||||
"context": ["search_hospital_by_type"]
|
||||
},
|
||||
{"tag": "search_hospital_by_type",
|
||||
"patterns": [],
|
||||
"responses": ["Loading hospital details"],
|
||||
"context": [""]
|
||||
}
|
||||
]
|
||||
}
|
33
src/semantic/pickleManage.py
Normal file
33
src/semantic/pickleManage.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import pickle
|
||||
|
||||
# file to print current pickle files to text file
|
||||
# this allows us to monitor current dictionaries
|
||||
def printPickle(filename):
|
||||
pickle_in = open(filename + '.pkl',"rb")
|
||||
currDict = pickle.load(pickle_in)
|
||||
f = open(filename + '.txt',"w")
|
||||
for x in currDict:
|
||||
f.write('%s\n' % x )
|
||||
f.close()
|
||||
|
||||
# update pickle files to update dictionaries
|
||||
# example: grades = {'Bart', 'Lisa', 'Milhouse', 'Nelson'}
|
||||
def createPickle(filename, pklList):
|
||||
f = open(filename + '.pkl', 'wb') # Pickle file is newly created where foo1.py is
|
||||
pickle.dump(pklList, f) # dump data to f
|
||||
f.close()
|
||||
|
||||
def updatePickle(filename, pklList):
|
||||
pickle_in = open(filename + '.pkl',"rb")
|
||||
currDict = pickle.load(pickle_in)
|
||||
f = open(filename + '.pkl', 'wb') # Pickle file is newly created where foo1.py is
|
||||
pickle.dump(currDict|pklList, f) # dump data to f
|
||||
f.close()
|
||||
|
||||
printPickle("classes")
|
||||
printPickle("words")
|
||||
|
||||
# Example usage
|
||||
# createPickle('test', {'Bart', 'Lisa', 'Milhouse', 'Nelson'})
|
||||
# updatePickle('test', {'Theo'})
|
||||
# printPickle("test")
|
92
src/semantic/train_chatbot.py
Normal file
92
src/semantic/train_chatbot.py
Normal file
@@ -0,0 +1,92 @@
|
||||
import numpy as np
|
||||
from keras.models import Sequential
|
||||
from keras.layers import Dense, Activation, Dropout
|
||||
from keras.optimizers import SGD
|
||||
import random
|
||||
|
||||
import nltk
|
||||
from nltk.stem import WordNetLemmatizer
|
||||
lemmatizer = WordNetLemmatizer()
|
||||
import json
|
||||
import pickle
|
||||
|
||||
words=[]
|
||||
classes = []
|
||||
documents = []
|
||||
ignore_letters = ['!', '?', ',', '.']
|
||||
intents_file = open('intents.json').read()
|
||||
intents = json.loads(intents_file)
|
||||
|
||||
for intent in intents['intents']:
|
||||
for pattern in intent['patterns']:
|
||||
#tokenize each word
|
||||
word = nltk.word_tokenize(pattern)
|
||||
words.extend(word)
|
||||
#add documents in the corpus
|
||||
documents.append((word, intent['tag']))
|
||||
# add to our classes list
|
||||
if intent['tag'] not in classes:
|
||||
classes.append(intent['tag'])
|
||||
print(documents)
|
||||
# lemmaztize and lower each word and remove duplicates
|
||||
words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_letters]
|
||||
words = sorted(list(set(words)))
|
||||
# sort classes
|
||||
classes = sorted(list(set(classes)))
|
||||
# documents = combination between patterns and intents
|
||||
print (len(documents), "documents")
|
||||
# classes = intents
|
||||
print (len(classes), "classes", classes)
|
||||
# words = all words, vocabulary
|
||||
print (len(words), "unique lemmatized words", words)
|
||||
|
||||
pickle.dump(words,open('words.pkl','wb'))
|
||||
pickle.dump(classes,open('classes.pkl','wb'))
|
||||
|
||||
# create our training data
|
||||
training = []
|
||||
# create an empty array for our output
|
