Compare commits

..

3 Commits

Author SHA1 Message Date
Scott Lahteine
28684f68fa Update .gitignore 2023-12-27 15:24:05 -06:00
Scott Lahteine
c06c2fe292 🔖 Marlin 2.0.1.1 2023-07-20 14:21:28 -05:00
Scott Lahteine
183e184129 🔨 PlatformIO 6 compatibility 2023-07-20 14:21:28 -05:00
3547 changed files with 823381 additions and 411810 deletions

View File

@@ -1,23 +0,0 @@
# editorconfig.org
root = true
[{*.patch,syntax_test_*}]
trim_trailing_whitespace = false
[{*.c,*.cpp,*.h,*.ino}]
charset = utf-8
[{*.c,*.cpp,*.h,*.ino,Makefile}]
trim_trailing_whitespace = true
insert_final_newline = true
end_of_line = lf
indent_style = space
indent_size = 2
[{*.py}]
indent_style = space
indent_size = 4
[{*.conf,*.sublime-project}]
indent_style = tab
indent_size = 4

2
.gitattributes vendored
View File

@@ -17,5 +17,3 @@
*.png binary
*.jpg binary
*.fon binary
*.bin binary
*.woff binary

4
.github/FUNDING.yml vendored
View File

@@ -1,3 +1 @@
github: [thinkyhead]
patreon: thinkyhead
custom: ["https://www.thinkyhead.com/donate-to-marlin"]
custom: http://www.thinkyhead.com/donate-to-marlin

43
.github/ISSUE_TEMPLATE/bug_report.md vendored Normal file
View File

@@ -0,0 +1,43 @@
---
name: Bug report
about: Report a bug in Marlin
title: "[BUG] (short description)"
labels: ''
assignees: ''
---
<!--
Have you read Marlin's Code of Conduct? By filing an Issue, you are expected to comply with it, including treating everyone with respect: https://github.com/MarlinFirmware/Marlin/blob/master/.github/code_of_conduct.md
Do you want to ask a question? Are you looking for support? Please don't post here. Instead please use one of the support links at https://github.com/MarlinFirmware/Marlin/issues/new/choose
Before filing an issue be sure to test the "bugfix" branches to see whether the issue has been resolved.
-->
### Bug Description
<!-- Description of the bug -->
### My Configurations
**Required:** Please include a ZIP file containing your `Configuration.h` and `Configuration_adv.h` files.
### Steps to Reproduce
<!-- Please describe the steps needed to reproduce the issue -->
1. [First Step]
2. [Second Step]
3. [and so on...]
**Expected behavior:** [What you expect to happen]
**Actual behavior:** [What actually happens]
#### Additional Information
* Provide pictures or links to videos that clearly demonstrate the issue.
* See [How Can I Contribute](#how-can-i-contribute) for additional guidelines.

17
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,17 @@
blank_issues_enabled: false
contact_links:
- name: Marlin Documentation
url: http://marlinfw.org/
about: Lots of documentation on installing and using Marlin.
- name: MarlinFirmware Facebook group
url: https://www.facebook.com/groups/1049718498464482
about: Please ask and answer questions here.
- name: Marlin on Discord
url: https://discord.gg/n5NJ59y
about: Join the Discord server for support and discussion.
- name: Marlin Discussion Forum
url: http://forums.reprap.org/list.php?415
about: A searchable web forum hosted by RepRap dot org.
- name: Marlin Videos on YouTube
url: https://www.youtube.com/results?search_query=marlin+firmware
about: Tutorials and more from Marlin users all around the world. Great for new users!

View File

@@ -0,0 +1,35 @@
---
name: Feature request
about: Request a Feature
title: "[FR] (feature request title)"
labels: ''
assignees: ''
---
<!--
Have you read Marlin's Code of Conduct? By filing an Issue, you are expected to comply with it, including treating everyone with respect: https://github.com/MarlinFirmware/Marlin/blob/master/.github/code_of_conduct.md
Do you want to ask a question? Are you looking for support? Please don't post here. Instead please use one of the support links at https://github.com/MarlinFirmware/Marlin/issues/new/choose
Before filing an issue be sure to test the "bugfix" branches to see whether the issue has been resolved.
-->
### Description
<!-- Description of the requested feature -->
### Feature Workflow
<!-- Please describe the feature's behavior, user interaction, etc. -->
1. [First Action]
2. [Second Action]
3. [and so on...]
#### Additional Information
* Provide pictures or links that demonstrate a similar feature or concept.
* See [How Can I Contribute](#how-can-i-contribute) for additional guidelines.

View File

@@ -34,18 +34,16 @@ This project and everyone participating in it is governed by the [Marlin Code of
We have a Message Board and a Facebook group where our knowledgable user community can provide helpful advice if you have questions.
- [Marlin Documentation](https://marlinfw.org) - Official Marlin documentation
- Facebook Group ["Marlin Firmware"](https://www.facebook.com/groups/1049718498464482/)
- RepRap.org [Marlin Forum](https://forums.reprap.org/list.php?415)
- Facebook Group ["Marlin Firmware for 3D Printers"](https://www.facebook.com/groups/3Dtechtalk/)
- [Marlin Configuration](https://www.youtube.com/results?search_query=marlin+configuration) on YouTube
* [Marlin RepRap forum](http://forums.reprap.org/list.php?415)
* [MarlinFirmware on Facebook](https://www.facebook.com/groups/1049718498464482/)
If chat is more your speed, you can join the MarlinFirmware Discord server:
If chat is more your speed, you can join the MarlinFirmware Slack team:
* Use the link https://discord.gg/n5NJ59y to join up as a General User.
* Even though our Discord is pretty active, it may take a while for community members to respond &mdash; please be patient!
* Use the `#general` channel for general questions or discussion about Marlin.
* Other channels exist for certain topics or are limited to Patrons. Check the channel list.
* Join the Marlin Slack Team
* To obtain group access, please [send a request](http://www.thinkyhead.com/contact/9) to @thinkyhead.
* Even though Slack is a chat service, sometimes it takes several hours for community members to respond &mdash; please be patient!
* Use the `#general` channel for general questions or discussion about Marlin.
* Other channels exist for certain topics. Check the channel list.
## How Can I Contribute?
@@ -53,13 +51,13 @@ If chat is more your speed, you can join the MarlinFirmware Discord server:
This section guides you through submitting a Bug Report for Marlin. Following these guidelines helps maintainers and the community understand your report, reproduce the behavior, and find related reports.
Before creating a Bug Report, please test the "nightly" development branch, as you might find out that you don't need to create one. When you are creating a Bug Report, please [include as many details as possible](#how-do-i-submit-a-good-bug-report). Fill out [the required template](ISSUE_TEMPLATE/bug_report.yml), the information it asks for helps us resolve issues faster.
Before creating a Bug Report, please test the "nightly" development branch, as you might find out that you don't need to create one. When you are creating a Bug Report, please [include as many details as possible](#how-do-i-submit-a-good-bug-report). Fill out [the required template](issue_template.md), the information it asks for helps us resolve issues faster.
> **Note:** Regressions can happen. If you find a **Closed** issue that seems like your issue, go ahead and open a new issue and include a link to the original issue in the body of your new one. All you need to create a link is the issue number, preceded by #. For example, #8888.
#### How Do I Submit A (Good) Bug Report?
Bugs are tracked as [GitHub issues](https://guides.github.com/features/issues/). Use the New Issue button to create an issue and provide the following information by filling in [the template](ISSUE_TEMPLATE/bug_report.yml).
Bugs are tracked as [GitHub issues](https://guides.github.com/features/issues/). Use the New Issue button to create an issue and provide the following information by filling in [the template](issue_template.md).
Explain the problem and include additional details to help maintainers reproduce the problem:
@@ -91,12 +89,12 @@ Include details about your configuration and environment:
This section guides you through submitting a suggestion for Marlin, including completely new features and minor improvements to existing functionality. Following these guidelines helps maintainers and the community understand your suggestion and find related suggestions.
Before creating a suggestion, please check [this list](https://github.com/MarlinFirmware/Marlin/issues?q=is%3Aopen+is%3Aissue+label%3A%22T%3A+Feature+Request%22) as you might find out that you don't need to create one. When you are creating an enhancement suggestion, please [include as many details as possible](#how-do-i-submit-a-good-feature-request). Fill in [the template](ISSUE_TEMPLATE/feature_request.yml), including the steps that you imagine you would take if the feature you're requesting existed.
Before creating a suggestion, please check [this list](#before-submitting-a-suggestion) as you might find out that you don't need to create one. When you are creating an enhancement suggestion, please [include as many details as possible](#how-do-i-submit-a-good-enhancement-suggestion). Fill in [the template](issue_template.md), including the steps that you imagine you would take if the feature you're requesting existed.
#### Before Submitting a Feature Request
* **Check the [Marlin website](https://marlinfw.org/)** for tips — you might discover that the feature is already included. Most importantly, check if you're using [the latest version of Marlin](https://github.com/MarlinFirmware/Marlin/releases) and if you can get the desired behavior by changing [Marlin's config settings](https://marlinfw.org/docs/configuration/configuration.html).
* **Perform a [cursory search](https://github.com/MarlinFirmware/Marlin/issues?q=is%3Aopen+is%3Aissue+label%3A%22T%3A+Feature+Request%22)** to see if the enhancement has already been suggested. If it has, add a comment to the existing issue instead of opening a new one.
* **Check the [Marlin website](http://marlinfw.org/)** for tips — you might discover that the feature is already included. Most importantly, check if you're using [the latest version of Marlin](https://github.com/MarlinFirmware/Marlin/releases) and if you can get the desired behavior by changing [Marlin's config settings](http://marlinfw.org/docs/configuration/configuration.html).
* **Perform a [cursory search](https://github.com/MarlinFirmware/Marlin/issues?q=is%3Aissue)** to see if the enhancement has already been suggested. If it has, add a comment to the existing issue instead of opening a new one.
#### How Do I Submit A (Good) Feature Request?
@@ -119,12 +117,12 @@ Unsure where to begin contributing to Marlin? You can start by looking through t
### Pull Requests
Pull Requests should always be targeted to working branches (e.g., `bugfix-2.0.x` and/or `bugfix-1.1.x`) and never to release branches (e.g., `2.0.x` and/or `1.1.x`). If this is your first Pull Request, please read our [Guide to Pull Requests](https://marlinfw.org/docs/development/getting_started_pull_requests.html) and Github's [Pull Request](https://help.github.com/articles/creating-a-pull-request/) documentation.
Pull Requests should always be targeted to working branches (e.g., `bugfix-1.1.x` and/or `bugfix-2.0.x`) and never to release branches (e.g., `1.1.x`). If this is your first Pull Request, please read our [Guide to Pull Requests](http://marlinfw.org/docs/development/getting_started_pull_requests.html) and Github's [Pull Request](https://help.github.com/articles/creating-a-pull-request/) documentation.
* Fill in [the required template](pull_request_template.md).
* Don't include issue numbers in the PR title.
* Include pictures, diagrams, and links to videos in your Pull Request to demonstrate your changes, if needed.
* Follow the [Coding Standards](https://marlinfw.org/docs/development/coding_standards.html) posted on our website.
* Follow the [Coding Standards](http://marlinfw.org/docs/development/coding_standards.html) posted on our website.
* Document new code with clear and concise comments.
* End all files with a newline.
@@ -139,7 +137,7 @@ Pull Requests should always be targeted to working branches (e.g., `bugfix-2.0.x
### C++ Coding Standards
* Please read and follow the [Coding Standards](https://marlinfw.org/docs/development/coding_standards.html) posted on our website. Failure to follow these guidelines will delay evaluation and acceptance of Pull Requests.
* Please read and follow the [Coding Standards](http://marlinfw.org/docs/development/coding_standards.html) posted on our website. Failure to follow these guidelines will delay evaluation and acceptance of Pull Requests.
### Documentation

16
.github/issue_template.md vendored Normal file
View File

@@ -0,0 +1,16 @@
# NO SUPPORT REQUESTS PLEASE
Support Requests posted here will be automatically closed!
This Issue Queue is for Marlin bug reports and development-related issues, and we prefer not to handle user-support questions here. See https://github.com/MarlinFirmware/Marlin/blob/1.1.x/.github/contributing.md#i-dont-want-to-read-this-whole-thing-i-just-have-a-question.
For best results getting help with configuration and troubleshooting, please use the following resources:
- RepRap.org Marlin Forum http://forums.reprap.org/list.php?415
- Tom's 3D Forums https://discuss.toms3d.org/
- Facebook Group "Marlin Firmware" https://www.facebook.com/groups/1049718498464482/
- Facebook Group "Marlin Firmware for 3D Printers" https://www.facebook.com/groups/3Dtechtalk/
- Marlin Configuration https://www.youtube.com/results?search_query=marlin+configuration on YouTube
- Marlin Discord server. Join link: https://discord.gg/n5NJ59y
After seeking help from the community, if the consensus points to to a bug in Marlin, then you should post a Bug Report at https://github.com/MarlinFirmware/Marlin/issues/new/choose).

View File

@@ -1,33 +1,19 @@
<!--
### Requirements
Submitting a Pull Request
- Please fill out all sections of this form. You can delete the helpful comments.
- Pull Requests without clear information will take longer and may even be rejected.
- We get a high volume of submissions so please be patient during review.
-->
* Filling out this template is required. Pull Requests without a clear description may be closed at the maintainers' discretion.
### Description
<!--
Clearly describe the submitted changes with lots of details. Include images where helpful. Initial reviewers may not be familiar with the subject, so be as thorough as possible. You can use MarkDown syntax to improve readability with bullet lists, code blocks, and so on. PREVIEW and fix up formatting before submitting.
We must be able to understand your proposed change from this description. If we can't understand what the code will do from this description, the Pull Request may be closed at the maintainers' discretion. Keep in mind that the maintainer reviewing this PR may not be familiar with or have worked with the code recently, so please walk us through the concepts.
-->
### Requirements
<!-- Does this PR require a specific board, LCD, etc.? -->
### Benefits
<!-- What does this PR fix or improve? -->
### Configurations
<!-- Attach Configurations ZIP and any other files needed to test this PR. -->
<!-- What does this fix or improve? -->
### Related Issues
<!-- Does this PR fix a bug or fulfill a Feature Request? Link related Issues here. -->
<!-- Whether this fixes a bug or fulfills a feature request, please list any related Issues here. -->

View File

@@ -1,147 +0,0 @@
#
# test-builds.yml
# Do test builds to catch compile errors
#
name: CI - bugfix-2.0.x
on:
pull_request:
branches:
- bugfix-2.0.x
paths-ignore:
- config/**
- data/**
- docs/**
- '**/*.md'
push:
branches:
- bugfix-2.0.x
paths-ignore:
- config/**
- data/**
- docs/**
- '**/*.md'
jobs:
test_builds:
name: Run All Tests
if: github.repository == 'MarlinFirmware/Marlin'
runs-on: ubuntu-latest
strategy:
matrix:
test-platform:
# Base Environments
- DUE
- DUE_archim
- esp32
- linux_native
- mega2560
- at90usb1286_dfu
- teensy31
- teensy35
- teensy41
- SAMD51_grandcentral_m4
# Extended AVR Environments
- FYSETC_F6
- mega1280
- rambo
- sanguino1284p
- sanguino644p
# STM32F1 (Maple) Environments
#- STM32F103RC_btt_maple
- STM32F103RC_btt_USB_maple
- STM32F103RC_fysetc_maple
- STM32F103RC_meeb_maple
- jgaurora_a5s_a1_maple
- STM32F103VE_longer_maple
#- mks_robin_maple
- mks_robin_lite_maple
- mks_robin_pro_maple
#- mks_robin_nano35_maple
#- STM32F103RE_creality_maple
- STM32F103VE_ZM3E4V2_USB_maple
# STM32 (ST) Environments
- STM32F103RC_btt
#- STM32F103RC_btt_USB
- STM32F103RE_btt
- STM32F103RE_btt_USB
- STM32F103RE_creality
- STM32F401RC_creality
- STM32F103VE_longer
- STM32F407VE_black
- STM32F401VE_STEVAL
- BIGTREE_BTT002
- BIGTREE_SKR_PRO
- BIGTREE_GTR_V1_0
- mks_robin
- ARMED
- FYSETC_S6
- STM32F070CB_malyan
- STM32F070RB_malyan
- malyan_M300
- FLYF407ZG
- rumba32
- LERDGEX
- LERDGEK
- mks_robin_nano35
- NUCLEO_F767ZI
- REMRAM_V1
- BTT_SKR_SE_BX
- chitu_f103
- Opulo_Lumen_REV3
# Put lengthy tests last
- LPC1768
- LPC1769
# Non-working environment tests
#- at90usb1286_cdc
#- STM32F103CB_malyan
#- STM32F103RE
#- mks_robin_mini
steps:
- name: Check out the PR
uses: actions/checkout@v3
- name: Cache pip
uses: actions/cache@v3
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
restore-keys: |
${{ runner.os }}-pip-
- name: Cache PlatformIO
uses: actions/cache@v3
with:
path: ~/.platformio
key: ${{ runner.os }}-${{ hashFiles('**/lockfiles') }}
- name: Select Python 3.7
uses: actions/setup-python@v3
with:
python-version: '3.7' # Version range or exact version of a Python version to use, using semvers version range syntax.
architecture: 'x64' # optional x64 or x86. Defaults to x64 if not specified
- name: Install PlatformIO
run: |
pip install -U platformio
pio upgrade --dev
pio pkg update --global
- name: Run ${{ matrix.test-platform }} Tests
run: |
make tests-single-ci TEST_TARGET=${{ matrix.test-platform }}

53
.gitignore vendored
View File

@@ -1,6 +1,6 @@
#
# Marlin 3D Printer Firmware
# Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
# Copyright (c) 2023 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
#
# Based on Sprinter and grbl.
# Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
@@ -21,35 +21,21 @@
# Generated files
_Version.h
bdf2u8g
bdf2u8g.exe
genpages.exe
marlin_config.json
mczip.h
language*.csv
out-csv/
out-language/
*.gen
*.sublime-workspace
#
# OS
#
applet/
.DS_Store
#
# Misc
#
*~
*.orig
*.rej
*.bak
*.idea
*.i
*.ii
*.swp
tags
#
# C++
#
# Compiled Object files
# Compiled C++ Object files
*.slo
*.lo
*.o
@@ -80,10 +66,7 @@ tags
*.out
*.app
#
# C
#
# Object files
# Compiled C Object files
*.o
*.ko
*.obj
@@ -143,13 +126,16 @@ vc-fileutils.settings
.vscode/*
!.vscode/extensions.json
#Simulation
# Simulation files
imgui.ini
eeprom.dat
spi_flash.bin
fs.img
#cmake
# CMake
buildroot/share/cmake/*
CMakeLists.txt
!buildroot/share/cmake/CMakeLists.txt
src/CMakeLists.txt
CMakeListsPrivate.txt
build/
@@ -169,3 +155,16 @@ __pycache__
# IOLogger logs
*_log.csv
# Misc.
*~
*.orig
*.rej
*.bak
*.idea
*.i
*.ii
*.swp
tags
*.logs
*.bak

View File

@@ -1,11 +0,0 @@
{
// See http://go.microsoft.com/fwlink/?LinkId=827846
// for the documentation about the extensions.json format
"recommendations": [
"marlinfirmware.auto-build",
"platformio.platformio-ide"
],
"unwantedRecommendations": [
"ms-vscode.cpptools-extension-pack"
]
}

View File

@@ -3,7 +3,7 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (c) 2007 Free Software Foundation, Inc. <https://www.fsf.org/>
Copyright (c) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
@@ -647,7 +647,7 @@ the "copyright" line and a pointer to where the full notice is found.
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
@@ -666,11 +666,12 @@ might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@@ -1,52 +0,0 @@
help:
@echo "Tasks for local development:"
@echo "* tests-single-ci: Run a single test from inside the CI"
@echo "* tests-single-local: Run a single test locally"
@echo "* tests-single-local-docker: Run a single test locally, using docker-compose"
@echo "* tests-all-local: Run all tests locally"
@echo "* tests-all-local-docker: Run all tests locally, using docker-compose"
@echo "* setup-local-docker: Setup local docker-compose"
@echo ""
@echo "Options for testing:"
@echo " TEST_TARGET Set when running tests-single-*, to select the"
@echo " test. If you set it to ALL it will run all "
@echo " tests, but some of them are broken: use "
@echo " tests-all-* instead to run only the ones that "
@echo " run on GitHub CI"
@echo " ONLY_TEST Limit tests to only those that contain this, or"
@echo " the index of the test (1-based)"
@echo " VERBOSE_PLATFORMIO If you want the full PIO output, set any value"
@echo " GIT_RESET_HARD Used by CI: reset all local changes. WARNING:"
@echo " THIS WILL UNDO ANY CHANGES YOU'VE MADE!"
.PHONY: help
tests-single-ci:
export GIT_RESET_HARD=true
$(MAKE) tests-single-local TEST_TARGET=$(TEST_TARGET)
.PHONY: tests-single-ci
tests-single-local:
@if ! test -n "$(TEST_TARGET)" ; then echo "***ERROR*** Set TEST_TARGET=<your-module> or use make tests-all-local" ; return 1; fi
export PATH=./buildroot/bin/:./buildroot/tests/:${PATH} \
&& export VERBOSE_PLATFORMIO=$(VERBOSE_PLATFORMIO) \
&& run_tests . $(TEST_TARGET) "$(ONLY_TEST)"
.PHONY: tests-single-local
tests-single-local-docker:
@if ! test -n "$(TEST_TARGET)" ; then echo "***ERROR*** Set TEST_TARGET=<your-module> or use make tests-all-local-docker" ; return 1; fi
docker-compose run --rm marlin $(MAKE) tests-single-local TEST_TARGET=$(TEST_TARGET) VERBOSE_PLATFORMIO=$(VERBOSE_PLATFORMIO) GIT_RESET_HARD=$(GIT_RESET_HARD) ONLY_TEST="$(ONLY_TEST)"
.PHONY: tests-single-local-docker
tests-all-local:
export PATH=./buildroot/bin/:./buildroot/tests/:${PATH} \
&& export VERBOSE_PLATFORMIO=$(VERBOSE_PLATFORMIO) \
&& for TEST_TARGET in $$(./get_test_targets.py) ; do echo "Running tests for $$TEST_TARGET" ; run_tests . $$TEST_TARGET ; done
.PHONY: tests-all-local
tests-all-local-docker:
docker-compose run --rm marlin $(MAKE) tests-all-local VERBOSE_PLATFORMIO=$(VERBOSE_PLATFORMIO) GIT_RESET_HARD=$(GIT_RESET_HARD)
.PHONY: tests-all-local-docker
setup-local-docker:
docker-compose build
.PHONY: setup-local-docker

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -14,7 +14,7 @@
# Detailed instructions for using the makefile:
#
# 1. Modify the line containing "ARDUINO_INSTALL_DIR" to point to the directory that
# contains the Arduino installation (for example, under macOS, this
# contains the Arduino installation (for example, under Mac OS X, this
# might be /Applications/Arduino.app/Contents/Resources/Java).
#
# 2. Modify the line containing "UPLOAD_PORT" to refer to the filename
@@ -22,10 +22,8 @@
# (e.g. UPLOAD_PORT = /dev/tty.USB0). If the exact name of this file
# changes, you can use * as a wild card (e.g. UPLOAD_PORT = /dev/tty.usb*).
#
# 3. Set the line containing "MCU" to match your board's processor. Set
# "PROG_MCU" as the AVR part name corresponding to "MCU". You can use the
# following command to get a list of correspondences: `avrdude -c alf -p x`
# Older boards are atmega8 based, newer ones like Arduino Mini, Bluetooth
# 3. Set the line containing "MCU" to match your board's processor.
# Older one's are atmega8 based, newer ones like Arduino Mini, Bluetooth
# or Diecimila have the atmega168. If you're using a LilyPad Arduino,
# change F_CPU to 8000000. If you are using Gen7 electronics, you
# probably need to use 20000000. Either way, you must regenerate
@@ -36,18 +34,18 @@
# 5. Type "make upload", reset your Arduino board, and press enter to
# upload your program to the Arduino board.
#
# Note that all settings at the top of this file can be overridden from
# Note that all settings at the top of this file can be overriden from
# the command line with, for example, "make HARDWARE_MOTHERBOARD=71"
#
# To compile for RAMPS (atmega2560) with Arduino 1.6.9 at root/arduino you would use...
#
# make ARDUINO_VERSION=10609 AVR_TOOLS_PATH=/root/arduino/hardware/tools/avr/bin/ \
# HARDWARE_MOTHERBOARD=1200 ARDUINO_INSTALL_DIR=/root/arduino
# HARDWARE_MOTHERBOARD=33 ARDUINO_INSTALL_DIR=/root/arduino
#
# To compile and upload simply add "upload" to the end of the line...
#
# make ARDUINO_VERSION=10609 AVR_TOOLS_PATH=/root/arduino/hardware/tools/avr/bin/ \
# HARDWARE_MOTHERBOARD=1200 ARDUINO_INSTALL_DIR=/root/arduino upload
# HARDWARE_MOTHERBOARD=33 ARDUINO_INSTALL_DIR=/root/arduino upload
#
# If uploading doesn't work try adding the parameter "AVRDUDE_PROGRAMMER=wiring" or
# start upload manually (using stk500) like so:
@@ -59,26 +57,7 @@
#
# This defines the board to compile for (see boards.h for your board's ID)
HARDWARE_MOTHERBOARD ?= 1020
ifeq ($(OS),Windows_NT)
# Windows
ARDUINO_INSTALL_DIR ?= ${HOME}/Arduino
ARDUINO_USER_DIR ?= ${HOME}/Arduino
else
UNAME_S := $(shell uname -s)
ifeq ($(UNAME_S),Linux)
# Linux
ARDUINO_INSTALL_DIR ?= /usr/share/arduino
ARDUINO_USER_DIR ?= ${HOME}/Arduino
endif
ifeq ($(UNAME_S),Darwin)
# Darwin (macOS)
ARDUINO_INSTALL_DIR ?= /Applications/Arduino.app/Contents/Java
ARDUINO_USER_DIR ?= ${HOME}/Documents/Arduino
AVR_TOOLS_PATH ?= /Applications/Arduino.app/Contents/Java/hardware/tools/avr/bin/
endif
endif
HARDWARE_MOTHERBOARD ?= 11
# Arduino source install directory, and version number
# On most linuxes this will be /usr/share/arduino
@@ -88,51 +67,45 @@ ARDUINO_VERSION ?= 106
# The installed Libraries are in the User folder
ARDUINO_USER_DIR ?= ${HOME}/Arduino
# You can optionally set a path to the avr-gcc tools.
# Requires a trailing slash. For example, /usr/local/avr-gcc/bin/
# You can optionally set a path to the avr-gcc tools. Requires a trailing slash. (ex: /usr/local/avr-gcc/bin)
AVR_TOOLS_PATH ?=
# Programmer configuration
#Programmer configuration
UPLOAD_RATE ?= 57600
AVRDUDE_PROGRAMMER ?= arduino
# On most linuxes this will be /dev/ttyACM0 or /dev/ttyACM1
# on most linuxes this will be /dev/ttyACM0 or /dev/ttyACM1
UPLOAD_PORT ?= /dev/ttyUSB0
# Directory used to build files in, contains all the build files, from object
# files to the final hex file on linux it is best to put an absolute path
# like /home/username/tmp .
#Directory used to build files in, contains all the build files, from object files to the final hex file
#on linux it is best to put an absolute path like /home/username/tmp .
BUILD_DIR ?= applet
# This defines whether Liquid_TWI2 support will be built
LIQUID_TWI2 ?= 0
# This defines if Wire is needed
# this defines if Wire is needed
WIRE ?= 0
# This defines if Tone is needed (i.e., SPEAKER is defined in Configuration.h)
# Disabling this (and SPEAKER) saves approximately 350 bytes of memory.
TONE ?= 1
# this defines if U8GLIB is needed (may require RELOC_WORKAROUND)
U8GLIB ?= 1
# This defines if U8GLIB is needed (may require RELOC_WORKAROUND)
U8GLIB ?= 0
# this defines whether to include the Trinamic TMCStepper library
TMC ?= 1
# This defines whether to include the Trinamic TMCStepper library
TMC ?= 0
# This defines whether to include the AdaFruit NeoPixel library
# this defines whether to include the AdaFruit NeoPixel library
NEOPIXEL ?= 0
############
# Try to automatically determine whether RELOC_WORKAROUND is needed based
# on GCC versions:
# https://www.avrfreaks.net/comment/1789106#comment-1789106
# http://www.avrfreaks.net/comment/1789106#comment-1789106
CC_MAJ:=$(shell $(CC) -dM -E - < /dev/null | grep __GNUC__ | cut -f3 -d\ )
CC_MIN:=$(shell $(CC) -dM -E - < /dev/null | grep __GNUC_MINOR__ | cut -f3 -d\ )
CC_PATCHLEVEL:=$(shell $(CC) -dM -E - < /dev/null | grep __GNUC_PATCHLEVEL__ | cut -f3 -d\ )
CC_VER:=$(shell echo $$(( $(CC_MAJ) * 10000 + $(CC_MIN) * 100 + $(CC_PATCHLEVEL) )))
ifeq ($(shell test $(CC_VER) -lt 40901 && echo 1),1)
$(warning This GCC version $(CC_VER) is likely broken. Enabling relocation workaround.)
@echo This version of GCC is likely broken. Enabling relocation workaround.
RELOC_WORKAROUND = 1
endif
@@ -197,130 +170,98 @@ else ifeq ($(HARDWARE_MOTHERBOARD),1100)
else ifeq ($(HARDWARE_MOTHERBOARD),1101)
# Velleman K8400 Controller (derived from 3Drag Controller)
else ifeq ($(HARDWARE_MOTHERBOARD),1102)
# Velleman K8600 Controller (Vertex Nano)
else ifeq ($(HARDWARE_MOTHERBOARD),1103)
# Velleman K8800 Controller (Vertex Delta)
else ifeq ($(HARDWARE_MOTHERBOARD),1104)
# 2PrintBeta BAM&DICE with STK drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1105)
else ifeq ($(HARDWARE_MOTHERBOARD),1103)
# 2PrintBeta BAM&DICE Due with STK drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1106)
else ifeq ($(HARDWARE_MOTHERBOARD),1104)
# MKS BASE v1.0
else ifeq ($(HARDWARE_MOTHERBOARD),1105)
# MKS v1.4 with A4982 stepper drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1106)
# MKS v1.5 with Allegro A4982 stepper drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1107)
# MKS BASE v1.4 with Allegro A4982 stepper drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1108)
# MKS BASE v1.5 with Allegro A4982 stepper drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1109)
# MKS BASE v1.6 with Allegro A4982 stepper drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1110)
# MKS BASE 1.0 with Heroic HR4982 stepper drivers
else ifeq ($(HARDWARE_MOTHERBOARD),1111)
else ifeq ($(HARDWARE_MOTHERBOARD),1108)
# MKS GEN v1.3 or 1.4
else ifeq ($(HARDWARE_MOTHERBOARD),1112)
else ifeq ($(HARDWARE_MOTHERBOARD),1109)
# MKS GEN L
else ifeq ($(HARDWARE_MOTHERBOARD),1113)
else ifeq ($(HARDWARE_MOTHERBOARD),1110)
# zrib V2.0 control board (Chinese knock off RAMPS replica)
else ifeq ($(HARDWARE_MOTHERBOARD),1111)
# BigTreeTech or BIQU KFB2.0
else ifeq ($(HARDWARE_MOTHERBOARD),1114)
# zrib V2.0 (Chinese RAMPS replica)
else ifeq ($(HARDWARE_MOTHERBOARD),1115)
# zrib V5.2 (Chinese RAMPS replica)
else ifeq ($(HARDWARE_MOTHERBOARD),1116)
else ifeq ($(HARDWARE_MOTHERBOARD),1112)
# Felix 2.0+ Electronics Board (RAMPS like)
else ifeq ($(HARDWARE_MOTHERBOARD),1117)
else ifeq ($(HARDWARE_MOTHERBOARD),1113)
# Invent-A-Part RigidBoard
else ifeq ($(HARDWARE_MOTHERBOARD),1118)
else ifeq ($(HARDWARE_MOTHERBOARD),1114)
# Invent-A-Part RigidBoard V2
else ifeq ($(HARDWARE_MOTHERBOARD),1119)
else ifeq ($(HARDWARE_MOTHERBOARD),1115)
# Sainsmart 2-in-1 board
else ifeq ($(HARDWARE_MOTHERBOARD),1120)
else ifeq ($(HARDWARE_MOTHERBOARD),1116)
# Ultimaker
else ifeq ($(HARDWARE_MOTHERBOARD),1121)
else ifeq ($(HARDWARE_MOTHERBOARD),1117)
# Ultimaker (Older electronics. Pre 1.5.4. This is rare)
else ifeq ($(HARDWARE_MOTHERBOARD),1122)
MCU ?= atmega1280
PROG_MCU ?= m1280
else ifeq ($(HARDWARE_MOTHERBOARD),1118)
MCU ?= atmega1280
# Azteeg X3
else ifeq ($(HARDWARE_MOTHERBOARD),1123)
else ifeq ($(HARDWARE_MOTHERBOARD),1119)
# Azteeg X3 Pro
else ifeq ($(HARDWARE_MOTHERBOARD),1124)
else ifeq ($(HARDWARE_MOTHERBOARD),1120)
# Ultimainboard 2.x (Uses TEMP_SENSOR 20)
else ifeq ($(HARDWARE_MOTHERBOARD),1125)
else ifeq ($(HARDWARE_MOTHERBOARD),1121)
# Rumba
else ifeq ($(HARDWARE_MOTHERBOARD),1126)
# Raise3D N series Rumba derivative
else ifeq ($(HARDWARE_MOTHERBOARD),1127)
# Rapide Lite 200 (v1, low-cost RUMBA clone with drv)
else ifeq ($(HARDWARE_MOTHERBOARD),1128)
else ifeq ($(HARDWARE_MOTHERBOARD),1122)
# Raise3D Rumba
else ifeq ($(HARDWARE_MOTHERBOARD),1123)
# Rapide Lite RL200 Rumba
else ifeq ($(HARDWARE_MOTHERBOARD),1124)
# Formbot T-Rex 2 Plus
else ifeq ($(HARDWARE_MOTHERBOARD),1129)
else ifeq ($(HARDWARE_MOTHERBOARD),1125)
# Formbot T-Rex 3
else ifeq ($(HARDWARE_MOTHERBOARD),1130)
else ifeq ($(HARDWARE_MOTHERBOARD),1126)
# Formbot Raptor
else ifeq ($(HARDWARE_MOTHERBOARD),1131)
else ifeq ($(HARDWARE_MOTHERBOARD),1127)
# Formbot Raptor 2
else ifeq ($(HARDWARE_MOTHERBOARD),1132)
else ifeq ($(HARDWARE_MOTHERBOARD),1128)
# bq ZUM Mega 3D
else ifeq ($(HARDWARE_MOTHERBOARD),1129)
# MakeBoard Mini v2.1.2 is a control board sold by MicroMake
else ifeq ($(HARDWARE_MOTHERBOARD),1130)
# TriGorilla Anycubic version 1.3 based on RAMPS EFB
else ifeq ($(HARDWARE_MOTHERBOARD),1131)
# TriGorilla Anycubic version 1.4 based on RAMPS EFB
else ifeq ($(HARDWARE_MOTHERBOARD),1132)
# TriGorilla Anycubic version 1.4 Rev 1.1
else ifeq ($(HARDWARE_MOTHERBOARD),1133)
# MakeBoard Mini v2.1.2 by MicroMake
else ifeq ($(HARDWARE_MOTHERBOARD),1134)
# TriGorilla Anycubic version 1.3-based on RAMPS EFB
else ifeq ($(HARDWARE_MOTHERBOARD),1135)
# ... Ver 1.4
else ifeq ($(HARDWARE_MOTHERBOARD),1136)
# ... Rev 1.1 (new servo pin order)
else ifeq ($(HARDWARE_MOTHERBOARD),1137)
# Creality: Ender-4, CR-8
else ifeq ($(HARDWARE_MOTHERBOARD),1138)
else ifeq ($(HARDWARE_MOTHERBOARD),1134)
# Creality: CR10S, CR20, CR-X
else ifeq ($(HARDWARE_MOTHERBOARD),1139)
else ifeq ($(HARDWARE_MOTHERBOARD),1135)
# Dagoma F5
else ifeq ($(HARDWARE_MOTHERBOARD),1136)
# FYSETC F6
else ifeq ($(HARDWARE_MOTHERBOARD),1137)
# Duplicator i3 Plus
else ifeq ($(HARDWARE_MOTHERBOARD),1138)
# VORON
else ifeq ($(HARDWARE_MOTHERBOARD),1139)
# TRONXY V3 1.0
else ifeq ($(HARDWARE_MOTHERBOARD),1140)
# FYSETC F6 1.3
else ifeq ($(HARDWARE_MOTHERBOARD),1141)
# FYSETC F6 1.4
else ifeq ($(HARDWARE_MOTHERBOARD),1142)
# Wanhao Duplicator i3 Plus
else ifeq ($(HARDWARE_MOTHERBOARD),1143)
# VORON Design
else ifeq ($(HARDWARE_MOTHERBOARD),1144)
# Tronxy TRONXY-V3-1.0
else ifeq ($(HARDWARE_MOTHERBOARD),1145)
# Z-Bolt X Series
else ifeq ($(HARDWARE_MOTHERBOARD),1146)
else ifeq ($(HARDWARE_MOTHERBOARD),1141)
# TT OSCAR
else ifeq ($(HARDWARE_MOTHERBOARD),1147)
else ifeq ($(HARDWARE_MOTHERBOARD),1142)
# Overlord/Overlord Pro
else ifeq ($(HARDWARE_MOTHERBOARD),1148)
else ifeq ($(HARDWARE_MOTHERBOARD),1143)
# ADIMLab Gantry v1
else ifeq ($(HARDWARE_MOTHERBOARD),1149)
else ifeq ($(HARDWARE_MOTHERBOARD),1144)
# ADIMLab Gantry v2
else ifeq ($(HARDWARE_MOTHERBOARD),1150)
else ifeq ($(HARDWARE_MOTHERBOARD),1145)
# BIQU Tango V1
else ifeq ($(HARDWARE_MOTHERBOARD),1151)
else ifeq ($(HARDWARE_MOTHERBOARD),1146)
# MKS GEN L V2
else ifeq ($(HARDWARE_MOTHERBOARD),1152)
# MKS GEN L V2.1
else ifeq ($(HARDWARE_MOTHERBOARD),1153)
# Copymaster 3D
else ifeq ($(HARDWARE_MOTHERBOARD),1154)
# Ortur 4
else ifeq ($(HARDWARE_MOTHERBOARD),1155)
# Tenlog D3 Hero IDEX printer
else ifeq ($(HARDWARE_MOTHERBOARD),1156)
# Ramps S 1.2 by Sakul.cz (Power outputs: Hotend0, Hotend1, Fan, Bed)
else ifeq ($(HARDWARE_MOTHERBOARD),1157)
# Ramps S 1.2 by Sakul.cz (Power outputs: Hotend0, Hotend1, Hotend2, Bed)
else ifeq ($(HARDWARE_MOTHERBOARD),1158)
# Ramps S 1.2 by Sakul.cz (Power outputs: Hotend, Fan0, Fan1, Bed)
else ifeq ($(HARDWARE_MOTHERBOARD),1159)
# Longer LK1 PRO / Alfawise U20 Pro (PRO version)
else ifeq ($(HARDWARE_MOTHERBOARD),1160)
# Longer LKx PRO / Alfawise Uxx Pro (PRO version)
else ifeq ($(HARDWARE_MOTHERBOARD),1161)
# Zonestar zrib V5.3 (Chinese RAMPS replica)
else ifeq ($(HARDWARE_MOTHERBOARD),1162)
# Pxmalion Core I3
else ifeq ($(HARDWARE_MOTHERBOARD),1163)
else ifeq ($(HARDWARE_MOTHERBOARD),1147)
#
# RAMBo and derivatives
@@ -338,8 +279,6 @@ else ifeq ($(HARDWARE_MOTHERBOARD),1203)
else ifeq ($(HARDWARE_MOTHERBOARD),1204)
# abee Scoovo X9H
else ifeq ($(HARDWARE_MOTHERBOARD),1205)
# Rambo ThinkerV2
else ifeq ($(HARDWARE_MOTHERBOARD),1206)
#
# Other ATmega1280, ATmega2560
@@ -373,38 +312,20 @@ else ifeq ($(HARDWARE_MOTHERBOARD),1311)
else ifeq ($(HARDWARE_MOTHERBOARD),1312)
# Mega controller
else ifeq ($(HARDWARE_MOTHERBOARD),1313)
# Geeetech GT2560 Rev A
else ifeq ($(HARDWARE_MOTHERBOARD),1314)
# Geeetech GT2560 Rev A+ (with auto level probe)
else ifeq ($(HARDWARE_MOTHERBOARD),1315)
# Geeetech GT2560 Rev B
else ifeq ($(HARDWARE_MOTHERBOARD),1316)
# Geeetech GT2560 Rev B for A10(M/T/D)
else ifeq ($(HARDWARE_MOTHERBOARD),1317)
# Geeetech GT2560 Rev B for A10(M/T/D)
else ifeq ($(HARDWARE_MOTHERBOARD),1318)
# Geeetech GT2560 Rev B for Mecreator2
else ifeq ($(HARDWARE_MOTHERBOARD),1319)
# Geeetech GT2560 Rev B for A20(M/T/D)
else ifeq ($(HARDWARE_MOTHERBOARD),1320)
else ifeq ($(HARDWARE_MOTHERBOARD),1314)
# Geeetech GT2560 Rev. A
else ifeq ($(HARDWARE_MOTHERBOARD),1315)
# Geeetech GT2560 Rev. A+ (with auto level probe)
else ifeq ($(HARDWARE_MOTHERBOARD),1316)
# Geeetech GT2560 Rev B for A10(M/D)
else ifeq ($(HARDWARE_MOTHERBOARD),1317)
# Geeetech GT2560 Rev B for A20(M/D)
else ifeq ($(HARDWARE_MOTHERBOARD),1318)
# Einstart retrofit
else ifeq ($(HARDWARE_MOTHERBOARD),1321)
else ifeq ($(HARDWARE_MOTHERBOARD),1319)
# Wanhao 0ne+ i3 Mini
else ifeq ($(HARDWARE_MOTHERBOARD),1322)
# Leapfrog Xeed 2015
else ifeq ($(HARDWARE_MOTHERBOARD),1323)
# PICA Shield (original version)
else ifeq ($(HARDWARE_MOTHERBOARD),1324)
# PICA Shield (rev C or later)
else ifeq ($(HARDWARE_MOTHERBOARD),1325)
# Intamsys 4.0 (Funmat HT)
else ifeq ($(HARDWARE_MOTHERBOARD),1326)
# Malyan M180 Mainboard Version 2 (no display function, direct G-code only)
else ifeq ($(HARDWARE_MOTHERBOARD),1327)
# Geeetech GT2560 Rev B for A20(M/T/D)
else ifeq ($(HARDWARE_MOTHERBOARD),1328)
# Mega controller & Protoneer CNC Shield V3.00
else ifeq ($(HARDWARE_MOTHERBOARD),1329)
else ifeq ($(HARDWARE_MOTHERBOARD),1320)
#
# ATmega1281, ATmega2561
@@ -413,11 +334,9 @@ else ifeq ($(HARDWARE_MOTHERBOARD),1329)
# Minitronics v1.0/1.1
else ifeq ($(HARDWARE_MOTHERBOARD),1400)
MCU ?= atmega1281
PROG_MCU ?= m1281
# Silvergate v1.0
else ifeq ($(HARDWARE_MOTHERBOARD),1401)
MCU ?= atmega1281
PROG_MCU ?= m1281
#
# Sanguinololu and Derivatives - ATmega644P, ATmega1284P
@@ -427,62 +346,42 @@ else ifeq ($(HARDWARE_MOTHERBOARD),1401)
else ifeq ($(HARDWARE_MOTHERBOARD),1500)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega644p
PROG_MCU ?= m644p
# Sanguinololu 1.2 and above
else ifeq ($(HARDWARE_MOTHERBOARD),1501)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega644p
PROG_MCU ?= m644p
# Melzi
else ifeq ($(HARDWARE_MOTHERBOARD),1502)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega644p
PROG_MCU ?= m644p
# Melzi V2.0
# Melzi with ATmega1284 (MaKr3d version)
else ifeq ($(HARDWARE_MOTHERBOARD),1503)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
PROG_MCU ?= m1284p
# Melzi with ATmega1284 (MaKr3d version)
# Melzi Creality3D board (for CR-10 etc)
else ifeq ($(HARDWARE_MOTHERBOARD),1504)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
PROG_MCU ?= m1284p
# Melzi Creality3D board (for CR-10 etc)
# Melzi Malyan M150 board
else ifeq ($(HARDWARE_MOTHERBOARD),1505)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
PROG_MCU ?= m1284p
# Melzi Malyan M150 board
# Tronxy X5S
else ifeq ($(HARDWARE_MOTHERBOARD),1506)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
PROG_MCU ?= m1284p
# Tronxy X5S
# STB V1.1
else ifeq ($(HARDWARE_MOTHERBOARD),1507)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
PROG_MCU ?= m1284p
# STB V1.1
# Azteeg X1
else ifeq ($(HARDWARE_MOTHERBOARD),1508)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
PROG_MCU ?= m1284p
# Azteeg X1
# Anet 1.0 (Melzi clone)
else ifeq ($(HARDWARE_MOTHERBOARD),1509)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
PROG_MCU ?= m1284p
# Anet 1.0 (Melzi clone)
else ifeq ($(HARDWARE_MOTHERBOARD),1510)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
PROG_MCU ?= m1284p
# ZoneStar ZMIB V2
else ifeq ($(HARDWARE_MOTHERBOARD),1511)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega1284p
PROG_MCU ?= m1284p
#
# Other ATmega644P, ATmega644, ATmega1284P
@@ -492,61 +391,50 @@ else ifeq ($(HARDWARE_MOTHERBOARD),1511)
else ifeq ($(HARDWARE_MOTHERBOARD),1600)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega644p
PROG_MCU ?= m644p
# Gen3+
else ifeq ($(HARDWARE_MOTHERBOARD),1601)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega644p
PROG_MCU ?= m644p
# Gen6
else ifeq ($(HARDWARE_MOTHERBOARD),1602)
HARDWARE_VARIANT ?= Gen6
MCU ?= atmega644p
PROG_MCU ?= m644p
# Gen6 deluxe
else ifeq ($(HARDWARE_MOTHERBOARD),1603)
HARDWARE_VARIANT ?= Gen6
MCU ?= atmega644p
PROG_MCU ?= m644p
# Gen7 custom (Alfons3 Version)
else ifeq ($(HARDWARE_MOTHERBOARD),1604)
HARDWARE_VARIANT ?= Gen7
MCU ?= atmega644
PROG_MCU ?= m644
F_CPU ?= 20000000
# Gen7 v1.1, v1.2
else ifeq ($(HARDWARE_MOTHERBOARD),1605)
HARDWARE_VARIANT ?= Gen7
MCU ?= atmega644p
PROG_MCU ?= m644p
F_CPU ?= 20000000
# Gen7 v1.3
else ifeq ($(HARDWARE_MOTHERBOARD),1606)
HARDWARE_VARIANT ?= Gen7
MCU ?= atmega644p
PROG_MCU ?= m644p
F_CPU ?= 20000000
# Gen7 v1.4
else ifeq ($(HARDWARE_MOTHERBOARD),1607)
HARDWARE_VARIANT ?= Gen7
MCU ?= atmega1284p
PROG_MCU ?= m1284p
F_CPU ?= 20000000
# Alpha OMCA board
else ifeq ($(HARDWARE_MOTHERBOARD),1608)
HARDWARE_VARIANT ?= SanguinoA
MCU ?= atmega644
PROG_MCU ?= m644
# Final OMCA board
else ifeq ($(HARDWARE_MOTHERBOARD),1609)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega644p
PROG_MCU ?= m644p
# Sethi 3D_1
else ifeq ($(HARDWARE_MOTHERBOARD),1610)
HARDWARE_VARIANT ?= Sanguino
MCU ?= atmega644p
PROG_MCU ?= m644p
#
# Teensyduino - AT90USB1286, AT90USB1286P
@@ -556,60 +444,51 @@ else ifeq ($(HARDWARE_MOTHERBOARD),1610)
else ifeq ($(HARDWARE_MOTHERBOARD),1700)
HARDWARE_VARIANT ?= Teensy
MCU ?= at90usb1286
PROG_MCU ?= usb1286
# Printrboard (AT90USB1286)
else ifeq ($(HARDWARE_MOTHERBOARD),1701)
HARDWARE_VARIANT ?= Teensy
MCU ?= at90usb1286
PROG_MCU ?= usb1286
# Printrboard Revision F (AT90USB1286)
else ifeq ($(HARDWARE_MOTHERBOARD),1702)
HARDWARE_VARIANT ?= Teensy
MCU ?= at90usb1286
PROG_MCU ?= usb1286
# Brainwave (AT90USB646)
else ifeq ($(HARDWARE_MOTHERBOARD),1703)
HARDWARE_VARIANT ?= Teensy
MCU ?= at90usb646
PROG_MCU ?= usb646
# Brainwave Pro (AT90USB1286)
else ifeq ($(HARDWARE_MOTHERBOARD),1704)
HARDWARE_VARIANT ?= Teensy
MCU ?= at90usb1286
PROG_MCU ?= usb1286
# SAV Mk-I (AT90USB1286)
else ifeq ($(HARDWARE_MOTHERBOARD),1705)
HARDWARE_VARIANT ?= Teensy
MCU ?= at90usb1286
PROG_MCU ?= usb1286
# Teensy++2.0 (AT90USB1286)
else ifeq ($(HARDWARE_MOTHERBOARD),1706)
HARDWARE_VARIANT ?= Teensy
MCU ?= at90usb1286
PROG_MCU ?= usb1286
# 5DPrint D8 Driver Board
else ifeq ($(HARDWARE_MOTHERBOARD),1707)
HARDWARE_VARIANT ?= Teensy
MCU ?= at90usb1286
PROG_MCU ?= usb1286
# UltiMachine Archim1 (with DRV8825 drivers)
else ifeq ($(HARDWARE_MOTHERBOARD),3023)
HARDWARE_VARIANT ?= archim
MCPU = cortex-m3
F_CPU = 84000000
F_CPU = 84000000L
IS_MCU = 0
# UltiMachine Archim2 (with TMC2130 drivers)
else ifeq ($(HARDWARE_MOTHERBOARD),3024)
HARDWARE_VARIANT ?= archim
MCPU = cortex-m3
F_CPU = 84000000
F_CPU = 84000000L
IS_MCU = 0
endif
# Be sure to regenerate speed_lookuptable.h with create_speed_lookuptable.py
# if you are setting this to something other than 16MHz
# Do not put the UL suffix, it's done later on.
# Set to 16Mhz if not yet set.
F_CPU ?= 16000000
@@ -619,8 +498,7 @@ IS_MCU ?= 1
ifeq ($(IS_MCU),1)
# Set to arduino, ATmega2560 if not yet set.
HARDWARE_VARIANT ?= arduino
MCU ?= atmega2560
PROG_MCU ?= m2560
MCU ?= atmega2560
TOOL_PREFIX = avr
MCU_FLAGS = -mmcu=$(MCU)
@@ -651,36 +529,27 @@ VPATH += $(BUILD_DIR)
VPATH += $(HARDWARE_SRC)
ifeq ($(HARDWARE_VARIANT), $(filter $(HARDWARE_VARIANT),arduino Teensy Sanguino))
# Old libraries (avr-core 1.6.21 < / Arduino < 1.6.8)
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/SPI
# New libraries (avr-core >= 1.6.21 / Arduino >= 1.6.8)
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/SPI/src
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/marlin/avr/libraries/LiquidCrystal/src
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/marlin/avr/libraries/SPI
endif
ifeq ($(IS_MCU),1)
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/cores/arduino
# Old libraries (avr-core 1.6.21 < / Arduino < 1.6.8)
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/SPI
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/SoftwareSerial
# New libraries (avr-core >= 1.6.21 / Arduino >= 1.6.8)
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/SPI/src
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/SoftwareSerial/src
endif
VPATH += $(ARDUINO_INSTALL_DIR)/libraries/LiquidCrystal/src
ifeq ($(LIQUID_TWI2), 1)
WIRE = 1
VPATH += $(ARDUINO_INSTALL_DIR)/libraries/LiquidTWI2
VPATH += $(ARDUINO_INSTALL_DIR)/libraries/Wire
VPATH += $(ARDUINO_INSTALL_DIR)/libraries/Wire/utility
VPATH += $(ARDUINO_INSTALL_DIR)/libraries/LiquidTWI2
endif
ifeq ($(WIRE), 1)
# Old libraries (avr-core 1.6.21 / Arduino < 1.6.8)
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/Wire
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/Wire/utility
# New libraries (avr-core >= 1.6.21 / Arduino >= 1.6.8)
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/Wire/src
VPATH += $(ARDUINO_INSTALL_DIR)/hardware/arduino/avr/libraries/Wire/src/utility
VPATH += $(ARDUINO_INSTALL_DIR)/libraries/Wire
VPATH += $(ARDUINO_INSTALL_DIR)/libraries/Wire/utility
endif
ifeq ($(NEOPIXEL), 1)
VPATH += $(ARDUINO_INSTALL_DIR)/libraries/Adafruit_NeoPixel
@@ -752,23 +621,13 @@ ifeq ($(WIRE), 1)
LIB_CXXSRC += Wire.cpp
endif
ifeq ($(TONE), 1)
LIB_CXXSRC += Tone.cpp
endif
ifeq ($(U8GLIB), 1)
LIB_CXXSRC += U8glib.cpp
LIB_SRC += u8g_ll_api.c u8g_bitmap.c u8g_clip.c u8g_com_null.c u8g_delay.c \
u8g_page.c u8g_pb.c u8g_pb16h1.c u8g_rect.c u8g_state.c u8g_font.c \
u8g_font_6x13.c u8g_font_04b_03.c u8g_font_5x8.c
LIB_SRC += u8g_ll_api.c u8g_bitmap.c u8g_clip.c u8g_com_null.c u8g_delay.c u8g_page.c u8g_pb.c u8g_pb16h1.c u8g_rect.c u8g_state.c u8g_font.c u8g_font_6x13.c u8g_font_04b_03.c u8g_font_5x8.c
endif
ifeq ($(TMC), 1)
LIB_CXXSRC += TMCStepper.cpp COOLCONF.cpp DRV_STATUS.cpp IHOLD_IRUN.cpp \
CHOPCONF.cpp GCONF.cpp PWMCONF.cpp DRV_CONF.cpp DRVCONF.cpp DRVCTRL.cpp \
DRVSTATUS.cpp ENCMODE.cpp RAMP_STAT.cpp SGCSCONF.cpp SHORT_CONF.cpp \
SMARTEN.cpp SW_MODE.cpp SW_SPI.cpp TMC2130Stepper.cpp TMC2208Stepper.cpp \
TMC2209Stepper.cpp TMC2660Stepper.cpp TMC5130Stepper.cpp TMC5160Stepper.cpp
LIB_CXXSRC += TMCStepper.cpp COOLCONF.cpp DRV_STATUS.cpp IHOLD_IRUN.cpp CHOPCONF.cpp GCONF.cpp PWMCONF.cpp DRV_CONF.cpp DRVCONF.cpp DRVCTRL.cpp DRVSTATUS.cpp ENCMODE.cpp RAMP_STAT.cpp SGCSCONF.cpp SHORT_CONF.cpp SMARTEN.cpp SW_MODE.cpp SW_SPI.cpp TMC2130Stepper.cpp TMC2208Stepper.cpp TMC2209Stepper.cpp TMC2660Stepper.cpp TMC5130Stepper.cpp TMC5160Stepper.cpp
endif
ifeq ($(RELOC_WORKAROUND), 1)
@@ -810,23 +669,17 @@ REMOVE = rm -f
MV = mv -f
# Place -D or -U options here
CDEFS = -DF_CPU=$(F_CPU)UL ${addprefix -D , $(DEFINES)} -DARDUINO=$(ARDUINO_VERSION)
CDEFS = -DF_CPU=$(F_CPU) ${addprefix -D , $(DEFINES)} -DARDUINO=$(ARDUINO_VERSION)
CXXDEFS = $(CDEFS)
ifeq ($(HARDWARE_VARIANT), Teensy)
CDEFS += -DUSB_SERIAL
CDEFS += -DUSB_SERIAL
LIB_SRC += usb.c pins_teensy.c
LIB_CXXSRC += usb_api.cpp
else ifeq ($(HARDWARE_VARIANT), archim)
CDEFS += -DARDUINO_SAM_ARCHIM -DARDUINO_ARCH_SAM -D__SAM3X8E__
CDEFS += -DUSB_VID=0x27B1 -DUSB_PID=0x0001 -DUSBCON
CDEFS += '-DUSB_MANUFACTURER="UltiMachine"' '-DUSB_PRODUCT_STRING="Archim"'
LIB_CXXSRC += variant.cpp IPAddress.cpp Reset.cpp RingBuffer.cpp Stream.cpp \
UARTClass.cpp USARTClass.cpp abi.cpp new.cpp watchdog.cpp CDC.cpp \
PluggableUSB.cpp USBCore.cpp
CDEFS += -DARDUINO_SAM_ARCHIM -DARDUINO_ARCH_SAM -D__SAM3X8E__ -DUSB_VID=0x27b1 -DUSB_PID=0x0001 -DUSBCON '-DUSB_MANUFACTURER="UltiMachine"' '-DUSB_PRODUCT="Archim"'
LIB_CXXSRC += variant.cpp IPAddress.cpp Reset.cpp RingBuffer.cpp Stream.cpp UARTClass.cpp USARTClass.cpp abi.cpp new.cpp watchdog.cpp CDC.cpp PluggableUSB.cpp USBCore.cpp
LIB_SRC += cortex_handlers.c iar_calls_sam3.c syscalls_sam3.c dtostrf.c itoa.c
ifeq ($(U8GLIB), 1)
@@ -852,20 +705,16 @@ CTUNING = -fsigned-char -funsigned-bitfields -fno-exceptions \
ifneq ($(HARDWARE_MOTHERBOARD),)
CTUNING += -DMOTHERBOARD=${HARDWARE_MOTHERBOARD}
endif
#CEXTRA = -Wa,-adhlns=$(<:.c=.lst)
CXXEXTRA = -fno-use-cxa-atexit -fno-threadsafe-statics -fno-rtti
CFLAGS := $(CDEBUG) $(CDEFS) $(CINCS) -O$(OPT) $(CEXTRA) $(CTUNING) $(CSTANDARD)
CXXFLAGS := $(CDEFS) $(CINCS) -O$(OPT) $(CXXEXTRA) $(CTUNING) $(CXXSTANDARD)
ASFLAGS := $(CDEFS)
#ASFLAGS = -Wa,-adhlns=$(<:.S=.lst),-gstabs
ifeq ($(HARDWARE_VARIANT), archim)
LD_PREFIX = -Wl,--gc-sections,-Map,Marlin.ino.map,--cref,--check-sections,--entry=Reset_Handler,--unresolved-symbols=report-all,--warn-common,--warn-section-align
LD_SUFFIX = $(LDLIBS)
LDFLAGS = -lm -T$(LDSCRIPT) -u _sbrk -u link -u _close -u _fstat -u _isatty
LDFLAGS += -u _lseek -u _read -u _write -u _exit -u kill -u _getpid
LDFLAGS = -lm -T$(LDSCRIPT) -u _sbrk -u link -u _close -u _fstat -u _isatty -u _lseek -u _read -u _write -u _exit -u kill -u _getpid
else
LD_PREFIX = -Wl,--gc-sections,--relax
LDFLAGS = -lm
@@ -881,7 +730,7 @@ else
AVRDUDE_CONF = $(ARDUINO_INSTALL_DIR)/hardware/tools/avr/etc/avrdude.conf
endif
AVRDUDE_FLAGS = -D -C$(AVRDUDE_CONF) \
-p$(PROG_MCU) -P$(AVRDUDE_PORT) -c$(AVRDUDE_PROGRAMMER) \
-p$(MCU) -P$(AVRDUDE_PORT) -c$(AVRDUDE_PROGRAMMER) \
-b$(UPLOAD_RATE)
# Since Marlin 2.0, the source files may be distributed into several
@@ -982,7 +831,7 @@ extcoff: $(TARGET).elf
.elf.eep:
-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--change-section-lma .eeprom=0 -O $(FORMAT) $< $@
--change-section-lma .eeprom=0 -O $(FORMAT) $< $@
# Create extended listing file from ELF output file.
.elf.lss:
@@ -996,7 +845,7 @@ extcoff: $(TARGET).elf
$(BUILD_DIR)/$(TARGET).elf: $(OBJ) Configuration.h
$(Pecho) " CXX $@"
$P $(CXX) $(LD_PREFIX) $(ALL_CXXFLAGS) -o $@ -L. $(OBJ) $(LDFLAGS) $(LD_SUFFIX)
$P $(CC) $(LD_PREFIX) $(ALL_CXXFLAGS) -o $@ -L. $(OBJ) $(LDFLAGS) $(LD_SUFFIX)
# Object files that were found in "src" will be stored in $(BUILD_DIR)
# in directories that mirror the structure of "src"
@@ -1031,5 +880,5 @@ clean:
.PHONY: all build elf hex eep lss sym program coff extcoff clean depend sizebefore sizeafter
# Automatically include the dependency files created by gcc
# Automaticaly include the dependency files created by gcc
-include ${patsubst %.o, %.d, ${OBJ}}

