Adding basic chatbot to be modified for our usage. This is partially from: https://data-flair.training/blogs/python-chatbot-project/

This commit is contained in:
snbenge
2020-04-17 20:50:40 -04:00
parent b8ee129f22
commit 15a77e7bcf
9 changed files with 408 additions and 0 deletions

Binary file not shown.

BIN
src/semantic/classes.pkl Normal file

Binary file not shown.

9
src/semantic/classes.txt Normal file
View File

@@ -0,0 +1,9 @@
adverse_drug
blood_pressure
blood_pressure_search
goodbye
greeting
hospital_search
options
pharmacy_search
thanks

114
src/semantic/gui_chatbot.py Normal file
View File

@@ -0,0 +1,114 @@
import nltk
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
import pickle
import numpy as np
from keras.models import load_model
model = load_model('chatbot_model.h5')
import json
import random
intents = json.loads(open('intents.json').read())
words = pickle.load(open('words.pkl','rb'))
classes = pickle.load(open('classes.pkl','rb'))
def clean_up_sentence(sentence):
# tokenize the pattern - splitting words into array
sentence_words = nltk.word_tokenize(sentence)
# stemming every word - reducing to base form
sentence_words = [lemmatizer.lemmatize(word.lower()) for word in sentence_words]
return sentence_words
# return bag of words array: 0 or 1 for words that exist in sentence
def bag_of_words(sentence, words, show_details=True):
# tokenizing patterns
sentence_words = clean_up_sentence(sentence)
# bag of words - vocabulary matrix
bag = [0]*len(words)
for s in sentence_words:
for i,word in enumerate(words):
if word == s:
# assign 1 if current word is in the vocabulary position
bag[i] = 1
if show_details:
print ("found in bag: %s" % word)
return(np.array(bag))
def predict_class(sentence):
# filter below threshold predictions
p = bag_of_words(sentence, words,show_details=False)
res = model.predict(np.array([p]))[0]
ERROR_THRESHOLD = 0.25
results = [[i,r] for i,r in enumerate(res) if r>ERROR_THRESHOLD]
# sorting strength probability
results.sort(key=lambda x: x[1], reverse=True)
return_list = []
for r in results:
return_list.append({"intent": classes[r[0]], "probability": str(r[1])})
return return_list
def getResponse(ints, intents_json):
tag = ints[0]['intent']
list_of_intents = intents_json['intents']
for i in list_of_intents:
if(i['tag']== tag):
result = random.choice(i['responses'])
break
return result
#Creating tkinter GUI
import tkinter
from tkinter import *
def send():
msg = EntryBox.get("1.0",'end-1c').strip()
EntryBox.delete("0.0",END)
if msg != '':
ChatBox.config(state=NORMAL)
ChatBox.insert(END, "You: " + msg + '\n\n')
ChatBox.config(foreground="#446665", font=("Verdana", 12 ))
ints = predict_class(msg)
res = getResponse(ints, intents)
ChatBox.insert(END, "Bot: " + res + '\n\n')
ChatBox.config(state=DISABLED)
ChatBox.yview(END)
root = Tk()
root.title("Chatbot")
root.geometry("400x500")
root.resizable(width=FALSE, height=FALSE)
#Create Chat window
ChatBox = Text(root, bd=0, bg="white", height="8", width="50", font="Arial",)
ChatBox.config(state=DISABLED)
#Bind scrollbar to Chat window
scrollbar = Scrollbar(root, command=ChatBox.yview, cursor="heart")
ChatBox['yscrollcommand'] = scrollbar.set
#Create Button to send message
SendButton = Button(root, font=("Verdana",12,'bold'), text="Send", width="12", height=5,
bd=0, bg="#f9a602", activebackground="#3c9d9b",fg='#000000',
command= send )
#Create the box to enter message
EntryBox = Text(root, bd=0, bg="white",width="29", height="5", font="Arial")
#EntryBox.bind("<Return>", send)
#Place all components on the screen
scrollbar.place(x=376,y=6, height=386)
ChatBox.place(x=6,y=6, height=386, width=370)
EntryBox.place(x=128, y=401, height=90, width=265)
SendButton.place(x=6, y=401, height=90)
root.mainloop()