||||
output_empty = [0] * len(classes)
|
||||
# training set, bag of words for each sentence
|
||||
for doc in documents:
|
||||
# initialize our bag of words
|
||||
bag = []
|
||||
# list of tokenized words for the pattern
|
||||
pattern_words = doc[0]
|
||||
# lemmatize each word - create base word, in attempt to represent related words
|
||||
pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words]
|
||||
# create our bag of words array with 1, if word match found in current pattern
|
||||
for word in words:
|
||||
bag.append(1) if word in pattern_words else bag.append(0)
|
||||
|
||||
# output is a '0' for each tag and '1' for current tag (for each pattern)
|
||||
output_row = list(output_empty)
|
||||
output_row[classes.index(doc[1])] = 1
|
||||
|
||||
training.append([bag, output_row])
|
||||
# shuffle our features and turn into np.array
|
||||
random.shuffle(training)
|
||||
training = np.array(training)
|
||||
# create train and test lists. X - patterns, Y - intents
|
||||
train_x = list(training[:,0])
|
||||
train_y = list(training[:,1])
|
||||
print("Training data created")
|
||||
|
||||
# Create model - 3 layers. First layer 128 neurons, second layer 64 neurons and 3rd output layer contains number of neurons
|
||||
# equal to number of intents to predict output intent with softmax
|
||||
model = Sequential()
|
||||
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
|
||||
model.add(Dropout(0.5))
|
||||
model.add(Dense(64, activation='relu'))
|
||||
model.add(Dropout(0.5))
|
||||
model.add(Dense(len(train_y[0]), activation='softmax'))
|
||||
|
||||
# Compile model. Stochastic gradient descent with Nesterov accelerated gradient gives good results for this model
|
||||
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
|
||||
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
|
||||
|
||||
#fitting and saving the model
|
||||
hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)
|
||||
model.save('chatbot_model.h5', hist)
|
||||
|
||||
print("model created")
|
BIN
src/semantic/words.pkl
Normal file
BIN
src/semantic/words.pkl
Normal file
Binary file not shown.
87
src/semantic/words.txt
Normal file
87
src/semantic/words.txt
Normal file
@@ -0,0 +1,87 @@
|
||||
's
|
||||
a
|
||||
adverse
|
||||
all
|
||||
anyone
|
||||
are
|
||||
awesome
|
||||
be
|
||||
behavior
|
||||
blood
|
||||
by
|
||||
bye
|
||||
can
|
||||
causing
|
||||
chatting
|
||||
check
|
||||
could
|
||||
data
|
||||
day
|
||||
detail
|
||||
do
|
||||
dont
|
||||
drug
|
||||
entry
|
||||
find
|
||||
for
|
||||
give
|
||||
good
|
||||
goodbye
|
||||
have
|
||||
hello
|
||||
help
|
||||
helpful
|
||||
helping
|
||||
hey
|
||||
hi
|
||||
history
|
||||
hola
|
||||
hospital
|
||||
how
|
||||
i
|
||||
id
|
||||
is
|
||||
later
|
||||
list
|
||||
load
|
||||
locate
|
||||
log
|
||||
looking
|
||||
lookup
|
||||
management
|
||||
me
|
||||
module
|
||||
nearby
|
||||
next
|
||||
nice
|
||||
of
|
||||
offered
|
||||
open
|
||||
patient
|
||||
pharmacy
|
||||
pressure
|
||||
provide
|
||||
reaction
|
||||
related
|
||||
result
|
||||
search
|
||||
searching
|
||||
see
|
||||
show
|
||||
suitable
|
||||
support
|
||||
task
|
||||
thank
|
||||
thanks
|
||||
that
|
||||
there
|
||||
till
|
||||
time
|
||||
to
|
||||
transfer
|
||||
up
|
||||
want
|
||||
what
|
||||
which
|
||||
with
|
||||
you
|
Reference in New Issue
Block a user