View File

@@ -1,8 +1,9 @@
/*==============================================================================
/*
================================================================================
Marlin Firmware
(c) 2011-2020 MarlinFirmware
(c) 2011-2019 MarlinFirmware
Portions of Marlin are (c) by their respective authors.
All code complies with GPLv2 and/or GPLv3
@@ -11,33 +12,30 @@
Greetings! Thank you for choosing Marlin 2 as your 3D printer firmware.
To configure Marlin you must edit Configuration.h and Configuration_adv.h
located in the root 'Marlin' folder. Check our Configurations repository to
see if there's a more suitable starting-point for your specific hardware.
located in the root 'Marlin' folder. Check the config/examples folder to see if
there's a more suitable starting-point for your specific hardware.
Before diving in, we recommend the following essential links:
Marlin Firmware Official Website
- https://marlinfw.org/
- http://marlinfw.org/
The official Marlin Firmware website contains the most up-to-date
documentation. Contributions are always welcome!
Configuration
- https://github.com/MarlinFirmware/Configurations
Example configurations for several printer models.
- https://www.youtube.com/watch?v=3gwWVFtdg-4
A good 20-minute overview of Marlin configuration by Tom Sanladerer.
(Applies to Marlin 1.0.x, so Jerk and Acceleration should be halved.)
Also... https://www.google.com/search?tbs=vid%3A1&q=configure+marlin
- https://marlinfw.org/docs/configuration/configuration.html
- http://marlinfw.org/docs/configuration/configuration.html
Marlin's configuration options are explained in more detail here.
Getting Help
- https://reprap.org/forum/list.php?415
- http://forums.reprap.org/list.php?415
The Marlin Discussion Forum is a great place to get help from other Marlin
users who may have experienced similar issues to your own.
@@ -47,11 +45,9 @@ Getting Help
Contributing
- https://marlinfw.org/docs/development/contributing.html
- http://marlinfw.org/docs/development/contributing.html
If you'd like to contribute to Marlin, read this first!
- https://marlinfw.org/docs/development/coding_standards.html
- http://marlinfw.org/docs/development/coding_standards.html
Before submitting code get to know the Coding Standards.
------------------------------------------------------------------------------*/
*/

View File

@@ -1,6 +1,6 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
@@ -16,7 +16,7 @@
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
@@ -28,20 +28,20 @@
/**
* Marlin release version identifier
*/
//#define SHORT_BUILD_VERSION "bugfix-2.0.x"
//#define SHORT_BUILD_VERSION "2.0.1.1"
/**
* Verbose version identifier which should contain a reference to the location
* from where the binary was downloaded or the source code was compiled.
*/
//#define DETAILED_BUILD_VERSION SHORT_BUILD_VERSION
//#define DETAILED_BUILD_VERSION SHORT_BUILD_VERSION " (Github)"
/**
* The STRING_DISTRIBUTION_DATE represents when the binary file was built,
* here we define this default string as the date where the latest release
* version was tagged.
*/
//#define STRING_DISTRIBUTION_DATE "2023-04-16"
//#define STRING_DISTRIBUTION_DATE "2023-07-18"
/**
* Defines a generic printer name to be output to the LCD after booting Marlin.
@@ -54,7 +54,7 @@
* has a distinct Github fork— the Source Code URL should just be the main
* Marlin repository.
*/
//#define SOURCE_CODE_URL "github.com/MarlinFirmware/Marlin"
//#define SOURCE_CODE_URL "https://github.com/MarlinFirmware/Marlin"
/**
* Default generic printer UUID.
@@ -65,12 +65,12 @@
* The WEBSITE_URL is the location where users can get more information such as
* documentation about a specific Marlin release.
*/
//#define WEBSITE_URL "marlinfw.org"
//#define WEBSITE_URL "http://marlinfw.org"
/**
* Set the vendor info the serial USB interface, if changable
* Currently only supported by DUE platform
*/
//#define USB_DEVICE_VENDOR_ID 0x0000
//#define USB_DEVICE_PRODUCT_ID 0x0000
//#define USB_DEVICE_MANUFACTURE_NAME WEBSITE_URL
//#define USB_DEVICE_VENDOR_ID 0x0000
//#define USB_DEVICE_PRODUCT_ID 0x0000
//#define USB_DEVICE_MANUFACTURE_NAME WEBSITE_URL

View File

@@ -1,211 +0,0 @@
#
# Marlin Firmware
# config.ini - Options to apply before the build
#
[config:base]
ini_use_config = none
# Load all config: sections in this file
;ini_use_config = all
# Load config file relative to Marlin/
;ini_use_config = another.ini
# Download configurations from GitHub
;ini_use_config = example/Creality/Ender-5 Plus @ bugfix-2.1.x
# Download configurations from your server
;ini_use_config = https://me.myserver.com/path/to/configs
# Evaluate config:base and do a config dump
;ini_use_config = base
;config_export = 2
[config:minimal]
motherboard = BOARD_RAMPS_14_EFB
serial_port = 0
baudrate = 250000
use_watchdog = on
thermal_protection_hotends = on
thermal_protection_hysteresis = 4
thermal_protection_period = 40
bufsize = 4
block_buffer_size = 16
max_cmd_size = 96
extruders = 1
temp_sensor_0 = 1
temp_hysteresis = 3
heater_0_mintemp = 5
heater_0_maxtemp = 275
preheat_1_temp_hotend = 180
bang_max = 255
pidtemp = on
pid_k1 = 0.95
pid_max = BANG_MAX
pid_functional_range = 10
default_kp = 22.20
default_ki = 1.08
default_kd = 114.00
x_driver_type = A4988
y_driver_type = A4988
z_driver_type = A4988
e0_driver_type = A4988
x_bed_size = 200
x_min_pos = 0
x_max_pos = X_BED_SIZE
y_bed_size = 200
y_min_pos = 0
y_max_pos = Y_BED_SIZE
z_min_pos = 0
z_max_pos = 200
x_home_dir = -1
y_home_dir = -1
z_home_dir = -1
use_xmin_plug = on
use_ymin_plug = on
use_zmin_plug = on
x_min_endstop_inverting = false
y_min_endstop_inverting = false
z_min_endstop_inverting = false
default_axis_steps_per_unit = { 80, 80, 400, 500 }
axis_relative_modes = { false, false, false, false }
default_max_feedrate = { 300, 300, 5, 25 }
default_max_acceleration = { 3000, 3000, 100, 10000 }
homing_feedrate_mm_m = { (50*60), (50*60), (4*60) }
homing_bump_divisor = { 2, 2, 4 }
x_enable_on = 0
y_enable_on = 0
z_enable_on = 0
e_enable_on = 0
invert_x_dir = false
invert_y_dir = true
invert_z_dir = false
invert_e0_dir = false
invert_e_step_pin = false
invert_x_step_pin = false
invert_y_step_pin = false
invert_z_step_pin = false
disable_x = false
disable_y = false
disable_z = false
disable_e = false
proportional_font_ratio = 1.0
default_nominal_filament_dia = 1.75
junction_deviation_mm = 0.013
default_acceleration = 3000
default_travel_acceleration = 3000
default_retract_acceleration = 3000
default_minimumfeedrate = 0.0
default_mintravelfeedrate = 0.0
minimum_planner_speed = 0.05
min_steps_per_segment = 6
default_minsegmenttime = 20000
[config:basic]
bed_overshoot = 10
busy_while_heating = on
default_ejerk = 5.0
default_keepalive_interval = 2
default_leveling_fade_height = 0.0
disable_inactive_extruder = on
display_charset_hd44780 = JAPANESE
eeprom_boot_silent = on
eeprom_chitchat = on
endstoppullups = on
extrude_maxlength = 200
extrude_mintemp = 170
host_keepalive_feature = on
hotend_overshoot = 15
jd_handle_small_segments = on
lcd_info_screen_style = 0
lcd_language = en
max_bed_power = 255
mesh_inset = 0
min_software_endstops = on
max_software_endstops = on
min_software_endstop_x = on
min_software_endstop_y = on
min_software_endstop_z = on
max_software_endstop_x = on
max_software_endstop_y = on
max_software_endstop_z = on
preheat_1_fan_speed = 0
preheat_1_label = "PLA"
preheat_1_temp_bed = 70
prevent_cold_extrusion = on
prevent_lengthy_extrude = on
printjob_timer_autostart = on
probing_margin = 10
show_bootscreen = on
soft_pwm_scale = 0
string_config_h_author = "(none, default config)"
temp_bed_hysteresis = 3
temp_bed_residency_time = 10
temp_bed_window = 1
temp_residency_time = 10
temp_window = 1
validate_homing_endstops = on
xy_probe_feedrate = (133*60)
z_clearance_between_probes = 5
z_clearance_deploy_probe = 10
z_clearance_multi_probe = 5
[config:advanced]
arc_support = on
auto_report_temperatures = on
autotemp = on
autotemp_oldweight = 0.98
bed_check_interval = 5000
default_stepper_deactive_time = 120
default_volumetric_extruder_limit = 0.00
disable_inactive_e = true
disable_inactive_x = true
disable_inactive_y = true
disable_inactive_z = true
e0_auto_fan_pin = -1
encoder_100x_steps_per_sec = 80
encoder_10x_steps_per_sec = 30
encoder_rate_multiplier = on
extended_capabilities_report = on
extruder_auto_fan_speed = 255
extruder_auto_fan_temperature = 50
fanmux0_pin = -1
fanmux1_pin = -1
fanmux2_pin = -1
faster_gcode_parser = on
homing_bump_mm = { 5, 5, 2 }
max_arc_segment_mm = 1.0
min_arc_segment_mm = 0.1
min_circle_segments = 72
n_arc_correction = 25
serial_overrun_protection = on
slowdown = on
slowdown_divisor = 2
temp_sensor_bed = 0
thermal_protection_bed_hysteresis = 2
thermocouple_max_errors = 15
tx_buffer_size = 0
watch_bed_temp_increase = 2
watch_bed_temp_period = 60
watch_temp_increase = 2
watch_temp_period = 20

View File

@@ -33,4 +33,4 @@ PlatformIO will find your libraries automatically, configure preprocessor's
include paths and build them.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html
- http://docs.platformio.org/page/librarymanager/ldf.html

View File

@@ -1,172 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef __AVR__
#include "../../inc/MarlinConfig.h"
#include "HAL.h"
#include <avr/wdt.h>
#ifdef USBCON
DefaultSerial1 MSerial0(false, Serial);
#ifdef BLUETOOTH
BTSerial btSerial(false, bluetoothSerial);
#endif
#endif
// ------------------------
// Public Variables
// ------------------------
// Don't initialize/override variable (which would happen in .init4)
uint8_t MarlinHAL::reset_reason __attribute__((section(".noinit")));
// ------------------------
// Public functions
// ------------------------
__attribute__((naked)) // Don't output function pro- and epilogue
__attribute__((used)) // Output the function, even if "not used"
__attribute__((section(".init3"))) // Put in an early user definable section
void save_reset_reason() {
#if ENABLED(OPTIBOOT_RESET_REASON)
__asm__ __volatile__(
A("STS %0, r2")
: "=m"(hal.reset_reason)
);
#else
hal.reset_reason = MCUSR;
#endif
// Clear within 16ms since WDRF bit enables a 16ms watchdog timer -> Boot loop
hal.clear_reset_source();
wdt_disable();
}
void MarlinHAL::init() {
// Init Servo Pins
#define INIT_SERVO(N) OUT_WRITE(SERVO##N##_PIN, LOW)
#if HAS_SERVO_0
INIT_SERVO(0);
#endif
#if HAS_SERVO_1
INIT_SERVO(1);
#endif
#if HAS_SERVO_2
INIT_SERVO(2);
#endif
#if HAS_SERVO_3
INIT_SERVO(3);
#endif
init_pwm_timers(); // Init user timers to default frequency - 1000HZ
}
void MarlinHAL::reboot() {
#if ENABLED(USE_WATCHDOG)
while (1) { /* run out the watchdog */ }
#else
void (*resetFunc)() = 0; // Declare resetFunc() at address 0
resetFunc(); // Jump to address 0
#endif
}
// ------------------------
// Watchdog Timer
// ------------------------
#if ENABLED(USE_WATCHDOG)
#include <avr/wdt.h>
#include "../../MarlinCore.h"
// Initialize watchdog with 8s timeout, if possible. Otherwise, make it 4s.
void MarlinHAL::watchdog_init() {
#if ENABLED(WATCHDOG_DURATION_8S) && defined(WDTO_8S)
#define WDTO_NS WDTO_8S
#else
#define WDTO_NS WDTO_4S
#endif
#if ENABLED(WATCHDOG_RESET_MANUAL)
// Enable the watchdog timer, but only for the interrupt.
// Take care, as this requires the correct order of operation, with interrupts disabled.
// See the datasheet of any AVR chip for details.
wdt_reset();
cli();
_WD_CONTROL_REG = _BV(_WD_CHANGE_BIT) | _BV(WDE);
_WD_CONTROL_REG = _BV(WDIE) | (WDTO_NS & 0x07) | ((WDTO_NS & 0x08) << 2); // WDTO_NS directly does not work. bit 0-2 are consecutive in the register but the highest value bit is at bit 5
// So worked for up to WDTO_2S
sei();
wdt_reset();
#else
wdt_enable(WDTO_NS); // The function handles the upper bit correct.
#endif
//delay(10000); // test it!
}
//===========================================================================
//=================================== ISR ===================================
//===========================================================================
// Watchdog timer interrupt, called if main program blocks >4sec and manual reset is enabled.
#if ENABLED(WATCHDOG_RESET_MANUAL)
ISR(WDT_vect) {
sei(); // With the interrupt driven serial we need to allow interrupts.
SERIAL_ERROR_MSG(STR_WATCHDOG_FIRED);
minkill(); // interrupt-safe final kill and infinite loop
}
#endif
// Reset watchdog. MUST be called at least every 4 seconds after the
// first watchdog_init or AVR will go into emergency procedures.
void MarlinHAL::watchdog_refresh() { wdt_reset(); }
#endif // USE_WATCHDOG
// ------------------------
// Free Memory Accessor
// ------------------------
#if ENABLED(SDSUPPORT)
#include "../../sd/SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
#else // !SDSUPPORT
extern "C" {
extern char __bss_end;
extern char __heap_start;
extern void* __brkval;
int freeMemory() {
int free_memory;
if ((int)__brkval == 0)
free_memory = ((int)&free_memory) - ((int)&__bss_end);
else
free_memory = ((int)&free_memory) - ((int)__brkval);
return free_memory;
}
}
#endif // !SDSUPPORT
#endif // __AVR__

View File

@@ -1,277 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* HAL for Arduino AVR
*/
#include "../shared/Marduino.h"
#include "../shared/HAL_SPI.h"
#include "fastio.h"
#include "math.h"
#ifdef USBCON
#include <HardwareSerial.h>
#else
#include "MarlinSerial.h"
#endif
#include <stdint.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/io.h>
//
// Default graphical display delays
//
#if F_CPU >= 20000000
#define CPU_ST7920_DELAY_1 150
#define CPU_ST7920_DELAY_2 0
#define CPU_ST7920_DELAY_3 150
#elif F_CPU == 16000000
#define CPU_ST7920_DELAY_1 125
#define CPU_ST7920_DELAY_2 0
#define CPU_ST7920_DELAY_3 188
#endif
#ifndef pgm_read_ptr
// Compatibility for avr-libc 1.8.0-4.1 included with Ubuntu for
// Windows Subsystem for Linux on Windows 10 as of 10/18/2019
#define pgm_read_ptr_far(address_long) (void*)__ELPM_word((uint32_t)(address_long))
#define pgm_read_ptr_near(address_short) (void*)__LPM_word((uint16_t)(address_short))
#define pgm_read_ptr(address_short) pgm_read_ptr_near(address_short)
#endif
// ------------------------
// Defines
// ------------------------
// AVR PROGMEM extension for sprintf_P
#define S_FMT "%S"
// AVR PROGMEM extension for string define
#define PGMSTR(NAM,STR) const char NAM[] PROGMEM = STR
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START() unsigned char _sreg = SREG; cli()
#define CRITICAL_SECTION_END() SREG = _sreg
#endif
#define HAL_CAN_SET_PWM_FREQ // This HAL supports PWM Frequency adjustment
#define PWM_FREQUENCY 1000 // Default PWM frequency when set_pwm_duty() is called without set_pwm_frequency()
// ------------------------
// Types
// ------------------------
typedef int8_t pin_t;
#define SHARED_SERVOS HAS_SERVOS // Use shared/servos.cpp
class Servo;
typedef Servo hal_servo_t;
// ------------------------
// Serial ports
// ------------------------
#ifdef USBCON
#include "../../core/serial_hook.h"
typedef ForwardSerial1Class< decltype(Serial) > DefaultSerial1;
extern DefaultSerial1 MSerial0;
#ifdef BLUETOOTH
typedef ForwardSerial1Class< decltype(bluetoothSerial) > BTSerial;
extern BTSerial btSerial;
#endif
#define MYSERIAL1 TERN(BLUETOOTH, btSerial, MSerial0)
#else
#if !WITHIN(SERIAL_PORT, -1, 3)
#error "SERIAL_PORT must be from 0 to 3, or -1 for USB Serial."
#endif
#define MYSERIAL1 customizedSerial1
#ifdef SERIAL_PORT_2
#if !WITHIN(SERIAL_PORT_2, -1, 3)
#error "SERIAL_PORT_2 must be from 0 to 3, or -1 for USB Serial."
#endif
#define MYSERIAL2 customizedSerial2
#endif
#ifdef SERIAL_PORT_3
#if !WITHIN(SERIAL_PORT_3, -1, 3)
#error "SERIAL_PORT_3 must be from 0 to 3, or -1 for USB Serial."
#endif
#define MYSERIAL3 customizedSerial3
#endif
#endif
#ifdef MMU2_SERIAL_PORT
#if !WITHIN(MMU2_SERIAL_PORT, -1, 3)
#error "MMU2_SERIAL_PORT must be from 0 to 3, or -1 for USB Serial."
#endif
#define MMU2_SERIAL mmuSerial
#endif
#ifdef LCD_SERIAL_PORT
#if !WITHIN(LCD_SERIAL_PORT, -1, 3)
#error "LCD_SERIAL_PORT must be from 0 to 3, or -1 for USB Serial."
#endif
#define LCD_SERIAL lcdSerial
#if HAS_DGUS_LCD
#define SERIAL_GET_TX_BUFFER_FREE() LCD_SERIAL.get_tx_buffer_free()
#endif
#endif
//
// ADC
//
#define HAL_ADC_VREF 5.0
#define HAL_ADC_RESOLUTION 10
//
// Pin Mapping for M42, M43, M226
//
#define GET_PIN_MAP_PIN(index) index
#define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
#define HAL_SENSITIVE_PINS 0, 1,
#ifdef __AVR_AT90USB1286__
#define JTAG_DISABLE() do{ MCUCR = 0x80; MCUCR = 0x80; }while(0)
#endif
// AVR compatibility
#define strtof strtod
// ------------------------
// Free Memory Accessor
// ------------------------
#pragma GCC diagnostic push
#if GCC_VERSION <= 50000
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
extern "C" int freeMemory();
#pragma GCC diagnostic pop
// ------------------------
// MarlinHAL Class
// ------------------------
class MarlinHAL {
public:
// Earliest possible init, before setup()
MarlinHAL() {}
// Watchdog
static void watchdog_init() IF_DISABLED(USE_WATCHDOG, {});
static void watchdog_refresh() IF_DISABLED(USE_WATCHDOG, {});
static void init(); // Called early in setup()
static void init_board() {} // Called less early in setup()
static void reboot(); // Restart the firmware from 0x0
// Interrupts
static bool isr_state() { return TEST(SREG, SREG_I); }
static void isr_on() { sei(); }
static void isr_off() { cli(); }
static void delay_ms(const int ms) { _delay_ms(ms); }
// Tasks, called from idle()
static void idletask() {}
// Reset
static uint8_t reset_reason;
static uint8_t get_reset_source() { return reset_reason; }
static void clear_reset_source() { MCUSR = 0; }
// Free SRAM
static int freeMemory() { return ::freeMemory(); }
//
// ADC Methods
//
// Called by Temperature::init once at startup
static void adc_init() {
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
DIDR0 = 0;
#ifdef DIDR2
DIDR2 = 0;
#endif
}
// Called by Temperature::init for each sensor at startup
static void adc_enable(const uint8_t ch) {
#ifdef DIDR2
if (ch > 7) { SBI(DIDR2, ch & 0x07); return; }
#endif
SBI(DIDR0, ch);
}
// Begin ADC sampling on the given channel. Called from Temperature::isr!
static void adc_start(const uint8_t ch) {
#ifdef MUX5
ADCSRB = ch > 7 ? _BV(MUX5) : 0;
#else
ADCSRB = 0;
#endif
ADMUX = _BV(REFS0) | (ch & 0x07);
SBI(ADCSRA, ADSC);
}
// Is the ADC ready for reading?
static bool adc_ready() { return !TEST(ADCSRA, ADSC); }
// The current value of the ADC register
static __typeof__(ADC) adc_value() { return ADC; }
/**
* init_pwm_timers
* Set the default frequency for timers 2-5 to 1000HZ
*/
static void init_pwm_timers();
/**
* Set the PWM duty cycle for the pin to the given value.
* Optionally invert the duty cycle [default = false]
* Optionally change the scale of the provided value to enable finer PWM duty control [default = 255]
*/
static void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false);
/**
* Set the frequency of the timer for the given pin as close as
* possible to the provided desired frequency. Internally calculate
* the required waveform generation mode, prescaler, and resolution
* values and set timer registers accordingly.
* NOTE that the frequency is applied to all pins on the timer (Ex OC3A, OC3B and OC3B)
* NOTE that there are limitations, particularly if using TIMER2. (see Configuration_adv.h -> FAST_PWM_FAN Settings)
*/
static void set_pwm_frequency(const pin_t pin, const uint16_t f_desired);
};

View File

@@ -1,254 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Adapted from Arduino Sd2Card Library
* Copyright (c) 2009 by William Greiman
*/
/**
* HAL for AVR - SPI functions
*/
#ifdef __AVR__
#include "../../inc/MarlinConfig.h"
void spiBegin() {
#if PIN_EXISTS(SD_SS)
// Do not init HIGH for boards with pin 4 used as Fans or Heaters or otherwise, not likely to have multiple SPI devices anyway.
#if defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__)
// SS must be in output mode even it is not chip select
SET_OUTPUT(SD_SS_PIN);
#else
// set SS high - may be chip select for another SPI device
OUT_WRITE(SD_SS_PIN, HIGH);
#endif
#endif
SET_OUTPUT(SD_SCK_PIN);
SET_INPUT(SD_MISO_PIN);
SET_OUTPUT(SD_MOSI_PIN);
IF_DISABLED(SOFTWARE_SPI, spiInit(SPI_HALF_SPEED));
}
#if NONE(SOFTWARE_SPI, FORCE_SOFT_SPI)
// ------------------------
// Hardware SPI
// ------------------------
// make sure SPCR rate is in expected bits
#if (SPR0 != 0 || SPR1 != 1)
#error "unexpected SPCR bits"
#endif
/**
* Initialize hardware SPI
* Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6]
*/
void spiInit(uint8_t spiRate) {
// See avr processor documentation
CBI(
#ifdef PRR
PRR
#elif defined(PRR0)
PRR0
#endif
, PRSPI
);
SPCR = _BV(SPE) | _BV(MSTR) | (spiRate >> 1);
SPSR = spiRate & 1 || spiRate == 6 ? 0 : _BV(SPI2X);
}
/** SPI receive a byte */
uint8_t spiRec() {
SPDR = 0xFF;
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
return SPDR;
}
/** SPI read data */
void spiRead(uint8_t *buf, uint16_t nbyte) {
if (nbyte-- == 0) return;
SPDR = 0xFF;
for (uint16_t i = 0; i < nbyte; i++) {
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
buf[i] = SPDR;
SPDR = 0xFF;
}
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
buf[nbyte] = SPDR;
}
/** SPI send a byte */
void spiSend(uint8_t b) {
SPDR = b;
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
}
/** SPI send block */
void spiSendBlock(uint8_t token, const uint8_t *buf) {
SPDR = token;
for (uint16_t i = 0; i < 512; i += 2) {
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
SPDR = buf[i];
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
SPDR = buf[i + 1];
}
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
}
/** begin spi transaction */
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) {
// Based on Arduino SPI library
// Clock settings are defined as follows. Note that this shows SPI2X
// inverted, so the bits form increasing numbers. Also note that
// fosc/64 appears twice
// SPR1 SPR0 ~SPI2X Freq
// 0 0 0 fosc/2
// 0 0 1 fosc/4
// 0 1 0 fosc/8
// 0 1 1 fosc/16
// 1 0 0 fosc/32
// 1 0 1 fosc/64
// 1 1 0 fosc/64
// 1 1 1 fosc/128
// We find the fastest clock that is less than or equal to the
// given clock rate. The clock divider that results in clock_setting
// is 2 ^^ (clock_div + 1). If nothing is slow enough, we'll use the
// slowest (128 == 2 ^^ 7, so clock_div = 6).
uint8_t clockDiv;
// When the clock is known at compiletime, use this if-then-else
// cascade, which the compiler knows how to completely optimize
// away. When clock is not known, use a loop instead, which generates
// shorter code.
if (__builtin_constant_p(spiClock)) {
if (spiClock >= F_CPU / 2) clockDiv = 0;
else if (spiClock >= F_CPU / 4) clockDiv = 1;
else if (spiClock >= F_CPU / 8) clockDiv = 2;
else if (spiClock >= F_CPU / 16) clockDiv = 3;
else if (spiClock >= F_CPU / 32) clockDiv = 4;
else if (spiClock >= F_CPU / 64) clockDiv = 5;
else clockDiv = 6;
}
else {
uint32_t clockSetting = F_CPU / 2;
clockDiv = 0;
while (clockDiv < 6 && spiClock < clockSetting) {
clockSetting /= 2;
clockDiv++;
}
}
// Compensate for the duplicate fosc/64
if (clockDiv == 6) clockDiv = 7;
// Invert the SPI2X bit
clockDiv ^= 0x1;
SPCR = _BV(SPE) | _BV(MSTR) | ((bitOrder == LSBFIRST) ? _BV(DORD) : 0) |
(dataMode << CPHA) | ((clockDiv >> 1) << SPR0);
SPSR = clockDiv | 0x01;
}
#else // SOFTWARE_SPI || FORCE_SOFT_SPI
// ------------------------
// Software SPI
// ------------------------
// nop to tune soft SPI timing
#define nop asm volatile ("\tnop\n")
void spiInit(uint8_t) { /* do nothing */ }
// Begin SPI transaction, set clock, bit order, data mode
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) { /* do nothing */ }
// Soft SPI receive byte
uint8_t spiRec() {
uint8_t data = 0;
// no interrupts during byte receive - about 8µs
cli();
// output pin high - like sending 0xFF
WRITE(SD_MOSI_PIN, HIGH);
LOOP_L_N(i, 8) {
WRITE(SD_SCK_PIN, HIGH);
nop; // adjust so SCK is nice
nop;
data <<= 1;
if (READ(SD_MISO_PIN)) data |= 1;
WRITE(SD_SCK_PIN, LOW);
}
sei();
return data;
}
// Soft SPI read data
void spiRead(uint8_t *buf, uint16_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++)
buf[i] = spiRec();
}
// Soft SPI send byte
void spiSend(uint8_t data) {
// no interrupts during byte send - about 8µs
cli();
LOOP_L_N(i, 8) {
WRITE(SD_SCK_PIN, LOW);
WRITE(SD_MOSI_PIN, data & 0x80);
data <<= 1;
WRITE(SD_SCK_PIN, HIGH);
}
nop; // hold SCK high for a few ns
nop;
nop;
nop;
WRITE(SD_SCK_PIN, LOW);
sei();
}
// Soft SPI send block
void spiSendBlock(uint8_t token, const uint8_t *buf) {
spiSend(token);
for (uint16_t i = 0; i < 512; i++)
spiSend(buf[i]);
}
#endif // SOFTWARE_SPI || FORCE_SOFT_SPI
#endif // __AVR__

View File

@@ -1,26 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include <SPI.h>
using MarlinSPI = SPIClass;

View File

@@ -1,652 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* MarlinSerial.cpp - Hardware serial library for Wiring
* Copyright (c) 2006 Nicholas Zambetti. All right reserved.
*
* Modified 23 November 2006 by David A. Mellis
* Modified 28 September 2010 by Mark Sproul
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
* Modified 10 June 2018 by Eduardo José Tagle (See #10991)
* Templatized 01 October 2018 by Eduardo José Tagle to allow multiple instances
*/
#ifdef __AVR__
// Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.)
#include "../../inc/MarlinConfig.h"
#if !defined(USBCON) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H))
#include "MarlinSerial.h"
#include "../../MarlinCore.h"
#if ENABLED(DIRECT_STEPPING)
#include "../../feature/direct_stepping.h"
#endif
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0, 0, { 0 } };
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 };
template<typename Cfg> bool MarlinSerial<Cfg>::_written = false;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_dropped_bytes = 0;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_buffer_overruns = 0;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_framing_errors = 0;
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0;
// A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() asm volatile("": : :"memory");
#include "../../feature/e_parser.h"
// "Atomically" read the RX head index value without disabling interrupts:
// This MUST be called with RX interrupts enabled, and CAN'T be called
// from the RX ISR itself!
template<typename Cfg>
FORCE_INLINE typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::atomic_read_rx_head() {
if (Cfg::RX_SIZE > 256) {
// Keep reading until 2 consecutive reads return the same value,
// meaning there was no update in-between caused by an interrupt.
// This works because serial RX interrupts happen at a slower rate
// than successive reads of a variable, so 2 consecutive reads with
// the same value means no interrupt updated it.
ring_buffer_pos_t vold, vnew = rx_buffer.head;
sw_barrier();
do {
vold = vnew;
vnew = rx_buffer.head;
sw_barrier();
} while (vold != vnew);
return vnew;
}
else {
// With an 8bit index, reads are always atomic. No need for special handling
return rx_buffer.head;
}
}
template<typename Cfg>
volatile bool MarlinSerial<Cfg>::rx_tail_value_not_stable = false;
template<typename Cfg>
volatile uint16_t MarlinSerial<Cfg>::rx_tail_value_backup = 0;
// Set RX tail index, taking into account the RX ISR could interrupt
// the write to this variable in the middle - So a backup strategy
// is used to ensure reads of the correct values.
// -Must NOT be called from the RX ISR -
template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::atomic_set_rx_tail(typename MarlinSerial<Cfg>::ring_buffer_pos_t value) {
if (Cfg::RX_SIZE > 256) {
// Store the new value in the backup
rx_tail_value_backup = value;
sw_barrier();
// Flag we are about to change the true value
rx_tail_value_not_stable = true;
sw_barrier();
// Store the new value
rx_buffer.tail = value;
sw_barrier();
// Signal the new value is completely stored into the value
rx_tail_value_not_stable = false;
sw_barrier();
}
else
rx_buffer.tail = value;
}
// Get the RX tail index, taking into account the read could be
// interrupting in the middle of the update of that index value
// -Called from the RX ISR -
template<typename Cfg>
FORCE_INLINE typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::atomic_read_rx_tail() {
if (Cfg::RX_SIZE > 256) {
// If the true index is being modified, return the backup value
if (rx_tail_value_not_stable) return rx_tail_value_backup;
}
// The true index is stable, return it
return rx_buffer.tail;
}
// (called with RX interrupts disabled)
template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() {
static EmergencyParser::State emergency_state; // = EP_RESET
// This must read the R_UCSRA register before reading the received byte to detect error causes
if (Cfg::DROPPED_RX && B_DOR && !++rx_dropped_bytes) --rx_dropped_bytes;
if (Cfg::RX_OVERRUNS && B_DOR && !++rx_buffer_overruns) --rx_buffer_overruns;
if (Cfg::RX_FRAMING_ERRORS && B_FE && !++rx_framing_errors) --rx_framing_errors;
// Read the character from the USART
uint8_t c = R_UDR;
#if ENABLED(DIRECT_STEPPING)
if (page_manager.maybe_store_rxd_char(c)) return;
#endif
// Get the tail - Nothing can alter its value while this ISR is executing, but there's
// a chance that this ISR interrupted the main process while it was updating the index.
// The backup mechanism ensures the correct value is always returned.
const ring_buffer_pos_t t = atomic_read_rx_tail();
// Get the head pointer - This ISR is the only one that modifies its value, so it's safe to read here
ring_buffer_pos_t h = rx_buffer.head;
// Get the next element
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the RX FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
if (Cfg::MAX_RX_QUEUED) {
// Calculate count of bytes stored into the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Keep track of the maximum count of enqueued bytes
NOLESS(rx_max_enqueued, rx_count);
}
if (Cfg::XONOFF) {
// If the last char that was sent was an XON
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
// Bytes stored into the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// If over 12.5% of RX buffer capacity, send XOFF before running out of
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
// and stop sending bytes. This translates to 13mS propagation time.
if (rx_count >= (Cfg::RX_SIZE) / 8) {
// At this point, definitely no TX interrupt was executing, since the TX ISR can't be preempted.
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
// to be in the middle of trying to disable the RX interrupt in the main program, eventually the
// enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure
// the sending of the XOFF char is to send it HERE AND NOW.
// About to send the XOFF char
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
// Wait until the TX register becomes empty and send it - Here there could be a problem
// - While waiting for the TX register to empty, the RX register could receive a new
// character. This must also handle that situation!
while (!B_UDRE) {
if (B_RXC) {
// A char arrived while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART
c = R_UDR;
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
}
sw_barrier();
}
R_UDR = XOFF_CHAR;
// Clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
B_TXC = 1;
// At this point there could be a race condition between the write() function
// and this sending of the XOFF char. This interrupt could happen between the
// wait to be empty TX buffer loop and the actual write of the character. Since
// the TX buffer is full because it's sending the XOFF char, the only way to be
// sure the write() function will succeed is to wait for the XOFF char to be
// completely sent. Since an extra character could be received during the wait
// it must also be handled!
while (!B_UDRE) {
if (B_RXC) {
// A char arrived while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART
c = R_UDR;
if (Cfg::EMERGENCYPARSER)
emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
}
sw_barrier();
}
// At this point everything is ready. The write() function won't
// have any issues writing to the UART TX register if it needs to!
}
}
}
// Store the new head value - The main loop will retry until the value is stable
rx_buffer.head = h;
}
// (called with TX irqs disabled)
template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::_tx_udr_empty_irq() {
if (Cfg::TX_SIZE > 0) {
// Read positions
uint8_t t = tx_buffer.tail;
const uint8_t h = tx_buffer.head;
if (Cfg::XONOFF) {
// If an XON char is pending to be sent, do it now
if (xon_xoff_state == XON_CHAR) {
// Send the character
R_UDR = XON_CHAR;
// clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
B_TXC = 1;
// Remember we sent it.
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
// If nothing else to transmit, just disable TX interrupts.
if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
return;
}
}
// If nothing to transmit, just disable TX interrupts. This could
// happen as the result of the non atomicity of the disabling of RX
// interrupts that could end reenabling TX interrupts as a side effect.
if (h == t) {
B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
return;
}
// There is something to TX, Send the next byte
const uint8_t c = tx_buffer.buffer[t];
t = (t + 1) & (Cfg::TX_SIZE - 1);
R_UDR = c;
tx_buffer.tail = t;
// Clear the TXC bit (by writing a one to its bit location).
// Ensures flush() won't return until the bytes are actually written/
B_TXC = 1;
// Disable interrupts if there is nothing to transmit following this byte
if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
}
}
// Public Methods
template<typename Cfg>
void MarlinSerial<Cfg>::begin(const long baud) {
uint16_t baud_setting;
bool useU2X = true;
#if F_CPU == 16000000UL && SERIAL_PORT == 0
// Hard-coded exception for compatibility with the bootloader shipped
// with the Duemilanove and previous boards, and the firmware on the
// 8U2 on the Uno and Mega 2560.
if (baud == 57600) useU2X = false;
#endif
R_UCSRA = 0;
if (useU2X) {
B_U2X = 1;
baud_setting = (F_CPU / 4 / baud - 1) / 2;
}
else
baud_setting = (F_CPU / 8 / baud - 1) / 2;
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
R_UBRRH = baud_setting >> 8;
R_UBRRL = baud_setting;
B_RXEN = 1;
B_TXEN = 1;
B_RXCIE = 1;
if (Cfg::TX_SIZE > 0) B_UDRIE = 0;
_written = false;
}
template<typename Cfg>
void MarlinSerial<Cfg>::end() {
B_RXEN = 0;
B_TXEN = 0;
B_RXCIE = 0;
B_UDRIE = 0;
}
template<typename Cfg>
int MarlinSerial<Cfg>::peek() {
const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail;
return h == t ? -1 : rx_buffer.buffer[t];
}
template<typename Cfg>
int MarlinSerial<Cfg>::read() {
const ring_buffer_pos_t h = atomic_read_rx_head();
// Read the tail. Main thread owns it, so it is safe to directly read it
ring_buffer_pos_t t = rx_buffer.tail;
// If nothing to read, return now
if (h == t) return -1;
// Get the next char
const int v = rx_buffer.buffer[t];
t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1);
// Advance tail - Making sure the RX ISR will always get an stable value, even
// if it interrupts the writing of the value of that variable in the middle.
atomic_set_rx_tail(t);
if (Cfg::XONOFF) {
// If the XOFF char was sent, or about to be sent...
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// Get count of bytes in the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
if (rx_count < (Cfg::RX_SIZE) / 10) {
if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR;
// Enable TX ISR. Non atomic, but it will eventually enable them
B_UDRIE = 1;
}
else {
// If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!B_UDRE) sw_barrier();
R_UDR = XON_CHAR;
}
}
}
}
return v;
}
template<typename Cfg>
typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available() {
const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail;
return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1);
}
template<typename Cfg>
void MarlinSerial<Cfg>::flush() {
// Set the tail to the head:
// - Read the RX head index in a safe way. (See atomic_read_rx_head.)
// - Set the tail, making sure the RX ISR will always get a stable value, even
// if it interrupts the writing of the value of that variable in the middle.
atomic_set_rx_tail(atomic_read_rx_head());
if (Cfg::XONOFF) {
// If the XOFF char was sent, or about to be sent...
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR;
// Enable TX ISR. Non atomic, but it will eventually enable it.
B_UDRIE = 1;
}
else {
// If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!B_UDRE) sw_barrier();
R_UDR = XON_CHAR;
}
}
}
}
template<typename Cfg>
void MarlinSerial<Cfg>::write(const uint8_t c) {
if (Cfg::TX_SIZE == 0) {
_written = true;
while (!B_UDRE) sw_barrier();
R_UDR = c;
}
else {
_written = true;
// If the TX interrupts are disabled and the data register
// is empty, just write the byte to the data register and
// be done. This shortcut helps significantly improve the
// effective datarate at high (>500kbit/s) bitrates, where
// interrupt overhead becomes a slowdown.
// Yes, there is a race condition between the sending of the
// XOFF char at the RX ISR, but it is properly handled there
if (!B_UDRIE && B_UDRE) {
R_UDR = c;
// clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
B_TXC = 1;
return;
}
const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1);
// If global interrupts are disabled (as the result of being called from an ISR)...
if (!hal.isr_state()) {
// Make room by polling if it is possible to transmit, and do so!
while (i == tx_buffer.tail) {
// If we can transmit another byte, do it.
if (B_UDRE) _tx_udr_empty_irq();
// Make sure compiler rereads tx_buffer.tail
sw_barrier();
}
}
else {
// Interrupts are enabled, just wait until there is space
while (i == tx_buffer.tail) sw_barrier();
}
// Store new char. head is always safe to move
tx_buffer.buffer[tx_buffer.head] = c;
tx_buffer.head = i;
// Enable TX ISR - Non atomic, but it will eventually enable TX ISR
B_UDRIE = 1;
}
}
template<typename Cfg>
void MarlinSerial<Cfg>::flushTX() {
if (Cfg::TX_SIZE == 0) {
// No bytes written, no need to flush. This special case is needed since there's
// no way to force the TXC (transmit complete) bit to 1 during initialization.
if (!_written) return;
// Wait until everything was transmitted
while (!B_TXC) sw_barrier();
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
else {
// No bytes written, no need to flush. This special case is needed since there's
// no way to force the TXC (transmit complete) bit to 1 during initialization.
if (!_written) return;
// If global interrupts are disabled (as the result of being called from an ISR)...
if (!hal.isr_state()) {
// Wait until everything was transmitted - We must do polling, as interrupts are disabled
while (tx_buffer.head != tx_buffer.tail || !B_TXC) {
// If there is more space, send an extra character
if (B_UDRE) _tx_udr_empty_irq();
sw_barrier();
}
}
else {
// Wait until everything was transmitted
while (tx_buffer.head != tx_buffer.tail || !B_TXC) sw_barrier();
}
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
}
// Hookup ISR handlers
ISR(SERIAL_REGNAME(USART, SERIAL_PORT, _RX_vect)) {
MarlinSerial<MarlinSerialCfg<SERIAL_PORT>>::store_rxd_char();
}
ISR(SERIAL_REGNAME(USART, SERIAL_PORT, _UDRE_vect)) {
MarlinSerial<MarlinSerialCfg<SERIAL_PORT>>::_tx_udr_empty_irq();
}
// Because of the template definition above, it's required to instantiate the template to have all methods generated
template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT> >;
MSerialT1 customizedSerial1(MSerialT1::HasEmergencyParser);
#ifdef SERIAL_PORT_2
// Hookup ISR handlers
ISR(SERIAL_REGNAME(USART, SERIAL_PORT_2, _RX_vect)) {
MarlinSerial<MarlinSerialCfg<SERIAL_PORT_2>>::store_rxd_char();
}
ISR(SERIAL_REGNAME(USART, SERIAL_PORT_2, _UDRE_vect)) {
MarlinSerial<MarlinSerialCfg<SERIAL_PORT_2>>::_tx_udr_empty_irq();
}
template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT_2> >;
MSerialT2 customizedSerial2(MSerialT2::HasEmergencyParser);
#endif // SERIAL_PORT_2
#ifdef SERIAL_PORT_3
// Hookup ISR handlers
ISR(SERIAL_REGNAME(USART, SERIAL_PORT_3, _RX_vect)) {
MarlinSerial<MarlinSerialCfg<SERIAL_PORT_3>>::store_rxd_char();
}
ISR(SERIAL_REGNAME(USART, SERIAL_PORT_3, _UDRE_vect)) {
MarlinSerial<MarlinSerialCfg<SERIAL_PORT_3>>::_tx_udr_empty_irq();
}
template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT_3> >;
MSerialT3 customizedSerial3(MSerialT3::HasEmergencyParser);
#endif // SERIAL_PORT_3
#ifdef MMU2_SERIAL_PORT
ISR(SERIAL_REGNAME(USART, MMU2_SERIAL_PORT, _RX_vect)) {
MarlinSerial<MMU2SerialCfg<MMU2_SERIAL_PORT>>::store_rxd_char();
}
ISR(SERIAL_REGNAME(USART, MMU2_SERIAL_PORT, _UDRE_vect)) {
MarlinSerial<MMU2SerialCfg<MMU2_SERIAL_PORT>>::_tx_udr_empty_irq();
}
template class MarlinSerial< MMU2SerialCfg<MMU2_SERIAL_PORT> >;
MSerialMMU2 mmuSerial(MSerialMMU2::HasEmergencyParser);
#endif // MMU2_SERIAL_PORT
#ifdef LCD_SERIAL_PORT
ISR(SERIAL_REGNAME(USART, LCD_SERIAL_PORT, _RX_vect)) {
MarlinSerial<LCDSerialCfg<LCD_SERIAL_PORT>>::store_rxd_char();
}
ISR(SERIAL_REGNAME(USART, LCD_SERIAL_PORT, _UDRE_vect)) {
MarlinSerial<LCDSerialCfg<LCD_SERIAL_PORT>>::_tx_udr_empty_irq();
}
template class MarlinSerial< LCDSerialCfg<LCD_SERIAL_PORT> >;
MSerialLCD lcdSerial(MSerialLCD::HasEmergencyParser);
#if HAS_DGUS_LCD
template<typename Cfg>
typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::get_tx_buffer_free() {
const ring_buffer_pos_t t = tx_buffer.tail, // next byte to send.
h = tx_buffer.head; // next pos for queue.
int ret = t - h - 1;
if (ret < 0) ret += Cfg::TX_SIZE + 1;
return ret;
}
#endif
#endif // LCD_SERIAL_PORT
#endif // !USBCON && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H)
// For AT90USB targets use the UART for BT interfacing
#if defined(USBCON) && ENABLED(BLUETOOTH)
MSerialBT bluetoothSerial(false);
#endif
#endif // __AVR__

View File

@@ -1,297 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* MarlinSerial.h - Hardware serial library for Wiring
* Copyright (c) 2006 Nicholas Zambetti. All right reserved.
*
* Modified 28 September 2010 by Mark Sproul
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
* Templatized 01 October 2018 by Eduardo José Tagle to allow multiple instances
*/
#include <WString.h>
#include "../../inc/MarlinConfigPre.h"
#include "../../core/serial_hook.h"
#ifndef SERIAL_PORT
#define SERIAL_PORT 0
#endif
#ifndef USBCON
// The presence of the UBRRH register is used to detect a UART.
#define UART_PRESENT(port) ((port == 0 && (defined(UBRRH) || defined(UBRR0H))) || \
(port == 1 && defined(UBRR1H)) || (port == 2 && defined(UBRR2H)) || \
(port == 3 && defined(UBRR3H)))
// These are macros to build serial port register names for the selected SERIAL_PORT (C preprocessor
// requires two levels of indirection to expand macro values properly)
#define SERIAL_REGNAME(registerbase,number,suffix) _SERIAL_REGNAME(registerbase,number,suffix)
#if SERIAL_PORT == 0 && (!defined(UBRR0H) || !defined(UDR0)) // use un-numbered registers if necessary
#define _SERIAL_REGNAME(registerbase,number,suffix) registerbase##suffix
#else
#define _SERIAL_REGNAME(registerbase,number,suffix) registerbase##number##suffix
#endif
// Registers used by MarlinSerial class (expanded depending on selected serial port)
// Templated 8bit register (generic)
#define UART_REGISTER_DECL_BASE(registerbase, suffix) \
template<int portNr> struct R_##registerbase##x##suffix {}
// Templated 8bit register (specialization for each port)
#define UART_REGISTER_DECL(port, registerbase, suffix) \
template<> struct R_##registerbase##x##suffix<port> { \
constexpr R_##registerbase##x##suffix(int) {} \
FORCE_INLINE void operator=(uint8_t newVal) const { SERIAL_REGNAME(registerbase,port,suffix) = newVal; } \
FORCE_INLINE operator uint8_t() const { return SERIAL_REGNAME(registerbase,port,suffix); } \
}
// Templated 1bit register (generic)
#define UART_BIT_DECL_BASE(registerbase, suffix, bit) \
template<int portNr>struct B_##bit##x {}
// Templated 1bit register (specialization for each port)
#define UART_BIT_DECL(port, registerbase, suffix, bit) \
template<> struct B_##bit##x<port> { \
constexpr B_##bit##x(int) {} \
FORCE_INLINE void operator=(int newVal) const { \
if (newVal) \
SBI(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); \
else \
CBI(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); \
} \
FORCE_INLINE operator bool() const { return TEST(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); } \
}
#define UART_DECL_BASE() \
UART_REGISTER_DECL_BASE(UCSR,A);\
UART_REGISTER_DECL_BASE(UDR,);\
UART_REGISTER_DECL_BASE(UBRR,H);\
UART_REGISTER_DECL_BASE(UBRR,L);\
UART_BIT_DECL_BASE(UCSR,B,RXEN);\
UART_BIT_DECL_BASE(UCSR,B,TXEN);\
UART_BIT_DECL_BASE(UCSR,A,TXC);\
UART_BIT_DECL_BASE(UCSR,B,RXCIE);\
UART_BIT_DECL_BASE(UCSR,A,UDRE);\
UART_BIT_DECL_BASE(UCSR,A,FE);\
UART_BIT_DECL_BASE(UCSR,A,DOR);\
UART_BIT_DECL_BASE(UCSR,B,UDRIE);\
UART_BIT_DECL_BASE(UCSR,A,RXC);\
UART_BIT_DECL_BASE(UCSR,A,U2X)
#define UART_DECL(port) \
UART_REGISTER_DECL(port,UCSR,A);\
UART_REGISTER_DECL(port,UDR,);\
UART_REGISTER_DECL(port,UBRR,H);\
UART_REGISTER_DECL(port,UBRR,L);\
UART_BIT_DECL(port,UCSR,B,RXEN);\
UART_BIT_DECL(port,UCSR,B,TXEN);\
UART_BIT_DECL(port,UCSR,A,TXC);\
UART_BIT_DECL(port,UCSR,B,RXCIE);\
UART_BIT_DECL(port,UCSR,A,UDRE);\
UART_BIT_DECL(port,UCSR,A,FE);\
UART_BIT_DECL(port,UCSR,A,DOR);\
UART_BIT_DECL(port,UCSR,B,UDRIE);\
UART_BIT_DECL(port,UCSR,A,RXC);\
UART_BIT_DECL(port,UCSR,A,U2X)
// Declare empty templates
UART_DECL_BASE();
// And all the specializations for each possible serial port
#if UART_PRESENT(0)
UART_DECL(0);
#endif
#if UART_PRESENT(1)
UART_DECL(1);
#endif
#if UART_PRESENT(2)
UART_DECL(2);
#endif
#if UART_PRESENT(3)
UART_DECL(3);
#endif
#define BYTE 0
// Templated type selector
template<bool b, typename T, typename F> struct TypeSelector { typedef T type;} ;
template<typename T, typename F> struct TypeSelector<false, T, F> { typedef F type; };
template<typename Cfg>
class MarlinSerial {
protected:
// Registers
static constexpr R_UCSRxA<Cfg::PORT> R_UCSRA = 0;
static constexpr R_UDRx<Cfg::PORT> R_UDR = 0;
static constexpr R_UBRRxH<Cfg::PORT> R_UBRRH = 0;
static constexpr R_UBRRxL<Cfg::PORT> R_UBRRL = 0;
// Bits
static constexpr B_RXENx<Cfg::PORT> B_RXEN = 0;
static constexpr B_TXENx<Cfg::PORT> B_TXEN = 0;
static constexpr B_TXCx<Cfg::PORT> B_TXC = 0;
static constexpr B_RXCIEx<Cfg::PORT> B_RXCIE = 0;
static constexpr B_UDREx<Cfg::PORT> B_UDRE = 0;
static constexpr B_FEx<Cfg::PORT> B_FE = 0;
static constexpr B_DORx<Cfg::PORT> B_DOR = 0;
static constexpr B_UDRIEx<Cfg::PORT> B_UDRIE = 0;
static constexpr B_RXCx<Cfg::PORT> B_RXC = 0;
static constexpr B_U2Xx<Cfg::PORT> B_U2X = 0;
// Base size of type on buffer size
typedef typename TypeSelector<(Cfg::RX_SIZE>256), uint16_t, uint8_t>::type ring_buffer_pos_t;
struct ring_buffer_r {
volatile ring_buffer_pos_t head, tail;
unsigned char buffer[Cfg::RX_SIZE];
};
struct ring_buffer_t {
volatile uint8_t head, tail;
unsigned char buffer[Cfg::TX_SIZE];
};
static ring_buffer_r rx_buffer;
static ring_buffer_t tx_buffer;
static bool _written;
static constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
// XON / XOFF character definitions
static constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
static uint8_t xon_xoff_state,
rx_dropped_bytes,
rx_buffer_overruns,
rx_framing_errors;
static ring_buffer_pos_t rx_max_enqueued;
FORCE_INLINE static ring_buffer_pos_t atomic_read_rx_head();
static volatile bool rx_tail_value_not_stable;
static volatile uint16_t rx_tail_value_backup;
FORCE_INLINE static void atomic_set_rx_tail(ring_buffer_pos_t value);
FORCE_INLINE static ring_buffer_pos_t atomic_read_rx_tail();
public:
FORCE_INLINE static void store_rxd_char();
FORCE_INLINE static void _tx_udr_empty_irq();
public:
static void begin(const long);
static void end();
static int peek();
static int read();
static void flush();
static ring_buffer_pos_t available();
static void write(const uint8_t c);
static void flushTX();
#if HAS_DGUS_LCD
static ring_buffer_pos_t get_tx_buffer_free();
#endif
enum { HasEmergencyParser = Cfg::EMERGENCYPARSER };
static bool emergency_parser_enabled() { return Cfg::EMERGENCYPARSER; }
FORCE_INLINE static uint8_t dropped() { return Cfg::DROPPED_RX ? rx_dropped_bytes : 0; }
FORCE_INLINE static uint8_t buffer_overruns() { return Cfg::RX_OVERRUNS ? rx_buffer_overruns : 0; }
FORCE_INLINE static uint8_t framing_errors() { return Cfg::RX_FRAMING_ERRORS ? rx_framing_errors : 0; }
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return Cfg::MAX_RX_QUEUED ? rx_max_enqueued : 0; }
};
template <uint8_t serial>
struct MarlinSerialCfg {
static constexpr int PORT = serial;
static constexpr unsigned int RX_SIZE = RX_BUFFER_SIZE;
static constexpr unsigned int TX_SIZE = TX_BUFFER_SIZE;
static constexpr bool XONOFF = ENABLED(SERIAL_XON_XOFF);
static constexpr bool EMERGENCYPARSER = ENABLED(EMERGENCY_PARSER);
static constexpr bool DROPPED_RX = ENABLED(SERIAL_STATS_DROPPED_RX);
static constexpr bool RX_OVERRUNS = ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS);
static constexpr bool RX_FRAMING_ERRORS = ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS);
static constexpr bool MAX_RX_QUEUED = ENABLED(SERIAL_STATS_MAX_RX_QUEUED);
};
typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT> > > MSerialT1;
extern MSerialT1 customizedSerial1;
#ifdef SERIAL_PORT_2
typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT_2> > > MSerialT2;
extern MSerialT2 customizedSerial2;
#endif
#ifdef SERIAL_PORT_3
typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT_3> > > MSerialT3;
extern MSerialT3 customizedSerial3;
#endif
#endif // !USBCON
#ifdef MMU2_SERIAL_PORT
template <uint8_t serial>
struct MMU2SerialCfg {
static constexpr int PORT = serial;
static constexpr unsigned int RX_SIZE = 32;
static constexpr unsigned int TX_SIZE = 32;
static constexpr bool XONOFF = false;
static constexpr bool EMERGENCYPARSER = false;
static constexpr bool DROPPED_RX = false;
static constexpr bool RX_FRAMING_ERRORS = false;
static constexpr bool MAX_RX_QUEUED = false;
static constexpr bool RX_OVERRUNS = false;
};
typedef Serial1Class< MarlinSerial< MMU2SerialCfg<MMU2_SERIAL_PORT> > > MSerialMMU2;
extern MSerialMMU2 mmuSerial;
#endif
#ifdef LCD_SERIAL_PORT
template <uint8_t serial>
struct LCDSerialCfg {
static constexpr int PORT = serial;
static constexpr unsigned int RX_SIZE = TERN(HAS_DGUS_LCD, DGUS_RX_BUFFER_SIZE, 64);
static constexpr unsigned int TX_SIZE = TERN(HAS_DGUS_LCD, DGUS_TX_BUFFER_SIZE, 128);
static constexpr bool XONOFF = false;
static constexpr bool EMERGENCYPARSER = ENABLED(EMERGENCY_PARSER);
static constexpr bool DROPPED_RX = false;
static constexpr bool RX_FRAMING_ERRORS = false;
static constexpr bool MAX_RX_QUEUED = false;
static constexpr bool RX_OVERRUNS = BOTH(HAS_DGUS_LCD, SERIAL_STATS_RX_BUFFER_OVERRUNS);
};
typedef Serial1Class< MarlinSerial< LCDSerialCfg<LCD_SERIAL_PORT> > > MSerialLCD;
extern MSerialLCD lcdSerial;
#endif
// Use the UART for Bluetooth in AT90USB configurations
#if defined(USBCON) && ENABLED(BLUETOOTH)
typedef Serial1Class<HardwareSerial> MSerialBT;
extern MSerialBT bluetoothSerial;
#endif