73
src/semantic/intents.json Normal file
View File

@@ -0,0 +1,73 @@
{"intents": [
{"tag": "greeting",
"patterns": ["Hi there", "How are you", "Is anyone there?","Hey","Hola", "Hello", "Good day"],
"responses": ["Hello, thanks for asking", "Good to see you again", "Hi there, how can I help?"],
"context": [""]
},
{"tag": "goodbye",
"patterns": ["Bye", "See you later", "Goodbye", "Nice chatting to you, bye", "Till next time"],
"responses": ["See you!", "Have a nice day", "Bye! Come back again soon."],
"context": [""]
},
{"tag": "thanks",
"patterns": ["Thanks", "Thank you", "That's helpful", "Awesome, thanks", "Thanks for helping me"],
"responses": ["Happy to help!", "Any time!", "My pleasure"],
"context": [""]
},
{"tag": "noanswer",
"patterns": [],
"responses": ["Sorry, can't understand you", "Please give me more info", "Not sure I understand"],
"context": [""]
},
{"tag": "options",
"patterns": ["How you could help me?", "What you can do?", "What help you provide?", "How you can be helpful?", "What support is offered"],
"responses": ["I can guide you through Adverse drug reaction list, Blood pressure tracking, Hospitals and Pharmacies", "Offering support for Adverse drug reaction, Blood pressure, Hospitals and Pharmacies"],
"context": [""]
},
{"tag": "navigation",
"patterns": ["How to check Adverse drug reaction?", "Open adverse drugs module", "Give me a list of drugs causing adverse behavior", "List all drugs suitable for patient with adverse reaction", "Which drugs dont have adverse reaction?" ],
"responses": ["Navigating to Adverse drug reaction module"],
"context": [""]
},
{"tag": "exit",
"patterns": ["Open blood pressure module", "Task related to blood pressure", "Blood pressure data entry", "I want to log blood pressure results", "Blood pressure data management" ],
"responses": ["Navigating to Blood Pressure module"],
"context": [""]
},
{"tag": "blood_pressure_search",
"patterns": ["I want to search for blood pressure result history", "Blood pressure for patient", "Load patient blood pressure result", "Show blood pressure results for patient", "Find blood pressure results by ID" ],
"responses": ["Please provide Patient ID", "Patient ID?"],
"context": ["search_blood_pressure_by_patient_id"]
},
{"tag": "search_blood_pressure_by_patient_id",
"patterns": [],
"responses": ["Loading Blood pressure result for Patient"],
"context": [""]
},
{"tag": "pharmacy_search",
"patterns": ["Find me a pharmacy", "Find pharmacy", "List of pharmacies nearby", "Locate pharmacy", "Search pharmacy" ],
"responses": ["Please provide pharmacy name"],
"context": ["search_pharmacy_by_name"]
},
{"tag": "search_pharmacy_by_name",
"patterns": [],
"responses": ["Loading pharmacy details"],
"context": [""]
},
{"tag": "hospital_search",
"patterns": ["Lookup for hospital", "Searching for hospital to transfer patient", "I want to search hospital data", "Hospital lookup for patient", "Looking up hospital details" ],
"responses": ["Please provide hospital name or location"],
"context": ["search_hospital_by_params"]
},
{"tag": "search_hospital_by_params",
"patterns": [],
"responses": ["Please provide hospital type"],
"context": ["search_hospital_by_type"]
},
{"tag": "search_hospital_by_type",
"patterns": [],
"responses": ["Loading hospital details"],
"context": [""]
}
]
}