View File

@@ -1,226 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
* Copyright (c) 2009 Michael Margolis. All right reserved.
*/
/**
* A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
* The servos are pulsed in the background using the value most recently written using the write() method
*
* Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
* Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
*
* The methods are:
*
* Servo - Class for manipulating servo motors connected to Arduino pins.
*
* attach(pin) - Attach a servo motor to an i/o pin.
* attach(pin, min, max) - Attach to a pin, setting min and max values in microseconds
* Default min is 544, max is 2400
*
* write() - Set the servo angle in degrees. (Invalid angles —over MIN_PULSE_WIDTH— are treated as µs.)
* writeMicroseconds() - Set the servo pulse width in microseconds.
* move(pin, angle) - Sequence of attach(pin), write(angle), safe_delay(servo_delay[servoIndex]).
* With DEACTIVATE_SERVOS_AFTER_MOVE it detaches after servo_delay[servoIndex].
* read() - Get the last-written servo pulse width as an angle between 0 and 180.
* readMicroseconds() - Get the last-written servo pulse width in microseconds.
* attached() - Return true if a servo is attached.
* detach() - Stop an attached servo from pulsing its i/o pin.
*/
#ifdef __AVR__
#include "../../inc/MarlinConfig.h"
#if HAS_SERVOS
#include <avr/interrupt.h>
#include "../shared/servo.h"
#include "../shared/servo_private.h"
static volatile int8_t Channel[_Nbr_16timers]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
/************ static functions common to all instances ***********************/
static inline void handle_interrupts(const timer16_Sequence_t timer, volatile uint16_t* TCNTn, volatile uint16_t* OCRnA) {
int8_t cho = Channel[timer]; // Handle the prior Channel[timer] first
if (cho < 0) // Channel -1 indicates the refresh interval completed...
*TCNTn = 0; // ...so reset the timer
else if (SERVO_INDEX(timer, cho) < ServoCount) // prior channel handled?
extDigitalWrite(SERVO(timer, cho).Pin.nbr, LOW); // pulse the prior channel LOW
Channel[timer] = ++cho; // Handle the next channel (or 0)
if (cho < SERVOS_PER_TIMER && SERVO_INDEX(timer, cho) < ServoCount) {
*OCRnA = *TCNTn + SERVO(timer, cho).ticks; // set compare to current ticks plus duration
if (SERVO(timer, cho).Pin.isActive) // activated?
extDigitalWrite(SERVO(timer, cho).Pin.nbr, HIGH); // yes: pulse HIGH
}
else {
// finished all channels so wait for the refresh period to expire before starting over
const unsigned int cval = ((unsigned)*TCNTn) + 32 / (SERVO_TIMER_PRESCALER), // allow 32 cycles to ensure the next OCR1A not missed
ival = (unsigned int)usToTicks(REFRESH_INTERVAL); // at least REFRESH_INTERVAL has elapsed
*OCRnA = max(cval, ival);
Channel[timer] = -1; // reset the timer counter to 0 on the next call
}
}
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#ifdef _useTimer1
SIGNAL(TIMER1_COMPA_vect) { handle_interrupts(_timer1, &TCNT1, &OCR1A); }
#endif
#ifdef _useTimer3
SIGNAL(TIMER3_COMPA_vect) { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
#endif
#ifdef _useTimer4
SIGNAL(TIMER4_COMPA_vect) { handle_interrupts(_timer4, &TCNT4, &OCR4A); }
#endif
#ifdef _useTimer5
SIGNAL(TIMER5_COMPA_vect) { handle_interrupts(_timer5, &TCNT5, &OCR5A); }
#endif
#else // WIRING
// Interrupt handlers for Wiring
#ifdef _useTimer1
void Timer1Service() { handle_interrupts(_timer1, &TCNT1, &OCR1A); }
#endif
#ifdef _useTimer3
void Timer3Service() { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
#endif
#endif // WIRING
/****************** end of static functions ******************************/
void initISR(const timer16_Sequence_t timer_index) {
switch (timer_index) {
default: break;
#ifdef _useTimer1
case _timer1:
TCCR1A = 0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega128__)
SBI(TIFR, OCF1A); // clear any pending interrupts;
SBI(TIMSK, OCIE1A); // enable the output compare interrupt
#else
// here if not ATmega8 or ATmega128
SBI(TIFR1, OCF1A); // clear any pending interrupts;
SBI(TIMSK1, OCIE1A); // enable the output compare interrupt
#endif
#ifdef WIRING
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
break;
#endif
#ifdef _useTimer3
case _timer3:
TCCR3A = 0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 = 0; // clear the timer count
#ifdef __AVR_ATmega128__
SBI(TIFR, OCF3A); // clear any pending interrupts;
SBI(ETIMSK, OCIE3A); // enable the output compare interrupt
#else
SBI(TIFR3, OCF3A); // clear any pending interrupts;
SBI(TIMSK3, OCIE3A); // enable the output compare interrupt
#endif
#ifdef WIRING
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif
break;
#endif
#ifdef _useTimer4
case _timer4:
TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A); // enable the output compare interrupt
break;
#endif
#ifdef _useTimer5
case _timer5:
TCCR5A = 0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 = 0; // clear the timer count
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIE5A); // enable the output compare interrupt
break;
#endif
}
}
void finISR(const timer16_Sequence_t timer_index) {
// Disable use of the given timer
#ifdef WIRING
switch (timer_index) {
default: break;
case _timer1:
CBI(
#if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
TIMSK1
#else
TIMSK
#endif
, OCIE1A // disable timer 1 output compare interrupt
);
timerDetach(TIMER1OUTCOMPAREA_INT);
break;
case _timer3:
CBI(
#if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
TIMSK3
#else
ETIMSK
#endif
, OCIE3A // disable the timer3 output compare A interrupt
);
timerDetach(TIMER3OUTCOMPAREA_INT);
break;
}
#else // !WIRING
// For arduino - in future: call here to a currently undefined function to reset the timer
UNUSED(timer_index);
#endif
}
#endif // HAS_SERVOS
#endif // __AVR__

View File

@@ -1,93 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* ServoTimers.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
* Copyright (c) 2009 Michael Margolis. All right reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* Defines for 16 bit timers used with Servo library
*
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available.
*/
/**
* AVR Only definitions
* --------------------
*/
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays
#define SERVO_TIMER_PRESCALER 8 // timer prescaler
// Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//#define _useTimer1
#define _useTimer4
#if NUM_SERVOS > SERVOS_PER_TIMER
#define _useTimer3
#if !HAS_MOTOR_CURRENT_PWM && SERVOS > 2 * SERVOS_PER_TIMER
#define _useTimer5 // Timer 5 is used for motor current PWM and can't be used for servos.
#endif
#endif
#elif defined(__AVR_ATmega32U4__)
#define _useTimer3
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define _useTimer3
#elif defined(__AVR_ATmega128__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega2561__)
#define _useTimer3
#else
// everything else
#endif
typedef enum {
#ifdef _useTimer1
_timer1,
#endif
#ifdef _useTimer3
_timer3,
#endif
#ifdef _useTimer4
_timer4,
#endif
#ifdef _useTimer5
_timer5,
#endif
_Nbr_16timers
} timer16_Sequence_t;

View File

@@ -1,74 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef __AVR__
#include "../../inc/MarlinConfig.h"
#if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
/**
* PersistentStore for Arduino-style EEPROM interface
* with implementations supplied by the framework.
*/
#include "../shared/eeprom_api.h"
#ifndef MARLIN_EEPROM_SIZE
#define MARLIN_EEPROM_SIZE size_t(E2END + 1)
#endif
size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE; }
bool PersistentStore::access_start() { return true; }
bool PersistentStore::access_finish() { return true; }
bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
uint16_t written = 0;
while (size--) {
uint8_t * const p = (uint8_t * const)pos;
uint8_t v = *value;
if (v != eeprom_read_byte(p)) { // EEPROM has only ~100,000 write cycles, so only write bytes that have changed!
eeprom_write_byte(p, v);
if (++written & 0x7F) delay(2); else safe_delay(2); // Avoid triggering watchdog during long EEPROM writes
if (eeprom_read_byte(p) != v) {
SERIAL_ECHO_MSG(STR_ERR_EEPROM_WRITE);
return true;
}
}
crc16(crc, &v, 1);
pos++;
value++;
}
return false;
}
bool PersistentStore::read_data(int &pos, uint8_t *value, size_t size, uint16_t *crc, const bool writing/*=true*/) {
do {
uint8_t c = eeprom_read_byte((uint8_t*)pos);
if (writing) *value = c;
crc16(crc, &c, 1);
pos++;
value++;
} while (--size);
return false; // always assume success for AVR's
}
#endif // EEPROM_SETTINGS || SD_FIRMWARE_UPDATE
#endif // __AVR__

View File

@@ -1,306 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* Endstop Interrupts
*
* Without endstop interrupts the endstop pins must be polled continually in
* the temperature-ISR via endstops.update(), most of the time finding no change.
* With this feature endstops.update() is called only when we know that at
* least one endstop has changed state, saving valuable CPU cycles.
*
* This feature only works when all used endstop pins can generate either an
* 'external interrupt' or a 'pin change interrupt'.
*
* Test whether pins issue interrupts on your board by flashing 'pin_interrupt_test.ino'.
* (Located in Marlin/buildroot/share/pin_interrupt_test/pin_interrupt_test.ino)
*/
#include "../../module/endstops.h"
#include <stdint.h>
// One ISR for all EXT-Interrupts
void endstop_ISR() { endstops.update(); }
/**
* Patch for pins_arduino.h (...\Arduino\hardware\arduino\avr\variants\mega\pins_arduino.h)
*
* These macros for the Arduino MEGA do not include the two connected pins on Port J (D14, D15).
* So we extend them here because these are the normal pins for Y_MIN and Y_MAX on RAMPS.
* There are more PCI-enabled processor pins on Port J, but they are not connected to Arduino MEGA.
*/
#if defined(ARDUINO_AVR_MEGA2560) || defined(ARDUINO_AVR_MEGA)
#define digitalPinHasPCICR(p) (WITHIN(p, 10, 15) || WITHIN(p, 50, 53) || WITHIN(p, 62, 69))
#undef digitalPinToPCICR
#define digitalPinToPCICR(p) (digitalPinHasPCICR(p) ? (&PCICR) : nullptr)
#undef digitalPinToPCICRbit
#define digitalPinToPCICRbit(p) (WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? 0 : \
WITHIN(p, 14, 15) ? 1 : \
WITHIN(p, 62, 69) ? 2 : \
0)
#undef digitalPinToPCMSK
#define digitalPinToPCMSK(p) (WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? (&PCMSK0) : \
WITHIN(p, 14, 15) ? (&PCMSK1) : \
WITHIN(p, 62, 69) ? (&PCMSK2) : \
nullptr)
#undef digitalPinToPCMSKbit
#define digitalPinToPCMSKbit(p) (WITHIN(p, 10, 13) ? ((p) - 6) : \
(p) == 14 || (p) == 51 ? 2 : \
(p) == 15 || (p) == 52 ? 1 : \
(p) == 50 ? 3 : \
(p) == 53 ? 0 : \
WITHIN(p, 62, 69) ? ((p) - 62) : \
0)
#elif defined(__AVR_ATmega164A__) || defined(__AVR_ATmega164P__) || defined(__AVR_ATmega324A__) || \
defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega324PB__) || \
defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284__) || \
defined(__AVR_ATmega1284P__)
#define digitalPinHasPCICR(p) WITHIN(p, 0, NUM_DIGITAL_PINS)
#else
#error "Unsupported AVR variant!"
#endif
// Install Pin change interrupt for a pin. Can be called multiple times.
void pciSetup(const int8_t pin) {
if (digitalPinHasPCICR(pin)) {
SBI(*digitalPinToPCMSK(pin), digitalPinToPCMSKbit(pin)); // enable pin
SBI(PCIFR, digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
SBI(PCICR, digitalPinToPCICRbit(pin)); // enable interrupt for the group
}
}
// Handlers for pin change interrupts
#ifdef PCINT0_vect
ISR(PCINT0_vect) { endstop_ISR(); }
#endif
#ifdef PCINT1_vect
ISR(PCINT1_vect, ISR_ALIASOF(PCINT0_vect));
#endif
#ifdef PCINT2_vect
ISR(PCINT2_vect, ISR_ALIASOF(PCINT0_vect));
#endif
#ifdef PCINT3_vect
ISR(PCINT3_vect, ISR_ALIASOF(PCINT0_vect));
#endif
void setup_endstop_interrupts() {
#define _ATTACH(P) attachInterrupt(digitalPinToInterrupt(P), endstop_ISR, CHANGE)
#if HAS_X_MAX
#if (digitalPinToInterrupt(X_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(X_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(X_MAX_PIN), "X_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(X_MAX_PIN);
#endif
#endif
#if HAS_X_MIN
#if (digitalPinToInterrupt(X_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(X_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(X_MIN_PIN), "X_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(X_MIN_PIN);
#endif
#endif
#if HAS_Y_MAX
#if (digitalPinToInterrupt(Y_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Y_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(Y_MAX_PIN), "Y_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Y_MAX_PIN);
#endif
#endif
#if HAS_Y_MIN
#if (digitalPinToInterrupt(Y_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Y_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(Y_MIN_PIN), "Y_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Y_MIN_PIN);
#endif
#endif
#if HAS_Z_MAX
#if (digitalPinToInterrupt(Z_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(Z_MAX_PIN), "Z_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Z_MAX_PIN);
#endif
#endif
#if HAS_Z_MIN
#if (digitalPinToInterrupt(Z_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(Z_MIN_PIN), "Z_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Z_MIN_PIN);
#endif
#endif
#if HAS_I_MAX
#if (digitalPinToInterrupt(I_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(I_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(I_MAX_PIN), "I_MAX_PIN is not interrupt-capable");
pciSetup(I_MAX_PIN);
#endif
#elif HAS_I_MIN
#if (digitalPinToInterrupt(I_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(I_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(I_MIN_PIN), "I_MIN_PIN is not interrupt-capable");
pciSetup(I_MIN_PIN);
#endif
#endif
#if HAS_J_MAX
#if (digitalPinToInterrupt(J_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(J_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(J_MAX_PIN), "J_MAX_PIN is not interrupt-capable");
pciSetup(J_MAX_PIN);
#endif
#elif HAS_J_MIN
#if (digitalPinToInterrupt(J_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(J_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(J_MIN_PIN), "J_MIN_PIN is not interrupt-capable");
pciSetup(J_MIN_PIN);
#endif
#endif
#if HAS_K_MAX
#if (digitalPinToInterrupt(K_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(K_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(K_MAX_PIN), "K_MAX_PIN is not interrupt-capable");
pciSetup(K_MAX_PIN);
#endif
#elif HAS_K_MIN
#if (digitalPinToInterrupt(K_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(K_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(K_MIN_PIN), "K_MIN_PIN is not interrupt-capable");
pciSetup(K_MIN_PIN);
#endif
#endif
#if HAS_X2_MAX
#if (digitalPinToInterrupt(X2_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(X2_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(X2_MAX_PIN), "X2_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(X2_MAX_PIN);
#endif
#endif
#if HAS_X2_MIN
#if (digitalPinToInterrupt(X2_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(X2_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(X2_MIN_PIN), "X2_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(X2_MIN_PIN);
#endif
#endif
#if HAS_Y2_MAX
#if (digitalPinToInterrupt(Y2_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Y2_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(Y2_MAX_PIN), "Y2_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Y2_MAX_PIN);
#endif
#endif
#if HAS_Y2_MIN
#if (digitalPinToInterrupt(Y2_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Y2_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(Y2_MIN_PIN), "Y2_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Y2_MIN_PIN);
#endif
#endif
#if HAS_Z2_MAX
#if (digitalPinToInterrupt(Z2_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z2_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(Z2_MAX_PIN), "Z2_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Z2_MAX_PIN);
#endif
#endif
#if HAS_Z2_MIN
#if (digitalPinToInterrupt(Z2_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z2_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(Z2_MIN_PIN), "Z2_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Z2_MIN_PIN);
#endif
#endif
#if HAS_Z3_MAX
#if (digitalPinToInterrupt(Z3_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z3_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(Z3_MAX_PIN), "Z3_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Z3_MAX_PIN);
#endif
#endif
#if HAS_Z3_MIN
#if (digitalPinToInterrupt(Z3_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z3_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(Z3_MIN_PIN), "Z3_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Z3_MIN_PIN);
#endif
#endif
#if HAS_Z4_MAX
#if (digitalPinToInterrupt(Z4_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z4_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(Z4_MAX_PIN), "Z4_MAX_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Z4_MAX_PIN);
#endif
#endif
#if HAS_Z4_MIN
#if (digitalPinToInterrupt(Z4_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z4_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(Z4_MIN_PIN), "Z4_MIN_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Z4_MIN_PIN);
#endif
#endif
#if HAS_Z_MIN_PROBE_PIN
#if (digitalPinToInterrupt(Z_MIN_PROBE_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z_MIN_PROBE_PIN);
#else
static_assert(digitalPinHasPCICR(Z_MIN_PROBE_PIN), "Z_MIN_PROBE_PIN is not interrupt-capable. Disable ENDSTOP_INTERRUPTS_FEATURE to continue.");
pciSetup(Z_MIN_PROBE_PIN);
#endif
#endif
// If we arrive here without raising an assertion, each pin has either an EXT-interrupt or a PCI.
}

View File

@@ -1,222 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef __AVR__
#include "../../inc/MarlinConfig.h"
struct Timer {
volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer
volatile uint16_t* OCRnQ[3]; // max 3 OCR registers per timer
volatile uint16_t* ICRn; // max 1 ICR register per timer
uint8_t n; // the timer number [0->5]
uint8_t q; // the timer output [0->2] (A->C)
bool isPWM; // True if pin is a "hardware timer"
bool isProtected; // True if timer is protected
};
// Macros for the Timer structure
#define _SET_WGMnQ(T, V) do{ \
*(T.TCCRnQ)[0] = (*(T.TCCRnQ)[0] & ~(0x3 << 0)) | (( int(V) & 0x3) << 0); \
*(T.TCCRnQ)[1] = (*(T.TCCRnQ)[1] & ~(0x3 << 3)) | (((int(V) >> 2) & 0x3) << 3); \
}while(0)
// Set TCCR CS bits
#define _SET_CSn(T, V) (*(T.TCCRnQ)[1] = (*(T.TCCRnQ[1]) & ~(0x7 << 0)) | ((int(V) & 0x7) << 0))
// Set TCCR COM bits
#define _SET_COMnQ(T, Q, V) (*(T.TCCRnQ)[0] = (*(T.TCCRnQ)[0] & ~(0x3 << (6-2*(Q)))) | (int(V) << (6-2*(Q))))
// Set OCRnQ register
#define _SET_OCRnQ(T, Q, V) (*(T.OCRnQ)[Q] = int(V) & 0xFFFF)
// Set ICRn register (one per timer)
#define _SET_ICRn(T, V) (*(T.ICRn) = int(V) & 0xFFFF)
/**
* Return a Timer struct describing a pin's timer.
*/
const Timer get_pwm_timer(const pin_t pin) {
uint8_t q = 0;
switch (digitalPinToTimer(pin)) {
#ifdef TCCR0A
IF_DISABLED(AVR_AT90USB1286_FAMILY, case TIMER0A:)
#endif
#ifdef TCCR1A
case TIMER1A: case TIMER1B:
#endif
break; // Protect reserved timers (TIMER0 & TIMER1)
#ifdef TCCR0A
case TIMER0B: // Protected timer, but allow setting the duty cycle on OCR0B for pin D4 only
return Timer({ { &TCCR0A, nullptr, nullptr }, { (uint16_t*)&OCR0A, (uint16_t*)&OCR0B, nullptr }, nullptr, 0, 1, true, true });
#endif
#if HAS_TCCR2
case TIMER2:
return Timer({ { &TCCR2, nullptr, nullptr }, { (uint16_t*)&OCR2, nullptr, nullptr }, nullptr, 2, 0, true, false });
#elif ENABLED(USE_OCR2A_AS_TOP)
case TIMER2A: break; // Protect TIMER2A since its OCR is used by TIMER2B
case TIMER2B:
return Timer({ { &TCCR2A, &TCCR2B, nullptr }, { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr }, nullptr, 2, 1, true, false });
#elif defined(TCCR2A)
case TIMER2B: ++q; case TIMER2A:
return Timer({ { &TCCR2A, &TCCR2B, nullptr }, { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr }, nullptr, 2, q, true, false });
#endif
#ifdef OCR3C
case TIMER3C: ++q; case TIMER3B: ++q; case TIMER3A:
return Timer({ { &TCCR3A, &TCCR3B, &TCCR3C }, { &OCR3A, &OCR3B, &OCR3C }, &ICR3, 3, q, true, false });
#elif defined(OCR3B)
case TIMER3B: ++q; case TIMER3A:
return Timer({ { &TCCR3A, &TCCR3B, nullptr }, { &OCR3A, &OCR3B, nullptr }, &ICR3, 3, q, true, false });
#endif
#ifdef TCCR4A
case TIMER4C: ++q; case TIMER4B: ++q; case TIMER4A:
return Timer({ { &TCCR4A, &TCCR4B, &TCCR4C }, { &OCR4A, &OCR4B, &OCR4C }, &ICR4, 4, q, true, false });
#endif
#ifdef TCCR5A
case TIMER5C: ++q; case TIMER5B: ++q; case TIMER5A:
return Timer({ { &TCCR5A, &TCCR5B, &TCCR5C }, { &OCR5A, &OCR5B, &OCR5C }, &ICR5, 5, q, true, false });
#endif
}
return Timer();
}
void MarlinHAL::set_pwm_frequency(const pin_t pin, const uint16_t f_desired) {
const Timer timer = get_pwm_timer(pin);
if (timer.isProtected || !timer.isPWM) return; // Don't proceed if protected timer or not recognized
const bool is_timer2 = timer.n == 2;
const uint16_t maxtop = is_timer2 ? 0xFF : 0xFFFF;
uint16_t res = 0xFF; // resolution (TOP value)
uint8_t j = CS_NONE; // prescaler index
uint8_t wgm = WGM_PWM_PC_8; // waveform generation mode
// Calculating the prescaler and resolution to use to achieve closest frequency
if (f_desired != 0) {
constexpr uint16_t prescaler[] = { 1, 8, (32), 64, (128), 256, 1024 }; // (*) are Timer 2 only
uint16_t f = (F_CPU) / (2 * 1024 * maxtop) + 1; // Start with the lowest non-zero frequency achievable (1 or 31)
LOOP_L_N(i, COUNT(prescaler)) { // Loop through all prescaler values
const uint16_t p = prescaler[i];
uint16_t res_fast_temp, res_pc_temp;
if (is_timer2) {
#if ENABLED(USE_OCR2A_AS_TOP) // No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP
const uint16_t rft = (F_CPU) / (p * f_desired);
res_fast_temp = rft - 1;
res_pc_temp = rft / 2;
#else
res_fast_temp = res_pc_temp = maxtop;
#endif
}
else {
if (p == 32 || p == 128) continue; // Skip TIMER2 specific prescalers when not TIMER2
const uint16_t rft = (F_CPU) / (p * f_desired);
res_fast_temp = rft - 1;
res_pc_temp = rft / 2;
}
LIMIT(res_fast_temp, 1U, maxtop);
LIMIT(res_pc_temp, 1U, maxtop);
// Calculate frequencies of test prescaler and resolution values
const uint32_t f_diff = _MAX(f, f_desired) - _MIN(f, f_desired),
f_fast_temp = (F_CPU) / (p * (1 + res_fast_temp)),
f_fast_diff = _MAX(f_fast_temp, f_desired) - _MIN(f_fast_temp, f_desired),
f_pc_temp = (F_CPU) / (2 * p * res_pc_temp),
f_pc_diff = _MAX(f_pc_temp, f_desired) - _MIN(f_pc_temp, f_desired);
if (f_fast_diff < f_diff && f_fast_diff <= f_pc_diff) { // FAST values are closest to desired f
// Set the Wave Generation Mode to FAST PWM
wgm = is_timer2 ? uint8_t(TERN(USE_OCR2A_AS_TOP, WGM2_FAST_PWM_OCR2A, WGM2_FAST_PWM)) : uint8_t(WGM_FAST_PWM_ICRn);
// Remember this combination
f = f_fast_temp; res = res_fast_temp; j = i + 1;
}
else if (f_pc_diff < f_diff) { // PHASE CORRECT values are closes to desired f
// Set the Wave Generation Mode to PWM PHASE CORRECT
wgm = is_timer2 ? uint8_t(TERN(USE_OCR2A_AS_TOP, WGM2_PWM_PC_OCR2A, WGM2_PWM_PC)) : uint8_t(WGM_PWM_PC_ICRn);
f = f_pc_temp; res = res_pc_temp; j = i + 1;
}
}
}
_SET_WGMnQ(timer, wgm);
_SET_CSn(timer, j);
if (is_timer2) {
TERN_(USE_OCR2A_AS_TOP, _SET_OCRnQ(timer, 0, res)); // Set OCR2A value (TOP) = res
}
else
_SET_ICRn(timer, res); // Set ICRn value (TOP) = res
}
void MarlinHAL::set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
// If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
// Note that digitalWrite also disables PWM output for us (sets COM bit to 0)
if (v == 0)
digitalWrite(pin, invert);
else if (v == v_size)
digitalWrite(pin, !invert);
else {
const Timer timer = get_pwm_timer(pin);
if (timer.isPWM) {
if (timer.n == 0) {
_SET_COMnQ(timer, timer.q, COM_CLEAR_SET); // Only allow a TIMER0B select...
_SET_OCRnQ(timer, timer.q, v); // ...and OCR0B duty update. For output pin D4 no frequency changes are permitted.
}
else if (!timer.isProtected) {
const uint16_t top = timer.n == 2 ? TERN(USE_OCR2A_AS_TOP, *timer.OCRnQ[0], 255) : *timer.ICRn;
_SET_COMnQ(timer, SUM_TERN(HAS_TCCR2, timer.q, timer.q == 2), COM_CLEAR_SET + invert); // COM20 is on bit 4 of TCCR2, so +1 for q==2
_SET_OCRnQ(timer, timer.q, uint16_t(uint32_t(v) * top / v_size)); // Scale 8/16-bit v to top value
}
}
else
digitalWrite(pin, v < v_size / 2 ? LOW : HIGH);
}
}
void MarlinHAL::init_pwm_timers() {
// Init some timer frequencies to a default 1KHz
const pin_t pwm_pin[] = {
#ifdef __AVR_ATmega2560__
10, 5, 6, 46
#elif defined(__AVR_ATmega1280__)
12, 31
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega1284__)
15, 6
#elif defined(__AVR_AT90USB1286__) || defined(__AVR_mega64) || defined(__AVR_mega128)
16, 24
#endif
};
LOOP_L_N(i, COUNT(pwm_pin))
set_pwm_frequency(pwm_pin[i], 1000);
}
#endif // __AVR__

View File

@@ -1,288 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Fast I/O for extended pins
*/
#ifdef __AVR__
#include "fastio.h"
#ifdef FASTIO_EXT_START
#include "../shared/Marduino.h"
#define _IS_EXT(P) WITHIN(P, FASTIO_EXT_START, FASTIO_EXT_END)
void extDigitalWrite(const int8_t pin, const uint8_t state) {
#define _WCASE(N) case N: WRITE(N, state); break
switch (pin) {
default: digitalWrite(pin, state);
#if _IS_EXT(70)
_WCASE(70);
#endif
#if _IS_EXT(71)
_WCASE(71);
#endif
#if _IS_EXT(72)
_WCASE(72);
#endif
#if _IS_EXT(73)
_WCASE(73);
#endif
#if _IS_EXT(74)
_WCASE(74);
#endif
#if _IS_EXT(75)
_WCASE(75);
#endif
#if _IS_EXT(76)
_WCASE(76);
#endif
#if _IS_EXT(77)
_WCASE(77);
#endif
#if _IS_EXT(78)
_WCASE(78);
#endif
#if _IS_EXT(79)
_WCASE(79);
#endif
#if _IS_EXT(80)
_WCASE(80);
#endif
#if _IS_EXT(81)
_WCASE(81);
#endif
#if _IS_EXT(82)
_WCASE(82);
#endif
#if _IS_EXT(83)
_WCASE(83);
#endif
#if _IS_EXT(84)
_WCASE(84);
#endif
#if _IS_EXT(85)
_WCASE(85);
#endif
#if _IS_EXT(86)
_WCASE(86);
#endif
#if _IS_EXT(87)
_WCASE(87);
#endif
#if _IS_EXT(88)
_WCASE(88);
#endif
#if _IS_EXT(89)
_WCASE(89);
#endif
#if _IS_EXT(90)
_WCASE(90);
#endif
#if _IS_EXT(91)
_WCASE(91);
#endif
#if _IS_EXT(92)
_WCASE(92);
#endif
#if _IS_EXT(93)
_WCASE(93);
#endif
#if _IS_EXT(94)
_WCASE(94);
#endif
#if _IS_EXT(95)
_WCASE(95);
#endif
#if _IS_EXT(96)
_WCASE(96);
#endif
#if _IS_EXT(97)
_WCASE(97);
#endif
#if _IS_EXT(98)
_WCASE(98);
#endif
#if _IS_EXT(99)
_WCASE(99);
#endif
#if _IS_EXT(100)
_WCASE(100);
#endif
}
}
uint8_t extDigitalRead(const int8_t pin) {
#define _RCASE(N) case N: return READ(N)
switch (pin) {
default: return digitalRead(pin);
#if _IS_EXT(70)
_RCASE(70);
#endif
#if _IS_EXT(71)
_RCASE(71);
#endif
#if _IS_EXT(72)
_RCASE(72);
#endif
#if _IS_EXT(73)
_RCASE(73);
#endif
#if _IS_EXT(74)
_RCASE(74);
#endif
#if _IS_EXT(75)
_RCASE(75);
#endif
#if _IS_EXT(76)
_RCASE(76);
#endif
#if _IS_EXT(77)
_RCASE(77);
#endif
#if _IS_EXT(78)
_RCASE(78);
#endif
#if _IS_EXT(79)
_RCASE(79);
#endif
#if _IS_EXT(80)
_RCASE(80);
#endif
#if _IS_EXT(81)
_RCASE(81);
#endif
#if _IS_EXT(82)
_RCASE(82);
#endif
#if _IS_EXT(83)
_RCASE(83);
#endif
#if _IS_EXT(84)
_RCASE(84);
#endif
#if _IS_EXT(85)
_RCASE(85);
#endif
#if _IS_EXT(86)
_RCASE(86);
#endif
#if _IS_EXT(87)
_RCASE(87);
#endif
#if _IS_EXT(88)
_RCASE(88);
#endif
#if _IS_EXT(89)
_RCASE(89);
#endif
#if _IS_EXT(90)
_RCASE(90);
#endif
#if _IS_EXT(91)
_RCASE(91);
#endif
#if _IS_EXT(92)
_RCASE(92);
#endif
#if _IS_EXT(93)
_RCASE(93);
#endif
#if _IS_EXT(94)
_RCASE(94);
#endif
#if _IS_EXT(95)
_RCASE(95);
#endif
#if _IS_EXT(96)
_RCASE(96);
#endif
#if _IS_EXT(97)
_RCASE(97);
#endif
#if _IS_EXT(98)
_RCASE(98);
#endif
#if _IS_EXT(99)
_RCASE(99);
#endif
#if _IS_EXT(100)
_RCASE(100);
#endif
}
}
#if 0
/**
* Set Timer 5 PWM frequency in Hz, from 3.8Hz up to ~16MHz
* with a minimum resolution of 100 steps.
*
* DC values -1.0 to 1.0. Negative duty cycle inverts the pulse.
*/
uint16_t set_pwm_frequency_hz(const_float_t hz, const float dca, const float dcb, const float dcc) {
float count = 0;
if (hz > 0 && (dca || dcb || dcc)) {
count = float(F_CPU) / hz; // 1x prescaler, TOP for 16MHz base freq.
uint16_t prescaler; // Range of 30.5Hz (65535) 64.5kHz (>31)
if (count >= 255. * 256.) { prescaler = 1024; SET_CS(5, PRESCALER_1024); }
else if (count >= 255. * 64.) { prescaler = 256; SET_CS(5, PRESCALER_256); }
else if (count >= 255. * 8.) { prescaler = 64; SET_CS(5, PRESCALER_64); }
else if (count >= 255.) { prescaler = 8; SET_CS(5, PRESCALER_8); }
else { prescaler = 1; SET_CS(5, PRESCALER_1); }
count /= float(prescaler);
const float pwm_top = round(count); // Get the rounded count
ICR5 = (uint16_t)pwm_top - 1; // Subtract 1 for TOP
OCR5A = pwm_top * ABS(dca); // Update and scale DCs
OCR5B = pwm_top * ABS(dcb);
OCR5C = pwm_top * ABS(dcc);
_SET_COM(5, A, dca ? (dca < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL); // Set compare modes
_SET_COM(5, B, dcb ? (dcb < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL);
_SET_COM(5, C, dcc ? (dcc < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL);
SET_WGM(5, FAST_PWM_ICRn); // Fast PWM with ICR5 as TOP
//SERIAL_ECHOLNPGM("Timer 5 Settings:");
//SERIAL_ECHOLNPGM(" Prescaler=", prescaler);
//SERIAL_ECHOLNPGM(" TOP=", ICR5);
//SERIAL_ECHOLNPGM(" OCR5A=", OCR5A);
//SERIAL_ECHOLNPGM(" OCR5B=", OCR5B);
//SERIAL_ECHOLNPGM(" OCR5C=", OCR5C);
}
else {
// Restore the default for Timer 5
SET_WGM(5, PWM_PC_8); // PWM 8-bit (Phase Correct)
SET_COMS(5, NORMAL, NORMAL, NORMAL); // Do nothing
SET_CS(5, PRESCALER_64); // 16MHz / 64 = 250kHz
OCR5A = OCR5B = OCR5C = 0;
}
return round(count);
}
#endif
#endif // FASTIO_EXT_START
#endif // __AVR__

View File

@@ -1,350 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* Fast I/O Routines for AVR
* Use direct port manipulation to save scads of processor time.
* Contributed by Triffid_Hunter and modified by Kliment, thinkyhead, Bob-the-Kuhn, et.al.
*/
#include <avr/io.h>
#if defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1286P__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB646P__) || defined(__AVR_AT90USB647__)
#define AVR_AT90USB1286_FAMILY 1
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__)
#define AVR_ATmega1284_FAMILY 1
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define AVR_ATmega2560_FAMILY 1
#elif defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
#define AVR_ATmega2561_FAMILY 1
#elif defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__)
#define AVR_ATmega328_FAMILY 1
#endif
/**
* Include Ports and Functions
*/
#if AVR_ATmega328_FAMILY
#include "fastio/fastio_168.h"
#elif AVR_ATmega1284_FAMILY
#include "fastio/fastio_644.h"
#elif AVR_ATmega2560_FAMILY
#include "fastio/fastio_1280.h"
#elif AVR_AT90USB1286_FAMILY
#include "fastio/fastio_AT90USB.h"
#elif AVR_ATmega2561_FAMILY
#include "fastio/fastio_1281.h"
#else
#error "No FastIO definition for the selected AVR Board."
#endif
/**
* Magic I/O routines
*
* Now you can simply SET_OUTPUT(PIN); WRITE(PIN, HIGH); WRITE(PIN, LOW);
*
* Why double up on these macros? see https://gcc.gnu.org/onlinedocs/cpp/Stringification.html
*/
#define _READ(IO) TEST(DIO ## IO ## _RPORT, DIO ## IO ## _PIN)
#define _WRITE_NC(IO,V) do{ \
if (V) SBI(DIO ## IO ## _WPORT, DIO ## IO ## _PIN); \
else CBI(DIO ## IO ## _WPORT, DIO ## IO ## _PIN); \
}while(0)
#define _WRITE_C(IO,V) do{ \
uint8_t port_bits = DIO ## IO ## _WPORT; /* Get a mask from the current port bits */ \
if (V) port_bits = ~port_bits; /* For setting bits, invert the mask */ \
DIO ## IO ## _RPORT = port_bits & _BV(DIO ## IO ## _PIN); /* Atomically toggle the output port bits */ \
}while(0)
#define _WRITE(IO,V) do{ if (&(DIO ## IO ## _RPORT) < (uint8_t*)0x100) _WRITE_NC(IO,V); else _WRITE_C(IO,V); }while(0)
#define _TOGGLE(IO) (DIO ## IO ## _RPORT = _BV(DIO ## IO ## _PIN))
#define _SET_INPUT(IO) CBI(DIO ## IO ## _DDR, DIO ## IO ## _PIN)
#define _SET_OUTPUT(IO) SBI(DIO ## IO ## _DDR, DIO ## IO ## _PIN)
#define _IS_INPUT(IO) !TEST(DIO ## IO ## _DDR, DIO ## IO ## _PIN)
#define _IS_OUTPUT(IO) TEST(DIO ## IO ## _DDR, DIO ## IO ## _PIN)
// digitalRead/Write wrappers
#ifdef FASTIO_EXT_START
void extDigitalWrite(const int8_t pin, const uint8_t state);
uint8_t extDigitalRead(const int8_t pin);
#else
#define extDigitalWrite(IO,V) digitalWrite(IO,V)
#define extDigitalRead(IO) digitalRead(IO)
#endif
#define READ(IO) _READ(IO)
#define WRITE(IO,V) _WRITE(IO,V)
#define TOGGLE(IO) _TOGGLE(IO)
#define SET_INPUT(IO) _SET_INPUT(IO)
#define SET_INPUT_PULLUP(IO) do{ _SET_INPUT(IO); _WRITE(IO, HIGH); }while(0)
#define SET_INPUT_PULLDOWN SET_INPUT
#define SET_OUTPUT(IO) _SET_OUTPUT(IO)
#define SET_PWM SET_OUTPUT
#define IS_INPUT(IO) _IS_INPUT(IO)
#define IS_OUTPUT(IO) _IS_OUTPUT(IO)
#define OUT_WRITE(IO,V) do{ SET_OUTPUT(IO); WRITE(IO,V); }while(0)
/**
* Timer and Interrupt Control
*/
// Waveform Generation Modes
enum WaveGenMode : uint8_t {
WGM_NORMAL, // 0
WGM_PWM_PC_8, // 1
WGM_PWM_PC_9, // 2
WGM_PWM_PC_10, // 3
WGM_CTC_OCRnA, // 4 COM OCnx
WGM_FAST_PWM_8, // 5
WGM_FAST_PWM_9, // 6
WGM_FAST_PWM_10, // 7
WGM_PWM_PC_FC_ICRn, // 8
WGM_PWM_PC_FC_OCRnA, // 9 COM OCnA
WGM_PWM_PC_ICRn, // 10
WGM_PWM_PC_OCRnA, // 11 COM OCnA
WGM_CTC_ICRn, // 12 COM OCnx
WGM_reserved, // 13
WGM_FAST_PWM_ICRn, // 14 COM OCnA
WGM_FAST_PWM_OCRnA // 15 COM OCnA
};
// Wavefore Generation Modes (Timer 2 only)
enum WaveGenMode2 : uint8_t {
WGM2_NORMAL, // 0
WGM2_PWM_PC, // 1
WGM2_CTC_OCR2A, // 2
WGM2_FAST_PWM, // 3
WGM2_reserved_1, // 4
WGM2_PWM_PC_OCR2A, // 5
WGM2_reserved_2, // 6
WGM2_FAST_PWM_OCR2A, // 7
};
// Compare Modes
enum CompareMode : uint8_t {
COM_NORMAL, // 0
COM_TOGGLE, // 1 Non-PWM: OCnx ... Both PWM (WGM 9,11,14,15): OCnA only ... else NORMAL
COM_CLEAR_SET, // 2 Non-PWM: OCnx ... Fast PWM: OCnx/Bottom ... PF-FC: OCnx Up/Down
COM_SET_CLEAR // 3 Non-PWM: OCnx ... Fast PWM: OCnx/Bottom ... PF-FC: OCnx Up/Down
};
// Clock Sources
enum ClockSource : uint8_t {
CS_NONE, // 0
CS_PRESCALER_1, // 1
CS_PRESCALER_8, // 2
CS_PRESCALER_64, // 3
CS_PRESCALER_256, // 4
CS_PRESCALER_1024, // 5
CS_EXT_FALLING, // 6
CS_EXT_RISING // 7
};
// Clock Sources (Timer 2 only)
enum ClockSource2 : uint8_t {
CS2_NONE, // 0
CS2_PRESCALER_1, // 1
CS2_PRESCALER_8, // 2
CS2_PRESCALER_32, // 3
CS2_PRESCALER_64, // 4
CS2_PRESCALER_128, // 5
CS2_PRESCALER_256, // 6
CS2_PRESCALER_1024 // 7
};
// Get interrupt bits in an orderly way
// Ex: cs = GET_CS(0); coma1 = GET_COM(A,1);
#define GET_WGM(T) (((TCCR##T##A >> WGM##T##0) & 0x3) | ((TCCR##T##B >> WGM##T##2 << 2) & 0xC))
#define GET_CS(T) ((TCCR##T##B >> CS##T##0) & 0x7)
#define GET_COM(T,Q) ((TCCR##T##Q >> COM##T##Q##0) & 0x3)
#define GET_COMA(T) GET_COM(T,A)
#define GET_COMB(T) GET_COM(T,B)
#define GET_COMC(T) GET_COM(T,C)
#define GET_ICNC(T) (!!(TCCR##T##B & _BV(ICNC##T)))
#define GET_ICES(T) (!!(TCCR##T##B & _BV(ICES##T)))
#define GET_FOC(T,Q) (!!(TCCR##T##C & _BV(FOC##T##Q)))
#define GET_FOCA(T) GET_FOC(T,A)
#define GET_FOCB(T) GET_FOC(T,B)
#define GET_FOCC(T) GET_FOC(T,C)
// Set Wave Generation Mode bits
// Ex: SET_WGM(5,CTC_ICRn);
#define _SET_WGM(T,V) do{ \
TCCR##T##A = (TCCR##T##A & ~(0x3 << WGM##T##0)) | (( int(V) & 0x3) << WGM##T##0); \
TCCR##T##B = (TCCR##T##B & ~(0x3 << WGM##T##2)) | (((int(V) >> 2) & 0x3) << WGM##T##2); \
}while(0)
#define SET_WGM(T,V) _SET_WGM(T,WGM_##V)
// Set Clock Select bits
// Ex: SET_CS3(PRESCALER_64);
#ifdef TCCR2
#define HAS_TCCR2 1
#endif
#define _SET_CS(T,V) (TCCR##T##B = (TCCR##T##B & ~(0x7 << CS##T##0)) | ((int(V) & 0x7) << CS##T##0))
#define _SET_CS0(V) _SET_CS(0,V)
#define _SET_CS1(V) _SET_CS(1,V)
#define _SET_CS3(V) _SET_CS(3,V)
#define _SET_CS4(V) _SET_CS(4,V)
#define _SET_CS5(V) _SET_CS(5,V)
#define SET_CS0(V) _SET_CS0(CS_##V)
#define SET_CS1(V) _SET_CS1(CS_##V)
#if HAS_TCCR2
#define _SET_CS2(V) (TCCR2 = (TCCR2 & ~(0x7 << CS20)) | (int(V) << CS20))
#define SET_CS2(V) _SET_CS2(CS2_##V)
#else
#define _SET_CS2(V) _SET_CS(2,V)
#define SET_CS2(V) _SET_CS2(CS_##V)
#endif
#define SET_CS3(V) _SET_CS3(CS_##V)
#define SET_CS4(V) _SET_CS4(CS_##V)
#define SET_CS5(V) _SET_CS5(CS_##V)
#define SET_CS(T,V) SET_CS##T(V)
// Set Compare Mode bits
// Ex: SET_COMS(4,CLEAR_SET,CLEAR_SET,CLEAR_SET);
#define _SET_COM(T,Q,V) (TCCR##T##Q = (TCCR##T##Q & ~(0x3 << COM##T##Q##0)) | (int(V) << COM##T##Q##0))
#define SET_COM(T,Q,V) _SET_COM(T,Q,COM_##V)
#define SET_COMA(T,V) SET_COM(T,A,V)
#define SET_COMB(T,V) SET_COM(T,B,V)
#define SET_COMC(T,V) SET_COM(T,C,V)
#define SET_COMS(T,V1,V2,V3) do{ SET_COMA(T,V1); SET_COMB(T,V2); SET_COMC(T,V3); }while(0)
// Set Noise Canceler bit
// Ex: SET_ICNC(2,1)
#define SET_ICNC(T,V) (TCCR##T##B = (V) ? TCCR##T##B | _BV(ICNC##T) : TCCR##T##B & ~_BV(ICNC##T))
// Set Input Capture Edge Select bit
// Ex: SET_ICES(5,0)
#define SET_ICES(T,V) (TCCR##T##B = (V) ? TCCR##T##B | _BV(ICES##T) : TCCR##T##B & ~_BV(ICES##T))
// Set Force Output Compare bit
// Ex: SET_FOC(3,A,1)
#define SET_FOC(T,Q,V) (TCCR##T##C = (V) ? TCCR##T##C | _BV(FOC##T##Q) : TCCR##T##C & ~_BV(FOC##T##Q))
#define SET_FOCA(T,V) SET_FOC(T,A,V)
#define SET_FOCB(T,V) SET_FOC(T,B,V)
#define SET_FOCC(T,V) SET_FOC(T,C,V)
#if 0
/**
* PWM availability macros
*/
// Determine which hardware PWMs are already in use
#define _PWM_CHK_FAN_B(P) (P == E0_AUTO_FAN_PIN || P == E1_AUTO_FAN_PIN || P == E2_AUTO_FAN_PIN || P == E3_AUTO_FAN_PIN || P == E4_AUTO_FAN_PIN || P == E5_AUTO_FAN_PIN || P == E6_AUTO_FAN_PIN || P == E7_AUTO_FAN_PIN || P == CHAMBER_AUTO_FAN_PIN || P == COOLER_AUTO_FAN_PIN)
#if PIN_EXISTS(CONTROLLER_FAN)
#define PWM_CHK_FAN_B(P) (_PWM_CHK_FAN_B(P) || P == CONTROLLER_FAN_PIN)
#else
#define PWM_CHK_FAN_B(P) _PWM_CHK_FAN_B(P)
#endif
#if ANY_PIN(FAN, FAN1, FAN2, FAN3, FAN4, FAN5, FAN6, FAN7)
#if PIN_EXISTS(FAN7)
#define PWM_CHK_FAN_A(P) (P == FAN0_PIN || P == FAN1_PIN || P == FAN2_PIN || P == FAN3_PIN || P == FAN4_PIN || P == FAN5_PIN || P == FAN6_PIN || P == FAN7_PIN)
#elif PIN_EXISTS(FAN6)
#define PWM_CHK_FAN_A(P) (P == FAN0_PIN || P == FAN1_PIN || P == FAN2_PIN || P == FAN3_PIN || P == FAN4_PIN || P == FAN5_PIN || P == FAN6_PIN)
#elif PIN_EXISTS(FAN5)
#define PWM_CHK_FAN_A(P) (P == FAN0_PIN || P == FAN1_PIN || P == FAN2_PIN || P == FAN3_PIN || P == FAN4_PIN || P == FAN5_PIN)
#elif PIN_EXISTS(FAN4)
#define PWM_CHK_FAN_A(P) (P == FAN0_PIN || P == FAN1_PIN || P == FAN2_PIN || P == FAN3_PIN || P == FAN4_PIN)
#elif PIN_EXISTS(FAN3)
#define PWM_CHK_FAN_A(P) (P == FAN0_PIN || P == FAN1_PIN || P == FAN2_PIN || P == FAN3_PIN)
#elif PIN_EXISTS(FAN2)
#define PWM_CHK_FAN_A(P) (P == FAN0_PIN || P == FAN1_PIN || P == FAN2_PIN)
#elif PIN_EXISTS(FAN1)
#define PWM_CHK_FAN_A(P) (P == FAN0_PIN || P == FAN1_PIN)
#else
#define PWM_CHK_FAN_A(P) (P == FAN0_PIN)
#endif
#else
#define PWM_CHK_FAN_A(P) false
#endif
#if HAS_MOTOR_CURRENT_PWM
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
#define PWM_CHK_MOTOR_CURRENT(P) (P == MOTOR_CURRENT_PWM_E || P == MOTOR_CURRENT_PWM_Z || P == MOTOR_CURRENT_PWM_XY)
#elif PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
#define PWM_CHK_MOTOR_CURRENT(P) (P == MOTOR_CURRENT_PWM_E || P == MOTOR_CURRENT_PWM_Z)
#else
#define PWM_CHK_MOTOR_CURRENT(P) (P == MOTOR_CURRENT_PWM_E)
#endif
#else
#define PWM_CHK_MOTOR_CURRENT(P) false
#endif
#ifdef NUM_SERVOS
#if AVR_ATmega2560_FAMILY
#define PWM_CHK_SERVO(P) (P == 5 || (NUM_SERVOS > 12 && P == 6) || (NUM_SERVOS > 24 && P == 46)) // PWMS 3A, 4A & 5A
#elif AVR_ATmega2561_FAMILY
#define PWM_CHK_SERVO(P) (P == 5) // PWM3A
#elif AVR_ATmega1284_FAMILY
#define PWM_CHK_SERVO(P) false
#elif AVR_AT90USB1286_FAMILY
#define PWM_CHK_SERVO(P) (P == 16) // PWM3A
#elif AVR_ATmega328_FAMILY
#define PWM_CHK_SERVO(P) false
#endif
#else
#define PWM_CHK_SERVO(P) false
#endif
#if ENABLED(BARICUDA)
#if HAS_HEATER_1 && HAS_HEATER_2
#define PWM_CHK_HEATER(P) (P == HEATER_1_PIN || P == HEATER_2_PIN)
#elif HAS_HEATER_1
#define PWM_CHK_HEATER(P) (P == HEATER_1_PIN)
#endif
#else
#define PWM_CHK_HEATER(P) false
#endif
#define PWM_CHK(P) (PWM_CHK_HEATER(P) || PWM_CHK_SERVO(P) || PWM_CHK_MOTOR_CURRENT(P) || PWM_CHK_FAN_A(P) || PWM_CHK_FAN_B(P))
#endif // PWM_CHK is not used in Marlin
// define which hardware PWMs are available for the current CPU
// all timer 1 PWMS deleted from this list because they are never available
#if AVR_ATmega2560_FAMILY
#define PWM_PIN(P) ((P >= 2 && P <= 10) || P == 13 || P == 44 || P == 45 || P == 46)
#elif AVR_ATmega2561_FAMILY
#define PWM_PIN(P) ((P >= 2 && P <= 6) || P == 9)
#elif AVR_ATmega1284_FAMILY
#define PWM_PIN(P) (P == 3 || P == 4 || P == 14 || P == 15)
#elif AVR_AT90USB1286_FAMILY
#define PWM_PIN(P) (P == 0 || P == 1 || P == 14 || P == 15 || P == 16 || P == 24)
#elif AVR_ATmega328_FAMILY
#define PWM_PIN(P) (P == 3 || P == 5 || P == 6 || P == 11)
#else
#error "unknown CPU"
#endif

View File

@@ -1,26 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#if HAS_SPI_TFT || HAS_FSMC_TFT
#error "Sorry! TFT displays are not available for HAL/AVR."
#endif

View File

@@ -1,22 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once

View File

@@ -1,22 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once

View File

@@ -1,101 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* Test AVR-specific configuration values for errors at compile-time.
*/
/**
* Check for common serial pin conflicts
*/
#define CHECK_SERIAL_PIN(N) ( \
X_STOP_PIN == N || Y_STOP_PIN == N || Z_STOP_PIN == N \
|| X_MIN_PIN == N || Y_MIN_PIN == N || Z_MIN_PIN == N \
|| X_MAX_PIN == N || Y_MAX_PIN == N || Z_MAX_PIN == N \
|| X_STEP_PIN == N || Y_STEP_PIN == N || Z_STEP_PIN == N \
|| X_DIR_PIN == N || Y_DIR_PIN == N || Z_DIR_PIN == N \
|| X_ENA_PIN == N || Y_ENA_PIN == N || Z_ENA_PIN == N \
)
#if CONF_SERIAL_IS(0) // D0-D1. No known conflicts.
#endif
#if CONF_SERIAL_IS(1) && (CHECK_SERIAL_PIN(18) || CHECK_SERIAL_PIN(19))
#error "Serial Port 1 pin D18 and/or D19 conflicts with another pin on the board."
#endif
#if CONF_SERIAL_IS(2) && (CHECK_SERIAL_PIN(16) || CHECK_SERIAL_PIN(17))
#error "Serial Port 2 pin D16 and/or D17 conflicts with another pin on the board."
#endif
#if CONF_SERIAL_IS(3) && (CHECK_SERIAL_PIN(14) || CHECK_SERIAL_PIN(15))
#error "Serial Port 3 pin D14 and/or D15 conflicts with another pin on the board."
#endif
#undef CHECK_SERIAL_PIN
/**
* Checks for FAST PWM
*/
#if ALL(FAST_PWM_FAN, USE_OCR2A_AS_TOP, HAS_TCCR2)
#error "USE_OCR2A_AS_TOP does not apply to devices with a single output TIMER2."
#endif
/**
* Checks for SOFT PWM
*/
#if HAS_FAN0 && FAN_PIN == 9 && DISABLED(FAN_SOFT_PWM) && ENABLED(SPEAKER)
#error "FAN_PIN 9 Hardware PWM uses Timer 2 which conflicts with Arduino AVR Tone Timer (for SPEAKER)."
#error "Disable SPEAKER or enable FAN_SOFT_PWM."
#endif
/**
* Sanity checks for Spindle / Laser PWM
*/
#if ENABLED(SPINDLE_LASER_USE_PWM)
#include "../ServoTimers.h" // Needed to check timer availability (_useTimer3)
#if SPINDLE_LASER_PWM_PIN == 4 || WITHIN(SPINDLE_LASER_PWM_PIN, 11, 13)
#error "Counter/Timer for SPINDLE_LASER_PWM_PIN is used by a system interrupt."
#elif NUM_SERVOS > 0 && defined(_useTimer3) && (WITHIN(SPINDLE_LASER_PWM_PIN, 2, 3) || SPINDLE_LASER_PWM_PIN == 5)
#error "Counter/Timer for SPINDLE_LASER_PWM_PIN is used by the servo system."
#endif
#elif SPINDLE_LASER_FREQUENCY
#error "SPINDLE_LASER_FREQUENCY requires SPINDLE_LASER_USE_PWM."
#endif
/**
* The Trinamic library includes SoftwareSerial.h, leading to a compile error.
*/
#if BOTH(HAS_TRINAMIC_CONFIG, ENDSTOP_INTERRUPTS_FEATURE)
#error "TMCStepper includes SoftwareSerial.h which is incompatible with ENDSTOP_INTERRUPTS_FEATURE. Disable ENDSTOP_INTERRUPTS_FEATURE to continue."
#endif
#if BOTH(HAS_TMC_SW_SERIAL, MONITOR_DRIVER_STATUS)
#error "MONITOR_DRIVER_STATUS causes performance issues when used with SoftwareSerial-connected drivers. Disable MONITOR_DRIVER_STATUS or use hardware serial to continue."
#endif
/**
* Postmortem debugging
*/
#if ENABLED(POSTMORTEM_DEBUGGING)
#error "POSTMORTEM_DEBUGGING is not supported on AVR boards."
#endif
#if USING_PULLDOWNS
#error "PULLDOWN pin mode is not available on AVR boards."
#endif

View File

@@ -1,400 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* PWM print routines for Atmel 8 bit AVR CPUs
*/
#include "../../inc/MarlinConfig.h"
#define NUMBER_PINS_TOTAL NUM_DIGITAL_PINS
#if MB(BQ_ZUM_MEGA_3D, MIGHTYBOARD_REVE, MINIRAMBO, SCOOVO_X9H, TRIGORILLA_14)
#define AVR_ATmega2560_FAMILY_PLUS_70 1
#endif
#if AVR_AT90USB1286_FAMILY
// Working with Teensyduino extension so need to re-define some things
#include "pinsDebug_Teensyduino.h"
// Can't use the "digitalPinToPort" function from the Teensyduino type IDEs
// portModeRegister takes a different argument
#define digitalPinToTimer_DEBUG(p) digitalPinToTimer(p)
#define digitalPinToBitMask_DEBUG(p) digitalPinToBitMask(p)
#define digitalPinToPort_DEBUG(p) digitalPinToPort(p)
#define GET_PINMODE(pin) (*portModeRegister(pin) & digitalPinToBitMask_DEBUG(pin))
#elif AVR_ATmega2560_FAMILY_PLUS_70 // So we can access/display all the pins on boards using more than 70
#include "pinsDebug_plus_70.h"
#define digitalPinToTimer_DEBUG(p) digitalPinToTimer_plus_70(p)
#define digitalPinToBitMask_DEBUG(p) digitalPinToBitMask_plus_70(p)
#define digitalPinToPort_DEBUG(p) digitalPinToPort_plus_70(p)
bool GET_PINMODE(int8_t pin) {return *portModeRegister(digitalPinToPort_DEBUG(pin)) & digitalPinToBitMask_DEBUG(pin); }
#else
#define digitalPinToTimer_DEBUG(p) digitalPinToTimer(p)
#define digitalPinToBitMask_DEBUG(p) digitalPinToBitMask(p)
#define digitalPinToPort_DEBUG(p) digitalPinToPort(p)
bool GET_PINMODE(int8_t pin) {return *portModeRegister(digitalPinToPort_DEBUG(pin)) & digitalPinToBitMask_DEBUG(pin); }
#define GET_ARRAY_PIN(p) pgm_read_byte(&pin_array[p].pin)
#endif
#define VALID_PIN(pin) (pin >= 0 && pin < NUM_DIGITAL_PINS ? 1 : 0)
#if AVR_ATmega1284_FAMILY
#define DIGITAL_PIN_TO_ANALOG_PIN(P) int(analogInputToDigitalPin(0) - (P))
#define IS_ANALOG(P) ((P) >= analogInputToDigitalPin(7) && (P) <= analogInputToDigitalPin(0))
#else
#define DIGITAL_PIN_TO_ANALOG_PIN(P) int((P) - analogInputToDigitalPin(0))
#define IS_ANALOG(P) ((P) >= analogInputToDigitalPin(0) && ((P) <= analogInputToDigitalPin(15) || (P) <= analogInputToDigitalPin(7)))
#endif
#define GET_ARRAY_PIN(p) pgm_read_byte(&pin_array[p].pin)
#define MULTI_NAME_PAD 26 // space needed to be pretty if not first name assigned to a pin
void PRINT_ARRAY_NAME(uint8_t x) {
PGM_P const name_mem_pointer = (PGM_P)pgm_read_ptr(&pin_array[x].name);
LOOP_L_N(y, MAX_NAME_LENGTH) {
char temp_char = pgm_read_byte(name_mem_pointer + y);
if (temp_char != 0)
SERIAL_CHAR(temp_char);
else {
LOOP_L_N(i, MAX_NAME_LENGTH - y) SERIAL_CHAR(' ');
break;
}
}
}
#define GET_ARRAY_IS_DIGITAL(x) pgm_read_byte(&pin_array[x].is_digital)
#if defined(__AVR_ATmega1284P__) // 1284 IDE extensions set this to the number of
#undef NUM_DIGITAL_PINS // digital only pins while all other CPUs have it
#define NUM_DIGITAL_PINS 32 // set to digital only + digital/analog
#endif
#define PWM_PRINT(V) do{ sprintf_P(buffer, PSTR("PWM: %4d"), V); SERIAL_ECHO(buffer); }while(0)
#define PWM_CASE(N,Z) \
case TIMER##N##Z: \
if (TCCR##N##A & (_BV(COM##N##Z##1) | _BV(COM##N##Z##0))) { \
PWM_PRINT(OCR##N##Z); \
return true; \
} else return false
#define ABTEST(N) defined(TCCR##N##A) && defined(COM##N##A1)
/**
* Print a pin's PWM status.
* Return true if it's currently a PWM pin.
*/
static bool pwm_status(uint8_t pin) {
char buffer[20]; // for the sprintf statements
switch (digitalPinToTimer_DEBUG(pin)) {
#if ABTEST(0)
#ifdef TIMER0A
#if !AVR_AT90USB1286_FAMILY // not available in Teensyduino type IDEs
PWM_CASE(0, A);
#endif
#endif
PWM_CASE(0, B);
#endif
#if ABTEST(1)
PWM_CASE(1, A);
PWM_CASE(1, B);
#if defined(COM1C1) && defined(TIMER1C)
PWM_CASE(1, C);
#endif
#endif
#if ABTEST(2)
PWM_CASE(2, A);
PWM_CASE(2, B);
#endif
#if ABTEST(3)
PWM_CASE(3, A);
PWM_CASE(3, B);
#ifdef COM3C1
PWM_CASE(3, C);
#endif
#endif
#ifdef TCCR4A
PWM_CASE(4, A);
PWM_CASE(4, B);
PWM_CASE(4, C);
#endif
#if ABTEST(5)
PWM_CASE(5, A);
PWM_CASE(5, B);
PWM_CASE(5, C);
#endif
case NOT_ON_TIMER:
default:
return false;
}
SERIAL_ECHO_SP(2);
} // pwm_status
const volatile uint8_t* const PWM_other[][3] PROGMEM = {
{ &TCCR0A, &TCCR0B, &TIMSK0 },
{ &TCCR1A, &TCCR1B, &TIMSK1 },
#if ABTEST(2)
{ &TCCR2A, &TCCR2B, &TIMSK2 },
#endif
#if ABTEST(3)
{ &TCCR3A, &TCCR3B, &TIMSK3 },
#endif
#ifdef TCCR4A
{ &TCCR4A, &TCCR4B, &TIMSK4 },
#endif
#if ABTEST(5)
{ &TCCR5A, &TCCR5B, &TIMSK5 },
#endif
};
const volatile uint8_t* const PWM_OCR[][3] PROGMEM = {
#ifdef TIMER0A
{ &OCR0A, &OCR0B, 0 },
#else
{ 0, &OCR0B, 0 },
#endif
#if defined(COM1C1) && defined(TIMER1C)
{ (const uint8_t*)&OCR1A, (const uint8_t*)&OCR1B, (const uint8_t*)&OCR1C },
#else
{ (const uint8_t*)&OCR1A, (const uint8_t*)&OCR1B, 0 },
#endif
#if ABTEST(2)
{ &OCR2A, &OCR2B, 0 },
#endif
#if ABTEST(3)
#ifdef COM3C1
{ (const uint8_t*)&OCR3A, (const uint8_t*)&OCR3B, (const uint8_t*)&OCR3C },
#else
{ (const uint8_t*)&OCR3A, (const uint8_t*)&OCR3B, 0 },
#endif
#endif
#ifdef TCCR4A
{ (const uint8_t*)&OCR4A, (const uint8_t*)&OCR4B, (const uint8_t*)&OCR4C },
#endif
#if ABTEST(5)
{ (const uint8_t*)&OCR5A, (const uint8_t*)&OCR5B, (const uint8_t*)&OCR5C },
#endif
};
#define TCCR_A(T) pgm_read_word(&PWM_other[T][0])
#define TCCR_B(T) pgm_read_word(&PWM_other[T][1])
#define TIMSK(T) pgm_read_word(&PWM_other[T][2])
#define CS_0 0
#define CS_1 1
#define CS_2 2
#define WGM_0 0
#define WGM_1 1
#define WGM_2 3
#define WGM_3 4
#define TOIE 0
#define OCR_VAL(T, L) pgm_read_word(&PWM_OCR[T][L])
static void err_is_counter() { SERIAL_ECHOPGM(" non-standard PWM mode"); }
static void err_is_interrupt() { SERIAL_ECHOPGM(" compare interrupt enabled"); }
static void err_prob_interrupt() { SERIAL_ECHOPGM(" overflow interrupt enabled"); }
static void print_is_also_tied() { SERIAL_ECHOPGM(" is also tied to this pin"); SERIAL_ECHO_SP(14); }
inline void com_print(const uint8_t N, const uint8_t Z) {
const uint8_t *TCCRA = (uint8_t*)TCCR_A(N);
SERIAL_ECHOPGM(" COM", AS_DIGIT(N));
SERIAL_CHAR(Z);
SERIAL_ECHOPGM(": ", int((*TCCRA >> (6 - Z * 2)) & 0x03));
}
void timer_prefix(uint8_t T, char L, uint8_t N) { // T - timer L - pwm N - WGM bit layout
char buffer[20]; // for the sprintf statements
const uint8_t *TCCRB = (uint8_t*)TCCR_B(T),
*TCCRA = (uint8_t*)TCCR_A(T);
uint8_t WGM = (((*TCCRB & _BV(WGM_2)) >> 1) | (*TCCRA & (_BV(WGM_0) | _BV(WGM_1))));
if (N == 4) WGM |= ((*TCCRB & _BV(WGM_3)) >> 1);
SERIAL_ECHOPGM(" TIMER", AS_DIGIT(T));
SERIAL_CHAR(L);
SERIAL_ECHO_SP(3);
if (N == 3) {
const uint8_t *OCRVAL8 = (uint8_t*)OCR_VAL(T, L - 'A');
PWM_PRINT(*OCRVAL8);
}
else {
const uint16_t *OCRVAL16 = (uint16_t*)OCR_VAL(T, L - 'A');
PWM_PRINT(*OCRVAL16);
}
SERIAL_ECHOPGM(" WGM: ", WGM);
com_print(T,L);
SERIAL_ECHOPGM(" CS: ", (*TCCRB & (_BV(CS_0) | _BV(CS_1) | _BV(CS_2)) ));
SERIAL_ECHOPGM(" TCCR", AS_DIGIT(T), "A: ", *TCCRA);
SERIAL_ECHOPGM(" TCCR", AS_DIGIT(T), "B: ", *TCCRB);
const uint8_t *TMSK = (uint8_t*)TIMSK(T);
SERIAL_ECHOPGM(" TIMSK", AS_DIGIT(T), ": ", *TMSK);
const uint8_t OCIE = L - 'A' + 1;
if (N == 3) { if (WGM == 0 || WGM == 2 || WGM == 4 || WGM == 6) err_is_counter(); }
else { if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) err_is_counter(); }
if (TEST(*TMSK, OCIE)) err_is_interrupt();
if (TEST(*TMSK, TOIE)) err_prob_interrupt();
}
static void pwm_details(uint8_t pin) {
switch (digitalPinToTimer_DEBUG(pin)) {
#if ABTEST(0)
#ifdef TIMER0A
#if !AVR_AT90USB1286_FAMILY // not available in Teensyduino type IDEs
case TIMER0A: timer_prefix(0, 'A', 3); break;
#endif
#endif
case TIMER0B: timer_prefix(0, 'B', 3); break;
#endif
#if ABTEST(1)
case TIMER1A: timer_prefix(1, 'A', 4); break;
case TIMER1B: timer_prefix(1, 'B', 4); break;
#if defined(COM1C1) && defined(TIMER1C)
case TIMER1C: timer_prefix(1, 'C', 4); break;
#endif
#endif
#if ABTEST(2)
case TIMER2A: timer_prefix(2, 'A', 3); break;
case TIMER2B: timer_prefix(2, 'B', 3); break;
#endif
#if ABTEST(3)
case TIMER3A: timer_prefix(3, 'A', 4); break;
case TIMER3B: timer_prefix(3, 'B', 4); break;
#ifdef COM3C1
case TIMER3C: timer_prefix(3, 'C', 4); break;
#endif
#endif
#ifdef TCCR4A
case TIMER4A: timer_prefix(4, 'A', 4); break;
case TIMER4B: timer_prefix(4, 'B', 4); break;
case TIMER4C: timer_prefix(4, 'C', 4); break;
#endif
#if ABTEST(5)
case TIMER5A: timer_prefix(5, 'A', 4); break;
case TIMER5B: timer_prefix(5, 'B', 4); break;
case TIMER5C: timer_prefix(5, 'C', 4); break;
#endif
case NOT_ON_TIMER: break;
}
SERIAL_ECHOPGM(" ");
// on pins that have two PWMs, print info on second PWM
#if AVR_ATmega2560_FAMILY || AVR_AT90USB1286_FAMILY
// looking for port B7 - PWMs 0A and 1C
if (digitalPinToPort_DEBUG(pin) == 'B' - 64 && 0x80 == digitalPinToBitMask_DEBUG(pin)) {
#if !AVR_AT90USB1286_FAMILY
SERIAL_ECHOPGM("\n .");
SERIAL_ECHO_SP(18);
SERIAL_ECHOPGM("TIMER1C");
print_is_also_tied();
timer_prefix(1, 'C', 4);
#else
SERIAL_ECHOPGM("\n .");
SERIAL_ECHO_SP(18);
SERIAL_ECHOPGM("TIMER0A");
print_is_also_tied();
timer_prefix(0, 'A', 3);
#endif
}
#else
UNUSED(print_is_also_tied);
#endif
} // pwm_details
#ifndef digitalRead_mod // Use Teensyduino's version of digitalRead - it doesn't disable the PWMs
int digitalRead_mod(const int8_t pin) { // same as digitalRead except the PWM stop section has been removed
const uint8_t port = digitalPinToPort_DEBUG(pin);
return (port != NOT_A_PIN) && (*portInputRegister(port) & digitalPinToBitMask_DEBUG(pin)) ? HIGH : LOW;
}
#endif
#ifndef PRINT_PORT
void print_port(int8_t pin) { // print port number
#ifdef digitalPinToPort_DEBUG
uint8_t x;
SERIAL_ECHOPGM(" Port: ");
#if AVR_AT90USB1286_FAMILY
x = (pin == 46 || pin == 47) ? 'E' : digitalPinToPort_DEBUG(pin) + 64;
#else
x = digitalPinToPort_DEBUG(pin) + 64;
#endif
SERIAL_CHAR(x);
#if AVR_AT90USB1286_FAMILY
if (pin == 46)
x = '2';
else if (pin == 47)
x = '3';
else {
uint8_t temp = digitalPinToBitMask_DEBUG(pin);
for (x = '0'; x < '9' && temp != 1; x++) temp >>= 1;
}
#else
uint8_t temp = digitalPinToBitMask_DEBUG(pin);
for (x = '0'; x < '9' && temp != 1; x++) temp >>= 1;
#endif
SERIAL_CHAR(x);
#else
SERIAL_ECHO_SP(10);
#endif
}
#define PRINT_PORT(p) print_port(p)
#endif
#define PRINT_PIN(p) do{ sprintf_P(buffer, PSTR("%3d "), p); SERIAL_ECHO(buffer); }while(0)
#define PRINT_PIN_ANALOG(p) do{ sprintf_P(buffer, PSTR(" (A%2d) "), DIGITAL_PIN_TO_ANALOG_PIN(pin)); SERIAL_ECHO(buffer); }while(0)
#undef ABTEST

View File

@@ -1,65 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* Define SPI Pins: SCK, MISO, MOSI, SS
*/
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__)
#define AVR_SCK_PIN 13
#define AVR_MISO_PIN 12
#define AVR_MOSI_PIN 11
#define AVR_SS_PIN 10
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__)
#define AVR_SCK_PIN 7
#define AVR_MISO_PIN 6
#define AVR_MOSI_PIN 5
#define AVR_SS_PIN 4
#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
#define AVR_SCK_PIN 52
#define AVR_MISO_PIN 50
#define AVR_MOSI_PIN 51
#define AVR_SS_PIN 53
#elif defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB647__)
#define AVR_SCK_PIN 21
#define AVR_MISO_PIN 23
#define AVR_MOSI_PIN 22
#define AVR_SS_PIN 20
#elif defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
#define AVR_SCK_PIN 10
#define AVR_MISO_PIN 12
#define AVR_MOSI_PIN 11
#define AVR_SS_PIN 16
#endif
#ifndef SD_SCK_PIN
#define SD_SCK_PIN AVR_SCK_PIN
#endif
#ifndef SD_MISO_PIN
#define SD_MISO_PIN AVR_MISO_PIN
#endif
#ifndef SD_MOSI_PIN
#define SD_MOSI_PIN AVR_MOSI_PIN
#endif
#ifndef SD_SS_PIN
#define SD_SS_PIN AVR_SS_PIN
#endif

View File

@@ -1,260 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include <stdint.h>
// ------------------------
// Types
// ------------------------
typedef uint16_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFF
// ------------------------
// Defines
// ------------------------
#define HAL_TIMER_RATE ((F_CPU) / 8) // i.e., 2MHz or 2.5MHz
#ifndef MF_TIMER_STEP
#define MF_TIMER_STEP 1
#endif
#ifndef MF_TIMER_PULSE
#define MF_TIMER_PULSE MF_TIMER_STEP
#endif
#ifndef MF_TIMER_TEMP
#define MF_TIMER_TEMP 0
#endif
#define TEMP_TIMER_FREQUENCY ((F_CPU) / 64.0 / 256.0)
#define STEPPER_TIMER_RATE HAL_TIMER_RATE
#define STEPPER_TIMER_PRESCALE 8
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) // Cannot be of type double
#define PULSE_TIMER_RATE STEPPER_TIMER_RATE // frequency of pulse timer
#define PULSE_TIMER_PRESCALE STEPPER_TIMER_PRESCALE
#define PULSE_TIMER_TICKS_PER_US STEPPER_TIMER_TICKS_PER_US
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
#define STEPPER_ISR_ENABLED() TEST(TIMSK1, OCIE1A)
#define ENABLE_TEMPERATURE_INTERRUPT() SBI(TIMSK0, OCIE0A)
#define DISABLE_TEMPERATURE_INTERRUPT() CBI(TIMSK0, OCIE0A)
#define TEMPERATURE_ISR_ENABLED() TEST(TIMSK0, OCIE0A)
FORCE_INLINE void HAL_timer_start(const uint8_t timer_num, const uint32_t) {
switch (timer_num) {
case MF_TIMER_STEP:
// waveform generation = 0100 = CTC
SET_WGM(1, CTC_OCRnA);
// output mode = 00 (disconnected)
SET_COMA(1, NORMAL);
// Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be
// sure to regenerate speed_lookuptable.h with
// create_speed_lookuptable.py
SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
// Init Stepper ISR to 122 Hz for quick starting
// (F_CPU) / (STEPPER_TIMER_PRESCALE) / frequency
OCR1A = 0x4000;
TCNT1 = 0;
break;
case MF_TIMER_TEMP:
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0A = 128;
break;
}
}
#define TIMER_OCR_1 OCR1A
#define TIMER_COUNTER_1 TCNT1
#define TIMER_OCR_0 OCR0A
#define TIMER_COUNTER_0 TCNT0
#define _CAT(a,V...) a##V
#define HAL_timer_set_compare(timer, compare) (_CAT(TIMER_OCR_, timer) = compare)
#define HAL_timer_get_compare(timer) _CAT(TIMER_OCR_, timer)
#define HAL_timer_get_count(timer) _CAT(TIMER_COUNTER_, timer)
/**
* On AVR there is no hardware prioritization and preemption of
* interrupts, so this emulates it. The UART has first priority
* (otherwise, characters will be lost due to UART overflow).
* Then: Stepper, Endstops, Temperature, and -finally- all others.
*/
#define HAL_timer_isr_prologue(T) NOOP
#define HAL_timer_isr_epilogue(T) NOOP
#ifndef HAL_STEP_TIMER_ISR
/* 18 cycles maximum latency */
#define HAL_STEP_TIMER_ISR() \
extern "C" void TIMER1_COMPA_vect() __attribute__ ((signal, naked, used, externally_visible)); \
extern "C" void TIMER1_COMPA_vect_bottom() asm ("TIMER1_COMPA_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
void TIMER1_COMPA_vect() { \
__asm__ __volatile__ ( \
A("push r16") /* 2 Save R16 */ \
A("in r16, __SREG__") /* 1 Get SREG */ \
A("push r16") /* 2 Save SREG into stack */ \
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
A("push r16") /* 2 Save TIMSK0 into the stack */ \
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
A("sts %[timsk0], r16") /* 2 And set the new value */ \
A("lds r16, %[timsk1]") /* 2 Load into R0 the stepper timer Interrupt mask register [TIMSK1] */ \
A("andi r16,~%[msk1]") /* 1 Disable the stepper ISR */ \
A("sts %[timsk1], r16") /* 2 And set the new value */ \
A("push r16") /* 2 Save TIMSK1 into stack */ \
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
A("push r16") /* 2 Save RAMPZ into stack */ \
A("in r16, 0x3C") /* 1 Get EIND register */ \
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
A("push r1") \
A("push r18") \
A("push r19") \
A("push r20") \
A("push r21") \
A("push r22") \
A("push r23") \
A("push r24") \
A("push r25") \
A("push r26") \
A("push r27") \
A("push r30") \
A("push r31") \
A("clr r1") /* C runtime expects this register to be 0 */ \
A("call TIMER1_COMPA_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
A("pop r31") \
A("pop r30") \
A("pop r27") \
A("pop r26") \
A("pop r25") \
A("pop r24") \
A("pop r23") \
A("pop r22") \
A("pop r21") \
A("pop r20") \
A("pop r19") \
A("pop r18") \
A("pop r1") \
A("pop r0") \
A("out 0x3C, r16") /* 1 Restore EIND register */ \
A("pop r16") /* 2 Get the original RAMPZ register value */ \
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
A("pop r16") /* 2 Get the original TIMSK1 value but with stepper ISR disabled */ \
A("ori r16,%[msk1]") /* 1 Reenable the stepper ISR */ \
A("cli") /* 1 Disable global interrupts - Reenabling Stepper ISR can reenter amd temperature can reenter, and we want that, if it happens, after this ISR has ended */ \
A("sts %[timsk1], r16") /* 2 And restore the old value - This reenables the stepper ISR */ \
A("pop r16") /* 2 Get the temperature timer Interrupt mask register [TIMSK0] */ \
A("sts %[timsk0], r16") /* 2 And restore the old value - This reenables the temperature ISR */ \
A("pop r16") /* 2 Get the old SREG value */ \
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
A("pop r16") /* 2 Restore R16 value */ \
A("reti") /* 4 Return from interrupt */ \
: \
: [timsk0] "i" ((uint16_t)&TIMSK0), \
[timsk1] "i" ((uint16_t)&TIMSK1), \
[msk0] "M" ((uint8_t)(1<<OCIE0A)),\
[msk1] "M" ((uint8_t)(1<<OCIE1A)) \
: \
); \
} \
void TIMER1_COMPA_vect_bottom()
#endif // HAL_STEP_TIMER_ISR
#ifndef HAL_TEMP_TIMER_ISR
/* 14 cycles maximum latency */
#define HAL_TEMP_TIMER_ISR() \
extern "C" void TIMER0_COMPA_vect() __attribute__ ((signal, naked, used, externally_visible)); \
extern "C" void TIMER0_COMPA_vect_bottom() asm ("TIMER0_COMPA_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
void TIMER0_COMPA_vect() { \
__asm__ __volatile__ ( \
A("push r16") /* 2 Save R16 */ \
A("in r16, __SREG__") /* 1 Get SREG */ \
A("push r16") /* 2 Save SREG into stack */ \
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
A("sts %[timsk0], r16") /* 2 And set the new value */ \
A("sei") /* 1 Enable global interrupts - It is safe, as the temperature ISR is disabled, so we cannot reenter it */ \
A("push r16") /* 2 Save TIMSK0 into stack */ \
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
A("push r16") /* 2 Save RAMPZ into stack */ \
A("in r16, 0x3C") /* 1 Get EIND register */ \
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
A("push r1") \
A("push r18") \
A("push r19") \
A("push r20") \
A("push r21") \
A("push r22") \
A("push r23") \
A("push r24") \
A("push r25") \
A("push r26") \
A("push r27") \
A("push r30") \
A("push r31") \
A("clr r1") /* C runtime expects this register to be 0 */ \
A("call TIMER0_COMPA_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
A("pop r31") \
A("pop r30") \
A("pop r27") \
A("pop r26") \
A("pop r25") \
A("pop r24") \
A("pop r23") \
A("pop r22") \
A("pop r21") \
A("pop r20") \
A("pop r19") \
A("pop r18") \
A("pop r1") \
A("pop r0") \
A("out 0x3C, r16") /* 1 Restore EIND register */ \
A("pop r16") /* 2 Get the original RAMPZ register value */ \
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
A("pop r16") /* 2 Get the original TIMSK0 value but with temperature ISR disabled */ \
A("ori r16,%[msk0]") /* 1 Enable temperature ISR */ \
A("cli") /* 1 Disable global interrupts - We must do this, as we will reenable the temperature ISR, and we don't want to reenter this handler until the current one is done */ \
A("sts %[timsk0], r16") /* 2 And restore the old value */ \
A("pop r16") /* 2 Get the old SREG */ \
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
A("pop r16") /* 2 Restore R16 */ \
A("reti") /* 4 Return from interrupt */ \
: \
: [timsk0] "i"((uint16_t)&TIMSK0), \
[msk0] "M" ((uint8_t)(1<<OCIE0A)) \
: \
); \
} \
void TIMER0_COMPA_vect_bottom()
#endif // HAL_TEMP_TIMER_ISR

View File

@@ -1,201 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* HAL for Arduino Due and compatible (SAM3X8E)
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../inc/MarlinConfig.h"
#include "../../MarlinCore.h"
#include <Wire.h>
#include "usb/usb_task.h"
// ------------------------
// Public Variables
// ------------------------
uint16_t MarlinHAL::adc_result;
// ------------------------
// Public functions
// ------------------------
#if ENABLED(POSTMORTEM_DEBUGGING)
extern void install_min_serial();
#endif
void MarlinHAL::init() {
#if ENABLED(SDSUPPORT)
OUT_WRITE(SDSS, HIGH); // Try to set SDSS inactive before any other SPI users start up
#endif
usb_task_init(); // Initialize the USB stack
TERN_(POSTMORTEM_DEBUGGING, install_min_serial()); // Install the min serial handler
}
void MarlinHAL::init_board() {
#ifdef BOARD_INIT
BOARD_INIT();
#endif
}
void MarlinHAL::idletask() { usb_task_idle(); } // Perform USB stack housekeeping
uint8_t MarlinHAL::get_reset_source() {
switch ((RSTC->RSTC_SR >> 8) & 0x07) {
case 0: return RST_POWER_ON;
case 1: return RST_BACKUP;
case 2: return RST_WATCHDOG;
case 3: return RST_SOFTWARE;
case 4: return RST_EXTERNAL;
default: return 0;
}
}
void MarlinHAL::reboot() { rstc_start_software_reset(RSTC); }
// ------------------------
// Watchdog Timer
// ------------------------
#if ENABLED(USE_WATCHDOG)
// Initialize watchdog - On SAM3X, Watchdog was already configured
// and enabled or disabled at startup, so no need to reconfigure it
// here.
void MarlinHAL::watchdog_init() { WDT_Restart(WDT); } // Reset watchdog to start clean
// Reset watchdog. MUST be called at least every 4 seconds after the
// first watchdog_init or AVR will go into emergency procedures.
void MarlinHAL::watchdog_refresh() { watchdogReset(); }
#endif
// Override Arduino runtime to either config or disable the watchdog
//
// We need to configure the watchdog as soon as possible in the boot
// process, because watchdog initialization at hardware reset on SAM3X8E
// is unreliable, and there is risk of unintended resets if we delay
// that initialization to a later time.
void watchdogSetup() {
#if ENABLED(USE_WATCHDOG)
// 4 seconds timeout
uint32_t timeout = TERN(WATCHDOG_DURATION_8S, 8000, 4000);
// Calculate timeout value in WDT counter ticks: This assumes
// the slow clock is running at 32.768 kHz watchdog
// frequency is therefore 32768 / 128 = 256 Hz
timeout = (timeout << 8) / 1000;
if (timeout == 0)
timeout = 1;
else if (timeout > 0xFFF)
timeout = 0xFFF;
// We want to enable the watchdog with the specified timeout
uint32_t value =
WDT_MR_WDV(timeout) | // With the specified timeout
WDT_MR_WDD(timeout) | // and no invalid write window
#if !(SAMV70 || SAMV71 || SAME70 || SAMS70)
WDT_MR_WDRPROC | // WDT fault resets processor only - We want
// to keep PIO controller state
#endif
WDT_MR_WDDBGHLT | // WDT stops in debug state.
WDT_MR_WDIDLEHLT; // WDT stops in idle state.
#if ENABLED(WATCHDOG_RESET_MANUAL)
// We enable the watchdog timer, but only for the interrupt.
// Configure WDT to only trigger an interrupt
value |= WDT_MR_WDFIEN; // Enable WDT fault interrupt.
// Disable WDT interrupt (just in case, to avoid triggering it!)
NVIC_DisableIRQ(WDT_IRQn);
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
// Initialize WDT with the given parameters
WDT_Enable(WDT, value);
// Configure and enable WDT interrupt.
NVIC_ClearPendingIRQ(WDT_IRQn);
NVIC_SetPriority(WDT_IRQn, 0); // Use highest priority, so we detect all kinds of lockups
NVIC_EnableIRQ(WDT_IRQn);
#else
// a WDT fault triggers a reset
value |= WDT_MR_WDRSTEN;
// Initialize WDT with the given parameters
WDT_Enable(WDT, value);
#endif
// Reset the watchdog
WDT_Restart(WDT);
#else
// Make sure to completely disable the Watchdog
WDT_Disable(WDT);
#endif
}
// ------------------------
// Free Memory Accessor
// ------------------------
extern "C" {
extern unsigned int _ebss; // end of bss section
}
// Return free memory between end of heap (or end bss) and whatever is current
int freeMemory() {
int free_memory, heap_end = (int)_sbrk(0);
return (int)&free_memory - (heap_end ?: (int)&_ebss);
}
// ------------------------
// Serial Ports
// ------------------------
// Forward the default serial ports
#if USING_HW_SERIAL0
DefaultSerial1 MSerial0(false, Serial);
#endif
#if USING_HW_SERIAL1
DefaultSerial2 MSerial1(false, Serial1);
#endif
#if USING_HW_SERIAL2
DefaultSerial3 MSerial2(false, Serial2);
#endif
#if USING_HW_SERIAL3
DefaultSerial4 MSerial3(false, Serial3);
#endif
#endif // ARDUINO_ARCH_SAM

View File

@@ -1,233 +0,0 @@
/**
* Marlin 3D Printer Firmware
*
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
* Copyright (c) 2015-2016 Nico Tonnhofer wurstnase.reprap@gmail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* HAL for Arduino Due and compatible (SAM3X8E)
*/
#define CPU_32_BIT
#include "../shared/Marduino.h"
#include "../shared/eeprom_if.h"
#include "../shared/math_32bit.h"
#include "../shared/HAL_SPI.h"
#include "fastio.h"
#include <stdint.h>
#include "../../core/serial_hook.h"
// ------------------------
// Serial ports
// ------------------------
typedef ForwardSerial1Class< decltype(Serial) > DefaultSerial1;
typedef ForwardSerial1Class< decltype(Serial1) > DefaultSerial2;
typedef ForwardSerial1Class< decltype(Serial2) > DefaultSerial3;
typedef ForwardSerial1Class< decltype(Serial3) > DefaultSerial4;
extern DefaultSerial1 MSerial0;
extern DefaultSerial2 MSerial1;
extern DefaultSerial3 MSerial2;
extern DefaultSerial4 MSerial3;
#define _MSERIAL(X) MSerial##X
#define MSERIAL(X) _MSERIAL(X)
#if SERIAL_PORT == -1 || ENABLED(EMERGENCY_PARSER)
#define MYSERIAL1 customizedSerial1
#elif WITHIN(SERIAL_PORT, 0, 3)
#define MYSERIAL1 MSERIAL(SERIAL_PORT)
#else
#error "The required SERIAL_PORT must be from 0 to 3, or -1 for USB Serial."
#endif
#ifdef SERIAL_PORT_2
#if SERIAL_PORT_2 == -1 || ENABLED(EMERGENCY_PARSER)
#define MYSERIAL2 customizedSerial2
#elif WITHIN(SERIAL_PORT_2, 0, 3)
#define MYSERIAL2 MSERIAL(SERIAL_PORT_2)
#else
#error "SERIAL_PORT_2 must be from 0 to 3, or -1 for USB Serial."
#endif
#endif
#ifdef SERIAL_PORT_3
#if SERIAL_PORT_3 == -1 || ENABLED(EMERGENCY_PARSER)
#define MYSERIAL3 customizedSerial3
#elif WITHIN(SERIAL_PORT_3, 0, 3)
#define MYSERIAL3 MSERIAL(SERIAL_PORT_3)
#else
#error "SERIAL_PORT_3 must be from 0 to 3, or -1 for USB Serial."
#endif
#endif
#ifdef MMU2_SERIAL_PORT
#if WITHIN(MMU2_SERIAL_PORT, 0, 3)
#define MMU2_SERIAL MSERIAL(MMU2_SERIAL_PORT)
#else
#error "MMU2_SERIAL_PORT must be from 0 to 3."
#endif
#endif
#ifdef LCD_SERIAL_PORT
#if WITHIN(LCD_SERIAL_PORT, 0, 3)
#define LCD_SERIAL MSERIAL(LCD_SERIAL_PORT)
#else
#error "LCD_SERIAL_PORT must be from 0 to 3."
#endif
#endif
#include "MarlinSerial.h"
#include "MarlinSerialUSB.h"
// ------------------------
// Types
// ------------------------
typedef int8_t pin_t;
#define SHARED_SERVOS HAS_SERVOS // Use shared/servos.cpp
class Servo;
typedef Servo hal_servo_t;
//
// Interrupts
//
#define sei() interrupts()
#define cli() noInterrupts()
#define CRITICAL_SECTION_START() const bool _irqon = hal.isr_state(); hal.isr_off()
#define CRITICAL_SECTION_END() if (_irqon) hal.isr_on()
//
// ADC
//
#define HAL_ADC_VREF 3.3
#define HAL_ADC_RESOLUTION 10
#ifndef analogInputToDigitalPin
#define analogInputToDigitalPin(p) ((p < 12U) ? (p) + 54U : -1)
#endif
//
// Pin Mapping for M42, M43, M226
//
#define GET_PIN_MAP_PIN(index) index
#define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
//
// Tone
//
void tone(const pin_t _pin, const unsigned int frequency, const unsigned long duration=0);
void noTone(const pin_t _pin);
// ------------------------
// Class Utilities
// ------------------------
#pragma GCC diagnostic push
#if GCC_VERSION <= 50000
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
#pragma GCC diagnostic pop
#ifdef __cplusplus
extern "C" {
#endif
char *dtostrf(double __val, signed char __width, unsigned char __prec, char *__s);
#ifdef __cplusplus
}
#endif
// Return free RAM between end of heap (or end bss) and whatever is current
int freeMemory();
// ------------------------
// MarlinHAL Class
// ------------------------
class MarlinHAL {
public:
// Earliest possible init, before setup()
MarlinHAL() {}
// Watchdog
static void watchdog_init() IF_DISABLED(USE_WATCHDOG, {});
static void watchdog_refresh() IF_DISABLED(USE_WATCHDOG, {});
static void init(); // Called early in setup()
static void init_board(); // Called less early in setup()
static void reboot(); // Restart the firmware
// Interrupts
static bool isr_state() { return !__get_PRIMASK(); }
static void isr_on() { __enable_irq(); }
static void isr_off() { __disable_irq(); }
static void delay_ms(const int ms) { delay(ms); }
// Tasks, called from idle()
static void idletask();
// Reset
static uint8_t get_reset_source();
static void clear_reset_source() {}
// Free SRAM
static int freeMemory() { return ::freeMemory(); }
//
// ADC Methods
//
static uint16_t adc_result;
// Called by Temperature::init once at startup
static void adc_init() {}
// Called by Temperature::init for each sensor at startup
static void adc_enable(const uint8_t ch) {}
// Begin ADC sampling on the given channel. Called from Temperature::isr!
static void adc_start(const uint8_t ch) { adc_result = analogRead(ch); }
// Is the ADC ready for reading?
static bool adc_ready() { return true; }
// The current value of the ADC register
static uint16_t adc_value() { return adc_result; }
/**
* Set the PWM duty cycle for the pin to the given value.
* No inverting the duty cycle in this HAL.
* No changing the maximum size of the provided value to enable finer PWM duty control in this HAL.
*/
static void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t=255, const bool=false) {
analogWrite(pin, v);
}
};

View File

@@ -1,819 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Software SPI functions originally from Arduino Sd2Card Library
* Copyright (c) 2009 by William Greiman
*
* Completely rewritten and tuned by Eduardo José Tagle in 2017/2018
* in ARM thumb2 inline assembler and tuned for maximum speed and performance
* allowing SPI clocks of up to 12 Mhz to increase SD card read/write performance
*/
/**
* HAL for Arduino Due and compatible (SAM3X8E)
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../inc/MarlinConfig.h"
#include "../shared/Delay.h"
// ------------------------
// Public functions
// ------------------------
#if EITHER(DUE_SOFTWARE_SPI, FORCE_SOFT_SPI)
// ------------------------
// Software SPI
// ------------------------
// Make sure GCC optimizes this file.
// Note that this line triggers a bug in GCC which is fixed by casting.
// See the note below.
#pragma GCC optimize (3)
typedef uint8_t (*pfnSpiTransfer)(uint8_t b);
typedef void (*pfnSpiRxBlock)(uint8_t *buf, uint32_t nbyte);
typedef void (*pfnSpiTxBlock)(const uint8_t *buf, uint32_t nbyte);
/* ---------------- Macros to be able to access definitions from asm */
#define _PORT(IO) DIO ## IO ## _WPORT
#define _PIN_MASK(IO) MASK(DIO ## IO ## _PIN)
#define _PIN_SHIFT(IO) DIO ## IO ## _PIN
#define PORT(IO) _PORT(IO)
#define PIN_MASK(IO) _PIN_MASK(IO)
#define PIN_SHIFT(IO) _PIN_SHIFT(IO)
// run at ~8 .. ~10Mhz - Tx version (Rx data discarded)
static uint8_t spiTransferTx0(uint8_t bout) { // using Mode 0
uint32_t MOSI_PORT_PLUS30 = ((uint32_t) PORT(SD_MOSI_PIN)) + 0x30; /* SODR of port */
uint32_t MOSI_MASK = PIN_MASK(SD_MOSI_PIN);
uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */
uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN);
uint32_t idx = 0;
/* Negate bout, as the assembler requires a negated value */
bout = ~bout;
/* The software SPI routine */
__asm__ __volatile__(
A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax
/* Bit 7 */
A("ubfx %[idx],%[txval],#7,#1") /* Place bit 7 in bit 0 of idx*/
A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[idx],%[txval],#6,#1") /* Place bit 6 in bit 0 of idx*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 6 */
A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[idx],%[txval],#5,#1") /* Place bit 5 in bit 0 of idx*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 5 */
A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[idx],%[txval],#4,#1") /* Place bit 4 in bit 0 of idx*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 4 */
A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[idx],%[txval],#3,#1") /* Place bit 3 in bit 0 of idx*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 3 */
A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[idx],%[txval],#2,#1") /* Place bit 2 in bit 0 of idx*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 2 */
A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[idx],%[txval],#1,#1") /* Place bit 1 in bit 0 of idx*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 1 */
A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[idx],%[txval],#0,#1") /* Place bit 0 in bit 0 of idx*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 0 */
A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("nop") /* Result will be 0 */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
: [idx]"+r"( idx )
: [txval]"r"( bout ) ,
[mosi_mask]"r"( MOSI_MASK ),
[mosi_port]"r"( MOSI_PORT_PLUS30 ),
[sck_mask]"r"( SCK_MASK ),
[sck_port]"r"( SCK_PORT_PLUS30 )
: "cc"
);
return 0;
}
// Calculates the bit band alias address and returns a pointer address to word.
// addr: The byte address of bitbanding bit.
// bit: The bit position of bitbanding bit.
#define BITBAND_ADDRESS(addr, bit) \
(((uint32_t)(addr) & 0xF0000000) + 0x02000000 + ((uint32_t)(addr)&0xFFFFF)*32 + (bit)*4)
// run at ~8 .. ~10Mhz - Rx version (Tx line not altered)
static uint8_t spiTransferRx0(uint8_t) { // using Mode 0
uint32_t bin = 0;
uint32_t work = 0;
uint32_t BITBAND_MISO_PORT = BITBAND_ADDRESS( ((uint32_t)PORT(SD_MISO_PIN))+0x3C, PIN_SHIFT(SD_MISO_PIN)); /* PDSR of port in bitband area */
uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */
uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN);
/* The software SPI routine */
__asm__ __volatile__(
A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax
/* bit 7 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#7,#1") /* Store read bit as the bit 7 */
/* bit 6 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#6,#1") /* Store read bit as the bit 6 */
/* bit 5 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#5,#1") /* Store read bit as the bit 5 */
/* bit 4 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#4,#1") /* Store read bit as the bit 4 */
/* bit 3 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#3,#1") /* Store read bit as the bit 3 */
/* bit 2 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#2,#1") /* Store read bit as the bit 2 */
/* bit 1 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#1,#1") /* Store read bit as the bit 1 */
/* bit 0 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#0,#1") /* Store read bit as the bit 0 */
: [bin]"+r"(bin),
[work]"+r"(work)
: [bitband_miso_port]"r"( BITBAND_MISO_PORT ),
[sck_mask]"r"( SCK_MASK ),
[sck_port]"r"( SCK_PORT_PLUS30 )
: "cc"
);
return bin;
}
// run at ~4Mhz
static uint8_t spiTransfer1(uint8_t b) { // using Mode 0
int bits = 8;
do {
WRITE(SD_MOSI_PIN, b & 0x80);
b <<= 1; // little setup time
WRITE(SD_SCK_PIN, HIGH);
DELAY_NS(125); // 10 cycles @ 84mhz
b |= (READ(SD_MISO_PIN) != 0);
WRITE(SD_SCK_PIN, LOW);
DELAY_NS(125); // 10 cycles @ 84mhz
} while (--bits);
return b;
}
// all the others
static uint16_t spiDelayNS = 4000; // 4000ns => 125khz
static uint8_t spiTransferX(uint8_t b) { // using Mode 0
int bits = 8;
do {
WRITE(SD_MOSI_PIN, b & 0x80);
b <<= 1; // little setup time
WRITE(SD_SCK_PIN, HIGH);
DELAY_NS(spiDelayNS);
b |= (READ(SD_MISO_PIN) != 0);
WRITE(SD_SCK_PIN, LOW);
DELAY_NS(spiDelayNS);
} while (--bits);
return b;
}
// Pointers to generic functions for byte transfers
/**
* Note: The cast is unnecessary, but without it, this file triggers a GCC 4.8.3-2014 bug.
* Later GCC versions do not have this problem, but at this time (May 2018) Arduino still
* uses that buggy and obsolete GCC version!!
*/
static pfnSpiTransfer spiTransferRx = (pfnSpiTransfer)spiTransferX;
static pfnSpiTransfer spiTransferTx = (pfnSpiTransfer)spiTransferX;
// Block transfers run at ~8 .. ~10Mhz - Tx version (Rx data discarded)
static void spiTxBlock0(const uint8_t *ptr, uint32_t todo) {
uint32_t MOSI_PORT_PLUS30 = ((uint32_t) PORT(SD_MOSI_PIN)) + 0x30; /* SODR of port */
uint32_t MOSI_MASK = PIN_MASK(SD_MOSI_PIN);
uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */
uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN);
uint32_t work = 0;
uint32_t txval = 0;
/* The software SPI routine */
__asm__ __volatile__(
A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax
L("loop%=")
A("ldrb.w %[txval], [%[ptr]], #1") /* Load value to send, increment buffer */
A("mvn %[txval],%[txval]") /* Negate value */
/* Bit 7 */
A("ubfx %[work],%[txval],#7,#1") /* Place bit 7 in bit 0 of work*/
A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[work],%[txval],#6,#1") /* Place bit 6 in bit 0 of work*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 6 */
A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[work],%[txval],#5,#1") /* Place bit 5 in bit 0 of work*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 5 */
A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[work],%[txval],#4,#1") /* Place bit 4 in bit 0 of work*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 4 */
A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[work],%[txval],#3,#1") /* Place bit 3 in bit 0 of work*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 3 */
A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[work],%[txval],#2,#1") /* Place bit 2 in bit 0 of work*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 2 */
A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[work],%[txval],#1,#1") /* Place bit 1 in bit 0 of work*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 1 */
A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ubfx %[work],%[txval],#0,#1") /* Place bit 0 in bit 0 of work*/
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 0 */
A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("subs %[todo],#1") /* Decrement count of pending words to send, update status */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bne.n loop%=") /* Repeat until done */
: [ptr]"+r" ( ptr ) ,
[todo]"+r" ( todo ) ,
[work]"+r"( work ) ,
[txval]"+r"( txval )
: [mosi_mask]"r"( MOSI_MASK ),
[mosi_port]"r"( MOSI_PORT_PLUS30 ),
[sck_mask]"r"( SCK_MASK ),
[sck_port]"r"( SCK_PORT_PLUS30 )
: "cc"
);
}
static void spiRxBlock0(uint8_t *ptr, uint32_t todo) {
uint32_t bin = 0;
uint32_t work = 0;
uint32_t BITBAND_MISO_PORT = BITBAND_ADDRESS( ((uint32_t)PORT(SD_MISO_PIN))+0x3C, PIN_SHIFT(SD_MISO_PIN)); /* PDSR of port in bitband area */
uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SD_SCK_PIN)) + 0x30; /* SODR of port */
uint32_t SCK_MASK = PIN_MASK(SD_SCK_PIN);
/* The software SPI routine */
__asm__ __volatile__(
A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax
L("loop%=")
/* bit 7 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#7,#1") /* Store read bit as the bit 7 */
/* bit 6 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#6,#1") /* Store read bit as the bit 6 */
/* bit 5 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#5,#1") /* Store read bit as the bit 5 */
/* bit 4 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#4,#1") /* Store read bit as the bit 4 */
/* bit 3 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#3,#1") /* Store read bit as the bit 3 */
/* bit 2 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#2,#1") /* Store read bit as the bit 2 */
/* bit 1 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#1,#1") /* Store read bit as the bit 1 */
/* bit 0 */
A("str %[sck_mask],[%[sck_port]]") /* SODR */
A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
A("bfi %[bin],%[work],#0,#1") /* Store read bit as the bit 0 */
A("subs %[todo],#1") /* Decrement count of pending words to send, update status */
A("strb.w %[bin], [%[ptr]], #1") /* Store read value into buffer, increment buffer pointer */
A("bne.n loop%=") /* Repeat until done */
: [ptr]"+r"(ptr),
[todo]"+r"(todo),
[bin]"+r"(bin),
[work]"+r"(work)
: [bitband_miso_port]"r"( BITBAND_MISO_PORT ),
[sck_mask]"r"( SCK_MASK ),
[sck_port]"r"( SCK_PORT_PLUS30 )
: "cc"
);
}
static void spiTxBlockX(const uint8_t *buf, uint32_t todo) {
do {
(void)spiTransferTx(*buf++);
} while (--todo);
}
static void spiRxBlockX(uint8_t *buf, uint32_t todo) {
do {
*buf++ = spiTransferRx(0xFF);
} while (--todo);
}
// Pointers to generic functions for block transfers
static pfnSpiTxBlock spiTxBlock = (pfnSpiTxBlock)spiTxBlockX;
static pfnSpiRxBlock spiRxBlock = (pfnSpiRxBlock)spiRxBlockX;
#if MB(ALLIGATOR)
#define _SS_WRITE(S) WRITE(SD_SS_PIN, S)
#else
#define _SS_WRITE(S) NOOP
#endif
void spiBegin() {
SET_OUTPUT(SD_SS_PIN);
_SS_WRITE(HIGH);
SET_OUTPUT(SD_SCK_PIN);
SET_INPUT(SD_MISO_PIN);
SET_OUTPUT(SD_MOSI_PIN);
}
uint8_t spiRec() {
_SS_WRITE(LOW);
WRITE(SD_MOSI_PIN, HIGH); // Output 1s 1
uint8_t b = spiTransferRx(0xFF);
_SS_WRITE(HIGH);
return b;
}
void spiRead(uint8_t *buf, uint16_t nbyte) {
if (nbyte) {
_SS_WRITE(LOW);
WRITE(SD_MOSI_PIN, HIGH); // Output 1s 1
spiRxBlock(buf, nbyte);
_SS_WRITE(HIGH);
}
}
void spiSend(uint8_t b) {
_SS_WRITE(LOW);
(void)spiTransferTx(b);
_SS_WRITE(HIGH);
}
void spiSendBlock(uint8_t token, const uint8_t *buf) {
_SS_WRITE(LOW);
(void)spiTransferTx(token);
spiTxBlock(buf, 512);
_SS_WRITE(HIGH);
}
/**
* spiRate should be
* 0 : 8 - 10 MHz
* 1 : 4 - 5 MHz
* 2 : 2 - 2.5 MHz
* 3 : 1 - 1.25 MHz
* 4 : 500 - 625 kHz
* 5 : 250 - 312 kHz
* 6 : 125 - 156 kHz
*/
void spiInit(uint8_t spiRate) {
switch (spiRate) {
case 0:
spiTransferTx = (pfnSpiTransfer)spiTransferTx0;
spiTransferRx = (pfnSpiTransfer)spiTransferRx0;
spiTxBlock = (pfnSpiTxBlock)spiTxBlock0;
spiRxBlock = (pfnSpiRxBlock)spiRxBlock0;
break;
case 1:
spiTransferTx = (pfnSpiTransfer)spiTransfer1;
spiTransferRx = (pfnSpiTransfer)spiTransfer1;
spiTxBlock = (pfnSpiTxBlock)spiTxBlockX;
spiRxBlock = (pfnSpiRxBlock)spiRxBlockX;
break;
default:
spiDelayNS = 4000 >> (6 - spiRate); // spiRate of 2 gives the maximum error with current CPU
spiTransferTx = (pfnSpiTransfer)spiTransferX;
spiTransferRx = (pfnSpiTransfer)spiTransferX;
spiTxBlock = (pfnSpiTxBlock)spiTxBlockX;
spiRxBlock = (pfnSpiRxBlock)spiRxBlockX;
break;
}
_SS_WRITE(HIGH);
WRITE(SD_MOSI_PIN, HIGH);
WRITE(SD_SCK_PIN, LOW);
}
/** Begin SPI transaction, set clock, bit order, data mode */
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) {
// TODO: to be implemented
}
#pragma GCC reset_options
#else // !SOFTWARE_SPI
#define WHILE_TX(N) while ((SPI0->SPI_SR & SPI_SR_TDRE) == (N))
#define WHILE_RX(N) while ((SPI0->SPI_SR & SPI_SR_RDRF) == (N))
#define FLUSH_TX() do{ WHILE_RX(1) SPI0->SPI_RDR; }while(0)
#if MB(ALLIGATOR)
// slave selects controlled by SPI controller
// doesn't support changing SPI speeds for SD card
// ------------------------
// hardware SPI
// ------------------------
static bool spiInitialized = false;
void spiInit(uint8_t spiRate) {
if (spiInitialized) return;
// 8.4 MHz, 4 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.329 MHz, 0.329 MHz
constexpr int spiDivider[] = { 10, 21, 42, 84, 168, 255, 255 };
if (spiRate > 6) spiRate = 1;
// Set SPI mode 1, clock, select not active after transfer, with delay between transfers
SPI_ConfigureNPCS(SPI0, SPI_CHAN_DAC,
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDivider[spiRate]) |
SPI_CSR_DLYBCT(1));
// Set SPI mode 0, clock, select not active after transfer, with delay between transfers
SPI_ConfigureNPCS(SPI0, SPI_CHAN_EEPROM1, SPI_CSR_NCPHA |
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDivider[spiRate]) |
SPI_CSR_DLYBCT(1));
// Set SPI mode 0, clock, select not active after transfer, with delay between transfers
SPI_ConfigureNPCS(SPI0, SPI_CHAN, SPI_CSR_NCPHA |
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDivider[spiRate]) |
SPI_CSR_DLYBCT(1));
SPI_Enable(SPI0);
spiInitialized = true;
}
void spiBegin() {
if (spiInitialized) return;
// Configure SPI pins
PIO_Configure(
g_APinDescription[SD_SCK_PIN].pPort,
g_APinDescription[SD_SCK_PIN].ulPinType,
g_APinDescription[SD_SCK_PIN].ulPin,
g_APinDescription[SD_SCK_PIN].ulPinConfiguration);
PIO_Configure(
g_APinDescription[SD_MOSI_PIN].pPort,
g_APinDescription[SD_MOSI_PIN].ulPinType,
g_APinDescription[SD_MOSI_PIN].ulPin,
g_APinDescription[SD_MOSI_PIN].ulPinConfiguration);
PIO_Configure(
g_APinDescription[SD_MISO_PIN].pPort,
g_APinDescription[SD_MISO_PIN].ulPinType,
g_APinDescription[SD_MISO_PIN].ulPin,
g_APinDescription[SD_MISO_PIN].ulPinConfiguration);
// set master mode, peripheral select, fault detection
SPI_Configure(SPI0, ID_SPI0, SPI_MR_MSTR | SPI_MR_MODFDIS | SPI_MR_PS);
SPI_Enable(SPI0);
SET_OUTPUT(DAC0_SYNC_PIN);
#if HAS_MULTI_EXTRUDER
OUT_WRITE(DAC1_SYNC_PIN, HIGH);
#endif
WRITE(DAC0_SYNC_PIN, HIGH);
OUT_WRITE(SPI_EEPROM1_CS_PIN, HIGH);
OUT_WRITE(SPI_EEPROM2_CS_PIN, HIGH);
OUT_WRITE(SPI_FLASH_CS_PIN, HIGH);
WRITE(SD_SS_PIN, HIGH);
OUT_WRITE(SDSS, LOW);
PIO_Configure(
g_APinDescription[SPI_PIN].pPort,
g_APinDescription[SPI_PIN].ulPinType,
g_APinDescription[SPI_PIN].ulPin,
g_APinDescription[SPI_PIN].ulPinConfiguration
);
spiInit(1);
}
// Read single byte from SPI
uint8_t spiRec() {
// write dummy byte with address and end transmission flag
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER;
WHILE_TX(0);
WHILE_RX(0);
//DELAY_US(1U);
return SPI0->SPI_RDR;
}
uint8_t spiRec(uint32_t chan) {
WHILE_TX(0);
FLUSH_RX();
// write dummy byte with address and end transmission flag
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(chan) | SPI_TDR_LASTXFER;
WHILE_RX(0);
return SPI0->SPI_RDR;
}
// Read from SPI into buffer
void spiRead(uint8_t *buf, uint16_t nbyte) {
if (!nbyte) return;
--nbyte;
for (int i = 0; i < nbyte; i++) {
//WHILE_TX(0);
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN);
WHILE_RX(0);
buf[i] = SPI0->SPI_RDR;
//DELAY_US(1U);
}
buf[nbyte] = spiRec();
}
// Write single byte to SPI
void spiSend(const byte b) {
// write byte with address and end transmission flag
SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER;
WHILE_TX(0);
WHILE_RX(0);
SPI0->SPI_RDR;
//DELAY_US(1U);
}
void spiSend(const uint8_t *buf, size_t nbyte) {
if (!nbyte) return;
--nbyte;
for (size_t i = 0; i < nbyte; i++) {
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN);
WHILE_TX(0);
WHILE_RX(0);
SPI0->SPI_RDR;
//DELAY_US(1U);
}
spiSend(buf[nbyte]);
}
void spiSend(uint32_t chan, byte b) {
WHILE_TX(0);
// write byte with address and end transmission flag
SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(chan) | SPI_TDR_LASTXFER;
WHILE_RX(0);
FLUSH_RX();
}
void spiSend(uint32_t chan, const uint8_t *buf, size_t nbyte) {
if (!nbyte) return;
--nbyte;
for (size_t i = 0; i < nbyte; i++) {
WHILE_TX(0);
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(chan);
WHILE_RX(0);
FLUSH_RX();
}
spiSend(chan, buf[nbyte]);
}
// Write from buffer to SPI
void spiSendBlock(uint8_t token, const uint8_t *buf) {
SPI0->SPI_TDR = (uint32_t)token | SPI_PCS(SPI_CHAN);
WHILE_TX(0);
//WHILE_RX(0);
//SPI0->SPI_RDR;
for (int i = 0; i < 511; i++) {
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN);
WHILE_TX(0);
WHILE_RX(0);
SPI0->SPI_RDR;
//DELAY_US(1U);
}
spiSend(buf[511]);
}
/** Begin SPI transaction, set clock, bit order, data mode */
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) {
// TODO: to be implemented
}
#else // U8G compatible hardware SPI
#define SPI_MODE_0_DUE_HW 2 // DUE CPHA control bit is inverted
#define SPI_MODE_1_DUE_HW 3
#define SPI_MODE_2_DUE_HW 0
#define SPI_MODE_3_DUE_HW 1
/**
* The DUE SPI controller is set up so the upper word of the longword
* written to the transmit data register selects which SPI Chip Select
* Register is used. This allows different streams to have different SPI
* settings.
*
* In practice it's spooky. Some combinations hang the system, while others
* upset the peripheral device.
*
* SPI mode should be the same for all streams. The FYSETC_MINI_12864 gets
* upset if the clock phase changes after chip select goes active.
*
* SPI_CSR_CSAAT should be set for all streams. If not the WHILE_TX(0)
* macro returns immediately which can result in the SPI chip select going
* inactive before all the data has been sent.
*
* The TMC2130 library uses SPI0->SPI_CSR[3].
*
* The U8G hardware SPI uses SPI0->SPI_CSR[0]. The system hangs and/or the
* FYSETC_MINI_12864 gets upset if lower baud rates are used and the SD card
* is inserted or removed.
*
* The SD card uses SPI0->SPI_CSR[3]. Efforts were made to use [1] and [2]
* but they all resulted in hangs or garbage on the LCD.
*
* The SPI controlled chip selects are NOT enabled in the GPIO controller.
* The application must control the chip select.
*
* All of the above can be avoided by defining FORCE_SOFT_SPI to force the
* display to use software SPI.
*/
void spiInit(uint8_t spiRate=6) { // Default to slowest rate if not specified)
// Also sets U8G SPI rate to 4MHz and the SPI mode to 3
// 8.4 MHz, 4 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.329 MHz, 0.329 MHz
constexpr int spiDivider[] = { 10, 21, 42, 84, 168, 255, 255 };
if (spiRate > 6) spiRate = 1;
// Enable PIOA and SPI0
REG_PMC_PCER0 = (1UL << ID_PIOA) | (1UL << ID_SPI0);
// Disable PIO on A26 and A27
REG_PIOA_PDR = 0x0C000000;
OUT_WRITE(SDSS, HIGH);
// Reset SPI0 (from sam lib)
SPI0->SPI_CR = SPI_CR_SPIDIS;
SPI0->SPI_CR = SPI_CR_SWRST;
SPI0->SPI_CR = SPI_CR_SWRST;
SPI0->SPI_CR = SPI_CR_SPIEN;
// TMC2103 compatible setup
// Master mode, no fault detection, PCS bits in data written to TDR select CSR register
SPI0->SPI_MR = SPI_MR_MSTR | SPI_MR_PS | SPI_MR_MODFDIS;
// SPI mode 3, 8 Bit data transfer, baud rate
SPI0->SPI_CSR[3] = SPI_CSR_SCBR(spiDivider[spiRate]) | SPI_CSR_CSAAT | SPI_MODE_3_DUE_HW; // use same CSR as TMC2130
SPI0->SPI_CSR[0] = SPI_CSR_SCBR(spiDivider[1]) | SPI_CSR_CSAAT | SPI_MODE_3_DUE_HW; // U8G default to 4MHz
}
void spiBegin() { spiInit(); }
static uint8_t spiTransfer(uint8_t data) {
WHILE_TX(0);
SPI0->SPI_TDR = (uint32_t)data | 0x00070000UL; // Add TMC2130 PCS bits to every byte (use SPI0->SPI_CSR[3])
WHILE_TX(0);
WHILE_RX(0);
return SPI0->SPI_RDR;
}
uint8_t spiRec() { return (uint8_t)spiTransfer(0xFF); }
void spiRead(uint8_t *buf, uint16_t nbyte) {
for (int i = 0; i < nbyte; i++)
buf[i] = spiTransfer(0xFF);
}
void spiSend(uint8_t data) { spiTransfer(data); }
void spiSend(const uint8_t *buf, size_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++)
spiTransfer(buf[i]);
}
void spiSendBlock(uint8_t token, const uint8_t *buf) {
spiTransfer(token);
for (uint16_t i = 0; i < 512; i++)
spiTransfer(buf[i]);
}
#endif // !ALLIGATOR
#endif // !SOFTWARE_SPI
#endif // ARDUINO_ARCH_SAM