View File

@@ -0,0 +1,33 @@
import pickle
# file to print current pickle files to text file
# this allows us to monitor current dictionaries
def printPickle(filename):
pickle_in = open(filename + '.pkl',"rb")
currDict = pickle.load(pickle_in)
f = open(filename + '.txt',"w")
for x in currDict:
f.write('%s\n' % x )
f.close()
# update pickle files to update dictionaries
# example: grades = {'Bart', 'Lisa', 'Milhouse', 'Nelson'}
def createPickle(filename, pklList):
f = open(filename + '.pkl', 'wb') # Pickle file is newly created where foo1.py is
pickle.dump(pklList, f) # dump data to f
f.close()
def updatePickle(filename, pklList):
pickle_in = open(filename + '.pkl',"rb")
currDict = pickle.load(pickle_in)
f = open(filename + '.pkl', 'wb') # Pickle file is newly created where foo1.py is
pickle.dump(currDict|pklList, f) # dump data to f
f.close()
printPickle("classes")
printPickle("words")
# Example usage
# createPickle('test', {'Bart', 'Lisa', 'Milhouse', 'Nelson'})
# updatePickle('test', {'Theo'})
# printPickle("test")

View File

@@ -0,0 +1,92 @@
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout
from keras.optimizers import SGD
import random
import nltk
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
import json
import pickle
words=[]
classes = []
documents = []
ignore_letters = ['!', '?', ',', '.']
intents_file = open('intents.json').read()
intents = json.loads(intents_file)
for intent in intents['intents']:
for pattern in intent['patterns']:
#tokenize each word
word = nltk.word_tokenize(pattern)
words.extend(word)
#add documents in the corpus
documents.append((word, intent['tag']))
# add to our classes list
if intent['tag'] not in classes:
classes.append(intent['tag'])
print(documents)
# lemmaztize and lower each word and remove duplicates
words = [lemmatizer.lemmatize(w.lower()) for w in words if w not in ignore_letters]
words = sorted(list(set(words)))
# sort classes
classes = sorted(list(set(classes)))
# documents = combination between patterns and intents
print (len(documents), "documents")
# classes = intents
print (len(classes), "classes", classes)
# words = all words, vocabulary
print (len(words), "unique lemmatized words", words)
pickle.dump(words,open('words.pkl','wb'))
pickle.dump(classes,open('classes.pkl','wb'))
# create our training data
training = []
# create an empty array for our output
output_empty = [0] * len(classes)
# training set, bag of words for each sentence
for doc in documents:
# initialize our bag of words
bag = []
# list of tokenized words for the pattern
pattern_words = doc[0]
# lemmatize each word - create base word, in attempt to represent related words
pattern_words = [lemmatizer.lemmatize(word.lower()) for word in pattern_words]
# create our bag of words array with 1, if word match found in current pattern
for word in words:
bag.append(1) if word in pattern_words else bag.append(0)
# output is a '0' for each tag and '1' for current tag (for each pattern)
output_row = list(output_empty)
output_row[classes.index(doc[1])] = 1
training.append([bag, output_row])
# shuffle our features and turn into np.array
random.shuffle(training)
training = np.array(training)
# create train and test lists. X - patterns, Y - intents
train_x = list(training[:,0])
train_y = list(training[:,1])
print("Training data created")
# Create model - 3 layers. First layer 128 neurons, second layer 64 neurons and 3rd output layer contains number of neurons
# equal to number of intents to predict output intent with softmax
model = Sequential()
model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
# Compile model. Stochastic gradient descent with Nesterov accelerated gradient gives good results for this model
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
#fitting and saving the model
hist = model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1)
model.save('chatbot_model.h5', hist)
print("model created")

BIN
src/semantic/words.pkl Normal file

Binary file not shown.

87
src/semantic/words.txt Normal file
View File

@@ -0,0 +1,87 @@
's
a
adverse
all
anyone
are
awesome
be
behavior
blood
by
bye
can
causing
chatting
check
could
data
day
detail
do
dont
drug
entry
find
for
give
good
goodbye
have
hello
help
helpful
helping
hey
hi
history
hola
hospital
how
i
id
is
later
list
load
locate
log
looking
lookup
management
me
module
nearby
next
nice
of
offered
open
patient
pharmacy
pressure
provide
reaction
related
result
search
searching
see
show
suitable
support
task
thank
thanks
that
there
till
time
to
transfer
up
want
what
which
with
you