View File

@@ -1,26 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include <SPI.h>
using MarlinSPI = SPIClass;

View File

@@ -1,494 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
* Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved.
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../inc/MarlinConfig.h"
#include "MarlinSerial.h"
#include "InterruptVectors.h"
#include "../../MarlinCore.h"
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0, 0, { 0 } };
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 };
template<typename Cfg> bool MarlinSerial<Cfg>::_written = false;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_dropped_bytes = 0;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_buffer_overruns = 0;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_framing_errors = 0;
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0;
// A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() asm volatile("": : :"memory");
#include "../../feature/e_parser.h"
// (called with RX interrupts disabled)
template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() {
static EmergencyParser::State emergency_state; // = EP_RESET
// Get the tail - Nothing can alter its value while we are at this ISR
const ring_buffer_pos_t t = rx_buffer.tail;
// Get the head pointer
ring_buffer_pos_t h = rx_buffer.head;
// Get the next element
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART
uint8_t c = HWUART->UART_RHR;
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the RX FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Calculate count of bytes stored into the RX buffer
// Keep track of the maximum count of enqueued bytes
if (Cfg::MAX_RX_QUEUED) NOLESS(rx_max_enqueued, rx_count);
if (Cfg::XONOFF) {
// If the last char that was sent was an XON
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
// Bytes stored into the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// If over 12.5% of RX buffer capacity, send XOFF before running out of
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
// and stop sending bytes. This translates to 13mS propagation time.
if (rx_count >= (Cfg::RX_SIZE) / 8) {
// At this point, definitely no TX interrupt was executing, since the TX isr can't be preempted.
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
// to be in the middle of trying to disable the RX interrupt in the main program, eventually the
// enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure
// the sending of the XOFF char is to send it HERE AND NOW.
// About to send the XOFF char
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
// Wait until the TX register becomes empty and send it - Here there could be a problem
// - While waiting for the TX register to empty, the RX register could receive a new
// character. This must also handle that situation!
uint32_t status;
while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) {
if (status & UART_SR_RXRDY) {
// We received a char while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART
c = HWUART->UART_RHR;
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
}
sw_barrier();
}
HWUART->UART_THR = XOFF_CHAR;
// At this point there could be a race condition between the write() function
// and this sending of the XOFF char. This interrupt could happen between the
// wait to be empty TX buffer loop and the actual write of the character. Since
// the TX buffer is full because it's sending the XOFF char, the only way to be
// sure the write() function will succeed is to wait for the XOFF char to be
// completely sent. Since an extra character could be received during the wait
// it must also be handled!
while (!((status = HWUART->UART_SR) & UART_SR_TXRDY)) {
if (status & UART_SR_RXRDY) {
// A char arrived while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART
c = HWUART->UART_RHR;
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
}
sw_barrier();
}
// At this point everything is ready. The write() function won't
// have any issues writing to the UART TX register if it needs to!
}
}
}
// Store the new head value
rx_buffer.head = h;
}
template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::_tx_thr_empty_irq() {
if (Cfg::TX_SIZE > 0) {
// Read positions
uint8_t t = tx_buffer.tail;
const uint8_t h = tx_buffer.head;
if (Cfg::XONOFF) {
// If an XON char is pending to be sent, do it now
if (xon_xoff_state == XON_CHAR) {
// Send the character
HWUART->UART_THR = XON_CHAR;
// Remember we sent it.
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
// If nothing else to transmit, just disable TX interrupts.
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;
return;
}
}
// If nothing to transmit, just disable TX interrupts. This could
// happen as the result of the non atomicity of the disabling of RX
// interrupts that could end reenabling TX interrupts as a side effect.
if (h == t) {
HWUART->UART_IDR = UART_IDR_TXRDY;
return;
}
// There is something to TX, Send the next byte
const uint8_t c = tx_buffer.buffer[t];
t = (t + 1) & (Cfg::TX_SIZE - 1);
HWUART->UART_THR = c;
tx_buffer.tail = t;
// Disable interrupts if there is nothing to transmit following this byte
if (h == t) HWUART->UART_IDR = UART_IDR_TXRDY;
}
}
template<typename Cfg>
void MarlinSerial<Cfg>::UART_ISR() {
const uint32_t status = HWUART->UART_SR;
// Data received?
if (status & UART_SR_RXRDY) store_rxd_char();
if (Cfg::TX_SIZE > 0) {
// Something to send, and TX interrupts are enabled (meaning something to send)?
if ((status & UART_SR_TXRDY) && (HWUART->UART_IMR & UART_IMR_TXRDY)) _tx_thr_empty_irq();
}
// Acknowledge errors
if ((status & UART_SR_OVRE) || (status & UART_SR_FRAME)) {
if (Cfg::DROPPED_RX && (status & UART_SR_OVRE) && !++rx_dropped_bytes) --rx_dropped_bytes;
if (Cfg::RX_OVERRUNS && (status & UART_SR_OVRE) && !++rx_buffer_overruns) --rx_buffer_overruns;
if (Cfg::RX_FRAMING_ERRORS && (status & UART_SR_FRAME) && !++rx_framing_errors) --rx_framing_errors;
// TODO: error reporting outside ISR
HWUART->UART_CR = UART_CR_RSTSTA;
}
}
// Public Methods
template<typename Cfg>
void MarlinSerial<Cfg>::begin(const long baud_setting) {
// Disable UART interrupt in NVIC
NVIC_DisableIRQ( HWUART_IRQ );
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
// Disable clock
pmc_disable_periph_clk( HWUART_IRQ_ID );
// Configure PMC
pmc_enable_periph_clk( HWUART_IRQ_ID );
// Disable PDC channel
HWUART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS;
// Reset and disable receiver and transmitter
HWUART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS;
// Configure mode: 8bit, No parity, 1 bit stop
HWUART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO;
// Configure baudrate (asynchronous, no oversampling)
HWUART->UART_BRGR = (SystemCoreClock / (baud_setting << 4));
// Configure interrupts
HWUART->UART_IDR = 0xFFFFFFFF;
HWUART->UART_IER = UART_IER_RXRDY | UART_IER_OVRE | UART_IER_FRAME;
// Install interrupt handler
install_isr(HWUART_IRQ, UART_ISR);
// Configure priority. We need a very high priority to avoid losing characters
// and we need to be able to preempt the Stepper ISR and everything else!
// (this could probably be fixed by using DMA with the Serial port)
NVIC_SetPriority(HWUART_IRQ, 1);
// Enable UART interrupt in NVIC
NVIC_EnableIRQ(HWUART_IRQ);
// Enable receiver and transmitter
HWUART->UART_CR = UART_CR_RXEN | UART_CR_TXEN;
if (Cfg::TX_SIZE > 0) _written = false;
}
template<typename Cfg>
void MarlinSerial<Cfg>::end() {
// Disable UART interrupt in NVIC
NVIC_DisableIRQ( HWUART_IRQ );
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
pmc_disable_periph_clk( HWUART_IRQ_ID );
}
template<typename Cfg>
int MarlinSerial<Cfg>::peek() {
const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
return v;
}
template<typename Cfg>
int MarlinSerial<Cfg>::read() {
const ring_buffer_pos_t h = rx_buffer.head;
ring_buffer_pos_t t = rx_buffer.tail;
if (h == t) return -1;
int v = rx_buffer.buffer[t];
t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1);
// Advance tail
rx_buffer.tail = t;
if (Cfg::XONOFF) {
// If the XOFF char was sent, or about to be sent...
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// Get count of bytes in the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// When below 10% of RX buffer capacity, send XON before running out of RX buffer bytes
if (rx_count < (Cfg::RX_SIZE) / 10) {
if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR;
// Enable TX isr.
HWUART->UART_IER = UART_IER_TXRDY;
}
else {
// If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
HWUART->UART_THR = XON_CHAR;
}
}
}
}
return v;
}
template<typename Cfg>
typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available() {
const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail;
return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1);
}
template<typename Cfg>
void MarlinSerial<Cfg>::flush() {
rx_buffer.tail = rx_buffer.head;
if (Cfg::XONOFF) {
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR;
// Enable TX isr.
HWUART->UART_IER = UART_IER_TXRDY;
}
else {
// If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
HWUART->UART_THR = XON_CHAR;
}
}
}
}
template<typename Cfg>
size_t MarlinSerial<Cfg>::write(const uint8_t c) {
_written = true;
if (Cfg::TX_SIZE == 0) {
while (!(HWUART->UART_SR & UART_SR_TXRDY)) sw_barrier();
HWUART->UART_THR = c;
}
else {
// If the TX interrupts are disabled and the data register
// is empty, just write the byte to the data register and
// be done. This shortcut helps significantly improve the
// effective datarate at high (>500kbit/s) bitrates, where
// interrupt overhead becomes a slowdown.
// Yes, there is a race condition between the sending of the
// XOFF char at the RX isr, but it is properly handled there
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) {
HWUART->UART_THR = c;
return 1;
}
const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1);
// If global interrupts are disabled (as the result of being called from an ISR)...
if (!hal.isr_state()) {
// Make room by polling if it is possible to transmit, and do so!
while (i == tx_buffer.tail) {
// If we can transmit another byte, do it.
if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq();
// Make sure compiler rereads tx_buffer.tail
sw_barrier();
}
}
else {
// Interrupts are enabled, just wait until there is space
while (i == tx_buffer.tail) sw_barrier();
}
// Store new char. head is always safe to move
tx_buffer.buffer[tx_buffer.head] = c;
tx_buffer.head = i;
// Enable TX isr - Non atomic, but it will eventually enable TX isr
HWUART->UART_IER = UART_IER_TXRDY;
}
return 1;
}
template<typename Cfg>
void MarlinSerial<Cfg>::flushTX() {
// TX
if (Cfg::TX_SIZE == 0) {
// No bytes written, no need to flush. This special case is needed since there's
// no way to force the TXC (transmit complete) bit to 1 during initialization.
if (!_written) return;
// Wait until everything was transmitted
while (!(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
else {
// If we have never written a byte, no need to flush. This special
// case is needed since there is no way to force the TXC (transmit
// complete) bit to 1 during initialization
if (!_written) return;
// If global interrupts are disabled (as the result of being called from an ISR)...
if (!hal.isr_state()) {
// Wait until everything was transmitted - We must do polling, as interrupts are disabled
while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) {
// If there is more space, send an extra character
if (HWUART->UART_SR & UART_SR_TXRDY) _tx_thr_empty_irq();
sw_barrier();
}
}
else {
// Wait until everything was transmitted
while (tx_buffer.head != tx_buffer.tail || !(HWUART->UART_SR & UART_SR_TXEMPTY)) sw_barrier();
}
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
}
// If not using the USB port as serial port
#if defined(SERIAL_PORT) && SERIAL_PORT >= 0
template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT> >;
MSerialT1 customizedSerial1(MarlinSerialCfg<SERIAL_PORT>::EMERGENCYPARSER);
#endif
#if defined(SERIAL_PORT_2) && SERIAL_PORT_2 >= 0
template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT_2> >;
MSerialT2 customizedSerial2(MarlinSerialCfg<SERIAL_PORT_2>::EMERGENCYPARSER);
#endif
#if defined(SERIAL_PORT_3) && SERIAL_PORT_3 >= 0
template class MarlinSerial< MarlinSerialCfg<SERIAL_PORT_3> >;
MSerialT3 customizedSerial3(MarlinSerialCfg<SERIAL_PORT_3>::EMERGENCYPARSER);
#endif
#endif // ARDUINO_ARCH_SAM

View File

@@ -1,156 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* MarlinSerial_Due.h - Hardware serial library for Arduino DUE
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
* Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved.
*/
#include <WString.h>
#include "../../inc/MarlinConfigPre.h"
#include "../../core/serial_hook.h"
// Define constants and variables for buffering incoming serial data. We're
// using a ring buffer (I think), in which rx_buffer_head is the index of the
// location to which to write the next incoming character and rx_buffer_tail
// is the index of the location from which to read.
// 256 is the max limit due to uint8_t head and tail. Use only powers of 2. (...,16,32,64,128,256)
#ifndef RX_BUFFER_SIZE
#define RX_BUFFER_SIZE 128
#endif
#ifndef TX_BUFFER_SIZE
#define TX_BUFFER_SIZE 32
#endif
//#if ENABLED(SERIAL_XON_XOFF) && RX_BUFFER_SIZE < 1024
// #error "SERIAL_XON_XOFF requires RX_BUFFER_SIZE >= 1024 for reliable transfers without drops."
//#elif RX_BUFFER_SIZE && (RX_BUFFER_SIZE < 2 || !IS_POWER_OF_2(RX_BUFFER_SIZE))
// #error "RX_BUFFER_SIZE must be a power of 2 greater than 1."
//#elif TX_BUFFER_SIZE && (TX_BUFFER_SIZE < 2 || TX_BUFFER_SIZE > 256 || !IS_POWER_OF_2(TX_BUFFER_SIZE))
// #error "TX_BUFFER_SIZE must be 0, a power of 2 greater than 1, and no greater than 256."
//#endif
// Templated type selector
template<bool b, typename T, typename F> struct TypeSelector { typedef T type;} ;
template<typename T, typename F> struct TypeSelector<false, T, F> { typedef F type; };
// Templated structure wrapper
template<typename S, unsigned int addr> struct StructWrapper {
constexpr StructWrapper(int) {}
FORCE_INLINE S* operator->() const { return (S*)addr; }
};
template<typename Cfg>
class MarlinSerial {
protected:
// Information for all supported UARTs
static constexpr uint32_t BASES[] = {0x400E0800U, 0x40098000U, 0x4009C000U, 0x400A0000U, 0x400A4000U};
static constexpr IRQn_Type IRQS[] = { UART_IRQn, USART0_IRQn, USART1_IRQn, USART2_IRQn, USART3_IRQn};
static constexpr int IRQ_IDS[] = { ID_UART, ID_USART0, ID_USART1, ID_USART2, ID_USART3};
// Alias for shorter code
static constexpr StructWrapper<Uart,BASES[Cfg::PORT]> HWUART = 0;
static constexpr IRQn_Type HWUART_IRQ = IRQS[Cfg::PORT];
static constexpr int HWUART_IRQ_ID = IRQ_IDS[Cfg::PORT];
// Base size of type on buffer size
typedef typename TypeSelector<(Cfg::RX_SIZE>256), uint16_t, uint8_t>::type ring_buffer_pos_t;
struct ring_buffer_r {
volatile ring_buffer_pos_t head, tail;
unsigned char buffer[Cfg::RX_SIZE];
};
struct ring_buffer_t {
volatile uint8_t head, tail;
unsigned char buffer[Cfg::TX_SIZE];
};
static ring_buffer_r rx_buffer;
static ring_buffer_t tx_buffer;
static bool _written;
static constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
// XON / XOFF character definitions
static constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
static uint8_t xon_xoff_state,
rx_dropped_bytes,
rx_buffer_overruns,
rx_framing_errors;
static ring_buffer_pos_t rx_max_enqueued;
FORCE_INLINE static void store_rxd_char();
FORCE_INLINE static void _tx_thr_empty_irq();
static void UART_ISR();
public:
MarlinSerial() {};
static void begin(const long);
static void end();
static int peek();
static int read();
static void flush();
static ring_buffer_pos_t available();
static size_t write(const uint8_t c);
static void flushTX();
static bool emergency_parser_enabled() { return Cfg::EMERGENCYPARSER; }
FORCE_INLINE static uint8_t dropped() { return Cfg::DROPPED_RX ? rx_dropped_bytes : 0; }
FORCE_INLINE static uint8_t buffer_overruns() { return Cfg::RX_OVERRUNS ? rx_buffer_overruns : 0; }
FORCE_INLINE static uint8_t framing_errors() { return Cfg::RX_FRAMING_ERRORS ? rx_framing_errors : 0; }
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return Cfg::MAX_RX_QUEUED ? rx_max_enqueued : 0; }
};
// Serial port configuration
template <uint8_t serial>
struct MarlinSerialCfg {
static constexpr int PORT = serial;
static constexpr unsigned int RX_SIZE = RX_BUFFER_SIZE;
static constexpr unsigned int TX_SIZE = TX_BUFFER_SIZE;
static constexpr bool XONOFF = ENABLED(SERIAL_XON_XOFF);
static constexpr bool EMERGENCYPARSER = ENABLED(EMERGENCY_PARSER);
static constexpr bool DROPPED_RX = ENABLED(SERIAL_STATS_DROPPED_RX);
static constexpr bool RX_OVERRUNS = ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS);
static constexpr bool RX_FRAMING_ERRORS = ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS);
static constexpr bool MAX_RX_QUEUED = ENABLED(SERIAL_STATS_MAX_RX_QUEUED);
};
#if defined(SERIAL_PORT) && SERIAL_PORT >= 0
typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT> > > MSerialT1;
extern MSerialT1 customizedSerial1;
#endif
#if defined(SERIAL_PORT_2) && SERIAL_PORT_2 >= 0
typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT_2> > > MSerialT2;
extern MSerialT2 customizedSerial2;
#endif
#if defined(SERIAL_PORT_3) && SERIAL_PORT_3 >= 0
typedef Serial1Class< MarlinSerial< MarlinSerialCfg<SERIAL_PORT_3> > > MSerialT3;
extern MSerialT3 customizedSerial3;
#endif

View File

@@ -1,142 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_SAM
/**
* MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
* Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved.
*/
#include "../../inc/MarlinConfig.h"
#if HAS_USB_SERIAL
#include "MarlinSerialUSB.h"
// Imports from Atmel USB Stack/CDC implementation
extern "C" {
bool usb_task_cdc_isenabled();
bool usb_task_cdc_dtr_active();
bool udi_cdc_is_rx_ready();
int udi_cdc_getc();
bool udi_cdc_is_tx_ready();
int udi_cdc_putc(int value);
}
// Pending character
static int pending_char = -1;
// Public Methods
void MarlinSerialUSB::begin(const long) {}
void MarlinSerialUSB::end() {}
int MarlinSerialUSB::peek() {
if (pending_char >= 0)
return pending_char;
// If USB CDC not enumerated or not configured on the PC side
if (!usb_task_cdc_isenabled())
return -1;
// If no bytes sent from the PC
if (!udi_cdc_is_rx_ready())
return -1;
pending_char = udi_cdc_getc();
TERN_(EMERGENCY_PARSER, emergency_parser.update(static_cast<MSerialT1*>(this)->emergency_state, (char)pending_char));
return pending_char;
}
int MarlinSerialUSB::read() {
if (pending_char >= 0) {
int ret = pending_char;
pending_char = -1;
return ret;
}
// If USB CDC not enumerated or not configured on the PC side
if (!usb_task_cdc_isenabled())
return -1;
// If no bytes sent from the PC
if (!udi_cdc_is_rx_ready())
return -1;
int c = udi_cdc_getc();
TERN_(EMERGENCY_PARSER, emergency_parser.update(static_cast<MSerialT1*>(this)->emergency_state, (char)c));
return c;
}
int MarlinSerialUSB::available() {
if (pending_char > 0) return pending_char;
return pending_char == 0 ||
// or USB CDC enumerated and configured on the PC side and some bytes where sent to us */
(usb_task_cdc_isenabled() && udi_cdc_is_rx_ready());
}
void MarlinSerialUSB::flush() { }
size_t MarlinSerialUSB::write(const uint8_t c) {
/* Do not even bother sending anything if USB CDC is not enumerated
or not configured on the PC side or there is no program on the PC
listening to our messages */
if (!usb_task_cdc_isenabled() || !usb_task_cdc_dtr_active())
return 0;
/* Wait until the PC has read the pending to be sent data */
while (usb_task_cdc_isenabled() &&
usb_task_cdc_dtr_active() &&
!udi_cdc_is_tx_ready()) {
};
/* Do not even bother sending anything if USB CDC is not enumerated
or not configured on the PC side or there is no program on the PC
listening to our messages at this point */
if (!usb_task_cdc_isenabled() || !usb_task_cdc_dtr_active())
return 0;
// Fifo full
// udi_cdc_signal_overrun();
udi_cdc_putc(c);
return 1;
}
// Preinstantiate
#if SERIAL_PORT == -1
MSerialT1 customizedSerial1(TERN0(EMERGENCY_PARSER, true));
#endif
#if SERIAL_PORT_2 == -1
MSerialT2 customizedSerial2(TERN0(EMERGENCY_PARSER, true));
#endif
#if SERIAL_PORT_3 == -1
MSerialT3 customizedSerial3(TERN0(EMERGENCY_PARSER, true));
#endif
#endif // HAS_USB_SERIAL
#endif // ARDUINO_ARCH_SAM

View File

@@ -1,65 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* MarlinSerialUSB_Due.h - Hardware Serial over USB (CDC) library for Arduino DUE
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
*/
#include "../../inc/MarlinConfig.h"
#include "../../core/serial_hook.h"
#include <WString.h>
struct MarlinSerialUSB {
void begin(const long);
void end();
int peek();
int read();
void flush();
int available();
size_t write(const uint8_t c);
#if ENABLED(SERIAL_STATS_DROPPED_RX)
FORCE_INLINE uint32_t dropped() { return 0; }
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
FORCE_INLINE int rxMaxEnqueued() { return 0; }
#endif
};
#if SERIAL_PORT == -1
typedef Serial1Class<MarlinSerialUSB> MSerialT1;
extern MSerialT1 customizedSerial1;
#endif
#if SERIAL_PORT_2 == -1
typedef Serial1Class<MarlinSerialUSB> MSerialT2;
extern MSerialT2 customizedSerial2;
#endif
#if SERIAL_PORT_3 == -1
typedef Serial1Class<MarlinSerialUSB> MSerialT3;
extern MSerialT3 customizedSerial3;
#endif

View File

@@ -1,91 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(POSTMORTEM_DEBUGGING)
#include "../shared/MinSerial.h"
#include <stdarg.h>
static void TXBegin() {
// Disable UART interrupt in NVIC
NVIC_DisableIRQ( UART_IRQn );
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
// Disable clock
pmc_disable_periph_clk( ID_UART );
// Configure PMC
pmc_enable_periph_clk( ID_UART );
// Disable PDC channel
UART->UART_PTCR = UART_PTCR_RXTDIS | UART_PTCR_TXTDIS;
// Reset and disable receiver and transmitter
UART->UART_CR = UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS | UART_CR_TXDIS;
// Configure mode: 8bit, No parity, 1 bit stop
UART->UART_MR = UART_MR_CHMODE_NORMAL | US_MR_CHRL_8_BIT | US_MR_NBSTOP_1_BIT | UART_MR_PAR_NO;
// Configure baudrate (asynchronous, no oversampling) to BAUDRATE bauds
UART->UART_BRGR = (SystemCoreClock / (BAUDRATE << 4));
// Enable receiver and transmitter
UART->UART_CR = UART_CR_RXEN | UART_CR_TXEN;
}
// A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() __asm__ volatile("": : :"memory");
static void TX(char c) {
while (!(UART->UART_SR & UART_SR_TXRDY)) { WDT_Restart(WDT); sw_barrier(); };
UART->UART_THR = c;
}
void install_min_serial() {
HAL_min_serial_init = &TXBegin;
HAL_min_serial_out = &TX;
}
#if DISABLED(DYNAMIC_VECTORTABLE)
extern "C" {
__attribute__((naked)) void JumpHandler_ASM() {
__asm__ __volatile__ (
"b CommonHandler_ASM\n"
);
}
void __attribute__((naked, alias("JumpHandler_ASM"))) HardFault_Handler();
void __attribute__((naked, alias("JumpHandler_ASM"))) BusFault_Handler();
void __attribute__((naked, alias("JumpHandler_ASM"))) UsageFault_Handler();
void __attribute__((naked, alias("JumpHandler_ASM"))) MemManage_Handler();
void __attribute__((naked, alias("JumpHandler_ASM"))) NMI_Handler();
}
#endif
#endif // POSTMORTEM_DEBUGGING
#endif // ARDUINO_ARCH_SAM

View File

@@ -1,163 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/*
Copyright (c) 2013 Arduino LLC. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../inc/MarlinConfig.h"
#if HAS_SERVOS
#include "../shared/servo.h"
#include "../shared/servo_private.h"
static Flags<_Nbr_16timers> DisablePending; // ISR should disable the timer at the next timer reset
// ------------------------
/// Interrupt handler for the TC0 channel 1.
// ------------------------
void Servo_Handler(const timer16_Sequence_t, Tc*, const uint8_t);
#ifdef _useTimer1
void HANDLER_FOR_TIMER1() { Servo_Handler(_timer1, TC_FOR_TIMER1, CHANNEL_FOR_TIMER1); }
#endif
#ifdef _useTimer2
void HANDLER_FOR_TIMER2() { Servo_Handler(_timer2, TC_FOR_TIMER2, CHANNEL_FOR_TIMER2); }
#endif
#ifdef _useTimer3
void HANDLER_FOR_TIMER3() { Servo_Handler(_timer3, TC_FOR_TIMER3, CHANNEL_FOR_TIMER3); }
#endif
#ifdef _useTimer4
void HANDLER_FOR_TIMER4() { Servo_Handler(_timer4, TC_FOR_TIMER4, CHANNEL_FOR_TIMER4); }
#endif
#ifdef _useTimer5
void HANDLER_FOR_TIMER5() { Servo_Handler(_timer5, TC_FOR_TIMER5, CHANNEL_FOR_TIMER5); }
#endif
void Servo_Handler(const timer16_Sequence_t timer, Tc *tc, const uint8_t channel) {
static int8_t Channel[_Nbr_16timers]; // Servo counters to pulse (or -1 for refresh interval)
int8_t cho = Channel[timer]; // Handle the prior Channel[timer] first
if (cho < 0) { // Channel -1 indicates the refresh interval completed...
tc->TC_CHANNEL[channel].TC_CCR |= TC_CCR_SWTRG; // ...so reset the timer
if (DisablePending[timer]) {
// Disabling only after the full servo period expires prevents
// pulses being too close together if immediately re-enabled.
DisablePending.clear(timer);
TC_Stop(tc, channel);
tc->TC_CHANNEL[channel].TC_SR; // clear interrupt
return;
}
}
else if (SERVO_INDEX(timer, cho) < ServoCount) // prior channel handled?
extDigitalWrite(SERVO(timer, cho).Pin.nbr, LOW); // pulse the prior channel LOW
Channel[timer] = ++cho; // go to the next channel (or 0)
if (cho < SERVOS_PER_TIMER && SERVO_INDEX(timer, cho) < ServoCount) {
tc->TC_CHANNEL[channel].TC_RA = tc->TC_CHANNEL[channel].TC_CV + SERVO(timer, cho).ticks;
if (SERVO(timer, cho).Pin.isActive) // activated?
extDigitalWrite(SERVO(timer, cho).Pin.nbr, HIGH); // yes: pulse HIGH
}
else {
// finished all channels so wait for the refresh period to expire before starting over
const unsigned int cval = tc->TC_CHANNEL[channel].TC_CV + 128 / (SERVO_TIMER_PRESCALER), // allow 128 cycles to ensure the next CV not missed
ival = (unsigned int)usToTicks(REFRESH_INTERVAL); // at least REFRESH_INTERVAL has elapsed
tc->TC_CHANNEL[channel].TC_RA = max(cval, ival);
Channel[timer] = -1; // reset the timer CCR on the next call
}
tc->TC_CHANNEL[channel].TC_SR; // clear interrupt
}
static void _initISR(Tc *tc, uint32_t channel, uint32_t id, IRQn_Type irqn) {
pmc_enable_periph_clk(id);
TC_Configure(tc, channel,
TC_CMR_WAVE // Waveform mode
| TC_CMR_WAVSEL_UP_RC // Counter running up and reset when equal to RC
| (SERVO_TIMER_PRESCALER == 2 ? TC_CMR_TCCLKS_TIMER_CLOCK1 : 0) // MCK/2
| (SERVO_TIMER_PRESCALER == 8 ? TC_CMR_TCCLKS_TIMER_CLOCK2 : 0) // MCK/8
| (SERVO_TIMER_PRESCALER == 32 ? TC_CMR_TCCLKS_TIMER_CLOCK3 : 0) // MCK/32
| (SERVO_TIMER_PRESCALER == 128 ? TC_CMR_TCCLKS_TIMER_CLOCK4 : 0) // MCK/128
);
// Wait 1ms before the first ISR
TC_SetRA(tc, channel, (F_CPU) / (SERVO_TIMER_PRESCALER) / 1000UL); // 1ms
// Configure and enable interrupt
NVIC_EnableIRQ(irqn);
tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPAS; // TC_IER_CPAS: RA Compare
// Enables the timer clock and performs a software reset to start the counting
TC_Start(tc, channel);
}
void initISR(const timer16_Sequence_t timer_index) {
CRITICAL_SECTION_START();
const bool disable_soon = DisablePending[timer_index];
DisablePending.clear(timer_index);
CRITICAL_SECTION_END();
if (!disable_soon) switch (timer_index) {
default: break;
#ifdef _useTimer1
case _timer1: return _initISR(TC_FOR_TIMER1, CHANNEL_FOR_TIMER1, ID_TC_FOR_TIMER1, IRQn_FOR_TIMER1);
#endif
#ifdef _useTimer2
case _timer2: return _initISR(TC_FOR_TIMER2, CHANNEL_FOR_TIMER2, ID_TC_FOR_TIMER2, IRQn_FOR_TIMER2);
#endif
#ifdef _useTimer3
case _timer3: return _initISR(TC_FOR_TIMER3, CHANNEL_FOR_TIMER3, ID_TC_FOR_TIMER3, IRQn_FOR_TIMER3);
#endif
#ifdef _useTimer4
case _timer4: return _initISR(TC_FOR_TIMER4, CHANNEL_FOR_TIMER4, ID_TC_FOR_TIMER4, IRQn_FOR_TIMER4);
#endif
#ifdef _useTimer5
case _timer5: return _initISR(TC_FOR_TIMER5, CHANNEL_FOR_TIMER5, ID_TC_FOR_TIMER5, IRQn_FOR_TIMER5);
#endif
}
}
void finISR(const timer16_Sequence_t timer_index) {
// Timer is disabled from the ISR, to ensure proper final pulse length.
DisablePending.set(timer_index);
}
#endif // HAS_SERVOS
#endif // ARDUINO_ARCH_SAM

View File

@@ -1,107 +0,0 @@
/**
* Copyright (c) 2013 Arduino LLC. All right reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* Defines for 16 bit timers used with Servo library
*
* If _useTimerX is defined then TimerX is a 32 bit timer on the current board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many timers are available.
*/
/**
* SAM Only definitions
* --------------------
*/
// For SAM3X:
//!#define _useTimer1
//!#define _useTimer2
#define _useTimer3
//!#define _useTimer4
#define _useTimer5
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays
#define SERVO_TIMER_PRESCALER 2 // timer prescaler
/*
TC0, chan 0 => TC0_Handler
TC0, chan 1 => TC1_Handler
TC0, chan 2 => TC2_Handler
TC1, chan 0 => TC3_Handler
TC1, chan 1 => TC4_Handler
TC1, chan 2 => TC5_Handler
TC2, chan 0 => TC6_Handler
TC2, chan 1 => TC7_Handler
TC2, chan 2 => TC8_Handler
*/
#ifdef _useTimer1
#define TC_FOR_TIMER1 TC1
#define CHANNEL_FOR_TIMER1 0
#define ID_TC_FOR_TIMER1 ID_TC3
#define IRQn_FOR_TIMER1 TC3_IRQn
#define HANDLER_FOR_TIMER1 TC3_Handler
#endif
#ifdef _useTimer2
#define TC_FOR_TIMER2 TC1
#define CHANNEL_FOR_TIMER2 1
#define ID_TC_FOR_TIMER2 ID_TC4
#define IRQn_FOR_TIMER2 TC4_IRQn
#define HANDLER_FOR_TIMER2 TC4_Handler
#endif
#ifdef _useTimer3
#define TC_FOR_TIMER3 TC1
#define CHANNEL_FOR_TIMER3 2
#define ID_TC_FOR_TIMER3 ID_TC5
#define IRQn_FOR_TIMER3 TC5_IRQn
#define HANDLER_FOR_TIMER3 TC5_Handler
#endif
#ifdef _useTimer4
#define TC_FOR_TIMER4 TC0
#define CHANNEL_FOR_TIMER4 2
#define ID_TC_FOR_TIMER4 ID_TC2
#define IRQn_FOR_TIMER4 TC2_IRQn
#define HANDLER_FOR_TIMER4 TC2_Handler
#endif
#ifdef _useTimer5
#define TC_FOR_TIMER5 TC0
#define CHANNEL_FOR_TIMER5 0
#define ID_TC_FOR_TIMER5 ID_TC0
#define IRQn_FOR_TIMER5 TC0_IRQn
#define HANDLER_FOR_TIMER5 TC0_Handler
#endif
typedef enum : unsigned char {
#ifdef _useTimer1
_timer1,
#endif
#ifdef _useTimer2
_timer2,
#endif
#ifdef _useTimer3
_timer3,
#endif
#ifdef _useTimer4
_timer4,
#endif
#ifdef _useTimer5
_timer5,
#endif
_Nbr_16timers
} timer16_Sequence_t;

View File

@@ -1,60 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* SAMD51 HAL developed by Giuliano Zaro (AKA GMagician)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Description: Tone function for Arduino Due and compatible (SAM3X8E)
* Derived from https://forum.arduino.cc/index.php?topic=136500.msg2903012#msg2903012
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../inc/MarlinConfig.h"
#include "HAL.h"
static pin_t tone_pin;
volatile static int32_t toggles;
void tone(const pin_t _pin, const unsigned int frequency, const unsigned long duration/*=0*/) {
tone_pin = _pin;
toggles = 2 * frequency * duration / 1000;
HAL_timer_start(MF_TIMER_TONE, 2 * frequency);
}
void noTone(const pin_t _pin) {
HAL_timer_disable_interrupt(MF_TIMER_TONE);
extDigitalWrite(_pin, LOW);
}
HAL_TONE_TIMER_ISR() {
static uint8_t pin_state = 0;
HAL_timer_isr_prologue(MF_TIMER_TONE);
if (toggles) {
toggles--;
extDigitalWrite(tone_pin, (pin_state ^= 1));
}
else noTone(tone_pin); // turn off interrupt
}
#endif // ARDUINO_ARCH_SAM

View File

@@ -1,998 +0,0 @@
/**
* Marlin 3D Printer Firmware
*
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
* Copyright (c) 2015-2016 Nico Tonnhofer wurstnase.reprap@gmail.com
* Copyright (c) 2016 Victor Perez victor_pv@hotmail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../inc/MarlinConfig.h"
#if ENABLED(FLASH_EEPROM_EMULATION)
/* EEPROM emulation over flash with reduced wear
*
* We will use 2 contiguous groups of pages as main and alternate.
* We want an structure that allows to read as fast as possible,
* without the need of scanning the whole FLASH memory.
*
* FLASH bits default erased state is 1, and can be set to 0
* on a per bit basis. To reset them to 1, a full page erase
* is needed.
*
* Values are stored as differences that should be applied to a
* completely erased EEPROM (filled with 0xFFs). We just encode
* the starting address of the values to change, the length of
* the block of new values, and the values themselves. All diffs
* are accumulated into a RAM buffer, compacted into the least
* amount of non overlapping diffs possible and sorted by starting
* address before being saved into the next available page of FLASH
* of the current group.
* Once the current group is completely full, we compact it and save
* it into the other group, then erase the current group and switch
* to that new group and set it as current.
*
* The FLASH endurance is about 1/10 ... 1/100 of an EEPROM
* endurance, but EEPROM endurance is specified per byte, not
* per page. We can't emulate EE endurance with FLASH for all
* bytes, but we can emulate endurance for a given percent of
* bytes.
*/
//#define EE_EMU_DEBUG
#define EEPROMSize 4096
#define PagesPerGroup 128
#define GroupCount 2
#define PageSize 256U
/* Flash storage */
typedef struct FLASH_SECTOR {
uint8_t page[PageSize];
} FLASH_SECTOR_T;
#define PAGE_FILL \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, \
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF
#define FLASH_INIT_FILL \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL, \
PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL,PAGE_FILL
/* This is the FLASH area used to emulate a 2Kbyte EEPROM -- We need this buffer aligned
to a 256 byte boundary. */
static const uint8_t flashStorage[PagesPerGroup * GroupCount * PageSize] __attribute__ ((aligned (PageSize))) = { FLASH_INIT_FILL };
/* Get the address of an specific page */
static const FLASH_SECTOR_T* getFlashStorage(int page) {
return (const FLASH_SECTOR_T*)&flashStorage[page*PageSize];
}
static uint8_t buffer[256] = {0}, // The RAM buffer to accumulate writes
curPage = 0, // Current FLASH page inside the group
curGroup = 0xFF; // Current FLASH group
#define DEBUG_OUT ENABLED(EE_EMU_DEBUG)
#include "../../core/debug_out.h"
static void ee_Dump(const int page, const void *data) {
#ifdef EE_EMU_DEBUG
const uint8_t *c = (const uint8_t*) data;
char buffer[80];
sprintf_P(buffer, PSTR("Page: %d (0x%04x)\n"), page, page);
DEBUG_ECHO(buffer);
char* p = &buffer[0];
for (int i = 0; i< PageSize; ++i) {
if ((i & 0xF) == 0) p += sprintf_P(p, PSTR("%04x] "), i);
p += sprintf_P(p, PSTR(" %02x"), c[i]);
if ((i & 0xF) == 0xF) {
*p++ = '\n';
*p = 0;
DEBUG_ECHO(buffer);
p = &buffer[0];
}
}
#else
UNUSED(page);
UNUSED(data);
#endif
}
/* Flash Writing Protection Key */
#define FWP_KEY 0x5Au
#if SAM4S_SERIES
#define EEFC_FCR_FCMD(value) \
((EEFC_FCR_FCMD_Msk & ((value) << EEFC_FCR_FCMD_Pos)))
#define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE | EEFC_FSR_FLERR)
#else
#define EEFC_ERROR_FLAGS (EEFC_FSR_FLOCKE | EEFC_FSR_FCMDE)
#endif
/**
* Writes the contents of the specified page (no previous erase)
* @param page (page #)
* @param data (pointer to the data buffer)
*/
__attribute__ ((long_call, section (".ramfunc")))
static bool ee_PageWrite(uint16_t page, const void *data) {
uint16_t i;
uint32_t addrflash = uint32_t(getFlashStorage(page));
// Read the flash contents
uint32_t pageContents[PageSize>>2];
memcpy(pageContents, (void*)addrflash, PageSize);
// We ONLY want to toggle bits that have changed, and that have changed to 0.
// SAM3X8E tends to destroy contiguous bits if reprogrammed without erasing, so
// we try by all means to avoid this. That is why it says: "The Partial
// Programming mode works only with 128-bit (or higher) boundaries. It cannot
// be used with boundaries lower than 128 bits (8, 16 or 32-bit for example)."
// All bits that did not change, set them to 1.
for (i = 0; i <PageSize >> 2; i++)
pageContents[i] = (((uint32_t*)data)[i]) | (~(pageContents[i] ^ ((uint32_t*)data)[i]));
DEBUG_ECHO_MSG("EEPROM PageWrite ", page);
DEBUG_ECHOLNPGM(" in FLASH address ", (uint32_t)addrflash);
DEBUG_ECHOLNPGM(" base address ", (uint32_t)getFlashStorage(0));
DEBUG_FLUSH();
// Get the page relative to the start of the EFC controller, and the EFC controller to use
Efc *efc;
uint16_t fpage;
if (addrflash >= IFLASH1_ADDR) {
efc = EFC1;
fpage = (addrflash - IFLASH1_ADDR) / IFLASH1_PAGE_SIZE;
}
else {
efc = EFC0;
fpage = (addrflash - IFLASH0_ADDR) / IFLASH0_PAGE_SIZE;
}
// Get the page that must be unlocked, then locked
uint16_t lpage = fpage & (~((IFLASH0_LOCK_REGION_SIZE / IFLASH0_PAGE_SIZE) - 1));
// Disable all interrupts
__disable_irq();
// Get the FLASH wait states
uint32_t orgWS = (efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos;
// Set wait states to 6 (SAM errata)
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(6);
// Unlock the flash page
uint32_t status;
efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(lpage) | EEFC_FCR_FCMD(EFC_FCMD_CLB);
while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
// force compiler to not optimize this -- NOPs don't work!
__asm__ __volatile__("");
};
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
DEBUG_ECHO_MSG("EEPROM Unlock failure for page ", page);
return false;
}
// Write page and lock: Writing 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.
const uint32_t * aligned_src = (const uint32_t *) &pageContents[0]; /*data;*/
uint32_t * p_aligned_dest = (uint32_t *) addrflash;
for (i = 0; i < (IFLASH0_PAGE_SIZE / sizeof(uint32_t)); ++i) {
*p_aligned_dest++ = *aligned_src++;
}
efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(fpage) | EEFC_FCR_FCMD(EFC_FCMD_WPL);
while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
// force compiler to not optimize this -- NOPs don't work!
__asm__ __volatile__("");
};
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
DEBUG_ECHO_MSG("EEPROM Write failure for page ", page);
return false;
}
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
// Compare contents
if (memcmp(getFlashStorage(page),data,PageSize)) {
#ifdef EE_EMU_DEBUG
DEBUG_ECHO_MSG("EEPROM Verify Write failure for page ", page);
ee_Dump( page, (uint32_t *)addrflash);
ee_Dump(-page, data);
// Calculate count of changed bits
uint32_t *p1 = (uint32_t*)addrflash;
uint32_t *p2 = (uint32_t*)data;
int count = 0;
for (i =0; i<PageSize >> 2; i++) {
if (p1[i] != p2[i]) {
uint32_t delta = p1[i] ^ p2[i];
while (delta) {
if ((delta&1) != 0)
count++;
delta >>= 1;
}
}
}
DEBUG_ECHOLNPGM("--> Differing bits: ", count);
#endif
return false;
}
return true;
}
/**
* Erases the contents of the specified page
* @param page (page #)
*/
__attribute__ ((long_call, section (".ramfunc")))
static bool ee_PageErase(uint16_t page) {
uint16_t i;
uint32_t addrflash = uint32_t(getFlashStorage(page));
DEBUG_ECHO_MSG("EEPROM PageErase ", page);
DEBUG_ECHOLNPGM(" in FLASH address ", (uint32_t)addrflash);
DEBUG_ECHOLNPGM(" base address ", (uint32_t)getFlashStorage(0));
DEBUG_FLUSH();
// Get the page relative to the start of the EFC controller, and the EFC controller to use
Efc *efc;
uint16_t fpage;
if (addrflash >= IFLASH1_ADDR) {
efc = EFC1;
fpage = (addrflash - IFLASH1_ADDR) / IFLASH1_PAGE_SIZE;
}
else {
efc = EFC0;
fpage = (addrflash - IFLASH0_ADDR) / IFLASH0_PAGE_SIZE;
}
// Get the page that must be unlocked, then locked
uint16_t lpage = fpage & (~((IFLASH0_LOCK_REGION_SIZE / IFLASH0_PAGE_SIZE) - 1));
// Disable all interrupts
__disable_irq();
// Get the FLASH wait states
uint32_t orgWS = (efc->EEFC_FMR & EEFC_FMR_FWS_Msk) >> EEFC_FMR_FWS_Pos;
// Set wait states to 6 (SAM errata)
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(6);
// Unlock the flash page
uint32_t status;
efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(lpage) | EEFC_FCR_FCMD(EFC_FCMD_CLB);
while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
// force compiler to not optimize this -- NOPs don't work!
__asm__ __volatile__("");
};
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
DEBUG_ECHO_MSG("EEPROM Unlock failure for page ",page);
return false;
}
// Erase Write page and lock: Writing 8-bit and 16-bit data is not allowed and may lead to unpredictable data corruption.
uint32_t * p_aligned_dest = (uint32_t *) addrflash;
for (i = 0; i < (IFLASH0_PAGE_SIZE / sizeof(uint32_t)); ++i) {
*p_aligned_dest++ = 0xFFFFFFFF;
}
efc->EEFC_FCR = EEFC_FCR_FKEY(FWP_KEY) | EEFC_FCR_FARG(fpage) | EEFC_FCR_FCMD(EFC_FCMD_EWPL);
while (((status = efc->EEFC_FSR) & EEFC_FSR_FRDY) != EEFC_FSR_FRDY) {
// force compiler to not optimize this -- NOPs don't work!
__asm__ __volatile__("");
};
if ((status & EEFC_ERROR_FLAGS) != 0) {
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
DEBUG_ECHO_MSG("EEPROM Erase failure for page ",page);
return false;
}
// Restore original wait states
efc->EEFC_FMR = (efc->EEFC_FMR & (~EEFC_FMR_FWS_Msk)) | EEFC_FMR_FWS(orgWS);
// Reenable interrupts
__enable_irq();
// Check erase
uint32_t * aligned_src = (uint32_t *) addrflash;
for (i = 0; i < PageSize >> 2; i++) {
if (*aligned_src++ != 0xFFFFFFFF) {
DEBUG_ECHO_MSG("EEPROM Verify Erase failure for page ",page);
ee_Dump(page, (uint32_t *)addrflash);
return false;
}
}
return true;
}
static uint8_t ee_Read(uint32_t address, bool excludeRAMBuffer=false) {
uint32_t baddr;
uint32_t blen;
// If we were requested an address outside of the emulated range, fail now
if (address >= EEPROMSize)
return false;
// Check that the value is not contained in the RAM buffer
if (!excludeRAMBuffer) {
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
baddr = buffer[i] | (buffer[i + 1] << 8);
// Get the length of the block
blen = buffer[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF)
break;
// Check if data is contained in this block
if (address >= baddr &&
address < (baddr + blen)) {
// Yes, it is contained. Return it!
return buffer[i + 3 + address - baddr];
}
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address)
break;
// Jump to the next block
i += 3 + blen;
}
}
// It is NOT on the RAM buffer. It could be stored in FLASH. We are
// ensured on a given FLASH page, address contents are never repeated
// but on different pages, there is no such warranty, so we must go
// backwards from the last written FLASH page to the first one.
for (int page = curPage - 1; page >= 0; --page) {
// Get a pointer to the flash page
uint8_t *pflash = (uint8_t*)getFlashStorage(page + curGroup * PagesPerGroup);
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
baddr = pflash[i] | (pflash[i + 1] << 8);
// Get the length of the block
blen = pflash[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF)
break;
// Check if data is contained in this block
if (address >= baddr && address < (baddr + blen))
return pflash[i + 3 + address - baddr]; // Yes, it is contained. Return it!
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
}
}
// If reached here, value is not stored, so return its default value
return 0xFF;
}
static uint32_t ee_GetAddrRange(uint32_t address, bool excludeRAMBuffer=false) {
uint32_t baddr,
blen,
nextAddr = 0xFFFF,
nextRange = 0;
// Check that the value is not contained in the RAM buffer
if (!excludeRAMBuffer) {
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
baddr = buffer[i] | (buffer[i + 1] << 8);
// Get the length of the block
blen = buffer[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF) break;
// Check if address and address + 1 is contained in this block
if (address >= baddr && address < (baddr + blen))
return address | ((blen - address + baddr) << 16); // Yes, it is contained. Return it!
// Otherwise, check if we can use it as a limit
if (baddr > address && baddr < nextAddr) {
nextAddr = baddr;
nextRange = blen;
}
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
}
}
// It is NOT on the RAM buffer. It could be stored in FLASH. We are
// ensured on a given FLASH page, address contents are never repeated
// but on different pages, there is no such warranty, so we must go
// backwards from the last written FLASH page to the first one.
for (int page = curPage - 1; page >= 0; --page) {
// Get a pointer to the flash page
uint8_t *pflash = (uint8_t*)getFlashStorage(page + curGroup * PagesPerGroup);
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
baddr = pflash[i] | (pflash[i + 1] << 8);
// Get the length of the block
blen = pflash[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF) break;
// Check if data is contained in this block
if (address >= baddr && address < (baddr + blen))
return address | ((blen - address + baddr) << 16); // Yes, it is contained. Return it!
// Otherwise, check if we can use it as a limit
if (baddr > address && baddr < nextAddr) {
nextAddr = baddr;
nextRange = blen;
}
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
}
}
// If reached here, we will return the next valid address
return nextAddr | (nextRange << 16);
}
static bool ee_IsPageClean(int page) {
uint32_t *pflash = (uint32_t*) getFlashStorage(page);
for (uint16_t i = 0; i < (PageSize >> 2); ++i)
if (*pflash++ != 0xFFFFFFFF) return false;
return true;
}
static bool ee_Flush(uint32_t overrideAddress = 0xFFFFFFFF, uint8_t overrideData=0xFF) {
// Check if RAM buffer has something to be written
bool isEmpty = true;
uint32_t *p = (uint32_t*) &buffer[0];
for (uint16_t j = 0; j < (PageSize >> 2); j++) {
if (*p++ != 0xFFFFFFFF) {
isEmpty = false;
break;
}
}
// If something has to be written, do so!
if (!isEmpty) {
// Write the current ram buffer into FLASH
ee_PageWrite(curPage + curGroup * PagesPerGroup, buffer);
// Clear the RAM buffer
memset(buffer, 0xFF, sizeof(buffer));
// Increment the page to use the next time
++curPage;
}
// Did we reach the maximum count of available pages per group for storage ?
if (curPage < PagesPerGroup) {
// Do we have an override address ?
if (overrideAddress < EEPROMSize) {
// Yes, just store the value into the RAM buffer
buffer[0] = overrideAddress & 0xFF;
buffer[0 + 1] = (overrideAddress >> 8) & 0xFF;
buffer[0 + 2] = 1;
buffer[0 + 3] = overrideData;
}
// Done!
return true;
}
// We have no space left on the current group - We must compact the values
uint16_t i = 0;
// Compute the next group to use
int curwPage = 0, curwGroup = curGroup + 1;
if (curwGroup >= GroupCount) curwGroup = 0;
uint32_t rdAddr = 0;
do {
// Get the next valid range
uint32_t addrRange = ee_GetAddrRange(rdAddr, true);
// Make sure not to skip the override address, if specified
int rdRange;
if (overrideAddress < EEPROMSize &&
rdAddr <= overrideAddress &&
(addrRange & 0xFFFF) > overrideAddress) {
rdAddr = overrideAddress;
rdRange = 1;
}
else {
rdAddr = addrRange & 0xFFFF;
rdRange = addrRange >> 16;
}
// If no range, break loop
if (rdRange == 0)
break;
do {
// Get the value
uint8_t rdValue = overrideAddress == rdAddr ? overrideData : ee_Read(rdAddr, true);
// Do not bother storing default values
if (rdValue != 0xFF) {
// If we have room, add it to the buffer
if (buffer[i + 2] == 0xFF) {
// Uninitialized buffer, just add it!
buffer[i] = rdAddr & 0xFF;
buffer[i + 1] = (rdAddr >> 8) & 0xFF;
buffer[i + 2] = 1;
buffer[i + 3] = rdValue;
}
else {
// Buffer already has contents. Check if we can extend it
// Get the address of the block
uint32_t baddr = buffer[i] | (buffer[i + 1] << 8);
// Get the length of the block
uint32_t blen = buffer[i + 2];
// Can we expand it ?
if (rdAddr == (baddr + blen) &&
i < (PageSize - 4) && /* This block has a chance to contain data AND */
buffer[i + 2] < (PageSize - i - 3)) {/* There is room for this block to be expanded */
// Yes, do it
++buffer[i + 2];
// And store the value
buffer[i + 3 + rdAddr - baddr] = rdValue;
}
else {
// No, we can't expand it - Skip the existing block
i += 3 + blen;
// Can we create a new slot ?
if (i > (PageSize - 4)) {
// Not enough space - Write the current buffer to FLASH
ee_PageWrite(curwPage + curwGroup * PagesPerGroup, buffer);
// Advance write page (as we are compacting, should never overflow!)
++curwPage;
// Clear RAM buffer
memset(buffer, 0xFF, sizeof(buffer));
// Start fresh */
i = 0;
}
// Enough space, add the new block
buffer[i] = rdAddr & 0xFF;
buffer[i + 1] = (rdAddr >> 8) & 0xFF;
buffer[i + 2] = 1;
buffer[i + 3] = rdValue;
}
}
}
// Go to the next address
++rdAddr;
// Repeat for bytes of this range
} while (--rdRange);
// Repeat until we run out of ranges
} while (rdAddr < EEPROMSize);
// We must erase the previous group, in preparation for the next swap
for (int page = 0; page < curPage; page++) {
ee_PageErase(page + curGroup * PagesPerGroup);
}
// Finally, Now the active group is the created new group
curGroup = curwGroup;
curPage = curwPage;
// Done!
return true;
}
static bool ee_Write(uint32_t address, uint8_t data) {
// If we were requested an address outside of the emulated range, fail now
if (address >= EEPROMSize) return false;
// Lets check if we have a block with that data previously defined. Block
// start addresses are always sorted in ascending order
uint16_t i = 0;
while (i <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Get the address of the block
uint32_t baddr = buffer[i] | (buffer[i + 1] << 8);
// Get the length of the block
uint32_t blen = buffer[i + 2];
// If we reach the end of the list, break loop
if (blen == 0xFF)
break;
// Check if data is contained in this block
if (address >= baddr &&
address < (baddr + blen)) {
// Yes, it is contained. Just modify it
buffer[i + 3 + address - baddr] = data;
// Done!
return true;
}
// Maybe we could add it to the front or to the back
// of this block ?
if ((address + 1) == baddr || address == (baddr + blen)) {
// Potentially, it could be done. But we must ensure there is room
// so we can expand the block. Lets find how much free space remains
uint32_t iend = i;
do {
uint32_t ln = buffer[iend + 2];
if (ln == 0xFF) break;
iend += 3 + ln;
} while (iend <= (PageSize - 4)); /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
// Here, inxt points to the first free address in the buffer. Do we have room ?
if (iend < PageSize) {
// Yes, at least a byte is free - We can expand the block
// Do we have to insert at the beginning ?
if ((address + 1) == baddr) {
// Insert at the beginning
// Make room at the beginning for our byte
memmove(&buffer[i + 3 + 1], &buffer[i + 3], iend - i - 3);
// Adjust the header and store the data
buffer[i] = address & 0xFF;
buffer[i + 1] = (address >> 8) & 0xFF;
buffer[i + 2]++;
buffer[i + 3] = data;
}
else {
// Insert at the end - There is a very interesting thing that could happen here:
// Maybe we could coalesce the next block with this block. Let's try to do it!
uint16_t inext = i + 3 + blen;
if (inext <= (PageSize - 4) &&
(buffer[inext] | uint16_t(buffer[inext + 1] << 8)) == (baddr + blen + 1)) {
// YES! ... we can coalesce blocks! . Do it!
// Adjust this block header to include the next one
buffer[i + 2] += buffer[inext + 2] + 1;
// Store data at the right place
buffer[i + 3 + blen] = data;
// Remove the next block header and append its data
memmove(&buffer[inext + 1], &buffer[inext + 3], iend - inext - 3);
// Finally, as we have saved 2 bytes at the end, make sure to clean them
buffer[iend - 2] = 0xFF;
buffer[iend - 1] = 0xFF;
}
else {
// NO ... No coalescing possible yet
// Make room at the end for our byte
memmove(&buffer[i + 3 + blen + 1], &buffer[i + 3 + blen], iend - i - 3 - blen);
// And add the data to the block
buffer[i + 2]++;
buffer[i + 3 + blen] = data;
}
}
// Done!
return true;
}
}
// As blocks are always sorted, if the starting address of this block is higher
// than the address we are looking for, break loop now - We wont find the value
// associated to the address
if (baddr > address) break;
// Jump to the next block
i += 3 + blen;
}
// Value is not stored AND we can't expand previous block to contain it. We must create a new block
// First, lets find how much free space remains
uint32_t iend = i;
while (iend <= (PageSize - 4)) { /* (PageSize - 4) because otherwise, there is not enough room for data and headers */
uint32_t ln = buffer[iend + 2];
if (ln == 0xFF) break;
iend += 3 + ln;
}
// If there is room for a new block, insert it at the proper place
if (iend <= (PageSize - 4)) {
// We have room to create a new block. Do so --- But add
// the block at the proper position, sorted by starting
// address, so it will be possible to compact it with other blocks.
// Make space
memmove(&buffer[i + 4], &buffer[i], iend - i);
// And add the block
buffer[i] = address & 0xFF;
buffer[i + 1] = (address >> 8) & 0xFF;
buffer[i + 2] = 1;
buffer[i + 3] = data;
// Done!
return true;
}
// Not enough room to store this information on this FLASH page - Perform a
// flush and override the address with the specified contents
return ee_Flush(address, data);
}
static void ee_Init() {
// Just init once!
if (curGroup != 0xFF) return;
// Clean up the SRAM buffer
memset(buffer, 0xFF, sizeof(buffer));
// Now, we must find out the group where settings are stored
for (curGroup = 0; curGroup < GroupCount; curGroup++)
if (!ee_IsPageClean(curGroup * PagesPerGroup)) break;
// If all groups seem to be used, default to first group
if (curGroup >= GroupCount) curGroup = 0;
DEBUG_ECHO_MSG("EEPROM Current Group: ",curGroup);
DEBUG_FLUSH();
// Now, validate that all the other group pages are empty
for (int grp = 0; grp < GroupCount; grp++) {
if (grp == curGroup) continue;
for (int page = 0; page < PagesPerGroup; page++) {
if (!ee_IsPageClean(grp * PagesPerGroup + page)) {
DEBUG_ECHO_MSG("EEPROM Page ", page, " not clean on group ", grp);
DEBUG_FLUSH();
ee_PageErase(grp * PagesPerGroup + page);
}
}
}
// Finally, for the active group, determine the first unused page
// and also validate that all the other ones are clean
for (curPage = 0; curPage < PagesPerGroup; curPage++) {
if (ee_IsPageClean(curGroup * PagesPerGroup + curPage)) {
ee_Dump(curGroup * PagesPerGroup + curPage, getFlashStorage(curGroup * PagesPerGroup + curPage));
break;
}
}
DEBUG_ECHO_MSG("EEPROM Active page: ", curPage);
DEBUG_FLUSH();
// Make sure the pages following the first clean one are also clean
for (int page = curPage + 1; page < PagesPerGroup; page++) {
if (!ee_IsPageClean(curGroup * PagesPerGroup + page)) {
DEBUG_ECHO_MSG("EEPROM Page ", page, " not clean on active group ", curGroup);
DEBUG_FLUSH();
ee_Dump(curGroup * PagesPerGroup + page, getFlashStorage(curGroup * PagesPerGroup + page));
ee_PageErase(curGroup * PagesPerGroup + page);
}
}
}
/* PersistentStore -----------------------------------------------------------*/
#include "../shared/eeprom_api.h"
#ifndef MARLIN_EEPROM_SIZE
#define MARLIN_EEPROM_SIZE 0x1000 // 4KB
#endif
size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE; }
bool PersistentStore::access_start() { ee_Init(); return true; }
bool PersistentStore::access_finish() { ee_Flush(); return true; }
bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
uint16_t written = 0;
while (size--) {
uint8_t * const p = (uint8_t * const)pos;
uint8_t v = *value;
if (v != ee_Read(uint32_t(p))) { // EEPROM has only ~100,000 write cycles, so only write bytes that have changed!
ee_Write(uint32_t(p), v);
if (++written & 0x7F) delay(2); else safe_delay(2); // Avoid triggering watchdog during long EEPROM writes
if (ee_Read(uint32_t(p)) != v) {
SERIAL_ECHO_MSG(STR_ERR_EEPROM_WRITE);
return true;
}
}
crc16(crc, &v, 1);
pos++;
value++;
}
return false;
}
bool PersistentStore::read_data(int &pos, uint8_t *value, size_t size, uint16_t *crc, const bool writing/*=true*/) {
do {
uint8_t c = ee_Read(uint32_t(pos));
if (writing) *value = c;
crc16(crc, &c, 1);
pos++;
value++;
} while (--size);
return false;
}
#endif // FLASH_EEPROM_EMULATION
#endif // ARDUINO_ARCH_SAM

View File

@@ -1,76 +0,0 @@
/**
* Marlin 3D Printer Firmware
*
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
* Copyright (c) 2015-2016 Nico Tonnhofer wurstnase.reprap@gmail.com
* Copyright (c) 2016 Victor Perez victor_pv@hotmail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../inc/MarlinConfig.h"
#if USE_WIRED_EEPROM
/**
* PersistentStore for Arduino-style EEPROM interface
* with simple implementations supplied by Marlin.
*/
#include "../shared/eeprom_if.h"
#include "../shared/eeprom_api.h"
#ifndef MARLIN_EEPROM_SIZE
#error "MARLIN_EEPROM_SIZE is required for I2C / SPI EEPROM."
#endif
size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE; }
bool PersistentStore::access_start() { eeprom_init(); return true; }
bool PersistentStore::access_finish() { return true; }
bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
uint16_t written = 0;
while (size--) {
uint8_t * const p = (uint8_t * const)pos;
uint8_t v = *value;
if (v != eeprom_read_byte(p)) { // EEPROM has only ~100,000 write cycles, so only write bytes that have changed!
eeprom_write_byte(p, v);
if (++written & 0x7F) delay(2); else safe_delay(2); // Avoid triggering watchdog during long EEPROM writes
if (eeprom_read_byte(p) != v) {
SERIAL_ECHO_MSG(STR_ERR_EEPROM_WRITE);
return true;
}
}
crc16(crc, &v, 1);
pos++;
value++;
}
return false;
}
bool PersistentStore::read_data(int &pos, uint8_t *value, size_t size, uint16_t *crc, const bool writing/*=true*/) {
do {
uint8_t c = eeprom_read_byte((uint8_t*)pos);
if (writing) *value = c;
crc16(crc, &c, 1);
pos++;
value++;
} while (--size);
return false;
}
#endif // USE_WIRED_EEPROM
#endif // ARDUINO_ARCH_SAM

View File

@@ -1,73 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* Endstop Interrupts
*
* Without endstop interrupts the endstop pins must be polled continually in
* the temperature-ISR via endstops.update(), most of the time finding no change.
* With this feature endstops.update() is called only when we know that at
* least one endstop has changed state, saving valuable CPU cycles.
*
* This feature only works when all used endstop pins can generate an 'external interrupt'.
*
* Test whether pins issue interrupts on your board by flashing 'pin_interrupt_test.ino'.
* (Located in Marlin/buildroot/share/pin_interrupt_test/pin_interrupt_test.ino)
*/
#include "../../module/endstops.h"
// One ISR for all EXT-Interrupts
void endstop_ISR() { endstops.update(); }
/**
* Endstop interrupts for Due based targets.
* On Due, all pins support external interrupt capability.
*/
void setup_endstop_interrupts() {
#define _ATTACH(P) attachInterrupt(digitalPinToInterrupt(P), endstop_ISR, CHANGE)
TERN_(HAS_X_MAX, _ATTACH(X_MAX_PIN));
TERN_(HAS_X_MIN, _ATTACH(X_MIN_PIN));
TERN_(HAS_Y_MAX, _ATTACH(Y_MAX_PIN));
TERN_(HAS_Y_MIN, _ATTACH(Y_MIN_PIN));
TERN_(HAS_Z_MAX, _ATTACH(Z_MAX_PIN));
TERN_(HAS_Z_MIN, _ATTACH(Z_MIN_PIN));
TERN_(HAS_X2_MAX, _ATTACH(X2_MAX_PIN));
TERN_(HAS_X2_MIN, _ATTACH(X2_MIN_PIN));
TERN_(HAS_Y2_MAX, _ATTACH(Y2_MAX_PIN));
TERN_(HAS_Y2_MIN, _ATTACH(Y2_MIN_PIN));
TERN_(HAS_Z2_MAX, _ATTACH(Z2_MAX_PIN));
TERN_(HAS_Z2_MIN, _ATTACH(Z2_MIN_PIN));
TERN_(HAS_Z3_MAX, _ATTACH(Z3_MAX_PIN));
TERN_(HAS_Z3_MIN, _ATTACH(Z3_MIN_PIN));
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
}

View File

@@ -1,565 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* Fast I/O Routines for SAM3X8E
* Use direct port manipulation to save scads of processor time.
* Contributed by Triffid_Hunter and modified by Kliment, thinkyhead, Bob-the-Kuhn, et.al.
*/
/**
* Description: Fast IO functions for Arduino Due and compatible (SAM3X8E)
*
* For ARDUINO_ARCH_SAM
* Note the code here was specifically crafted by disassembling what GCC produces
* out of it, so GCC is able to optimize it out as much as possible to the least
* amount of instructions. Be very careful if you modify them, as "clean code"
* leads to less efficient compiled code!!
*/
#include <pins_arduino.h>
#include "../../inc/MarlinConfigPre.h"
/**
* Utility functions
*/
// Due has 12 PWMs assigned to logical pins 2-13.
// 6, 7, 8 & 9 come from the PWM controller. The others come from the timers.
#define PWM_PIN(P) WITHIN(P, 2, 13)
#ifndef MASK
#define MASK(PIN) _BV(PIN)
#endif
/**
* Magic I/O routines
*
* Now you can simply SET_OUTPUT(STEP); WRITE(STEP, HIGH); WRITE(STEP, LOW);
*
* Why double up on these macros? see https://gcc.gnu.org/onlinedocs/cpp/Stringification.html
*/
// Read a pin
#define _READ(IO) bool(DIO ## IO ## _WPORT -> PIO_PDSR & MASK(DIO ## IO ## _PIN))
// Write to a pin
#define _WRITE(IO,V) do { \
volatile Pio* port = (DIO ## IO ## _WPORT); \
const uint32_t mask = MASK(DIO ## IO ## _PIN); \
if (V) port->PIO_SODR = mask; \
else port->PIO_CODR = mask; \
}while(0)
// Toggle a pin
#define _TOGGLE(IO) _WRITE(IO, !READ(IO))
#if MB(PRINTRBOARD_G2)
#include "fastio/G2_pins.h"
// Set pin as input
#define _SET_INPUT(IO) do{ \
pmc_enable_periph_clk(G2_g_APinDescription[IO].ulPeripheralId); \
PIO_Configure((DIO ## IO ## _WPORT), PIO_INPUT, MASK(DIO ## IO ## _PIN), 0); \
}while(0)
// Set pin as output
#define _SET_OUTPUT(IO) do{ \
uint32_t mask = MASK(G2_g_APinDescription[IO].ulPeripheralId); \
if ((PMC->PMC_PCSR0 & mask) != (mask)) PMC->PMC_PCER0 = mask; \
volatile Pio* port = (DIO ## IO ## _WPORT); \
mask = MASK(DIO ## IO ## _PIN); \
if (_READ(IO)) port->PIO_SODR = mask; \
else port->PIO_CODR = mask; \
port->PIO_IDR = mask; \
const uint32_t pin_config = G2_g_APinDescription[IO].ulPinConfiguration; \
if (pin_config & PIO_PULLUP) port->PIO_PUER = mask; \
else port->PIO_PUDR = mask; \
if (pin_config & PIO_OPENDRAIN) port->PIO_MDER = mask; \
else port->PIO_MDDR = mask; \
port->PIO_PER = mask; \
port->PIO_OER = mask; \
g_pinStatus[IO] = (g_pinStatus[IO] & 0xF0) | PIN_STATUS_DIGITAL_OUTPUT; \
}while(0)
/**
* Set pin as output with comments
* #define _SET_OUTPUT(IO) do{ \
* uint32_t mask = MASK(G2_g_APinDescription[IO].ulPeripheralId); \
* if ((PMC->PMC_PCSR0 & mask ) != (mask)) PMC->PMC_PCER0 = mask; \ // enable PIO clock if not already enabled
*
* volatile Pio* port = (DIO ## IO ## _WPORT); \
* const uint32_t mask = MASK(DIO ## IO ## _PIN); \
* if (_READ(IO)) port->PIO_SODR = mask; \ // set output to match input BEFORE setting direction or will glitch the output
* else port->PIO_CODR = mask; \
*
* port->PIO_IDR = mask; \ // disable interrupt
*
* uint32_t pin_config = G2_g_APinDescription[IO].ulPinConfiguration; \
* if (pin_config & PIO_PULLUP) pPio->PIO_PUER = mask; \ // enable pullup if necessary
* else pPio->PIO_PUDR = mask; \
*
* if (pin_config & PIO_OPENDRAIN) port->PIO_MDER = mask; \ // Enable multi-drive if necessary
* else port->PIO_MDDR = mask; \
*
* port->PIO_PER = mask; \
* port->PIO_OER = mask; \ // set to output
*
* g_pinStatus[IO] = (g_pinStatus[IO] & 0xF0) | PIN_STATUS_DIGITAL_OUTPUT; \
* }while(0)
*/
#else
// Set pin as input
#define _SET_INPUT(IO) do{ \
pmc_enable_periph_clk(g_APinDescription[IO].ulPeripheralId); \
PIO_Configure(digitalPinToPort(IO), PIO_INPUT, digitalPinToBitMask(IO), 0); \
}while(0)
// Set pin as output
#define _SET_OUTPUT(IO) do{ \
pmc_enable_periph_clk(g_APinDescription[IO].ulPeripheralId); \
PIO_Configure(digitalPinToPort(IO), _READ(IO) ? PIO_OUTPUT_1 : PIO_OUTPUT_0, digitalPinToBitMask(IO), g_APinDescription[IO].ulPinConfiguration); \
g_pinStatus[IO] = (g_pinStatus[IO] & 0xF0) | PIN_STATUS_DIGITAL_OUTPUT; \
}while(0)
#endif
// Set pin as input with pullup mode
#define _PULLUP(IO,V) pinMode(IO, (V) ? INPUT_PULLUP : INPUT)
// Read a pin (wrapper)
#define READ(IO) _READ(IO)
// Write to a pin (wrapper)
#define WRITE(IO,V) _WRITE(IO,V)
// Toggle a pin (wrapper)
#define TOGGLE(IO) _TOGGLE(IO)
// Set pin as input (wrapper)
#define SET_INPUT(IO) _SET_INPUT(IO)
// Set pin as input with pullup (wrapper)
#define SET_INPUT_PULLUP(IO) do{ _SET_INPUT(IO); _PULLUP(IO, HIGH); }while(0)
// Set pin as input with pulldown (substitution)
#define SET_INPUT_PULLDOWN SET_INPUT
// Set pin as output (wrapper) - reads the pin and sets the output to that value
#define SET_OUTPUT(IO) _SET_OUTPUT(IO)
// Set pin as PWM
#define SET_PWM SET_OUTPUT
// Check if pin is an input
#define IS_INPUT(IO) ((digitalPinToPort(IO)->PIO_OSR & digitalPinToBitMask(IO)) == 0)
// Check if pin is an output
#define IS_OUTPUT(IO) ((digitalPinToPort(IO)->PIO_OSR & digitalPinToBitMask(IO)) != 0)
// Shorthand
#define OUT_WRITE(IO,V) do{ SET_OUTPUT(IO); WRITE(IO,V); }while(0)
// digitalRead/Write wrappers
#define extDigitalRead(IO) digitalRead(IO)
#define extDigitalWrite(IO,V) digitalWrite(IO,V)
/**
* Ports and functions
* Added as necessary or if I feel like it- not a comprehensive list!
*/
// UART
#define RXD DIO0
#define TXD DIO1
// TWI (I2C)
#define SCL DIO21
#define SDA DIO20
/**
* pins
*/
#define DIO0_PIN 8
#define DIO0_WPORT PIOA
#define DIO1_PIN 9
#define DIO1_WPORT PIOA
#define DIO2_PIN 25
#define DIO2_WPORT PIOB
#define DIO3_PIN 28
#define DIO3_WPORT PIOC
#define DIO4_PIN 26
#define DIO4_WPORT PIOC
#define DIO5_PIN 25
#define DIO5_WPORT PIOC
#define DIO6_PIN 24
#define DIO6_WPORT PIOC
#define DIO7_PIN 23
#define DIO7_WPORT PIOC
#define DIO8_PIN 22
#define DIO8_WPORT PIOC
#define DIO9_PIN 21
#define DIO9_WPORT PIOC
#define DIO10_PIN 29
#define DIO10_WPORT PIOC
#define DIO11_PIN 7
#define DIO11_WPORT PIOD
#define DIO12_PIN 8
#define DIO12_WPORT PIOD
#define DIO13_PIN 27
#define DIO13_WPORT PIOB
#define DIO14_PIN 4
#define DIO14_WPORT PIOD
#define DIO15_PIN 5
#define DIO15_WPORT PIOD
#define DIO16_PIN 13
#define DIO16_WPORT PIOA
#define DIO17_PIN 12
#define DIO17_WPORT PIOA
#define DIO18_PIN 11
#define DIO18_WPORT PIOA
#define DIO19_PIN 10
#define DIO19_WPORT PIOA
#define DIO20_PIN 12
#define DIO20_WPORT PIOB
#define DIO21_PIN 13
#define DIO21_WPORT PIOB
#define DIO22_PIN 26
#define DIO22_WPORT PIOB
#define DIO23_PIN 14
#define DIO23_WPORT PIOA
#define DIO24_PIN 15
#define DIO24_WPORT PIOA
#define DIO25_PIN 0
#define DIO25_WPORT PIOD
#define DIO26_PIN 1
#define DIO26_WPORT PIOD
#define DIO27_PIN 2
#define DIO27_WPORT PIOD
#define DIO28_PIN 3
#define DIO28_WPORT PIOD
#define DIO29_PIN 6
#define DIO29_WPORT PIOD
#define DIO30_PIN 9
#define DIO30_WPORT PIOD
#define DIO31_PIN 7
#define DIO31_WPORT PIOA
#define DIO32_PIN 10
#define DIO32_WPORT PIOD
#define DIO33_PIN 1
#define DIO33_WPORT PIOC
#if !MB(PRINTRBOARD_G2) // normal DUE pin mapping
#define DIO34_PIN 2
#define DIO34_WPORT PIOC
#define DIO35_PIN 3
#define DIO35_WPORT PIOC
#define DIO36_PIN 4
#define DIO36_WPORT PIOC
#define DIO37_PIN 5
#define DIO37_WPORT PIOC
#define DIO38_PIN 6
#define DIO38_WPORT PIOC
#define DIO39_PIN 7
#define DIO39_WPORT PIOC
#define DIO40_PIN 8
#define DIO40_WPORT PIOC
#define DIO41_PIN 9
#define DIO41_WPORT PIOC
#endif // !PRINTRBOARD_G2
#define DIO42_PIN 19
#define DIO42_WPORT PIOA
#define DIO43_PIN 20
#define DIO43_WPORT PIOA
#define DIO44_PIN 19
#define DIO44_WPORT PIOC
#define DIO45_PIN 18
#define DIO45_WPORT PIOC
#define DIO46_PIN 17
#define DIO46_WPORT PIOC
#define DIO47_PIN 16
#define DIO47_WPORT PIOC
#define DIO48_PIN 15
#define DIO48_WPORT PIOC
#define DIO49_PIN 14
#define DIO49_WPORT PIOC
#define DIO50_PIN 13
#define DIO50_WPORT PIOC
#define DIO51_PIN 12
#define DIO51_WPORT PIOC
#define DIO52_PIN 21
#define DIO52_WPORT PIOB
#define DIO53_PIN 14
#define DIO53_WPORT PIOB
#define DIO54_PIN 16
#define DIO54_WPORT PIOA
#define DIO55_PIN 24
#define DIO55_WPORT PIOA
#define DIO56_PIN 23
#define DIO56_WPORT PIOA
#define DIO57_PIN 22
#define DIO57_WPORT PIOA
#define DIO58_PIN 6
#define DIO58_WPORT PIOA
#define DIO59_PIN 4
#define DIO59_WPORT PIOA
#define DIO60_PIN 3
#define DIO60_WPORT PIOA
#define DIO61_PIN 2
#define DIO61_WPORT PIOA
#define DIO62_PIN 17
#define DIO62_WPORT PIOB
#define DIO63_PIN 18
#define DIO63_WPORT PIOB
#define DIO64_PIN 19
#define DIO64_WPORT PIOB
#define DIO65_PIN 20
#define DIO65_WPORT PIOB
#define DIO66_PIN 15
#define DIO66_WPORT PIOB
#define DIO67_PIN 16
#define DIO67_WPORT PIOB
#define DIO68_PIN 1
#define DIO68_WPORT PIOA
#define DIO69_PIN 0
#define DIO69_WPORT PIOA
#define DIO70_PIN 17
#define DIO70_WPORT PIOA
#define DIO71_PIN 18
#define DIO71_WPORT PIOA
#define DIO72_PIN 30
#define DIO72_WPORT PIOC
#define DIO73_PIN 21
#define DIO73_WPORT PIOA
#define DIO74_PIN 25
#define DIO74_WPORT PIOA
#define DIO75_PIN 26
#define DIO75_WPORT PIOA
#define DIO76_PIN 27
#define DIO76_WPORT PIOA
#define DIO77_PIN 28
#define DIO77_WPORT PIOA
#define DIO78_PIN 23
#define DIO78_WPORT PIOB
#define DIO79_PIN 17
#define DIO79_WPORT PIOA
#define DIO80_PIN 12
#define DIO80_WPORT PIOB
#define DIO81_PIN 8
#define DIO81_WPORT PIOA
#define DIO82_PIN 11
#define DIO82_WPORT PIOA
#define DIO83_PIN 13
#define DIO83_WPORT PIOA
#define DIO84_PIN 4
#define DIO84_WPORT PIOD
#define DIO85_PIN 11
#define DIO85_WPORT PIOB
#define DIO86_PIN 21
#define DIO86_WPORT PIOB
#define DIO87_PIN 29
#define DIO87_WPORT PIOA
#define DIO88_PIN 15
#define DIO88_WPORT PIOB
#define DIO89_PIN 14
#define DIO89_WPORT PIOB
#define DIO90_PIN 1
#define DIO90_WPORT PIOA
#define DIO91_PIN 15
#define DIO91_WPORT PIOB
#ifdef ARDUINO_SAM_ARCHIM
#define DIO92_PIN 11
#define DIO92_WPORT PIOC
#define DIO93_PIN 2
#define DIO93_WPORT PIOB
#define DIO94_PIN 1
#define DIO94_WPORT PIOB
#define DIO95_PIN 0
#define DIO95_WPORT PIOB
#define DIO96_PIN 10
#define DIO96_WPORT PIOC
#define DIO97_PIN 24
#define DIO97_WPORT PIOB
#define DIO98_PIN 7
#define DIO98_WPORT PIOB
#define DIO99_PIN 6
#define DIO99_WPORT PIOB
#define DIO100_PIN 8
#define DIO100_WPORT PIOB
#define DIO101_PIN 5
#define DIO101_WPORT PIOB
#define DIO102_PIN 4
#define DIO102_WPORT PIOB
#define DIO103_PIN 3
#define DIO103_WPORT PIOB
#define DIO104_PIN 20
#define DIO104_WPORT PIOC
#define DIO105_PIN 22
#define DIO105_WPORT PIOB
#define DIO106_PIN 27
#define DIO106_WPORT PIOC
#define DIO107_PIN 10
#define DIO107_WPORT PIOB
#define DIO108_PIN 9
#define DIO108_WPORT PIOB
#else // !ARDUINO_SAM_ARCHIM
#define DIO92_PIN 5
#define DIO92_WPORT PIOA
#define DIO93_PIN 12
#define DIO93_WPORT PIOB
#define DIO94_PIN 22
#define DIO94_WPORT PIOB
#define DIO95_PIN 23
#define DIO95_WPORT PIOB
#define DIO96_PIN 24
#define DIO96_WPORT PIOB
#define DIO97_PIN 20
#define DIO97_WPORT PIOC
#define DIO98_PIN 27
#define DIO98_WPORT PIOC
#define DIO99_PIN 10
#define DIO99_WPORT PIOC
#define DIO100_PIN 11
#define DIO100_WPORT PIOC
#endif // !ARDUINO_SAM_ARCHIM

View File

@@ -1,206 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* The PWM module is only used to generate interrupts at specified times. It
* is NOT used to directly toggle pins. The ISR writes to the pin assigned to
* that interrupt.
*
* All PWMs use the same repetition rate. The G2 needs about 10kHz min in order to
* not have obvious ripple on the Vref signals.
*
* The data structures are setup to minimize the computation done by the ISR which
* minimizes ISR execution time. Execution times are 0.8 to 1.1 microseconds.
*
* FIve PWM interrupt sources are used. Channel 0 sets the base period. All Vref
* signals are set active when this counter overflows and resets to zero. The compare
* values in channels 1-4 are set to give the desired duty cycle for that Vref pin.
* When counter 0 matches the compare value then that channel generates an interrupt.
* The ISR checks the source of the interrupt and sets the corresponding pin inactive.
*
* Some jitter in the Vref signal is OK so the interrupt priority is left at its default value.
*/
#include "../../../inc/MarlinConfig.h"
#if MB(PRINTRBOARD_G2)
#include "G2_PWM.h"
#if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
#define G2_PWM_X 1
#else
#define G2_PWM_X 0
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
#define G2_PWM_Y 1
#else
#define G2_PWM_Y 0
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
#define G2_PWM_Z 1
#else
#define G2_PWM_Z 0
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
#define G2_PWM_E 1
#else
#define G2_PWM_E 0
#endif
#define G2_MASK_X(V) (G2_PWM_X * (V))
#define G2_MASK_Y(V) (G2_PWM_Y * (V))
#define G2_MASK_Z(V) (G2_PWM_Z * (V))
#define G2_MASK_E(V) (G2_PWM_E * (V))
volatile uint32_t *SODR_A = &PIOA->PIO_SODR,
*SODR_B = &PIOB->PIO_SODR,
*CODR_A = &PIOA->PIO_CODR,
*CODR_B = &PIOB->PIO_CODR;
PWM_map ISR_table[NUM_PWMS] = PWM_MAP_INIT;
void Stepper::digipot_init() {
#if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
OUT_WRITE(MOTOR_CURRENT_PWM_X_PIN, 0); // init pins
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
OUT_WRITE(MOTOR_CURRENT_PWM_Y_PIN, 0);
#endif
#if G2_PWM_Z
OUT_WRITE(MOTOR_CURRENT_PWM_Z_PIN, 0);
#endif
#if G2_PWM_E
OUT_WRITE(MOTOR_CURRENT_PWM_E_PIN, 0);
#endif
#define WPKEY (0x50574D << 8) // “PWM” in ASCII
#define WPCMD_DIS_SW 0 // command to disable Write Protect SW
#define WPRG_ALL (PWM_WPCR_WPRG0 | PWM_WPCR_WPRG1 | PWM_WPCR_WPRG2 | PWM_WPCR_WPRG3 | PWM_WPCR_WPRG4 | PWM_WPCR_WPRG5) // all Write Protect Groups
#define PWM_CLOCK_F F_CPU / 1000000UL // set clock to 1MHz
PMC->PMC_PCER1 = PMC_PCER1_PID36; // enable PWM controller clock (disabled on power up)
PWM->PWM_WPCR = WPKEY | WPRG_ALL | WPCMD_DIS_SW; // enable setting of all PWM registers
PWM->PWM_CLK = PWM_CLOCK_F; // enable CLK_A and set it to 1MHz, leave CLK_B disabled
PWM->PWM_CH_NUM[0].PWM_CMR = 0b1011; // set channel 0 to Clock A input & to left aligned
if (G2_PWM_X) PWM->PWM_CH_NUM[1].PWM_CMR = 0b1011; // set channel 1 to Clock A input & to left aligned
if (G2_PWM_Y) PWM->PWM_CH_NUM[2].PWM_CMR = 0b1011; // set channel 2 to Clock A input & to left aligned
if (G2_PWM_Z) PWM->PWM_CH_NUM[3].PWM_CMR = 0b1011; // set channel 3 to Clock A input & to left aligned
if (G2_PWM_E) PWM->PWM_CH_NUM[4].PWM_CMR = 0b1011; // set channel 4 to Clock A input & to left aligned
PWM->PWM_CH_NUM[0].PWM_CPRD = PWM_PERIOD_US; // set channel 0 Period
PWM->PWM_IER2 = PWM_IER1_CHID0; // generate interrupt when counter0 overflows
PWM->PWM_IER2 = PWM_IER2_CMPM0
| G2_MASK_X(PWM_IER2_CMPM1)
| G2_MASK_Y(PWM_IER2_CMPM2)
| G2_MASK_Z(PWM_IER2_CMPM3)
| G2_MASK_E(PWM_IER2_CMPM4)
; // generate interrupt on compare event
if (G2_PWM_X) PWM->PWM_CMP[1].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[0])); // interrupt when counter0 == CMPV - used to set Motor 1 PWM inactive
if (G2_PWM_Y) PWM->PWM_CMP[2].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[0])); // interrupt when counter0 == CMPV - used to set Motor 2 PWM inactive
if (G2_PWM_Z) PWM->PWM_CMP[3].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[1])); // interrupt when counter0 == CMPV - used to set Motor 3 PWM inactive
if (G2_PWM_E) PWM->PWM_CMP[4].PWM_CMPV = 0x010000000LL | G2_VREF_COUNT(G2_VREF(motor_current_setting[2])); // interrupt when counter0 == CMPV - used to set Motor 4 PWM inactive
if (G2_PWM_X) PWM->PWM_CMP[1].PWM_CMPM = 0x0001; // enable compare event
if (G2_PWM_Y) PWM->PWM_CMP[2].PWM_CMPM = 0x0001; // enable compare event
if (G2_PWM_Z) PWM->PWM_CMP[3].PWM_CMPM = 0x0001; // enable compare event
if (G2_PWM_E) PWM->PWM_CMP[4].PWM_CMPM = 0x0001; // enable compare event
PWM->PWM_SCM = PWM_SCM_UPDM_MODE0 | PWM_SCM_SYNC0
| G2_MASK_X(PWM_SCM_SYNC1)
| G2_MASK_Y(PWM_SCM_SYNC2)
| G2_MASK_Z(PWM_SCM_SYNC3)
| G2_MASK_E(PWM_SCM_SYNC4)
; // sync 1-4 with 0, use mode 0 for updates
PWM->PWM_ENA = PWM_ENA_CHID0
| G2_MASK_X(PWM_ENA_CHID1)
| G2_MASK_Y(PWM_ENA_CHID2)
| G2_MASK_Z(PWM_ENA_CHID3)
| G2_MASK_E(PWM_ENA_CHID4)
; // enable channels used by G2
PWM->PWM_IER1 = PWM_IER1_CHID0
| G2_MASK_X(PWM_IER1_CHID1)
| G2_MASK_Y(PWM_IER1_CHID2)
| G2_MASK_Z(PWM_IER1_CHID3)
| G2_MASK_E(PWM_IER1_CHID4)
; // enable interrupts for channels used by G2
NVIC_EnableIRQ(PWM_IRQn); // Enable interrupt handler
NVIC_SetPriority(PWM_IRQn, NVIC_EncodePriority(0, 10, 0)); // normal priority for PWM module (can stand some jitter on the Vref signals)
}
void Stepper::set_digipot_current(const uint8_t driver, const int16_t current) {
if (!(PWM->PWM_CH_NUM[0].PWM_CPRD == PWM_PERIOD_US)) digipot_init(); // Init PWM system if needed
switch (driver) {
case 0:
if (G2_PWM_X) PWM->PWM_CMP[1].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current)); // update X & Y
if (G2_PWM_Y) PWM->PWM_CMP[2].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current));
if (G2_PWM_X) PWM->PWM_CMP[1].PWM_CMPMUPD = 0x0001; // enable compare event
if (G2_PWM_Y) PWM->PWM_CMP[2].PWM_CMPMUPD = 0x0001; // enable compare event
if (G2_PWM_X || G2_PWM_Y) PWM->PWM_SCUC = PWM_SCUC_UPDULOCK; // tell the PWM controller to update the values on the next cycle
break;
case 1:
if (G2_PWM_Z) {
PWM->PWM_CMP[3].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current)); // update Z
PWM->PWM_CMP[3].PWM_CMPMUPD = 0x0001; // enable compare event
PWM->PWM_SCUC = PWM_SCUC_UPDULOCK; // tell the PWM controller to update the values on the next cycle
}
break;
default:
if (G2_PWM_E) {
PWM->PWM_CMP[4].PWM_CMPVUPD = 0x010000000LL | G2_VREF_COUNT(G2_VREF(current)); // update E
PWM->PWM_CMP[4].PWM_CMPMUPD = 0x0001; // enable compare event
PWM->PWM_SCUC = PWM_SCUC_UPDULOCK; // tell the PWM controller to update the values on the next cycle
}
break;
}
}
volatile uint32_t PWM_ISR1_STATUS, PWM_ISR2_STATUS;
void PWM_Handler() {
PWM_ISR1_STATUS = PWM->PWM_ISR1;
PWM_ISR2_STATUS = PWM->PWM_ISR2;
if (PWM_ISR1_STATUS & PWM_IER1_CHID0) { // CHAN_0 interrupt
if (G2_PWM_X) *ISR_table[0].set_register = ISR_table[0].write_mask; // set X to active
if (G2_PWM_Y) *ISR_table[1].set_register = ISR_table[1].write_mask; // set Y to active
if (G2_PWM_Z) *ISR_table[2].set_register = ISR_table[2].write_mask; // set Z to active
if (G2_PWM_E) *ISR_table[3].set_register = ISR_table[3].write_mask; // set E to active
}
else {
if (G2_PWM_X && (PWM_ISR2_STATUS & PWM_IER2_CMPM1)) *ISR_table[0].clr_register = ISR_table[0].write_mask; // set X to inactive
if (G2_PWM_Y && (PWM_ISR2_STATUS & PWM_IER2_CMPM2)) *ISR_table[1].clr_register = ISR_table[1].write_mask; // set Y to inactive
if (G2_PWM_Z && (PWM_ISR2_STATUS & PWM_IER2_CMPM3)) *ISR_table[2].clr_register = ISR_table[2].write_mask; // set Z to inactive
if (G2_PWM_E && (PWM_ISR2_STATUS & PWM_IER2_CMPM4)) *ISR_table[3].clr_register = ISR_table[3].write_mask; // set E to inactive
}
return;
}
#endif // PRINTRBOARD_G2

View File

@@ -1,26 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#if HAS_SPI_TFT || HAS_FSMC_TFT
#error "Sorry! TFT displays are not available for HAL/DUE."
#endif

View File

@@ -1,22 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once

View File

@@ -1,28 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#if USE_FALLBACK_EEPROM
#define FLASH_EEPROM_EMULATION
#elif EITHER(I2C_EEPROM, SPI_EEPROM)
#define USE_SHARED_EEPROM 1
#endif

View File

@@ -1,89 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* Test Arduino Due specific configuration values for errors at compile-time.
*/
/**
* Check for common serial pin conflicts
*/
#define CHECK_SERIAL_PIN(N) ( \
X_STOP_PIN == N || Y_STOP_PIN == N || Z_STOP_PIN == N \
|| X_MIN_PIN == N || Y_MIN_PIN == N || Z_MIN_PIN == N \
|| X_MAX_PIN == N || Y_MAX_PIN == N || Z_MAX_PIN == N \
|| X_STEP_PIN == N || Y_STEP_PIN == N || Z_STEP_PIN == N \
|| X_DIR_PIN == N || Y_DIR_PIN == N || Z_DIR_PIN == N \
|| X_ENA_PIN == N || Y_ENA_PIN == N || Z_ENA_PIN == N \
)
#if CONF_SERIAL_IS(0) // D0-D1. No known conflicts.
#endif
#if CONF_SERIAL_IS(1) && (CHECK_SERIAL_PIN(18) || CHECK_SERIAL_PIN(19))
#error "Serial Port 1 pin D18 and/or D19 conflicts with another pin on the board."
#endif
#if CONF_SERIAL_IS(2) && (CHECK_SERIAL_PIN(16) || CHECK_SERIAL_PIN(17))
#error "Serial Port 2 pin D16 and/or D17 conflicts with another pin on the board."
#endif
#if CONF_SERIAL_IS(3) && (CHECK_SERIAL_PIN(14) || CHECK_SERIAL_PIN(15))
#error "Serial Port 3 pin D14 and/or D15 conflicts with another pin on the board."
#endif
#undef CHECK_SERIAL_PIN
/**
* HARDWARE VS. SOFTWARE SPI COMPATIBILITY
*
* DUE selects hardware vs. software SPI depending on whether one of the hardware-controllable SDSS pins is in use.
*
* The hardware SPI controller doesn't allow software SPIs to control any shared pins.
*
* When DUE software SPI is used then Trinamic drivers must use the TMC softSPI.
*
* When DUE hardware SPI is used then a Trinamic driver can use either its hardware SPI or, if there are no shared
* pins, its software SPI.
*
* Usually the hardware SPI pins are only available to the LCD. This makes the DUE hard SPI used at the same time
* as the TMC2130 soft SPI the most common setup.
*/
#define _IS_HW_SPI(P) (defined(TMC_SW_##P) && (TMC_SW_##P == SD_MOSI_PIN || TMC_SW_##P == SD_MISO_PIN || TMC_SW_##P == SD_SCK_PIN))
#if ENABLED(SDSUPPORT) && HAS_DRIVER(TMC2130)
#if ENABLED(TMC_USE_SW_SPI)
#if DISABLED(DUE_SOFTWARE_SPI) && (_IS_HW_SPI(MOSI) || _IS_HW_SPI(MISO) || _IS_HW_SPI(SCK))
#error "DUE hardware SPI is required but is incompatible with TMC2130 software SPI. Either disable TMC_USE_SW_SPI or use separate pins for the two SPIs."
#endif
#elif ENABLED(DUE_SOFTWARE_SPI)
#error "DUE software SPI is required but is incompatible with TMC2130 hardware SPI. Enable TMC_USE_SW_SPI to fix."
#endif
#endif
#if ENABLED(FAST_PWM_FAN) || SPINDLE_LASER_FREQUENCY
#error "Features requiring Hardware PWM (FAST_PWM_FAN, SPINDLE_LASER_FREQUENCY) are not yet supported on DUE."
#endif
#if HAS_TMC_SW_SERIAL
#error "TMC220x Software Serial is not supported on the DUE platform."
#endif
#if USING_PULLDOWNS
#error "PULLDOWN pin mode is not available on DUE boards."
#endif

View File

@@ -1,185 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Support routines for Due
*/
/**
* Translation of routines & variables used by pinsDebug.h
*/
#include "../shared/Marduino.h"
/**
* Due/Marlin quirks
*
* a) determining the state of a pin
* The Due/Arduino status definitions for the g_pinStatus[pin] array are:
* #define PIN_STATUS_DIGITAL_INPUT_PULLUP (0x01)
* #define PIN_STATUS_DIGITAL_INPUT (0x02)
* #define PIN_STATUS_DIGITAL_OUTPUT (0x03)
* #define PIN_STATUS_ANALOG (0x04)
* #define PIN_STATUS_PWM (0x05)
* #define PIN_STATUS_TIMER (0x06)
*
* These are only valid if the following Due/Arduino provided functions are used:
* analogRead
* analogWrite
* digitalWrite
* pinMode
*
* The FASTIO routines do not touch the g_pinStatus[pin] array.
*
* The net result is that both the g_pinStatus[pin] array and the PIO_OSR register
* needs to be looked at when determining if a pin is an input or an output.
*
* b) Due has only pins 6, 7, 8 & 9 enabled for PWMs. FYI - they run at 1kHz
*
* c) NUM_DIGITAL_PINS does not include the analog pins
*
* d) Pins 0-78 are defined for Due but 78 has a comment of "unconnected!". 78 is
* included just in case.
*/
#define NUMBER_PINS_TOTAL PINS_COUNT
#define digitalRead_mod(p) extDigitalRead(p) // AVR digitalRead disabled PWM before it read the pin
#define PRINT_PORT(p)
#define PRINT_ARRAY_NAME(x) do{ sprintf_P(buffer, PSTR("%-" STRINGIFY(MAX_NAME_LENGTH) "s"), pin_array[x].name); SERIAL_ECHO(buffer); }while(0)
#define PRINT_PIN(p) do{ sprintf_P(buffer, PSTR("%02d"), p); SERIAL_ECHO(buffer); }while(0)
#define PRINT_PIN_ANALOG(p) do{ sprintf_P(buffer, PSTR(" (A%2d) "), DIGITAL_PIN_TO_ANALOG_PIN(pin)); SERIAL_ECHO(buffer); }while(0)
#define GET_ARRAY_PIN(p) pin_array[p].pin
#define GET_ARRAY_IS_DIGITAL(p) pin_array[p].is_digital
#define VALID_PIN(pin) (pin >= 0 && pin < (int8_t)NUMBER_PINS_TOTAL ? 1 : 0)
#define DIGITAL_PIN_TO_ANALOG_PIN(p) int(p - analogInputToDigitalPin(0))
#define IS_ANALOG(P) WITHIN(P, char(analogInputToDigitalPin(0)), char(analogInputToDigitalPin(NUM_ANALOG_INPUTS - 1)))
#define pwm_status(pin) (((g_pinStatus[pin] & 0xF) == PIN_STATUS_PWM) && \
((g_APinDescription[pin].ulPinAttribute & PIN_ATTR_PWM) == PIN_ATTR_PWM))
#define MULTI_NAME_PAD 14 // space needed to be pretty if not first name assigned to a pin
bool GET_PINMODE(int8_t pin) { // 1: output, 0: input
volatile Pio* port = g_APinDescription[pin].pPort;
uint32_t mask = g_APinDescription[pin].ulPin;
uint8_t pin_status = g_pinStatus[pin] & 0xF;
return ( (pin_status == 0 && (port->PIO_OSR & mask))
|| pin_status == PIN_STATUS_DIGITAL_OUTPUT
|| pwm_status(pin));
}
void pwm_details(int32_t pin) {
if (pwm_status(pin)) {
uint32_t chan = g_APinDescription[pin].ulPWMChannel;
SERIAL_ECHOPGM("PWM = ", PWM_INTERFACE->PWM_CH_NUM[chan].PWM_CDTY);
}
}
/**
* DUE Board pin | PORT | Label
* ----------------+--------+-------
* 0 | PA8 | "RX0"
* 1 | PA9 | "TX0"
* 2 TIOA0 | PB25 |
* 3 TIOA7 | PC28 |
* 4 NPCS1 | PA29 |
* TIOB6 | PC26 |
* 5 TIOA6 | PC25 |
* 6 PWML7 | PC24 |
* 7 PWML6 | PC23 |
* 8 PWML5 | PC22 |
* 9 PWML4 | PC21 |
* 10 NPCS0 | PA28 |
* TIOB7 | PC29 |
* 11 TIOA8 | PD7 |
* 12 TIOB8 | PD8 |
* 13 TIOB0 | PB27 | LED AMBER "L"
* 14 TXD3 | PD4 | "TX3"
* 15 RXD3 | PD5 | "RX3"
* 16 TXD1 | PA13 | "TX2"
* 17 RXD1 | PA12 | "RX2"
* 18 TXD0 | PA11 | "TX1"
* 19 RXD0 | PA10 | "RX1"
* 20 | PB12 | "SDA"
* 21 | PB13 | "SCL"
* 22 | PB26 |
* 23 | PA14 |
* 24 | PA15 |
* 25 | PD0 |
* 26 | PD1 |
* 27 | PD2 |
* 28 | PD3 |
* 29 | PD6 |
* 30 | PD9 |
* 31 | PA7 |
* 32 | PD10 |
* 33 | PC1 |
* 34 | PC2 |
* 35 | PC3 |
* 36 | PC4 |
* 37 | PC5 |
* 38 | PC6 |
* 39 | PC7 |
* 40 | PC8 |
* 41 | PC9 |
* 42 | PA19 |
* 43 | PA20 |
* 44 | PC19 |
* 45 | PC18 |
* 46 | PC17 |
* 47 | PC16 |
* 48 | PC15 |
* 49 | PC14 |
* 50 | PC13 |
* 51 | PC12 |
* 52 NPCS2 | PB21 |
* 53 | PB14 |
* 54 | PA16 | "A0"
* 55 | PA24 | "A1"
* 56 | PA23 | "A2"
* 57 | PA22 | "A3"
* 58 TIOB2 | PA6 | "A4"
* 69 | PA4 | "A5"
* 60 TIOB1 | PA3 | "A6"
* 61 TIOA1 | PA2 | "A7"
* 62 | PB17 | "A8"
* 63 | PB18 | "A9"
* 64 | PB19 | "A10"
* 65 | PB20 | "A11"
* 66 | PB15 | "DAC0"
* 67 | PB16 | "DAC1"
* 68 | PA1 | "CANRX"
* 69 | PA0 | "CANTX"
* 70 | PA17 | "SDA1"
* 71 | PA18 | "SCL1"
* 72 | PC30 | LED AMBER "RX"
* 73 | PA21 | LED AMBER "TX"
* 74 MISO | PA25 |
* 75 MOSI | PA26 |
* 76 SCLK | PA27 |
* 77 NPCS0 | PA28 |
* 78 NPCS3 | PB23 | unconnected!
*
* USB pin | PORT
* ----------------+--------
* ID | PB11
* VBOF | PB10
*/

View File

@@ -1,64 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* Define SPI Pins: SCK, MISO, MOSI, SS
*
* Available chip select pins for HW SPI are 4 10 52 77
*/
#if SDSS == 4 || SDSS == 10 || SDSS == 52 || SDSS == 77 || SDSS == 87
#if SDSS == 4
#define SPI_PIN 87
#define SPI_CHAN 1
#elif SDSS == 10
#define SPI_PIN 77
#define SPI_CHAN 0
#elif SDSS == 52
#define SPI_PIN 86
#define SPI_CHAN 2
#elif SDSS == 77
#define SPI_PIN 77
#define SPI_CHAN 0
#else
#define SPI_PIN 87
#define SPI_CHAN 1
#endif
#define SD_SCK_PIN 76
#define SD_MISO_PIN 74
#define SD_MOSI_PIN 75
#else
// defaults
#define DUE_SOFTWARE_SPI
#ifndef SD_SCK_PIN
#define SD_SCK_PIN 52
#endif
#ifndef SD_MISO_PIN
#define SD_MISO_PIN 50
#endif
#ifndef SD_MOSI_PIN
#define SD_MOSI_PIN 51
#endif
#endif
/* A.28, A.29, B.21, C.26, C.29 */
#define SD_SS_PIN SDSS

View File

@@ -1,139 +0,0 @@
/**
* Marlin 3D Printer Firmware
*
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
* Copyright (c) 2015-2016 Nico Tonnhofer wurstnase.reprap@gmail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* HAL Timers for Arduino Due and compatible (SAM3X8E)
*/
#ifdef ARDUINO_ARCH_SAM
// ------------------------
// Includes
// ------------------------
#include "../../inc/MarlinConfig.h"
#include "HAL.h"
// ------------------------
// Local defines
// ------------------------
#define NUM_HARDWARE_TIMERS 9
// ------------------------
// Private Variables
// ------------------------
const tTimerConfig timer_config[NUM_HARDWARE_TIMERS] = {
{ TC0, 0, TC0_IRQn, 3}, // 0 - [servo timer5]
{ TC0, 1, TC1_IRQn, 0}, // 1
{ TC0, 2, TC2_IRQn, 2}, // 2 - stepper
{ TC1, 0, TC3_IRQn, 0}, // 3 - stepper for BOARD_ARCHIM1
{ TC1, 1, TC4_IRQn, 15}, // 4 - temperature
{ TC1, 2, TC5_IRQn, 3}, // 5 - [servo timer3]
{ TC2, 0, TC6_IRQn, 14}, // 6 - tone
{ TC2, 1, TC7_IRQn, 0}, // 7
{ TC2, 2, TC8_IRQn, 0}, // 8
};
// ------------------------
// Public functions
// ------------------------
/*
Timer_clock1: Prescaler 2 -> 42MHz
Timer_clock2: Prescaler 8 -> 10.5MHz
Timer_clock3: Prescaler 32 -> 2.625MHz
Timer_clock4: Prescaler 128 -> 656.25kHz
*/
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
Tc *tc = timer_config[timer_num].pTimerRegs;
IRQn_Type irq = timer_config[timer_num].IRQ_Id;
uint32_t channel = timer_config[timer_num].channel;
// Disable interrupt, just in case it was already enabled
NVIC_DisableIRQ(irq);
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
// Disable timer interrupt
tc->TC_CHANNEL[channel].TC_IDR = TC_IDR_CPCS;
// Stop timer, just in case, to be able to reconfigure it
TC_Stop(tc, channel);
pmc_set_writeprotect(false);
pmc_enable_periph_clk((uint32_t)irq);
NVIC_SetPriority(irq, timer_config[timer_num].priority);
// wave mode, reset counter on match with RC,
TC_Configure(tc, channel,
TC_CMR_WAVE
| TC_CMR_WAVSEL_UP_RC
| (HAL_TIMER_PRESCALER == 2 ? TC_CMR_TCCLKS_TIMER_CLOCK1 : 0)
| (HAL_TIMER_PRESCALER == 8 ? TC_CMR_TCCLKS_TIMER_CLOCK2 : 0)
| (HAL_TIMER_PRESCALER == 32 ? TC_CMR_TCCLKS_TIMER_CLOCK3 : 0)
| (HAL_TIMER_PRESCALER == 128 ? TC_CMR_TCCLKS_TIMER_CLOCK4 : 0)
);
// Set compare value
TC_SetRC(tc, channel, VARIANT_MCK / (HAL_TIMER_PRESCALER) / frequency);
// And start timer
TC_Start(tc, channel);
// enable interrupt on RC compare
tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPCS;
// Finally, enable IRQ
NVIC_EnableIRQ(irq);
}
void HAL_timer_enable_interrupt(const uint8_t timer_num) {
IRQn_Type irq = timer_config[timer_num].IRQ_Id;
NVIC_EnableIRQ(irq);
}
void HAL_timer_disable_interrupt(const uint8_t timer_num) {
IRQn_Type irq = timer_config[timer_num].IRQ_Id;
NVIC_DisableIRQ(irq);
// We NEED memory barriers to ensure Interrupts are actually disabled!
// ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the )
__DSB();
__ISB();
}
// missing from CMSIS: Check if interrupt is enabled or not
static bool NVIC_GetEnabledIRQ(IRQn_Type IRQn) {
return TEST(NVIC->ISER[uint32_t(IRQn) >> 5], uint32_t(IRQn) & 0x1F);
}
bool HAL_timer_interrupt_enabled(const uint8_t timer_num) {
IRQn_Type irq = timer_config[timer_num].IRQ_Id;
return NVIC_GetEnabledIRQ(irq);
}
#endif // ARDUINO_ARCH_SAM

View File

@@ -1,129 +0,0 @@
/**
* Marlin 3D Printer Firmware
*
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* HAL Timers for Arduino Due and compatible (SAM3X8E)
*/
#include <stdint.h>
// ------------------------
// Defines
// ------------------------
#define FORCE_INLINE __attribute__((always_inline)) inline
typedef uint32_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF
#define HAL_TIMER_PRESCALER 2
#define HAL_TIMER_RATE ((F_CPU) / (HAL_TIMER_PRESCALER)) // frequency of timers peripherals
#ifndef MF_TIMER_STEP
#define MF_TIMER_STEP 2 // Timer Index for Stepper
#endif
#ifndef MF_TIMER_PULSE
#define MF_TIMER_PULSE MF_TIMER_STEP
#endif
#ifndef MF_TIMER_TEMP
#define MF_TIMER_TEMP 4 // Timer Index for Temperature
#endif
#ifndef MF_TIMER_TONE
#define MF_TIMER_TONE 6 // index of timer to use for beeper tones
#endif
#define TEMP_TIMER_FREQUENCY 1000 // temperature interrupt frequency
#define STEPPER_TIMER_RATE HAL_TIMER_RATE // frequency of stepper timer (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE)
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) // stepper timer ticks per µs
#define STEPPER_TIMER_PRESCALE (CYCLES_PER_MICROSECOND / STEPPER_TIMER_TICKS_PER_US)
#define PULSE_TIMER_RATE STEPPER_TIMER_RATE // frequency of pulse timer
#define PULSE_TIMER_PRESCALE STEPPER_TIMER_PRESCALE
#define PULSE_TIMER_TICKS_PER_US STEPPER_TIMER_TICKS_PER_US
#define ENABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_enable_interrupt(MF_TIMER_STEP)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_disable_interrupt(MF_TIMER_STEP)
#define STEPPER_ISR_ENABLED() HAL_timer_interrupt_enabled(MF_TIMER_STEP)
#define ENABLE_TEMPERATURE_INTERRUPT() HAL_timer_enable_interrupt(MF_TIMER_TEMP)
#define DISABLE_TEMPERATURE_INTERRUPT() HAL_timer_disable_interrupt(MF_TIMER_TEMP)
#ifndef HAL_STEP_TIMER_ISR
#define HAL_STEP_TIMER_ISR() void TC2_Handler()
#endif
#ifndef HAL_TEMP_TIMER_ISR
#define HAL_TEMP_TIMER_ISR() void TC4_Handler()
#endif
#ifndef HAL_TONE_TIMER_ISR
#define HAL_TONE_TIMER_ISR() void TC6_Handler()
#endif
// ------------------------
// Types
// ------------------------
typedef struct {
Tc *pTimerRegs;
uint16_t channel;
IRQn_Type IRQ_Id;
uint8_t priority;
} tTimerConfig;
// ------------------------
// Public Variables
// ------------------------
extern const tTimerConfig timer_config[];
// ------------------------
// Public functions
// ------------------------
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency);
FORCE_INLINE static void HAL_timer_set_compare(const uint8_t timer_num, const hal_timer_t compare) {
const tTimerConfig * const pConfig = &timer_config[timer_num];
pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_RC = compare;
}
FORCE_INLINE static hal_timer_t HAL_timer_get_compare(const uint8_t timer_num) {
const tTimerConfig * const pConfig = &timer_config[timer_num];
return pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_RC;
}
FORCE_INLINE static hal_timer_t HAL_timer_get_count(const uint8_t timer_num) {
const tTimerConfig * const pConfig = &timer_config[timer_num];
return pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_CV;
}
void HAL_timer_enable_interrupt(const uint8_t timer_num);
void HAL_timer_disable_interrupt(const uint8_t timer_num);
bool HAL_timer_interrupt_enabled(const uint8_t timer_num);
FORCE_INLINE static void HAL_timer_isr_prologue(const uint8_t timer_num) {
const tTimerConfig * const pConfig = &timer_config[timer_num];
// Reading the status register clears the interrupt flag
pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_SR;
}
#define HAL_timer_isr_epilogue(T) NOOP

View File

@@ -1,19 +0,0 @@
#
# Set upload_command
#
# Windows: bossac.exe
# Other: leave unchanged
#
import pioutil
if pioutil.is_pio_build():
import platform
current_OS = platform.system()
if current_OS == 'Windows':
Import("env")
# Use bossac.exe on Windows
env.Replace(
UPLOADCMD="bossac --info --unlock --write --verify --reset --erase -U false --boot $SOURCE"
)

View File

@@ -1,29 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_ESP32
#include "FlushableHardwareSerial.h"
Serial1Class<FlushableHardwareSerial> flushableSerial(false, 0);
#endif

View File

@@ -1,34 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include <HardwareSerial.h>
#include "../shared/Marduino.h"
#include "../../core/serial_hook.h"
class FlushableHardwareSerial : public HardwareSerial {
public:
FlushableHardwareSerial(int uart_nr) : HardwareSerial(uart_nr) {}
};
extern Serial1Class<FlushableHardwareSerial> flushableSerial;

View File

@@ -1,429 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_ESP32
#include "../../inc/MarlinConfig.h"
#include <rom/rtc.h>
#include <driver/adc.h>
#include <esp_adc_cal.h>
#include <HardwareSerial.h>
#if ENABLED(USE_ESP32_TASK_WDT)
#include <esp_task_wdt.h>
#endif
#if ENABLED(WIFISUPPORT)
#include <ESPAsyncWebServer.h>
#include "wifi.h"
#if ENABLED(OTASUPPORT)
#include "ota.h"
#endif
#if ENABLED(WEBSUPPORT)
#include "spiffs.h"
#include "web.h"
#endif
#endif
#if ENABLED(ESP3D_WIFISUPPORT)
DefaultSerial1 MSerial0(false, Serial2Socket);
#endif
// ------------------------
// Externs
// ------------------------
portMUX_TYPE MarlinHAL::spinlock = portMUX_INITIALIZER_UNLOCKED;
// ------------------------
// Local defines
// ------------------------
#define V_REF 1100
// ------------------------
// Public Variables
// ------------------------
uint16_t MarlinHAL::adc_result;
pwm_pin_t MarlinHAL::pwm_pin_data[MAX_EXPANDER_BITS];
// ------------------------
// Private Variables
// ------------------------
esp_adc_cal_characteristics_t characteristics[ADC_ATTEN_MAX];
adc_atten_t attenuations[ADC1_CHANNEL_MAX] = {};
uint32_t thresholds[ADC_ATTEN_MAX];
volatile int numPWMUsed = 0;
volatile struct { pin_t pin; int value; } pwmState[MAX_PWM_PINS];
pin_t chan_pin[CHANNEL_MAX_NUM + 1] = { 0 }; // PWM capable IOpins - not 0 or >33 on ESP32
struct {
uint32_t freq; // ledcReadFreq doesn't work if a duty hasn't been set yet!
uint16_t res;
} pwmInfo[(CHANNEL_MAX_NUM + 1) / 2];
// ------------------------
// Public functions
// ------------------------
#if ENABLED(WIFI_CUSTOM_COMMAND)
bool wifi_custom_command(char * const command_ptr) {
#if ENABLED(ESP3D_WIFISUPPORT)
return esp3dlib.parse(command_ptr);
#else
UNUSED(command_ptr);
return false;
#endif
}
#endif
#if ENABLED(USE_ESP32_EXIO)
HardwareSerial YSerial2(2);
void Write_EXIO(uint8_t IO, uint8_t v) {
if (hal.isr_state()) {
hal.isr_off();
YSerial2.write(0x80 | (((char)v) << 5) | (IO - 100));
hal.isr_on();
}
else
YSerial2.write(0x80 | (((char)v) << 5) | (IO - 100));
}
#endif
void MarlinHAL::init_board() {
#if ENABLED(USE_ESP32_TASK_WDT)
esp_task_wdt_init(10, true);
#endif
#if ENABLED(ESP3D_WIFISUPPORT)
esp3dlib.init();
#elif ENABLED(WIFISUPPORT)
wifi_init();
TERN_(OTASUPPORT, OTA_init());
#if ENABLED(WEBSUPPORT)
spiffs_init();
web_init();
#endif
server.begin();
#endif
// ESP32 uses a GPIO matrix that allows pins to be assigned to hardware serial ports.
// The following code initializes hardware Serial1 and Serial2 to use user-defined pins
// if they have been defined.
#if defined(HARDWARE_SERIAL1_RX) && defined(HARDWARE_SERIAL1_TX)
HardwareSerial Serial1(1);
#ifdef TMC_BAUD_RATE // use TMC_BAUD_RATE for Serial1 if defined
Serial1.begin(TMC_BAUD_RATE, SERIAL_8N1, HARDWARE_SERIAL1_RX, HARDWARE_SERIAL1_TX);
#else // use default BAUDRATE if TMC_BAUD_RATE not defined
Serial1.begin(BAUDRATE, SERIAL_8N1, HARDWARE_SERIAL1_RX, HARDWARE_SERIAL1_TX);
#endif
#endif
#if defined(HARDWARE_SERIAL2_RX) && defined(HARDWARE_SERIAL2_TX)
HardwareSerial Serial2(2);
#ifdef TMC_BAUD_RATE // use TMC_BAUD_RATE for Serial1 if defined
Serial2.begin(TMC_BAUD_RATE, SERIAL_8N1, HARDWARE_SERIAL2_RX, HARDWARE_SERIAL2_TX);
#else // use default BAUDRATE if TMC_BAUD_RATE not defined
Serial2.begin(BAUDRATE, SERIAL_8N1, HARDWARE_SERIAL2_RX, HARDWARE_SERIAL2_TX);
#endif
#endif
// Initialize the i2s peripheral only if the I2S stepper stream is enabled.
// The following initialization is performed after Serial1 and Serial2 are defined as
// their native pins might conflict with the i2s stream even when they are remapped.
#if ENABLED(USE_ESP32_EXIO)
YSerial2.begin(460800 * 3, SERIAL_8N1, 16, 17);
#elif ENABLED(I2S_STEPPER_STREAM)
i2s_init();
#endif
}
void MarlinHAL::idletask() {
#if BOTH(WIFISUPPORT, OTASUPPORT)
OTA_handle();
#endif
TERN_(ESP3D_WIFISUPPORT, esp3dlib.idletask());
}
uint8_t MarlinHAL::get_reset_source() { return rtc_get_reset_reason(1); }
void MarlinHAL::reboot() { ESP.restart(); }
void _delay_ms(int delay_ms) { delay(delay_ms); }
// return free memory between end of heap (or end bss) and whatever is current
int MarlinHAL::freeMemory() { return ESP.getFreeHeap(); }
// ------------------------
// Watchdog Timer
// ------------------------
#if ENABLED(USE_WATCHDOG)
#define WDT_TIMEOUT_US TERN(WATCHDOG_DURATION_8S, 8000000, 4000000) // 4 or 8 second timeout
extern "C" {
esp_err_t esp_task_wdt_reset();
}
void watchdogSetup() {
// do whatever. don't remove this function.
}
void MarlinHAL::watchdog_init() {
// TODO
}
// Reset watchdog.
void MarlinHAL::watchdog_refresh() { esp_task_wdt_reset(); }
#endif
// ------------------------
// ADC
// ------------------------
#define ADC1_CHANNEL(pin) ADC1_GPIO ## pin ## _CHANNEL
adc1_channel_t get_channel(int pin) {
switch (pin) {
case 39: return ADC1_CHANNEL(39);
case 36: return ADC1_CHANNEL(36);
case 35: return ADC1_CHANNEL(35);
case 34: return ADC1_CHANNEL(34);
case 33: return ADC1_CHANNEL(33);
case 32: return ADC1_CHANNEL(32);
}
return ADC1_CHANNEL_MAX;
}
void adc1_set_attenuation(adc1_channel_t chan, adc_atten_t atten) {
if (attenuations[chan] != atten) {
adc1_config_channel_atten(chan, atten);
attenuations[chan] = atten;
}
}
void MarlinHAL::adc_init() {
// Configure ADC
adc1_config_width(ADC_WIDTH_12Bit);
// Configure channels only if used as (re-)configuring a pin for ADC that is used elsewhere might have adverse effects
TERN_(HAS_TEMP_ADC_0, adc1_set_attenuation(get_channel(TEMP_0_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_1, adc1_set_attenuation(get_channel(TEMP_1_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_2, adc1_set_attenuation(get_channel(TEMP_2_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_3, adc1_set_attenuation(get_channel(TEMP_3_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_4, adc1_set_attenuation(get_channel(TEMP_4_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_5, adc1_set_attenuation(get_channel(TEMP_5_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_6, adc2_set_attenuation(get_channel(TEMP_6_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_ADC_7, adc3_set_attenuation(get_channel(TEMP_7_PIN), ADC_ATTEN_11db));
TERN_(HAS_HEATED_BED, adc1_set_attenuation(get_channel(TEMP_BED_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_CHAMBER, adc1_set_attenuation(get_channel(TEMP_CHAMBER_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_PROBE, adc1_set_attenuation(get_channel(TEMP_PROBE_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_COOLER, adc1_set_attenuation(get_channel(TEMP_COOLER_PIN), ADC_ATTEN_11db));
TERN_(HAS_TEMP_BOARD, adc1_set_attenuation(get_channel(TEMP_BOARD_PIN), ADC_ATTEN_11db));
TERN_(FILAMENT_WIDTH_SENSOR, adc1_set_attenuation(get_channel(FILWIDTH_PIN), ADC_ATTEN_11db));
// Note that adc2 is shared with the WiFi module, which has higher priority, so the conversion may fail.
// That's why we're not setting it up here.
// Calculate ADC characteristics (i.e., gain and offset factors for each attenuation level)
for (int i = 0; i < ADC_ATTEN_MAX; i++) {
esp_adc_cal_characterize(ADC_UNIT_1, (adc_atten_t)i, ADC_WIDTH_BIT_12, V_REF, &characteristics[i]);
// Change attenuation 100mV below the calibrated threshold
thresholds[i] = esp_adc_cal_raw_to_voltage(4095, &characteristics[i]);
}
}
#ifndef ADC_REFERENCE_VOLTAGE
#define ADC_REFERENCE_VOLTAGE 3.3
#endif
void MarlinHAL::adc_start(const pin_t pin) {
const adc1_channel_t chan = get_channel(pin);
uint32_t mv;
esp_adc_cal_get_voltage((adc_channel_t)chan, &characteristics[attenuations[chan]], &mv);
adc_result = mv * isr_float_t(1023) / isr_float_t(ADC_REFERENCE_VOLTAGE) / isr_float_t(1000);
// Change the attenuation level based on the new reading
adc_atten_t atten;
if (mv < thresholds[ADC_ATTEN_DB_0] - 100)
atten = ADC_ATTEN_DB_0;
else if (mv > thresholds[ADC_ATTEN_DB_0] - 50 && mv < thresholds[ADC_ATTEN_DB_2_5] - 100)
atten = ADC_ATTEN_DB_2_5;
else if (mv > thresholds[ADC_ATTEN_DB_2_5] - 50 && mv < thresholds[ADC_ATTEN_DB_6] - 100)
atten = ADC_ATTEN_DB_6;
else if (mv > thresholds[ADC_ATTEN_DB_6] - 50)
atten = ADC_ATTEN_DB_11;
else return;
adc1_set_attenuation(chan, atten);
}
// ------------------------
// PWM
// ------------------------
int8_t channel_for_pin(const uint8_t pin) {
for (int i = 0; i <= CHANNEL_MAX_NUM; i++)
if (chan_pin[i] == pin) return i;
return -1;
}
// get PWM channel for pin - if none then attach a new one
// return -1 if fail or invalid pin#, channel # (0-15) if success
int8_t get_pwm_channel(const pin_t pin, const uint32_t freq, const uint16_t res) {
if (!WITHIN(pin, 1, MAX_PWM_IOPIN)) return -1; // Not a hardware PWM pin!
int8_t cid = channel_for_pin(pin);
if (cid >= 0) return cid;
// Find an empty adjacent channel (same timer & freq/res)
for (int i = 0; i <= CHANNEL_MAX_NUM; i++) {
if (chan_pin[i] == 0) {
if (chan_pin[i ^ 0x1] != 0) {
if (pwmInfo[i / 2].freq == freq && pwmInfo[i / 2].res == res) {
chan_pin[i] = pin; // Allocate PWM to this channel
ledcAttachPin(pin, i);
return i;
}
}
else if (cid == -1) // Pair of empty channels?
cid = i & 0xFE; // Save lower channel number
}
}
// not attached, is an empty timer slot avail?
if (cid >= 0) {
chan_pin[cid] = pin;
pwmInfo[cid / 2].freq = freq;
pwmInfo[cid / 2].res = res;
ledcSetup(cid, freq, res);
ledcAttachPin(pin, cid);
}
return cid; // -1 if no channel avail
}
void MarlinHAL::set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=_BV(PWM_RESOLUTION)-1*/, const bool invert/*=false*/) {
#if ENABLED(I2S_STEPPER_STREAM)
if (pin > 127) {
const uint8_t pinlo = pin & 0x7F;
pwm_pin_t &pindata = pwm_pin_data[pinlo];
const uint32_t duty = map(invert ? v_size - v : v, 0, v_size, 0, pindata.pwm_cycle_ticks);
if (duty == 0 || duty == pindata.pwm_cycle_ticks) { // max or min (i.e., on/off)
pindata.pwm_duty_ticks = 0; // turn off PWM for this pin
duty ? SBI32(i2s_port_data, pinlo) : CBI32(i2s_port_data, pinlo); // set pin level
}
else
pindata.pwm_duty_ticks = duty; // PWM duty count = # of 4µs ticks per full PWM cycle
}
else
#endif
{
const int8_t cid = get_pwm_channel(pin, PWM_FREQUENCY, PWM_RESOLUTION);
if (cid >= 0) {
const uint32_t duty = map(invert ? v_size - v : v, 0, v_size, 0, _BV(PWM_RESOLUTION)-1);
ledcWrite(cid, duty);
}
}
}
int8_t MarlinHAL::set_pwm_frequency(const pin_t pin, const uint32_t f_desired) {
#if ENABLED(I2S_STEPPER_STREAM)
if (pin > 127) {
pwm_pin_data[pin & 0x7F].pwm_cycle_ticks = 1000000UL / f_desired / 4; // # of 4µs ticks per full PWM cycle
return 0;
}
else
#endif
{
const int8_t cid = channel_for_pin(pin);
if (cid >= 0) {
if (f_desired == ledcReadFreq(cid)) return cid; // no freq change
ledcDetachPin(chan_pin[cid]);
chan_pin[cid] = 0; // remove old freq channel
}
return get_pwm_channel(pin, f_desired, PWM_RESOLUTION); // try for new one
}
}
// use hardware PWM if avail, if not then ISR
void analogWrite(const pin_t pin, const uint16_t value, const uint32_t freq/*=PWM_FREQUENCY*/, const uint16_t res/*=8*/) { // always 8 bit resolution!
// Use ledc hardware for internal pins
const int8_t cid = get_pwm_channel(pin, freq, res);
if (cid >= 0) {
ledcWrite(cid, value); // set duty value
return;
}
// not a hardware PWM pin OR no PWM channels available
int idx = -1;
// Search Pin
for (int i = 0; i < numPWMUsed; ++i)
if (pwmState[i].pin == pin) { idx = i; break; }
// not found ?
if (idx < 0) {
// No slots remaining
if (numPWMUsed >= MAX_PWM_PINS) return;
// Take new slot for pin
idx = numPWMUsed;
pwmState[idx].pin = pin;
// Start timer on first use
if (idx == 0) HAL_timer_start(MF_TIMER_PWM, PWM_TIMER_FREQUENCY);
++numPWMUsed;
}
// Use 7bit internal value - add 1 to have 100% high at 255
pwmState[idx].value = (value + 1) / 2;
}
// Handle PWM timer interrupt
HAL_PWM_TIMER_ISR() {
HAL_timer_isr_prologue(MF_TIMER_PWM);
static uint8_t count = 0;
for (int i = 0; i < numPWMUsed; ++i) {
if (count == 0) // Start of interval
digitalWrite(pwmState[i].pin, pwmState[i].value ? HIGH : LOW);
else if (pwmState[i].value == count) // End of duration
digitalWrite(pwmState[i].pin, LOW);
}
// 128 for 7 Bit resolution
count = (count + 1) & 0x7F;
HAL_timer_isr_epilogue(MF_TIMER_PWM);
}
#endif // ARDUINO_ARCH_ESP32

View File

@@ -1,246 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* HAL for Espressif ESP32 WiFi
*/
#define CPU_32_BIT
#include <stdint.h>
#include "../shared/Marduino.h"
#include "../shared/math_32bit.h"
#include "../shared/HAL_SPI.h"
#include "fastio.h"
#include "i2s.h"
#if ENABLED(WIFISUPPORT)
#include "WebSocketSerial.h"
#endif
#if ENABLED(ESP3D_WIFISUPPORT)
#include "esp3dlib.h"
#endif
#include "FlushableHardwareSerial.h"
// ------------------------
// Defines
// ------------------------
#define MYSERIAL1 flushableSerial
#if EITHER(WIFISUPPORT, ESP3D_WIFISUPPORT)
#if ENABLED(ESP3D_WIFISUPPORT)
typedef ForwardSerial1Class< decltype(Serial2Socket) > DefaultSerial1;
extern DefaultSerial1 MSerial0;
#define MYSERIAL2 MSerial0
#else
#define MYSERIAL2 webSocketSerial
#endif
#endif
#define CRITICAL_SECTION_START() portENTER_CRITICAL(&hal.spinlock)
#define CRITICAL_SECTION_END() portEXIT_CRITICAL(&hal.spinlock)
#define HAL_CAN_SET_PWM_FREQ // This HAL supports PWM Frequency adjustment
#define PWM_FREQUENCY 1000u // Default PWM frequency when set_pwm_duty() is called without set_pwm_frequency()
#define PWM_RESOLUTION 10u // Default PWM bit resolution
#define CHANNEL_MAX_NUM 15u // max PWM channel # to allocate (7 to only use low speed, 15 to use low & high)
#define MAX_PWM_IOPIN 33u // hardware pwm pins < 34
#ifndef MAX_EXPANDER_BITS
#define MAX_EXPANDER_BITS 32 // I2S expander bit width (max 32)
#endif
// ------------------------
// Types
// ------------------------
typedef double isr_float_t; // FPU ops are used for single-precision, so use double for ISRs.
typedef int16_t pin_t;
typedef struct pwm_pin {
uint32_t pwm_cycle_ticks = 1000000UL / (PWM_FREQUENCY) / 4; // # ticks per pwm cycle
uint32_t pwm_tick_count = 0; // current tick count
uint32_t pwm_duty_ticks = 0; // # of ticks for current duty cycle
} pwm_pin_t;
class Servo;
typedef Servo hal_servo_t;
// ------------------------
// Public functions
// ------------------------
//
// Tone
//
void tone(const pin_t _pin, const unsigned int frequency, const unsigned long duration=0);
void noTone(const pin_t _pin);
int8_t get_pwm_channel(const pin_t pin, const uint32_t freq, const uint16_t res);
void analogWrite(const pin_t pin, const uint16_t value, const uint32_t freq=PWM_FREQUENCY, const uint16_t res=8);
//
// Pin Mapping for M42, M43, M226
//
#define GET_PIN_MAP_PIN(index) index
#define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
#if ENABLED(USE_ESP32_EXIO)
void Write_EXIO(uint8_t IO, uint8_t v);
#endif
//
// Delay in cycles (used by DELAY_NS / DELAY_US)
//
FORCE_INLINE static void DELAY_CYCLES(uint32_t x) {
unsigned long start, ccount, stop;
/**
* It's important to care for race conditions (and overflows) here.
* Race condition example: If `stop` calculates to being close to the upper boundary of
* `uint32_t` and if at the same time a longer loop interruption kicks in (e.g. due to other
* FreeRTOS tasks or interrupts), `ccount` might overflow (and therefore be below `stop` again)
* without the loop ever being able to notice that `ccount` had already been above `stop` once
* (and that therefore the number of cycles to delay has already passed).
* As DELAY_CYCLES (through DELAY_NS / DELAY_US) is used by software SPI bit banging to drive
* LCDs and therefore might be called very, very often, this seemingly improbable situation did
* actually happen in reality. It resulted in apparently random print pauses of ~17.9 seconds
* (0x100000000 / 240 MHz) or multiples thereof, essentially ruining the current print by causing
* large blobs of filament.
*/
__asm__ __volatile__ ( "rsr %0, ccount" : "=a" (start) );
stop = start + x;
ccount = start;
if (stop >= start) {
// no overflow, so only loop while in between start and stop:
// 0x00000000 -----------------start****stop-- 0xFFFFFFFF
while (ccount >= start && ccount < stop) {
__asm__ __volatile__ ( "rsr %0, ccount" : "=a" (ccount) );
}
}
else {
// stop did overflow, so only loop while outside of stop and start:
// 0x00000000 **stop-------------------start** 0xFFFFFFFF
while (ccount >= start || ccount < stop) {
__asm__ __volatile__ ( "rsr %0, ccount" : "=a" (ccount) );
}
}
}
// ------------------------
// Class Utilities
// ------------------------
#pragma GCC diagnostic push
#if GCC_VERSION <= 50000
#pragma GCC diagnostic ignored "-Wunused-function"
#endif
int freeMemory();
#pragma GCC diagnostic pop
void _delay_ms(const int ms);
// ------------------------
// MarlinHAL Class
// ------------------------
#define HAL_ADC_VREF 3.3
#define HAL_ADC_RESOLUTION 10
class MarlinHAL {
public:
// Earliest possible init, before setup()
MarlinHAL() {}
// Watchdog
static void watchdog_init() IF_DISABLED(USE_WATCHDOG, {});
static void watchdog_refresh() IF_DISABLED(USE_WATCHDOG, {});
static void init() {} // Called early in setup()
static void init_board(); // Called less early in setup()
static void reboot(); // Restart the firmware
// Interrupts
static portMUX_TYPE spinlock;
static bool isr_state() { return spinlock.owner == portMUX_FREE_VAL; }
static void isr_on() { if (spinlock.owner != portMUX_FREE_VAL) portEXIT_CRITICAL(&spinlock); }
static void isr_off() { portENTER_CRITICAL(&spinlock); }
static void delay_ms(const int ms) { _delay_ms(ms); }
// Tasks, called from idle()
static void idletask();
// Reset
static uint8_t get_reset_source();
static void clear_reset_source() {}
// Free SRAM
static int freeMemory();
static pwm_pin_t pwm_pin_data[MAX_EXPANDER_BITS];
//
// ADC Methods
//
static uint16_t adc_result;
// Called by Temperature::init once at startup
static void adc_init();
// Called by Temperature::init for each sensor at startup
static void adc_enable(const pin_t pin) {}
// Begin ADC sampling on the given pin. Called from Temperature::isr!
static void adc_start(const pin_t pin);
// Is the ADC ready for reading?
static bool adc_ready() { return true; }
// The current value of the ADC register
static uint16_t adc_value() { return adc_result; }
/**
* If not already allocated, allocate a hardware PWM channel
* to the pin and set the duty cycle..
* Optionally invert the duty cycle [default = false]
* Optionally change the scale of the provided value to enable finer PWM duty control [default = 255]
*/
static void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false);
/**
* Allocate and set the frequency of a hardware PWM pin
* Returns -1 if no pin available.
*/
static int8_t set_pwm_frequency(const pin_t pin, const uint32_t f_desired);
};

View File

@@ -1,113 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
* Copyright (c) 2017 Victor Perez
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_ESP32
#include "../../inc/MarlinConfig.h"
#include "../shared/HAL_SPI.h"
#include <pins_arduino.h>
#include <SPI.h>
// ------------------------
// Public Variables
// ------------------------
static SPISettings spiConfig;
// ------------------------
// Public functions
// ------------------------
#if ENABLED(SOFTWARE_SPI)
// ------------------------
// Software SPI
// ------------------------
#error "Software SPI not supported for ESP32. Use Hardware SPI."
#else
// ------------------------
// Hardware SPI
// ------------------------
void spiBegin() {
#if ENABLED(SDSUPPORT) && PIN_EXISTS(SD_SS)
OUT_WRITE(SD_SS_PIN, HIGH);
#endif
}
void spiInit(uint8_t spiRate) {
uint32_t clock;
switch (spiRate) {
case SPI_FULL_SPEED: clock = 16000000; break;
case SPI_HALF_SPEED: clock = 8000000; break;
case SPI_QUARTER_SPEED: clock = 4000000; break;
case SPI_EIGHTH_SPEED: clock = 2000000; break;
case SPI_SIXTEENTH_SPEED: clock = 1000000; break;
case SPI_SPEED_5: clock = 500000; break;
case SPI_SPEED_6: clock = 250000; break;
default: clock = 1000000; // Default from the SPI library
}
spiConfig = SPISettings(clock, MSBFIRST, SPI_MODE0);
SPI.begin();
}
uint8_t spiRec() {
SPI.beginTransaction(spiConfig);
uint8_t returnByte = SPI.transfer(0xFF);
SPI.endTransaction();
return returnByte;
}
void spiRead(uint8_t *buf, uint16_t nbyte) {
SPI.beginTransaction(spiConfig);
SPI.transferBytes(0, buf, nbyte);
SPI.endTransaction();
}
void spiSend(uint8_t b) {
SPI.beginTransaction(spiConfig);
SPI.transfer(b);
SPI.endTransaction();
}
void spiSendBlock(uint8_t token, const uint8_t *buf) {
SPI.beginTransaction(spiConfig);
SPI.transfer(token);
SPI.writeBytes(const_cast<uint8_t*>(buf), 512);
SPI.endTransaction();
}
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) {
spiConfig = SPISettings(spiClock, bitOrder, dataMode);
SPI.beginTransaction(spiConfig);
}
#endif // !SOFTWARE_SPI
#endif // ARDUINO_ARCH_ESP32

View File

@@ -1,26 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2021 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include <SPI.h>
using MarlinSPI = SPIClass;

View File

@@ -1,67 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_ESP32
#include "../../inc/MarlinConfig.h"
#if HAS_SERVOS
#include "Servo.h"
// Adjacent channels (0/1, 2/3 etc.) share the same timer and therefore the same frequency and resolution settings on ESP32,
// so we only allocate servo channels up high to avoid side effects with regards to analogWrite (fans, leds, laser pwm etc.)
int Servo::channel_next_free = 12;
Servo::Servo() {}
int8_t Servo::attach(const int inPin) {
if (inPin > 0) pin = inPin;
channel = get_pwm_channel(pin, 50u, 16u);
return channel; // -1 if no PWM avail.
}
// leave channel connected to servo - set duty to zero
void Servo::detach() {
if (channel >= 0) ledcWrite(channel, 0);
}
int Servo::read() { return degrees; }
void Servo::write(int inDegrees) {
degrees = constrain(inDegrees, MIN_ANGLE, MAX_ANGLE);
int us = map(degrees, MIN_ANGLE, MAX_ANGLE, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
int duty = map(us, 0, TAU_USEC, 0, MAX_COMPARE);
if (channel >= 0) ledcWrite(channel, duty); // don't save duty for servos!
}
void Servo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (attach(0) >= 0) {
write(value);
safe_delay(servo_delay[channel]);
TERN_(DEACTIVATE_SERVOS_AFTER_MOVE, detach());
}
}
#endif // HAS_SERVOS
#endif // ARDUINO_ARCH_ESP32

View File

@@ -1,48 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include <Arduino.h>
class Servo {
static const int MIN_ANGLE = 0,
MAX_ANGLE = 180,
MIN_PULSE_WIDTH = 544, // Shortest pulse sent to a servo
MAX_PULSE_WIDTH = 2400, // Longest pulse sent to a servo
TAU_MSEC = 20,
TAU_USEC = (TAU_MSEC * 1000),
MAX_COMPARE = _BV(16) - 1; // 65535
public:
Servo();
int8_t attach(const int pin); // attach the given pin to the next free channel, set pinMode, return channel number (-1 on fail)
void detach();
void write(int degrees); // set angle
void move(const int degrees); // attach the servo, then move to value
int read(); // returns current pulse width as an angle between 0 and 180 degrees
private:
static int channel_next_free;
int channel;
int pin;
int degrees;
};

View File

@@ -1,59 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* Copypaste of SAMD51 HAL developed by Giuliano Zaro (AKA GMagician)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* Description: Tone function for ESP32
* Derived from https://forum.arduino.cc/index.php?topic=136500.msg2903012#msg2903012
*/
#ifdef ARDUINO_ARCH_ESP32
#include "../../inc/MarlinConfig.h"
#include "HAL.h"
static pin_t tone_pin;
volatile static int32_t toggles;
void tone(const pin_t _pin, const unsigned int frequency, const unsigned long duration/*=0*/) {
tone_pin = _pin;
toggles = 2 * frequency * duration / 1000;
HAL_timer_start(MF_TIMER_TONE, 2 * frequency);
}
void noTone(const pin_t _pin) {
HAL_timer_disable_interrupt(MF_TIMER_TONE);
WRITE(_pin, LOW);
}
HAL_TONE_TIMER_ISR() {
HAL_timer_isr_prologue(MF_TIMER_TONE);
if (toggles) {
toggles--;
TOGGLE(tone_pin);
}
else noTone(tone_pin); // turn off interrupt
}
#endif // ARDUINO_ARCH_ESP32

View File

@@ -1,57 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_ESP32
#include "../../inc/MarlinConfig.h"
#if ENABLED(EEPROM_SETTINGS)
#include "../shared/eeprom_api.h"
#include <EEPROM.h>
#ifndef MARLIN_EEPROM_SIZE
#define MARLIN_EEPROM_SIZE 0x1000 // 4KB
#endif
size_t PersistentStore::capacity() { return MARLIN_EEPROM_SIZE; }
bool PersistentStore::access_start() { return EEPROM.begin(MARLIN_EEPROM_SIZE); }
bool PersistentStore::access_finish() { EEPROM.end(); return true; }
bool PersistentStore::write_data(int &pos, const uint8_t *value, size_t size, uint16_t *crc) {
for (size_t i = 0; i < size; i++) {
EEPROM.write(pos++, value[i]);
crc16(crc, &value[i], 1);
}
return false;
}
bool PersistentStore::read_data(int &pos, uint8_t *value, size_t size, uint16_t *crc, const bool writing/*=true*/) {
for (size_t i = 0; i < size; i++) {
uint8_t c = EEPROM.read(pos++);
if (writing) value[i] = c;
crc16(crc, &c, 1);
}
return false;
}
#endif // EEPROM_SETTINGS
#endif // ARDUINO_ARCH_ESP32

View File

@@ -1,68 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* Endstop Interrupts
*
* Without endstop interrupts the endstop pins must be polled continually in
* the stepper-ISR via endstops.update(), most of the time finding no change.
* With this feature endstops.update() is called only when we know that at
* least one endstop has changed state, saving valuable CPU cycles.
*
* This feature only works when all used endstop pins can generate an 'external interrupt'.
*
* Test whether pins issue interrupts on your board by flashing 'pin_interrupt_test.ino'.
* (Located in Marlin/buildroot/share/pin_interrupt_test/pin_interrupt_test.ino)
*/
#include "../../module/endstops.h"
// One ISR for all EXT-Interrupts
void ICACHE_RAM_ATTR endstop_ISR() { endstops.update(); }
void setup_endstop_interrupts() {
#define _ATTACH(P) attachInterrupt(digitalPinToInterrupt(P), endstop_ISR, CHANGE)
TERN_(HAS_X_MAX, _ATTACH(X_MAX_PIN));
TERN_(HAS_X_MIN, _ATTACH(X_MIN_PIN));
TERN_(HAS_Y_MAX, _ATTACH(Y_MAX_PIN));
TERN_(HAS_Y_MIN, _ATTACH(Y_MIN_PIN));
TERN_(HAS_Z_MAX, _ATTACH(Z_MAX_PIN));
TERN_(HAS_Z_MIN, _ATTACH(Z_MIN_PIN));
TERN_(HAS_X2_MAX, _ATTACH(X2_MAX_PIN));
TERN_(HAS_X2_MIN, _ATTACH(X2_MIN_PIN));
TERN_(HAS_Y2_MAX, _ATTACH(Y2_MAX_PIN));
TERN_(HAS_Y2_MIN, _ATTACH(Y2_MIN_PIN));
TERN_(HAS_Z2_MAX, _ATTACH(Z2_MAX_PIN));
TERN_(HAS_Z2_MIN, _ATTACH(Z2_MIN_PIN));
TERN_(HAS_Z3_MAX, _ATTACH(Z3_MAX_PIN));
TERN_(HAS_Z3_MIN, _ATTACH(Z3_MIN_PIN));
TERN_(HAS_Z4_MAX, _ATTACH(Z4_MAX_PIN));
TERN_(HAS_Z4_MIN, _ATTACH(Z4_MIN_PIN));
TERN_(HAS_Z_MIN_PROBE_PIN, _ATTACH(Z_MIN_PROBE_PIN));
TERN_(HAS_I_MAX, _ATTACH(I_MAX_PIN));
TERN_(HAS_I_MIN, _ATTACH(I_MIN_PIN));
TERN_(HAS_J_MAX, _ATTACH(J_MAX_PIN));
TERN_(HAS_J_MIN, _ATTACH(J_MIN_PIN));
TERN_(HAS_K_MAX, _ATTACH(K_MAX_PIN));
TERN_(HAS_K_MIN, _ATTACH(K_MIN_PIN));
}

View File

@@ -1,6 +0,0 @@
# Name, Type, SubType, Offset, Size, Flags
nvs, data, nvs, 0x9000, 0x5000,
otadata, data, ota, 0xe000, 0x2000,
app0, app, ota_0, 0x10000, 0x180000,
app1, app, ota_1, 0x190000, 0x180000,
spiffs, data, spiffs, 0x310000, 0xF0000,
1 # Name Type SubType Offset Size Flags
2 nvs data nvs 0x9000 0x5000
3 otadata data ota 0xe000 0x2000
4 app0 app ota_0 0x10000 0x180000
5 app1 app ota_1 0x190000 0x180000
6 spiffs data spiffs 0x310000 0xF0000

View File

@@ -1,93 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include "i2s.h"
/**
* Utility functions
*/
// I2S expander pin mapping.
#define IS_I2S_EXPANDER_PIN(IO) TEST(IO, 7)
#define I2S_EXPANDER_PIN_INDEX(IO) (IO & 0x7F)
// Set pin as input
#define _SET_INPUT(IO) pinMode(IO, INPUT)
// Set pin as output
#define _SET_OUTPUT(IO) pinMode(IO, OUTPUT)
// Set pin as input with pullup mode
#define _PULLUP(IO, v) pinMode(IO, v ? INPUT_PULLUP : INPUT)
#if ENABLED(USE_ESP32_EXIO)
// Read a pin wrapper
#define READ(IO) digitalRead(IO)
// Write to a pin wrapper
#define WRITE(IO, v) (IO >= 100 ? Write_EXIO(IO, v) : digitalWrite(IO, v))
#else
// Read a pin wrapper
#define READ(IO) (IS_I2S_EXPANDER_PIN(IO) ? i2s_state(I2S_EXPANDER_PIN_INDEX(IO)) : digitalRead(IO))
// Write to a pin wrapper
#define WRITE(IO, v) (IS_I2S_EXPANDER_PIN(IO) ? i2s_write(I2S_EXPANDER_PIN_INDEX(IO), v) : digitalWrite(IO, v))
#endif
// Set pin as input wrapper (0x80 | (v << 5) | (IO - 100))
#define SET_INPUT(IO) _SET_INPUT(IO)
// Set pin as input with pullup wrapper
#define SET_INPUT_PULLUP(IO) do{ _SET_INPUT(IO); _PULLUP(IO, HIGH); }while(0)
// Set pin as input with pulldown (substitution)
#define SET_INPUT_PULLDOWN SET_INPUT
// Set pin as output wrapper
#define SET_OUTPUT(IO) do{ _SET_OUTPUT(IO); }while(0)
// Set pin as PWM
#define SET_PWM SET_OUTPUT
// Set pin as output and init
#define OUT_WRITE(IO,V) do{ _SET_OUTPUT(IO); WRITE(IO,V); }while(0)
// digitalRead/Write wrappers
#define extDigitalRead(IO) digitalRead(IO)
#define extDigitalWrite(IO,V) digitalWrite(IO,V)
// PWM outputs
#define PWM_PIN(P) (P < 34 || P > 127) // NOTE Pins >= 34 are input only on ESP32, so they can't be used for output.
// Toggle pin value
#define TOGGLE(IO) WRITE(IO, !READ(IO))
//
// Ports and functions
//
// UART
#define RXD 3
#define TXD 1
// TWI (I2C)
#define SCL 5
#define SDA 4

View File

@@ -1,26 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#if HAS_SPI_TFT || HAS_FSMC_TFT
#error "Sorry! TFT displays are not available for HAL/ESP32."
#endif

View File

@@ -1,29 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
//
// Board-specific options need to be defined before HAL.h
//
#if MB(MKS_TINYBEE)
#define MAX_EXPANDER_BITS 24 // TinyBee has 3 x HC595
#endif

View File

@@ -1,22 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once

View File

@@ -1,54 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#if ENABLED(EMERGENCY_PARSER)
#error "EMERGENCY_PARSER is not yet implemented for ESP32. Disable EMERGENCY_PARSER to continue."
#endif
#if (ENABLED(SPINDLE_LASER_USE_PWM) && SPINDLE_LASER_FREQUENCY > 78125) || (ENABLED(FAST_PWM_FAN_FREQUENCY) && FAST_PWM_FAN_FREQUENCY > 78125)
#error "SPINDLE_LASER_FREQUENCY and FAST_PWM_FREQUENCY maximum value is 78125Hz for ESP32."
#endif
#if HAS_TMC_SW_SERIAL
#error "TMC220x Software Serial is not supported on ESP32."
#endif
#if BOTH(WIFISUPPORT, ESP3D_WIFISUPPORT)
#error "Only enable one WiFi option, either WIFISUPPORT or ESP3D_WIFISUPPORT."
#endif
#if ENABLED(POSTMORTEM_DEBUGGING)
#error "POSTMORTEM_DEBUGGING is not yet supported on ESP32."
#endif
#if MB(MKS_TINYBEE) && ENABLED(FAST_PWM_FAN)
#error "FAST_PWM_FAN is not available on TinyBee."
#endif
#if USING_PULLDOWNS
#error "PULLDOWN pin mode is not available on ESP32 boards."
#endif
#if BOTH(I2S_STEPPER_STREAM, LIN_ADVANCE)
#error "I2S stream is currently incompatible with LIN_ADVANCE."
#endif

View File

@@ -1,27 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#define SD_SS_PIN SDSS
#define SD_SCK_PIN 18
#define SD_MISO_PIN 19
#define SD_MOSI_PIN 23

View File

@@ -1,171 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_ESP32
#include <stdio.h>
#include <esp_types.h>
#include <soc/timer_group_struct.h>
#include <driver/periph_ctrl.h>
#include <driver/timer.h>
#include "../../inc/MarlinConfig.h"
// ------------------------
// Local defines
// ------------------------
#define NUM_HARDWARE_TIMERS 4
// ------------------------
// Private Variables
// ------------------------
static timg_dev_t *TG[2] = {&TIMERG0, &TIMERG1};
const tTimerConfig timer_config[NUM_HARDWARE_TIMERS] = {
{ TIMER_GROUP_0, TIMER_0, STEPPER_TIMER_PRESCALE, stepTC_Handler }, // 0 - Stepper
{ TIMER_GROUP_0, TIMER_1, TEMP_TIMER_PRESCALE, tempTC_Handler }, // 1 - Temperature
{ TIMER_GROUP_1, TIMER_0, PWM_TIMER_PRESCALE, pwmTC_Handler }, // 2 - PWM
{ TIMER_GROUP_1, TIMER_1, TONE_TIMER_PRESCALE, toneTC_Handler }, // 3 - Tone
};
// ------------------------
// Public functions
// ------------------------
void IRAM_ATTR timer_isr(void *para) {
const tTimerConfig& timer = timer_config[(int)para];
// Retrieve the interrupt status and the counter value
// from the timer that reported the interrupt
uint32_t intr_status = TG[timer.group]->int_st_timers.val;
TG[timer.group]->hw_timer[timer.idx].update = 1;
// Clear the interrupt
if (intr_status & BIT(timer.idx)) {
switch (timer.idx) {
case TIMER_0: TG[timer.group]->int_clr_timers.t0 = 1; break;
case TIMER_1: TG[timer.group]->int_clr_timers.t1 = 1; break;
case TIMER_MAX: break;
}
}
timer.fn();
// After the alarm has been triggered
// Enable it again so it gets triggered the next time
TG[timer.group]->hw_timer[timer.idx].config.alarm_en = TIMER_ALARM_EN;
}
/**
* Enable and initialize the timer
* @param timer_num timer number to initialize
* @param frequency frequency of the timer
*/
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
const tTimerConfig timer = timer_config[timer_num];
timer_config_t config;
config.divider = timer.divider;
config.counter_dir = TIMER_COUNT_UP;
config.counter_en = TIMER_PAUSE;
config.alarm_en = TIMER_ALARM_EN;
config.intr_type = TIMER_INTR_LEVEL;
config.auto_reload = true;
// Select and initialize the timer
timer_init(timer.group, timer.idx, &config);
// Timer counter initial value and auto reload on alarm
timer_set_counter_value(timer.group, timer.idx, 0x00000000ULL);
// Configure the alam value and the interrupt on alarm
timer_set_alarm_value(timer.group, timer.idx, (HAL_TIMER_RATE) / timer.divider / frequency - 1);
timer_enable_intr(timer.group, timer.idx);
timer_isr_register(timer.group, timer.idx, timer_isr, (void*)(uint32_t)timer_num, 0, nullptr);
timer_start(timer.group, timer.idx);
}
/**
* Set the upper value of the timer, when the timer reaches this upper value the
* interrupt should be triggered and the counter reset
* @param timer_num timer number to set the count to
* @param count threshold at which the interrupt is triggered
*/
void HAL_timer_set_compare(const uint8_t timer_num, hal_timer_t count) {
const tTimerConfig timer = timer_config[timer_num];
timer_set_alarm_value(timer.group, timer.idx, count);
}
/**
* Get the current upper value of the timer
* @param timer_num timer number to get the count from
* @return the timer current threshold for the alarm to be triggered
*/
hal_timer_t HAL_timer_get_compare(const uint8_t timer_num) {
const tTimerConfig timer = timer_config[timer_num];
uint64_t alarm_value;
timer_get_alarm_value(timer.group, timer.idx, &alarm_value);
return alarm_value;
}
/**
* Get the current counter value between 0 and the maximum count (HAL_timer_set_count)
* @param timer_num timer number to get the current count
* @return the current counter of the alarm
*/
hal_timer_t HAL_timer_get_count(const uint8_t timer_num) {
const tTimerConfig timer = timer_config[timer_num];
uint64_t counter_value;
timer_get_counter_value(timer.group, timer.idx, &counter_value);
return counter_value;
}
/**
* Enable timer interrupt on the timer
* @param timer_num timer number to enable interrupts on
*/
void HAL_timer_enable_interrupt(const uint8_t timer_num) {
//const tTimerConfig timer = timer_config[timer_num];
//timer_enable_intr(timer.group, timer.idx);
}
/**
* Disable timer interrupt on the timer
* @param timer_num timer number to disable interrupts on
*/
void HAL_timer_disable_interrupt(const uint8_t timer_num) {
//const tTimerConfig timer = timer_config[timer_num];
//timer_disable_intr(timer.group, timer.idx);
}
bool HAL_timer_interrupt_enabled(const uint8_t timer_num) {
const tTimerConfig timer = timer_config[timer_num];
return TG[timer.group]->int_ena.val | BIT(timer_num);
}
#endif // ARDUINO_ARCH_ESP32

View File

@@ -1,140 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#pragma once
#include <stdint.h>
#include <driver/timer.h>
// ------------------------
// Defines
// ------------------------
#define FORCE_INLINE __attribute__((always_inline)) inline
typedef uint64_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFFFFFFFFFFULL
#ifndef MF_TIMER_STEP
#define MF_TIMER_STEP 0 // Timer Index for Stepper
#endif
#ifndef MF_TIMER_PULSE
#define MF_TIMER_PULSE MF_TIMER_STEP
#endif
#ifndef MF_TIMER_TEMP
#define MF_TIMER_TEMP 1 // Timer Index for Temperature
#endif
#ifndef MF_TIMER_PWM
#define MF_TIMER_PWM 2 // index of timer to use for PWM outputs
#endif
#ifndef MF_TIMER_TONE
#define MF_TIMER_TONE 3 // index of timer for beeper tones
#endif
#define HAL_TIMER_RATE APB_CLK_FREQ // frequency of timer peripherals
#if ENABLED(I2S_STEPPER_STREAM)
#define STEPPER_TIMER_PRESCALE 1
#define STEPPER_TIMER_RATE 250000 // 250khz, 4µs pulses of i2s word clock
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) // stepper timer ticks per µs // wrong would be 0.25
#else
#define STEPPER_TIMER_PRESCALE 40
#define STEPPER_TIMER_RATE ((HAL_TIMER_RATE) / (STEPPER_TIMER_PRESCALE)) // frequency of stepper timer, 2MHz
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) // stepper timer ticks per µs
#endif
#define STEP_TIMER_MIN_INTERVAL 8 // minimum time in µs between stepper interrupts
#define TONE_TIMER_PRESCALE 1000 // Arbitrary value, no idea what i'm doing here
#define TEMP_TIMER_PRESCALE 1000 // prescaler for setting Temp timer, 72Khz
#define TEMP_TIMER_FREQUENCY 1000 // temperature interrupt frequency
#define PWM_TIMER_PRESCALE 10
#if ENABLED(FAST_PWM_FAN)
#define PWM_TIMER_FREQUENCY FAST_PWM_FAN_FREQUENCY
#else
#define PWM_TIMER_FREQUENCY (50*128) // 50Hz and 7bit resolution
#endif
#define MAX_PWM_PINS 32 // Number of PWM pin-slots
#define PULSE_TIMER_RATE STEPPER_TIMER_RATE // frequency of pulse timer
#define PULSE_TIMER_PRESCALE STEPPER_TIMER_PRESCALE
#define PULSE_TIMER_TICKS_PER_US STEPPER_TIMER_TICKS_PER_US
#define ENABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_enable_interrupt(MF_TIMER_STEP)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() HAL_timer_disable_interrupt(MF_TIMER_STEP)
#define STEPPER_ISR_ENABLED() HAL_timer_interrupt_enabled(MF_TIMER_STEP)
#define ENABLE_TEMPERATURE_INTERRUPT() HAL_timer_enable_interrupt(MF_TIMER_TEMP)
#define DISABLE_TEMPERATURE_INTERRUPT() HAL_timer_disable_interrupt(MF_TIMER_TEMP)
#ifndef HAL_TEMP_TIMER_ISR
#define HAL_TEMP_TIMER_ISR() extern "C" void tempTC_Handler()
#endif
#ifndef HAL_STEP_TIMER_ISR
#define HAL_STEP_TIMER_ISR() extern "C" void stepTC_Handler()
#endif
#ifndef HAL_PWM_TIMER_ISR
#define HAL_PWM_TIMER_ISR() extern "C" void pwmTC_Handler()
#endif
#ifndef HAL_TONE_TIMER_ISR
#define HAL_TONE_TIMER_ISR() extern "C" void toneTC_Handler()
#endif
extern "C" {
void tempTC_Handler();
void stepTC_Handler();
void pwmTC_Handler();
void toneTC_Handler();
}
// ------------------------
// Types
// ------------------------
typedef struct {
timer_group_t group;
timer_idx_t idx;
uint32_t divider;
void (*fn)();
} tTimerConfig;
// ------------------------
// Public Variables
// ------------------------
extern const tTimerConfig timer_config[];
// ------------------------
// Public functions
// ------------------------
void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency);
void HAL_timer_set_compare(const uint8_t timer_num, const hal_timer_t count);
hal_timer_t HAL_timer_get_compare(const uint8_t timer_num);
hal_timer_t HAL_timer_get_count(const uint8_t timer_num);
void HAL_timer_enable_interrupt(const uint8_t timer_num);
void HAL_timer_disable_interrupt(const uint8_t timer_num);
bool HAL_timer_interrupt_enabled(const uint8_t timer_num);
#define HAL_timer_isr_prologue(T) NOOP
#define HAL_timer_isr_epilogue(T) NOOP

View File

@@ -1,94 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2022 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* Copypaste of SAMD51 HAL developed by Giuliano Zaro (AKA GMagician)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_ESP32
#include "../../inc/MarlinConfig.h"
#if EITHER(MKS_MINI_12864, FYSETC_MINI_12864_2_1)
#include <U8glib-HAL.h>
#include "../shared/HAL_SPI.h"
#include "HAL.h"
#include "SPI.h"
static SPISettings spiConfig;
#ifndef LCD_SPI_SPEED
#ifdef SD_SPI_SPEED
#define LCD_SPI_SPEED SD_SPI_SPEED // Assume SPI speed shared with SD
#else
#define LCD_SPI_SPEED SPI_FULL_SPEED // Use full speed if SD speed is not supplied
#endif
#endif
uint8_t u8g_eps_hw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) {
static uint8_t msgInitCount = 2; // Ignore all messages until 2nd U8G_COM_MSG_INIT
if (msgInitCount) {
if (msg == U8G_COM_MSG_INIT) msgInitCount--;
if (msgInitCount) return -1;
}
switch (msg) {
case U8G_COM_MSG_STOP: break;
case U8G_COM_MSG_INIT:
OUT_WRITE(DOGLCD_CS, HIGH);
OUT_WRITE(DOGLCD_A0, HIGH);
OUT_WRITE(LCD_RESET_PIN, HIGH);
u8g_Delay(5);
spiBegin();
spiInit(LCD_SPI_SPEED);
break;
case U8G_COM_MSG_ADDRESS: /* define cmd (arg_val = 0) or data mode (arg_val = 1) */
WRITE(DOGLCD_A0, arg_val ? HIGH : LOW);
break;
case U8G_COM_MSG_CHIP_SELECT: /* arg_val == 0 means HIGH level of U8G_PI_CS */
WRITE(DOGLCD_CS, arg_val ? LOW : HIGH);
break;
case U8G_COM_MSG_RESET:
WRITE(LCD_RESET_PIN, arg_val);
break;
case U8G_COM_MSG_WRITE_BYTE:
spiSend((uint8_t)arg_val);
break;
case U8G_COM_MSG_WRITE_SEQ:
uint8_t *ptr = (uint8_t*) arg_ptr;
while (arg_val > 0) {
spiSend(*ptr++);
arg_val--;
}
break;
}
return 1;
}
#endif // EITHER(MKS_MINI_12864, FYSETC_MINI_12864_2_1)
#endif // ARDUINO_ARCH_ESP32

View File

@@ -1,6 +1,6 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
@@ -16,32 +16,19 @@
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
#include "platforms.h"
#ifndef GCC_VERSION
#define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#endif
#include HAL_PATH(.,HAL.h)
extern MarlinHAL hal;
#define HAL_ADC_RANGE _BV(HAL_ADC_RESOLUTION)
#ifndef I2C_ADDRESS
#define I2C_ADDRESS(A) uint8_t(A)
#endif
// Needed for AVR sprintf_P PROGMEM extension
#ifndef S_FMT
#define S_FMT "%s"
#endif
// String helper
#ifndef PGMSTR
#define PGMSTR(NAM,STR) const char NAM[] = STR
#endif
inline void watchdog_refresh() {
#if ENABLED(USE_WATCHDOG)
HAL_watchdog_refresh();
#endif
}

View File

@@ -0,0 +1,79 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef __AVR__
#include "../../inc/MarlinConfig.h"
#include "HAL.h"
// ------------------------
// Public Variables
// ------------------------
//uint8_t MCUSR;
// ------------------------
// Public functions
// ------------------------
void HAL_init() {
// Init Servo Pins
#define INIT_SERVO(N) OUT_WRITE(SERVO##N##_PIN, LOW)
#if HAS_SERVO_0
INIT_SERVO(0);
#endif
#if HAS_SERVO_1
INIT_SERVO(1);
#endif
#if HAS_SERVO_2
INIT_SERVO(2);
#endif
#if HAS_SERVO_3
INIT_SERVO(3);
#endif
}
#if ENABLED(SDSUPPORT)
#include "../../sd/SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
#else // !SDSUPPORT
extern "C" {
extern char __bss_end;
extern char __heap_start;
extern void* __brkval;
int freeMemory() {
int free_memory;
if ((int)__brkval == 0)
free_memory = ((int)&free_memory) - ((int)&__bss_end);
else
free_memory = ((int)&free_memory) - ((int)__brkval);
return free_memory;
}
}
#endif // !SDSUPPORT
#endif // __AVR__

View File

@@ -0,0 +1,402 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "../shared/Marduino.h"
#include "../shared/HAL_SPI.h"
#include "fastio.h"
#include "watchdog.h"
#include "math.h"
#ifdef USBCON
#include <HardwareSerial.h>
#else
#define HardwareSerial_h // Hack to prevent HardwareSerial.h header inclusion
#include "MarlinSerial.h"
#endif
#include <stdint.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#ifndef pgm_read_ptr
// Compatibility for avr-libc 1.8.0-4.1 included with Ubuntu for
// Windows Subsystem for Linux on Windows 10 as of 10/18/2019
#define pgm_read_ptr_far(address_long) (void*)__ELPM_word((uint32_t)(address_long))
#define pgm_read_ptr_near(address_short) (void*)__LPM_word((uint16_t)(address_short))
#define pgm_read_ptr(address_short) pgm_read_ptr_near(address_short)
#endif
// ------------------------
// Defines
// ------------------------
//#define analogInputToDigitalPin(IO) IO
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
#define CRITICAL_SECTION_END SREG = _sreg
#endif
#define ISRS_ENABLED() TEST(SREG, SREG_I)
#define ENABLE_ISRS() sei()
#define DISABLE_ISRS() cli()
// On AVR this is in math.h?
//#define square(x) ((x)*(x))
// ------------------------
// Types
// ------------------------
typedef uint16_t hal_timer_t;
#define HAL_TIMER_TYPE_MAX 0xFFFF
typedef int8_t pin_t;
#define SHARED_SERVOS HAS_SERVOS
#define HAL_SERVO_LIB Servo
// ------------------------
// Public Variables
// ------------------------
//extern uint8_t MCUSR;
// Serial ports
#ifdef USBCON
#if ENABLED(BLUETOOTH)
#define MYSERIAL0 bluetoothSerial
#else
#define MYSERIAL0 Serial
#endif
#define NUM_SERIAL 1
#else
#if !WITHIN(SERIAL_PORT, -1, 3)
#error "SERIAL_PORT must be from -1 to 3"
#endif
#define MYSERIAL0 customizedSerial1
#ifdef SERIAL_PORT_2
#if !WITHIN(SERIAL_PORT_2, -1, 3)
#error "SERIAL_PORT_2 must be from -1 to 3"
#elif SERIAL_PORT_2 == SERIAL_PORT
#error "SERIAL_PORT_2 must be different than SERIAL_PORT"
#endif
#define NUM_SERIAL 2
#define MYSERIAL1 customizedSerial2
#else
#define NUM_SERIAL 1
#endif
#endif
// ------------------------
// Public functions
// ------------------------
void HAL_init();
//void cli();
//void _delay_ms(const int delay);
inline void HAL_clear_reset_source() { MCUSR = 0; }
inline uint8_t HAL_get_reset_source() { return MCUSR; }
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
extern "C" {
int freeMemory();
}
#pragma GCC diagnostic pop
// timers
#define HAL_TIMER_RATE ((F_CPU) / 8) // i.e., 2MHz or 2.5MHz
#define STEP_TIMER_NUM 1
#define TEMP_TIMER_NUM 0
#define PULSE_TIMER_NUM STEP_TIMER_NUM
#define TEMP_TIMER_FREQUENCY ((F_CPU) / 64.0 / 256.0)
#define STEPPER_TIMER_RATE HAL_TIMER_RATE
#define STEPPER_TIMER_PRESCALE 8
#define STEPPER_TIMER_TICKS_PER_US ((STEPPER_TIMER_RATE) / 1000000) // Cannot be of type double
#define PULSE_TIMER_RATE STEPPER_TIMER_RATE // frequency of pulse timer
#define PULSE_TIMER_PRESCALE STEPPER_TIMER_PRESCALE
#define PULSE_TIMER_TICKS_PER_US STEPPER_TIMER_TICKS_PER_US
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
#define STEPPER_ISR_ENABLED() TEST(TIMSK1, OCIE1A)
#define ENABLE_TEMPERATURE_INTERRUPT() SBI(TIMSK0, OCIE0B)
#define DISABLE_TEMPERATURE_INTERRUPT() CBI(TIMSK0, OCIE0B)
#define TEMPERATURE_ISR_ENABLED() TEST(TIMSK0, OCIE0B)
FORCE_INLINE void HAL_timer_start(const uint8_t timer_num, const uint32_t) {
switch (timer_num) {
case STEP_TIMER_NUM:
// waveform generation = 0100 = CTC
SET_WGM(1, CTC_OCRnA);
// output mode = 00 (disconnected)
SET_COMA(1, NORMAL);
// Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be
// sure to regenerate speed_lookuptable.h with
// create_speed_lookuptable.py
SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
// Init Stepper ISR to 122 Hz for quick starting
// (F_CPU) / (STEPPER_TIMER_PRESCALE) / frequency
OCR1A = 0x4000;
TCNT1 = 0;
break;
case TEMP_TIMER_NUM:
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
break;
}
}
#define TIMER_OCR_1 OCR1A
#define TIMER_COUNTER_1 TCNT1
#define TIMER_OCR_0 OCR0A
#define TIMER_COUNTER_0 TCNT0
#define _CAT(a,V...) a##V
#define HAL_timer_set_compare(timer, compare) (_CAT(TIMER_OCR_, timer) = compare)
#define HAL_timer_get_compare(timer) _CAT(TIMER_OCR_, timer)
#define HAL_timer_get_count(timer) _CAT(TIMER_COUNTER_, timer)
/**
* On AVR there is no hardware prioritization and preemption of
* interrupts, so this emulates it. The UART has first priority
* (otherwise, characters will be lost due to UART overflow).
* Then: Stepper, Endstops, Temperature, and -finally- all others.
*/
#define HAL_timer_isr_prologue(TIMER_NUM)
#define HAL_timer_isr_epilogue(TIMER_NUM)
/* 18 cycles maximum latency */
#define HAL_STEP_TIMER_ISR() \
extern "C" void TIMER1_COMPA_vect() __attribute__ ((signal, naked, used, externally_visible)); \
extern "C" void TIMER1_COMPA_vect_bottom() asm ("TIMER1_COMPA_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
void TIMER1_COMPA_vect() { \
__asm__ __volatile__ ( \
A("push r16") /* 2 Save R16 */ \
A("in r16, __SREG__") /* 1 Get SREG */ \
A("push r16") /* 2 Save SREG into stack */ \
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
A("push r16") /* 2 Save TIMSK0 into the stack */ \
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
A("sts %[timsk0], r16") /* 2 And set the new value */ \
A("lds r16, %[timsk1]") /* 2 Load into R0 the stepper timer Interrupt mask register [TIMSK1] */ \
A("andi r16,~%[msk1]") /* 1 Disable the stepper ISR */ \
A("sts %[timsk1], r16") /* 2 And set the new value */ \
A("push r16") /* 2 Save TIMSK1 into stack */ \
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
A("push r16") /* 2 Save RAMPZ into stack */ \
A("in r16, 0x3C") /* 1 Get EIND register */ \
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
A("push r1") \
A("push r18") \
A("push r19") \
A("push r20") \
A("push r21") \
A("push r22") \
A("push r23") \
A("push r24") \
A("push r25") \
A("push r26") \
A("push r27") \
A("push r30") \
A("push r31") \
A("clr r1") /* C runtime expects this register to be 0 */ \
A("call TIMER1_COMPA_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
A("pop r31") \
A("pop r30") \
A("pop r27") \
A("pop r26") \
A("pop r25") \
A("pop r24") \
A("pop r23") \
A("pop r22") \
A("pop r21") \
A("pop r20") \
A("pop r19") \
A("pop r18") \
A("pop r1") \
A("pop r0") \
A("out 0x3C, r16") /* 1 Restore EIND register */ \
A("pop r16") /* 2 Get the original RAMPZ register value */ \
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
A("pop r16") /* 2 Get the original TIMSK1 value but with stepper ISR disabled */ \
A("ori r16,%[msk1]") /* 1 Reenable the stepper ISR */ \
A("cli") /* 1 Disable global interrupts - Reenabling Stepper ISR can reenter amd temperature can reenter, and we want that, if it happens, after this ISR has ended */ \
A("sts %[timsk1], r16") /* 2 And restore the old value - This reenables the stepper ISR */ \
A("pop r16") /* 2 Get the temperature timer Interrupt mask register [TIMSK0] */ \
A("sts %[timsk0], r16") /* 2 And restore the old value - This reenables the temperature ISR */ \
A("pop r16") /* 2 Get the old SREG value */ \
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
A("pop r16") /* 2 Restore R16 value */ \
A("reti") /* 4 Return from interrupt */ \
: \
: [timsk0] "i" ((uint16_t)&TIMSK0), \
[timsk1] "i" ((uint16_t)&TIMSK1), \
[msk0] "M" ((uint8_t)(1<<OCIE0B)),\
[msk1] "M" ((uint8_t)(1<<OCIE1A)) \
: \
); \
} \
void TIMER1_COMPA_vect_bottom()
/* 14 cycles maximum latency */
#define HAL_TEMP_TIMER_ISR() \
extern "C" void TIMER0_COMPB_vect() __attribute__ ((signal, naked, used, externally_visible)); \
extern "C" void TIMER0_COMPB_vect_bottom() asm ("TIMER0_COMPB_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
void TIMER0_COMPB_vect() { \
__asm__ __volatile__ ( \
A("push r16") /* 2 Save R16 */ \
A("in r16, __SREG__") /* 1 Get SREG */ \
A("push r16") /* 2 Save SREG into stack */ \
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
A("sts %[timsk0], r16") /* 2 And set the new value */ \
A("sei") /* 1 Enable global interrupts - It is safe, as the temperature ISR is disabled, so we cannot reenter it */ \
A("push r16") /* 2 Save TIMSK0 into stack */ \
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
A("push r16") /* 2 Save RAMPZ into stack */ \
A("in r16, 0x3C") /* 1 Get EIND register */ \
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
A("push r1") \
A("push r18") \
A("push r19") \
A("push r20") \
A("push r21") \
A("push r22") \
A("push r23") \
A("push r24") \
A("push r25") \
A("push r26") \
A("push r27") \
A("push r30") \
A("push r31") \
A("clr r1") /* C runtime expects this register to be 0 */ \
A("call TIMER0_COMPB_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
A("pop r31") \
A("pop r30") \
A("pop r27") \
A("pop r26") \
A("pop r25") \
A("pop r24") \
A("pop r23") \
A("pop r22") \
A("pop r21") \
A("pop r20") \
A("pop r19") \
A("pop r18") \
A("pop r1") \
A("pop r0") \
A("out 0x3C, r16") /* 1 Restore EIND register */ \
A("pop r16") /* 2 Get the original RAMPZ register value */ \
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
A("pop r16") /* 2 Get the original TIMSK0 value but with temperature ISR disabled */ \
A("ori r16,%[msk0]") /* 1 Enable temperature ISR */ \
A("cli") /* 1 Disable global interrupts - We must do this, as we will reenable the temperature ISR, and we don't want to reenter this handler until the current one is done */ \
A("sts %[timsk0], r16") /* 2 And restore the old value */ \
A("pop r16") /* 2 Get the old SREG */ \
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
A("pop r16") /* 2 Restore R16 */ \
A("reti") /* 4 Return from interrupt */ \
: \
: [timsk0] "i"((uint16_t)&TIMSK0), \
[msk0] "M" ((uint8_t)(1<<OCIE0B)) \
: \
); \
} \
void TIMER0_COMPB_vect_bottom()
// ADC
#ifdef DIDR2
#define HAL_ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin & 0x07); }while(0)
#else
#define HAL_ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
#endif
inline void HAL_adc_init() {
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
DIDR0 = 0;
#ifdef DIDR2
DIDR2 = 0;
#endif
}
#define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
#ifdef MUX5
#define HAL_START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#else
#define HAL_START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif
#define HAL_ADC_RESOLUTION 10
#define HAL_READ_ADC() ADC
#define HAL_ADC_READY() !TEST(ADCSRA, ADSC)
#define GET_PIN_MAP_PIN(index) index
#define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
#define HAL_SENSITIVE_PINS 0, 1
#ifdef __AVR_AT90USB1286__
#define JTAG_DISABLE() do{ MCUCR = 0x80; MCUCR = 0x80; }while(0)
#endif
// AVR compatibility
#define strtof strtod
/**
* set_pwm_frequency
* Sets the frequency of the timer corresponding to the provided pin
* as close as possible to the provided desired frequency. Internally
* calculates the required waveform generation mode, prescaler and
* resolution values required and sets the timer registers accordingly.
* NOTE that the frequency is applied to all pins on the timer (Ex OC3A, OC3B and OC3B)
* NOTE that there are limitations, particularly if using TIMER2. (see Configuration_adv.h -> FAST FAN PWM Settings)
*/
void set_pwm_frequency(const pin_t pin, int f_desired);
/**
* set_pwm_duty
* Sets the PWM duty cycle of the provided pin to the provided value
* Optionally allows inverting the duty cycle [default = false]
* Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255]
*/
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false);

View File

@@ -0,0 +1,253 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Adapted from Arduino Sd2Card Library
* Copyright (c) 2009 by William Greiman
*/
/**
* HAL for AVR - SPI functions
*/
#ifdef __AVR__
#include "../../inc/MarlinConfig.h"
void spiBegin() {
OUT_WRITE(SS_PIN, HIGH);
SET_OUTPUT(SCK_PIN);
SET_INPUT(MISO_PIN);
SET_OUTPUT(MOSI_PIN);
#if DISABLED(SOFTWARE_SPI)
// SS must be in output mode even it is not chip select
//SET_OUTPUT(SS_PIN);
// set SS high - may be chip select for another SPI device
//#if SET_SPI_SS_HIGH
//WRITE(SS_PIN, HIGH);
//#endif
// set a default rate
spiInit(1);
#endif
}
#if NONE(SOFTWARE_SPI, FORCE_SOFT_SPI)
// ------------------------
// Hardware SPI
// ------------------------
// make sure SPCR rate is in expected bits
#if (SPR0 != 0 || SPR1 != 1)
#error "unexpected SPCR bits"
#endif
/**
* Initialize hardware SPI
* Set SCK rate to F_CPU/pow(2, 1 + spiRate) for spiRate [0,6]
*/
void spiInit(uint8_t spiRate) {
// See avr processor documentation
CBI(
#ifdef PRR
PRR
#elif defined(PRR0)
PRR0
#endif
, PRSPI);
SPCR = _BV(SPE) | _BV(MSTR) | (spiRate >> 1);
SPSR = spiRate & 1 || spiRate == 6 ? 0 : _BV(SPI2X);
}
/** SPI receive a byte */
uint8_t spiRec() {
SPDR = 0xFF;
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
return SPDR;
}
/** SPI read data */
void spiRead(uint8_t* buf, uint16_t nbyte) {
if (nbyte-- == 0) return;
SPDR = 0xFF;
for (uint16_t i = 0; i < nbyte; i++) {
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
buf[i] = SPDR;
SPDR = 0xFF;
}
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
buf[nbyte] = SPDR;
}
/** SPI send a byte */
void spiSend(uint8_t b) {
SPDR = b;
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
}
/** SPI send block */
void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPDR = token;
for (uint16_t i = 0; i < 512; i += 2) {
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
SPDR = buf[i];
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
SPDR = buf[i + 1];
}
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
}
/** begin spi transaction */
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) {
// Based on Arduino SPI library
// Clock settings are defined as follows. Note that this shows SPI2X
// inverted, so the bits form increasing numbers. Also note that
// fosc/64 appears twice
// SPR1 SPR0 ~SPI2X Freq
// 0 0 0 fosc/2
// 0 0 1 fosc/4
// 0 1 0 fosc/8
// 0 1 1 fosc/16
// 1 0 0 fosc/32
// 1 0 1 fosc/64
// 1 1 0 fosc/64
// 1 1 1 fosc/128
// We find the fastest clock that is less than or equal to the
// given clock rate. The clock divider that results in clock_setting
// is 2 ^^ (clock_div + 1). If nothing is slow enough, we'll use the
// slowest (128 == 2 ^^ 7, so clock_div = 6).
uint8_t clockDiv;
// When the clock is known at compiletime, use this if-then-else
// cascade, which the compiler knows how to completely optimize
// away. When clock is not known, use a loop instead, which generates
// shorter code.
if (__builtin_constant_p(spiClock)) {
if (spiClock >= F_CPU / 2) clockDiv = 0;
else if (spiClock >= F_CPU / 4) clockDiv = 1;
else if (spiClock >= F_CPU / 8) clockDiv = 2;
else if (spiClock >= F_CPU / 16) clockDiv = 3;
else if (spiClock >= F_CPU / 32) clockDiv = 4;
else if (spiClock >= F_CPU / 64) clockDiv = 5;
else clockDiv = 6;
}
else {
uint32_t clockSetting = F_CPU / 2;
clockDiv = 0;
while (clockDiv < 6 && spiClock < clockSetting) {
clockSetting /= 2;
clockDiv++;
}
}
// Compensate for the duplicate fosc/64
if (clockDiv == 6) clockDiv = 7;
// Invert the SPI2X bit
clockDiv ^= 0x1;
SPCR = _BV(SPE) | _BV(MSTR) | ((bitOrder == LSBFIRST) ? _BV(DORD) : 0) |
(dataMode << CPHA) | ((clockDiv >> 1) << SPR0);
SPSR = clockDiv | 0x01;
}
#else // SOFTWARE_SPI || FORCE_SOFT_SPI
// ------------------------
// Software SPI
// ------------------------
// nop to tune soft SPI timing
#define nop asm volatile ("\tnop\n")
void spiInit(uint8_t) { /* do nothing */ }
// Begin SPI transaction, set clock, bit order, data mode
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) { /* do nothing */ }
// Soft SPI receive byte
uint8_t spiRec() {
uint8_t data = 0;
// no interrupts during byte receive - about 8µs
cli();
// output pin high - like sending 0xFF
WRITE(MOSI_PIN, HIGH);
for (uint8_t i = 0; i < 8; i++) {
WRITE(SCK_PIN, HIGH);
nop; // adjust so SCK is nice
nop;
data <<= 1;
if (READ(MISO_PIN)) data |= 1;
WRITE(SCK_PIN, LOW);
}
sei();
return data;
}
// Soft SPI read data
void spiRead(uint8_t* buf, uint16_t nbyte) {
for (uint16_t i = 0; i < nbyte; i++)
buf[i] = spiRec();
}
// Soft SPI send byte
void spiSend(uint8_t data) {
// no interrupts during byte send - about 8µs
cli();
for (uint8_t i = 0; i < 8; i++) {
WRITE(SCK_PIN, LOW);
WRITE(MOSI_PIN, data & 0x80);
data <<= 1;
WRITE(SCK_PIN, HIGH);
}
nop; // hold SCK high for a few ns
nop;
nop;
nop;
WRITE(SCK_PIN, LOW);
sei();
}
// Soft SPI send block
void spiSendBlock(uint8_t token, const uint8_t* buf) {
spiSend(token);
for (uint16_t i = 0; i < 512; i++)
spiSend(buf[i]);
}
#endif // SOFTWARE_SPI || FORCE_SOFT_SPI
#endif // __AVR__

View File

@@ -0,0 +1,765 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* MarlinSerial.cpp - Hardware serial library for Wiring
* Copyright (c) 2006 Nicholas Zambetti. All right reserved.
*
* Modified 23 November 2006 by David A. Mellis
* Modified 28 September 2010 by Mark Sproul
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
* Modified 10 June 2018 by Eduardo José Tagle (See #10991)
* Templatized 01 October 2018 by Eduardo José Tagle to allow multiple instances
*/
#ifdef __AVR__
// Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.)
#include "../../inc/MarlinConfig.h"
#if !defined(USBCON) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H))
#include "MarlinSerial.h"
#include "../../Marlin.h"
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_r MarlinSerial<Cfg>::rx_buffer = { 0, 0, { 0 } };
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_t MarlinSerial<Cfg>::tx_buffer = { 0 };
template<typename Cfg> bool MarlinSerial<Cfg>::_written = false;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::xon_xoff_state = MarlinSerial<Cfg>::XON_XOFF_CHAR_SENT | MarlinSerial<Cfg>::XON_CHAR;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_dropped_bytes = 0;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_buffer_overruns = 0;
template<typename Cfg> uint8_t MarlinSerial<Cfg>::rx_framing_errors = 0;
template<typename Cfg> typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::rx_max_enqueued = 0;
// A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() asm volatile("": : :"memory");
#include "../../feature/emergency_parser.h"
// "Atomically" read the RX head index value without disabling interrupts:
// This MUST be called with RX interrupts enabled, and CAN'T be called
// from the RX ISR itself!
template<typename Cfg>
FORCE_INLINE typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::atomic_read_rx_head() {
if (Cfg::RX_SIZE > 256) {
// Keep reading until 2 consecutive reads return the same value,
// meaning there was no update in-between caused by an interrupt.
// This works because serial RX interrupts happen at a slower rate
// than successive reads of a variable, so 2 consecutive reads with
// the same value means no interrupt updated it.
ring_buffer_pos_t vold, vnew = rx_buffer.head;
sw_barrier();
do {
vold = vnew;
vnew = rx_buffer.head;
sw_barrier();
} while (vold != vnew);
return vnew;
}
else {
// With an 8bit index, reads are always atomic. No need for special handling
return rx_buffer.head;
}
}
template<typename Cfg>
volatile bool MarlinSerial<Cfg>::rx_tail_value_not_stable = false;
template<typename Cfg>
volatile uint16_t MarlinSerial<Cfg>::rx_tail_value_backup = 0;
// Set RX tail index, taking into account the RX ISR could interrupt
// the write to this variable in the middle - So a backup strategy
// is used to ensure reads of the correct values.
// -Must NOT be called from the RX ISR -
template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::atomic_set_rx_tail(typename MarlinSerial<Cfg>::ring_buffer_pos_t value) {
if (Cfg::RX_SIZE > 256) {
// Store the new value in the backup
rx_tail_value_backup = value;
sw_barrier();
// Flag we are about to change the true value
rx_tail_value_not_stable = true;
sw_barrier();
// Store the new value
rx_buffer.tail = value;
sw_barrier();
// Signal the new value is completely stored into the value
rx_tail_value_not_stable = false;
sw_barrier();
}
else
rx_buffer.tail = value;
}
// Get the RX tail index, taking into account the read could be
// interrupting in the middle of the update of that index value
// -Called from the RX ISR -
template<typename Cfg>
FORCE_INLINE typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::atomic_read_rx_tail() {
if (Cfg::RX_SIZE > 256) {
// If the true index is being modified, return the backup value
if (rx_tail_value_not_stable) return rx_tail_value_backup;
}
// The true index is stable, return it
return rx_buffer.tail;
}
// (called with RX interrupts disabled)
template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::store_rxd_char() {
static EmergencyParser::State emergency_state; // = EP_RESET
// Get the tail - Nothing can alter its value while this ISR is executing, but there's
// a chance that this ISR interrupted the main process while it was updating the index.
// The backup mechanism ensures the correct value is always returned.
const ring_buffer_pos_t t = atomic_read_rx_tail();
// Get the head pointer - This ISR is the only one that modifies its value, so it's safe to read here
ring_buffer_pos_t h = rx_buffer.head;
// Get the next element
ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// This must read the R_UCSRA register before reading the received byte to detect error causes
if (Cfg::DROPPED_RX && B_DOR && !++rx_dropped_bytes) --rx_dropped_bytes;
if (Cfg::RX_OVERRUNS && B_DOR && !++rx_buffer_overruns) --rx_buffer_overruns;
if (Cfg::RX_FRAMING_ERRORS && B_FE && !++rx_framing_errors) --rx_framing_errors;
// Read the character from the USART
uint8_t c = R_UDR;
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the RX FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
if (Cfg::MAX_RX_QUEUED) {
// Calculate count of bytes stored into the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Keep track of the maximum count of enqueued bytes
NOLESS(rx_max_enqueued, rx_count);
}
if (Cfg::XONOFF) {
// If the last char that was sent was an XON
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
// Bytes stored into the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// If over 12.5% of RX buffer capacity, send XOFF before running out of
// RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
// and stop sending bytes. This translates to 13mS propagation time.
if (rx_count >= (Cfg::RX_SIZE) / 8) {
// At this point, definitely no TX interrupt was executing, since the TX ISR can't be preempted.
// Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
// to be in the middle of trying to disable the RX interrupt in the main program, eventually the
// enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure
// the sending of the XOFF char is to send it HERE AND NOW.
// About to send the XOFF char
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
// Wait until the TX register becomes empty and send it - Here there could be a problem
// - While waiting for the TX register to empty, the RX register could receive a new
// character. This must also handle that situation!
while (!B_UDRE) {
if (B_RXC) {
// A char arrived while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART
c = R_UDR;
if (Cfg::EMERGENCYPARSER) emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
}
sw_barrier();
}
R_UDR = XOFF_CHAR;
// Clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
B_TXC = 1;
// At this point there could be a race condition between the write() function
// and this sending of the XOFF char. This interrupt could happen between the
// wait to be empty TX buffer loop and the actual write of the character. Since
// the TX buffer is full because it's sending the XOFF char, the only way to be
// sure the write() function will succeed is to wait for the XOFF char to be
// completely sent. Since an extra character could be received during the wait
// it must also be handled!
while (!B_UDRE) {
if (B_RXC) {
// A char arrived while waiting for the TX buffer to be empty - Receive and process it!
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
// Read the character from the USART
c = R_UDR;
if (Cfg::EMERGENCYPARSER)
emergency_parser.update(emergency_state, c);
// If the character is to be stored at the index just before the tail
// (such that the head would advance to the current tail), the FIFO is
// full, so don't write the character or advance the head.
if (i != t) {
rx_buffer.buffer[h] = c;
h = i;
}
else if (Cfg::DROPPED_RX && !++rx_dropped_bytes)
--rx_dropped_bytes;
}
sw_barrier();
}
// At this point everything is ready. The write() function won't
// have any issues writing to the UART TX register if it needs to!
}
}
}
// Store the new head value - The main loop will retry until the value is stable
rx_buffer.head = h;
}
// (called with TX irqs disabled)
template<typename Cfg>
FORCE_INLINE void MarlinSerial<Cfg>::_tx_udr_empty_irq() {
if (Cfg::TX_SIZE > 0) {
// Read positions
uint8_t t = tx_buffer.tail;
const uint8_t h = tx_buffer.head;
if (Cfg::XONOFF) {
// If an XON char is pending to be sent, do it now
if (xon_xoff_state == XON_CHAR) {
// Send the character
R_UDR = XON_CHAR;
// clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
B_TXC = 1;
// Remember we sent it.
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
// If nothing else to transmit, just disable TX interrupts.
if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
return;
}
}
// If nothing to transmit, just disable TX interrupts. This could
// happen as the result of the non atomicity of the disabling of RX
// interrupts that could end reenabling TX interrupts as a side effect.
if (h == t) {
B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
return;
}
// There is something to TX, Send the next byte
const uint8_t c = tx_buffer.buffer[t];
t = (t + 1) & (Cfg::TX_SIZE - 1);
R_UDR = c;
tx_buffer.tail = t;
// Clear the TXC bit (by writing a one to its bit location).
// Ensures flush() won't return until the bytes are actually written/
B_TXC = 1;
// Disable interrupts if there is nothing to transmit following this byte
if (h == t) B_UDRIE = 0; // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
}
}
// Public Methods
template<typename Cfg>
void MarlinSerial<Cfg>::begin(const long baud) {
uint16_t baud_setting;
bool useU2X = true;
#if F_CPU == 16000000UL && SERIAL_PORT == 0
// Hard-coded exception for compatibility with the bootloader shipped
// with the Duemilanove and previous boards, and the firmware on the
// 8U2 on the Uno and Mega 2560.
if (baud == 57600) useU2X = false;
#endif
R_UCSRA = 0;
if (useU2X) {
B_U2X = 1;
baud_setting = (F_CPU / 4 / baud - 1) / 2;
}
else
baud_setting = (F_CPU / 8 / baud - 1) / 2;
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
R_UBRRH = baud_setting >> 8;
R_UBRRL = baud_setting;
B_RXEN = 1;
B_TXEN = 1;
B_RXCIE = 1;
if (Cfg::TX_SIZE > 0) B_UDRIE = 0;
_written = false;
}
template<typename Cfg>
void MarlinSerial<Cfg>::end() {
B_RXEN = 0;
B_TXEN = 0;
B_RXCIE = 0;
B_UDRIE = 0;
}
template<typename Cfg>
int MarlinSerial<Cfg>::peek() {
const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail;
return h == t ? -1 : rx_buffer.buffer[t];
}
template<typename Cfg>
int MarlinSerial<Cfg>::read() {
const ring_buffer_pos_t h = atomic_read_rx_head();
// Read the tail. Main thread owns it, so it is safe to directly read it
ring_buffer_pos_t t = rx_buffer.tail;
// If nothing to read, return now
if (h == t) return -1;
// Get the next char
const int v = rx_buffer.buffer[t];
t = (ring_buffer_pos_t)(t + 1) & (Cfg::RX_SIZE - 1);
// Advance tail - Making sure the RX ISR will always get an stable value, even
// if it interrupts the writing of the value of that variable in the middle.
atomic_set_rx_tail(t);
if (Cfg::XONOFF) {
// If the XOFF char was sent, or about to be sent...
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// Get count of bytes in the RX buffer
const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(Cfg::RX_SIZE - 1);
if (rx_count < (Cfg::RX_SIZE) / 10) {
if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR;
// Enable TX ISR. Non atomic, but it will eventually enable them
B_UDRIE = 1;
}
else {
// If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!B_UDRE) sw_barrier();
R_UDR = XON_CHAR;
}
}
}
}
return v;
}
template<typename Cfg>
typename MarlinSerial<Cfg>::ring_buffer_pos_t MarlinSerial<Cfg>::available() {
const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail;
return (ring_buffer_pos_t)(Cfg::RX_SIZE + h - t) & (Cfg::RX_SIZE - 1);
}
template<typename Cfg>
void MarlinSerial<Cfg>::flush() {
// Set the tail to the head:
// - Read the RX head index in a safe way. (See atomic_read_rx_head.)
// - Set the tail, making sure the RX ISR will always get a stable value, even
// if it interrupts the writing of the value of that variable in the middle.
atomic_set_rx_tail(atomic_read_rx_head());
if (Cfg::XONOFF) {
// If the XOFF char was sent, or about to be sent...
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
if (Cfg::TX_SIZE > 0) {
// Signal we want an XON character to be sent.
xon_xoff_state = XON_CHAR;
// Enable TX ISR. Non atomic, but it will eventually enable it.
B_UDRIE = 1;
}
else {
// If not using TX interrupts, we must send the XON char now
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
while (!B_UDRE) sw_barrier();
R_UDR = XON_CHAR;
}
}
}
}
template<typename Cfg>
void MarlinSerial<Cfg>::write(const uint8_t c) {
if (Cfg::TX_SIZE == 0) {
_written = true;
while (!B_UDRE) sw_barrier();
R_UDR = c;
}
else {
_written = true;
// If the TX interrupts are disabled and the data register
// is empty, just write the byte to the data register and
// be done. This shortcut helps significantly improve the
// effective datarate at high (>500kbit/s) bitrates, where
// interrupt overhead becomes a slowdown.
// Yes, there is a race condition between the sending of the
// XOFF char at the RX ISR, but it is properly handled there
if (!B_UDRIE && B_UDRE) {
R_UDR = c;
// clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
B_TXC = 1;
return;
}
const uint8_t i = (tx_buffer.head + 1) & (Cfg::TX_SIZE - 1);
// If global interrupts are disabled (as the result of being called from an ISR)...
if (!ISRS_ENABLED()) {
// Make room by polling if it is possible to transmit, and do so!
while (i == tx_buffer.tail) {
// If we can transmit another byte, do it.
if (B_UDRE) _tx_udr_empty_irq();
// Make sure compiler rereads tx_buffer.tail
sw_barrier();
}
}
else {
// Interrupts are enabled, just wait until there is space
while (i == tx_buffer.tail) sw_barrier();
}
// Store new char. head is always safe to move
tx_buffer.buffer[tx_buffer.head] = c;
tx_buffer.head = i;
// Enable TX ISR - Non atomic, but it will eventually enable TX ISR
B_UDRIE = 1;
}
}
template<typename Cfg>
void MarlinSerial<Cfg>::flushTX() {
if (Cfg::TX_SIZE == 0) {
// No bytes written, no need to flush. This special case is needed since there's
// no way to force the TXC (transmit complete) bit to 1 during initialization.
if (!_written) return;
// Wait until everything was transmitted
while (!B_TXC) sw_barrier();
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
else {
// No bytes written, no need to flush. This special case is needed since there's
// no way to force the TXC (transmit complete) bit to 1 during initialization.
if (!_written) return;
// If global interrupts are disabled (as the result of being called from an ISR)...
if (!ISRS_ENABLED()) {
// Wait until everything was transmitted - We must do polling, as interrupts are disabled
while (tx_buffer.head != tx_buffer.tail || !B_TXC) {
// If there is more space, send an extra character
if (B_UDRE) _tx_udr_empty_irq();
sw_barrier();
}
}
else {
// Wait until everything was transmitted
while (tx_buffer.head != tx_buffer.tail || !B_TXC) sw_barrier();
}
// At this point nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
}
/**
* Imports from print.h
*/
template<typename Cfg>
void MarlinSerial<Cfg>::print(char c, int base) {
print((long)c, base);
}
template<typename Cfg>
void MarlinSerial<Cfg>::print(unsigned char b, int base) {
print((unsigned long)b, base);
}
template<typename Cfg>
void MarlinSerial<Cfg>::print(int n, int base) {
print((long)n, base);
}
template<typename Cfg>
void MarlinSerial<Cfg>::print(unsigned int n, int base) {
print((unsigned long)n, base);
}
template<typename Cfg>
void MarlinSerial<Cfg>::print(long n, int base) {
if (base == 0) write(n);
else if (base == 10) {
if (n < 0) { print('-'); n = -n; }
printNumber(n, 10);
}
else
printNumber(n, base);
}
template<typename Cfg>
void MarlinSerial<Cfg>::print(unsigned long n, int base) {
if (base == 0) write(n);
else printNumber(n, base);
}
template<typename Cfg>
void MarlinSerial<Cfg>::print(double n, int digits) {
printFloat(n, digits);
}
template<typename Cfg>
void MarlinSerial<Cfg>::println() {
print('\r');
print('\n');
}
template<typename Cfg>
void MarlinSerial<Cfg>::println(const String& s) {
print(s);
println();
}
template<typename Cfg>
void MarlinSerial<Cfg>::println(const char c[]) {
print(c);
println();
}
template<typename Cfg>
void MarlinSerial<Cfg>::println(char c, int base) {
print(c, base);
println();
}
template<typename Cfg>
void MarlinSerial<Cfg>::println(unsigned char b, int base) {
print(b, base);
println();
}
template<typename Cfg>
void MarlinSerial<Cfg>::println(int n, int base) {
print(n, base);
println();
}
template<typename Cfg>
void MarlinSerial<Cfg>::println(unsigned int n, int base) {
print(n, base);
println();
}
template<typename Cfg>
void MarlinSerial<Cfg>::println(long n, int base) {
print(n, base);
println();
}
template<typename Cfg>
void MarlinSerial<Cfg>::println(unsigned long n, int base) {
print(n, base);
println();
}
template<typename Cfg>
void MarlinSerial<Cfg>::println(double n, int digits) {
print(n, digits);
println();
}
// Private Methods
template<typename Cfg>
void MarlinSerial<Cfg>::printNumber(unsigned long n, uint8_t base) {
if (n) {
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
int8_t i = 0;
while (n) {
buf[i++] = n % base;
n /= base;
}
while (i--)
print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
}
else
print('0');
}
template<typename Cfg>
void MarlinSerial<Cfg>::printFloat(double number, uint8_t digits) {
// Handle negative numbers
if (number < 0.0) {
print('-');
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
for (uint8_t i = 0; i < digits; ++i) rounding *= 0.1;
number += rounding;
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
double remainder = number - (double)int_part;
print(int_part);
// Print the decimal point, but only if there are digits beyond
if (digits) {
print('.');
// Extract digits from the remainder one at a time
while (digits--) {
remainder *= 10.0;
int toPrint = int(remainder);
print(toPrint);
remainder -= toPrint;
}
}
}
// Hookup ISR handlers
ISR(SERIAL_REGNAME(USART,SERIAL_PORT,_RX_vect)) {
MarlinSerial<MarlinSerialCfg<SERIAL_PORT>>::store_rxd_char();
}
ISR(SERIAL_REGNAME(USART,SERIAL_PORT,_UDRE_vect)) {
MarlinSerial<MarlinSerialCfg<SERIAL_PORT>>::_tx_udr_empty_irq();
}
// Preinstantiate
template class MarlinSerial<MarlinSerialCfg<SERIAL_PORT>>;
// Instantiate
MarlinSerial<MarlinSerialCfg<SERIAL_PORT>> customizedSerial1;
#ifdef SERIAL_PORT_2
// Hookup ISR handlers
ISR(SERIAL_REGNAME(USART,SERIAL_PORT_2,_RX_vect)) {
MarlinSerial<MarlinSerialCfg<SERIAL_PORT_2>>::store_rxd_char();
}
ISR(SERIAL_REGNAME(USART,SERIAL_PORT_2,_UDRE_vect)) {
MarlinSerial<MarlinSerialCfg<SERIAL_PORT_2>>::_tx_udr_empty_irq();
}
// Preinstantiate
template class MarlinSerial<MarlinSerialCfg<SERIAL_PORT_2>>;
// Instantiate
MarlinSerial<MarlinSerialCfg<SERIAL_PORT_2>> customizedSerial2;
#endif
#endif // !USBCON && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H)
#ifdef INTERNAL_SERIAL_PORT
ISR(SERIAL_REGNAME(USART,INTERNAL_SERIAL_PORT,_RX_vect)) {
MarlinSerial<MarlinInternalSerialCfg<INTERNAL_SERIAL_PORT>>::store_rxd_char();
}
ISR(SERIAL_REGNAME(USART,INTERNAL_SERIAL_PORT,_UDRE_vect)) {
MarlinSerial<MarlinInternalSerialCfg<INTERNAL_SERIAL_PORT>>::_tx_udr_empty_irq();
}
// Preinstantiate
template class MarlinSerial<MarlinInternalSerialCfg<INTERNAL_SERIAL_PORT>>;
// Instantiate
MarlinSerial<MarlinInternalSerialCfg<INTERNAL_SERIAL_PORT>> internalSerial;
#endif
// For AT90USB targets use the UART for BT interfacing
#if defined(USBCON) && ENABLED(BLUETOOTH)
HardwareSerial bluetoothSerial;
#endif
#endif // __AVR__

View File

@@ -0,0 +1,298 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* MarlinSerial.h - Hardware serial library for Wiring
* Copyright (c) 2006 Nicholas Zambetti. All right reserved.
*
* Modified 28 September 2010 by Mark Sproul
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
* Templatized 01 October 2018 by Eduardo José Tagle to allow multiple instances
*/
#include "../shared/MarlinSerial.h"
#include <WString.h>
#ifndef SERIAL_PORT
#define SERIAL_PORT 0
#endif
#ifndef USBCON
// The presence of the UBRRH register is used to detect a UART.
#define UART_PRESENT(port) ((port == 0 && (defined(UBRRH) || defined(UBRR0H))) || \
(port == 1 && defined(UBRR1H)) || (port == 2 && defined(UBRR2H)) || \
(port == 3 && defined(UBRR3H)))
// These are macros to build serial port register names for the selected SERIAL_PORT (C preprocessor
// requires two levels of indirection to expand macro values properly)
#define SERIAL_REGNAME(registerbase,number,suffix) SERIAL_REGNAME_INTERNAL(registerbase,number,suffix)
#if SERIAL_PORT == 0 && (!defined(UBRR0H) || !defined(UDR0)) // use un-numbered registers if necessary
#define SERIAL_REGNAME_INTERNAL(registerbase,number,suffix) registerbase##suffix
#else
#define SERIAL_REGNAME_INTERNAL(registerbase,number,suffix) registerbase##number##suffix
#endif
// Registers used by MarlinSerial class (expanded depending on selected serial port)
// Templated 8bit register (generic)
#define UART_REGISTER_DECL_BASE(registerbase, suffix) \
template<int portNr> struct R_##registerbase##x##suffix {}
// Templated 8bit register (specialization for each port)
#define UART_REGISTER_DECL(port, registerbase, suffix) \
template<> struct R_##registerbase##x##suffix<port> { \
constexpr R_##registerbase##x##suffix(int) {} \
FORCE_INLINE void operator=(uint8_t newVal) const { SERIAL_REGNAME(registerbase,port,suffix) = newVal; } \
FORCE_INLINE operator uint8_t() const { return SERIAL_REGNAME(registerbase,port,suffix); } \
}
// Templated 1bit register (generic)
#define UART_BIT_DECL_BASE(registerbase, suffix, bit) \
template<int portNr>struct B_##bit##x {}
// Templated 1bit register (specialization for each port)
#define UART_BIT_DECL(port, registerbase, suffix, bit) \
template<> struct B_##bit##x<port> { \
constexpr B_##bit##x(int) {} \
FORCE_INLINE void operator=(int newVal) const { \
if (newVal) \
SBI(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); \
else \
CBI(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); \
} \
FORCE_INLINE operator bool() const { return TEST(SERIAL_REGNAME(registerbase,port,suffix),SERIAL_REGNAME(bit,port,)); } \
}
#define UART_DECL_BASE() \
UART_REGISTER_DECL_BASE(UCSR,A);\
UART_REGISTER_DECL_BASE(UDR,);\
UART_REGISTER_DECL_BASE(UBRR,H);\
UART_REGISTER_DECL_BASE(UBRR,L);\
UART_BIT_DECL_BASE(UCSR,B,RXEN);\
UART_BIT_DECL_BASE(UCSR,B,TXEN);\
UART_BIT_DECL_BASE(UCSR,A,TXC);\
UART_BIT_DECL_BASE(UCSR,B,RXCIE);\
UART_BIT_DECL_BASE(UCSR,A,UDRE);\
UART_BIT_DECL_BASE(UCSR,A,FE);\
UART_BIT_DECL_BASE(UCSR,A,DOR);\
UART_BIT_DECL_BASE(UCSR,B,UDRIE);\
UART_BIT_DECL_BASE(UCSR,A,RXC);\
UART_BIT_DECL_BASE(UCSR,A,U2X)
#define UART_DECL(port) \
UART_REGISTER_DECL(port,UCSR,A);\
UART_REGISTER_DECL(port,UDR,);\
UART_REGISTER_DECL(port,UBRR,H);\
UART_REGISTER_DECL(port,UBRR,L);\
UART_BIT_DECL(port,UCSR,B,RXEN);\
UART_BIT_DECL(port,UCSR,B,TXEN);\
UART_BIT_DECL(port,UCSR,A,TXC);\
UART_BIT_DECL(port,UCSR,B,RXCIE);\
UART_BIT_DECL(port,UCSR,A,UDRE);\
UART_BIT_DECL(port,UCSR,A,FE);\
UART_BIT_DECL(port,UCSR,A,DOR);\
UART_BIT_DECL(port,UCSR,B,UDRIE);\
UART_BIT_DECL(port,UCSR,A,RXC);\
UART_BIT_DECL(port,UCSR,A,U2X)
// Declare empty templates
UART_DECL_BASE();
// And all the specializations for each possible serial port
#if UART_PRESENT(0)
UART_DECL(0);
#endif
#if UART_PRESENT(1)
UART_DECL(1);
#endif
#if UART_PRESENT(2)
UART_DECL(2);
#endif
#if UART_PRESENT(3)
UART_DECL(3);
#endif
#define DEC 10
#define HEX 16
#define OCT 8
#define BIN 2
#define BYTE 0
// Templated type selector
template<bool b, typename T, typename F> struct TypeSelector { typedef T type;} ;
template<typename T, typename F> struct TypeSelector<false, T, F> { typedef F type; };
template<typename Cfg>
class MarlinSerial {
protected:
// Registers
static constexpr R_UCSRxA<Cfg::PORT> R_UCSRA = 0;
static constexpr R_UDRx<Cfg::PORT> R_UDR = 0;
static constexpr R_UBRRxH<Cfg::PORT> R_UBRRH = 0;
static constexpr R_UBRRxL<Cfg::PORT> R_UBRRL = 0;
// Bits
static constexpr B_RXENx<Cfg::PORT> B_RXEN = 0;
static constexpr B_TXENx<Cfg::PORT> B_TXEN = 0;
static constexpr B_TXCx<Cfg::PORT> B_TXC = 0;
static constexpr B_RXCIEx<Cfg::PORT> B_RXCIE = 0;
static constexpr B_UDREx<Cfg::PORT> B_UDRE = 0;
static constexpr B_FEx<Cfg::PORT> B_FE = 0;
static constexpr B_DORx<Cfg::PORT> B_DOR = 0;
static constexpr B_UDRIEx<Cfg::PORT> B_UDRIE = 0;
static constexpr B_RXCx<Cfg::PORT> B_RXC = 0;
static constexpr B_U2Xx<Cfg::PORT> B_U2X = 0;
// Base size of type on buffer size
typedef typename TypeSelector<(Cfg::RX_SIZE>256), uint16_t, uint8_t>::type ring_buffer_pos_t;
struct ring_buffer_r {
volatile ring_buffer_pos_t head, tail;
unsigned char buffer[Cfg::RX_SIZE];
};
struct ring_buffer_t {
volatile uint8_t head, tail;
unsigned char buffer[Cfg::TX_SIZE];
};
static ring_buffer_r rx_buffer;
static ring_buffer_t tx_buffer;
static bool _written;
static constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
// XON / XOFF character definitions
static constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
static uint8_t xon_xoff_state,
rx_dropped_bytes,
rx_buffer_overruns,
rx_framing_errors;
static ring_buffer_pos_t rx_max_enqueued;
static FORCE_INLINE ring_buffer_pos_t atomic_read_rx_head();
static volatile bool rx_tail_value_not_stable;
static volatile uint16_t rx_tail_value_backup;
static FORCE_INLINE void atomic_set_rx_tail(ring_buffer_pos_t value);
static FORCE_INLINE ring_buffer_pos_t atomic_read_rx_tail();
public:
FORCE_INLINE static void store_rxd_char();
FORCE_INLINE static void _tx_udr_empty_irq();
public:
MarlinSerial() {};
static void begin(const long);
static void end();
static int peek();
static int read();
static void flush();
static ring_buffer_pos_t available();
static void write(const uint8_t c);
static void flushTX();
FORCE_INLINE static uint8_t dropped() { return Cfg::DROPPED_RX ? rx_dropped_bytes : 0; }
FORCE_INLINE static uint8_t buffer_overruns() { return Cfg::RX_OVERRUNS ? rx_buffer_overruns : 0; }
FORCE_INLINE static uint8_t framing_errors() { return Cfg::RX_FRAMING_ERRORS ? rx_framing_errors : 0; }
FORCE_INLINE static ring_buffer_pos_t rxMaxEnqueued() { return Cfg::MAX_RX_QUEUED ? rx_max_enqueued : 0; }
FORCE_INLINE static void write(const char* str) { while (*str) write(*str++); }
FORCE_INLINE static void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); }
FORCE_INLINE static void print(const String& s) { for (int i = 0; i < (int)s.length(); i++) write(s[i]); }
FORCE_INLINE static void print(const char* str) { write(str); }
static void print(char, int = BYTE);
static void print(unsigned char, int = BYTE);
static void print(int, int = DEC);
static void print(unsigned int, int = DEC);
static void print(long, int = DEC);
static void print(unsigned long, int = DEC);
static void print(double, int = 2);
static void println(const String& s);
static void println(const char[]);
static void println(char, int = BYTE);
static void println(unsigned char, int = BYTE);
static void println(int, int = DEC);
static void println(unsigned int, int = DEC);
static void println(long, int = DEC);
static void println(unsigned long, int = DEC);
static void println(double, int = 2);
static void println();
operator bool() { return true; }
private:
static void printNumber(unsigned long, const uint8_t);
static void printFloat(double, uint8_t);
};
template <uint8_t serial>
struct MarlinSerialCfg {
static constexpr int PORT = serial;
static constexpr unsigned int RX_SIZE = RX_BUFFER_SIZE;
static constexpr unsigned int TX_SIZE = TX_BUFFER_SIZE;
static constexpr bool XONOFF = bSERIAL_XON_XOFF;
static constexpr bool EMERGENCYPARSER = bEMERGENCY_PARSER;
static constexpr bool DROPPED_RX = bSERIAL_STATS_DROPPED_RX;
static constexpr bool RX_OVERRUNS = bSERIAL_STATS_RX_BUFFER_OVERRUNS;
static constexpr bool RX_FRAMING_ERRORS = bSERIAL_STATS_RX_FRAMING_ERRORS;
static constexpr bool MAX_RX_QUEUED = bSERIAL_STATS_MAX_RX_QUEUED;
};
extern MarlinSerial<MarlinSerialCfg<SERIAL_PORT>> customizedSerial1;
#ifdef SERIAL_PORT_2
extern MarlinSerial<MarlinSerialCfg<SERIAL_PORT_2>> customizedSerial2;
#endif
#endif // !USBCON
#ifdef INTERNAL_SERIAL_PORT
template <uint8_t serial>
struct MarlinInternalSerialCfg {
static constexpr int PORT = serial;
static constexpr unsigned int RX_SIZE = 32;
static constexpr unsigned int TX_SIZE = 32;
static constexpr bool XONOFF = false;
static constexpr bool EMERGENCYPARSER = false;
static constexpr bool DROPPED_RX = false;
static constexpr bool RX_OVERRUNS = false;
static constexpr bool RX_FRAMING_ERRORS = false;
static constexpr bool MAX_RX_QUEUED = false;
};
extern MarlinSerial<MarlinInternalSerialCfg<INTERNAL_SERIAL_PORT>> internalSerial;
#endif
// Use the UART for Bluetooth in AT90USB configurations
#if defined(USBCON) && ENABLED(BLUETOOTH)
extern HardwareSerial bluetoothSerial;
#endif

View File

@@ -0,0 +1,218 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
* Copyright (c) 2009 Michael Margolis. All right reserved.
*/
/**
* A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
* The servos are pulsed in the background using the value most recently written using the write() method
*
* Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
* Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
*
* The methods are:
*
* Servo - Class for manipulating servo motors connected to Arduino pins.
*
* attach(pin) - Attach a servo motor to an i/o pin.
* attach(pin, min, max) - Attach to a pin, setting min and max values in microseconds
* Default min is 544, max is 2400
*
* write() - Set the servo angle in degrees. (Invalid angles —over MIN_PULSE_WIDTH— are treated as µs.)
* writeMicroseconds() - Set the servo pulse width in microseconds.
* move(pin, angle) - Sequence of attach(pin), write(angle), safe_delay(servo_delay[servoIndex]).
* With DEACTIVATE_SERVOS_AFTER_MOVE it detaches after servo_delay[servoIndex].
* read() - Get the last-written servo pulse width as an angle between 0 and 180.
* readMicroseconds() - Get the last-written servo pulse width in microseconds.
* attached() - Return true if a servo is attached.
* detach() - Stop an attached servo from pulsing its i/o pin.
*
*/
#ifdef __AVR__
#include "../../inc/MarlinConfig.h"
#if HAS_SERVOS
#include <avr/interrupt.h>
#include "../shared/Marduino.h"
#include "../shared/servo.h"
#include "../shared/servo_private.h"
static volatile int8_t Channel[_Nbr_16timers]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
/************ static functions common to all instances ***********************/
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t* TCNTn, volatile uint16_t* OCRnA) {
if (Channel[timer] < 0)
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
else {
if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && SERVO(timer, Channel[timer]).Pin.isActive)
extDigitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated
}
Channel[timer]++; // increment to the next channel
if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
*OCRnA = *TCNTn + SERVO(timer, Channel[timer]).ticks;
if (SERVO(timer, Channel[timer]).Pin.isActive) // check if activated
extDigitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, HIGH); // it's an active channel so pulse it high
}
else {
// finished all channels so wait for the refresh period to expire before starting over
if (((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL)) // allow a few ticks to ensure the next OCR1A not missed
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
else
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
}
}
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#ifdef _useTimer1
SIGNAL(TIMER1_COMPA_vect) { handle_interrupts(_timer1, &TCNT1, &OCR1A); }
#endif
#ifdef _useTimer3
SIGNAL(TIMER3_COMPA_vect) { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
#endif
#ifdef _useTimer4
SIGNAL(TIMER4_COMPA_vect) { handle_interrupts(_timer4, &TCNT4, &OCR4A); }
#endif
#ifdef _useTimer5
SIGNAL(TIMER5_COMPA_vect) { handle_interrupts(_timer5, &TCNT5, &OCR5A); }
#endif
#else // WIRING
// Interrupt handlers for Wiring
#ifdef _useTimer1
void Timer1Service() { handle_interrupts(_timer1, &TCNT1, &OCR1A); }
#endif
#ifdef _useTimer3
void Timer3Service() { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
#endif
#endif // WIRING
/****************** end of static functions ******************************/
void initISR(timer16_Sequence_t timer) {
#ifdef _useTimer1
if (timer == _timer1) {
TCCR1A = 0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__) || defined(__AVR_ATmega128__)
SBI(TIFR, OCF1A); // clear any pending interrupts;
SBI(TIMSK, OCIE1A); // enable the output compare interrupt
#else
// here if not ATmega8 or ATmega128
SBI(TIFR1, OCF1A); // clear any pending interrupts;
SBI(TIMSK1, OCIE1A); // enable the output compare interrupt
#endif
#ifdef WIRING
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
}
#endif
#ifdef _useTimer3
if (timer == _timer3) {
TCCR3A = 0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 = 0; // clear the timer count
#ifdef __AVR_ATmega128__
SBI(TIFR, OCF3A); // clear any pending interrupts;
SBI(ETIMSK, OCIE3A); // enable the output compare interrupt
#else
SBI(TIFR3, OCF3A); // clear any pending interrupts;
SBI(TIMSK3, OCIE3A); // enable the output compare interrupt
#endif
#ifdef WIRING
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif
}
#endif
#ifdef _useTimer4
if (timer == _timer4) {
TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A); // enable the output compare interrupt
}
#endif
#ifdef _useTimer5
if (timer == _timer5) {
TCCR5A = 0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 = 0; // clear the timer count
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIE5A); // enable the output compare interrupt
}
#endif
}
void finISR(timer16_Sequence_t timer) {
// Disable use of the given timer
#ifdef WIRING
if (timer == _timer1) {
CBI(
#if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
TIMSK1
#else
TIMSK
#endif
, OCIE1A); // disable timer 1 output compare interrupt
timerDetach(TIMER1OUTCOMPAREA_INT);
}
else if (timer == _timer3) {
CBI(
#if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
TIMSK3
#else
ETIMSK
#endif
, OCIE3A); // disable the timer3 output compare A interrupt
timerDetach(TIMER3OUTCOMPAREA_INT);
}
#else // !WIRING
// For arduino - in future: call here to a currently undefined function to reset the timer
UNUSED(timer);
#endif
}
#endif // HAS_SERVOS
#endif // __AVR__

View File

@@ -0,0 +1,91 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* ServoTimers.h - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
* Copyright (c) 2009 Michael Margolis. All right reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* Defines for 16 bit timers used with Servo library
*
* If _useTimerX is defined then TimerX is a 16 bit timer on the current board
* timer16_Sequence_t enumerates the sequence that the timers should be allocated
* _Nbr_16timers indicates how many 16 bit timers are available.
*/
/**
* AVR Only definitions
* --------------------
*/
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays
#define SERVO_TIMER_PRESCALER 8 // timer prescaler
// Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//#define _useTimer1
#define _useTimer3
#define _useTimer4
#if !HAS_MOTOR_CURRENT_PWM
#define _useTimer5 // Timer 5 is used for motor current PWM and can't be used for servos.
#endif
#elif defined(__AVR_ATmega32U4__)
#define _useTimer3
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define _useTimer3
#elif defined(__AVR_ATmega128__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega1284P__) || defined(__AVR_ATmega2561__)
#define _useTimer3
#else
// everything else
#endif
typedef enum {
#ifdef _useTimer1
_timer1,
#endif
#ifdef _useTimer3
_timer3,
#endif
#ifdef _useTimer4
_timer4,
#endif
#ifdef _useTimer5
_timer5,
#endif
_Nbr_16timers
} timer16_Sequence_t;

View File

@@ -0,0 +1,245 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* Endstop Interrupts
*
* Without endstop interrupts the endstop pins must be polled continually in
* the temperature-ISR via endstops.update(), most of the time finding no change.
* With this feature endstops.update() is called only when we know that at
* least one endstop has changed state, saving valuable CPU cycles.
*
* This feature only works when all used endstop pins can generate either an
* 'external interrupt' or a 'pin change interrupt'.
*
* Test whether pins issue interrupts on your board by flashing 'pin_interrupt_test.ino'.
* (Located in Marlin/buildroot/share/pin_interrupt_test/pin_interrupt_test.ino)
*/
#include "../../module/endstops.h"
#include <stdint.h>
// One ISR for all EXT-Interrupts
void endstop_ISR() { endstops.update(); }
/**
* Patch for pins_arduino.h (...\Arduino\hardware\arduino\avr\variants\mega\pins_arduino.h)
*
* These macros for the Arduino MEGA do not include the two connected pins on Port J (D14, D15).
* So we extend them here because these are the normal pins for Y_MIN and Y_MAX on RAMPS.
* There are more PCI-enabled processor pins on Port J, but they are not connected to Arduino MEGA.
*/
#if defined(ARDUINO_AVR_MEGA2560) || defined(ARDUINO_AVR_MEGA)
#define digitalPinHasPCICR(p) (WITHIN(p, 10, 15) || WITHIN(p, 50, 53) || WITHIN(p, 62, 69))
#undef digitalPinToPCICR
#define digitalPinToPCICR(p) (digitalPinHasPCICR(p) ? (&PCICR) : nullptr)
#undef digitalPinToPCICRbit
#define digitalPinToPCICRbit(p) (WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? 0 : \
WITHIN(p, 14, 15) ? 1 : \
WITHIN(p, 62, 69) ? 2 : \
0)
#undef digitalPinToPCMSK
#define digitalPinToPCMSK(p) (WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? (&PCMSK0) : \
WITHIN(p, 14, 15) ? (&PCMSK1) : \
WITHIN(p, 62, 69) ? (&PCMSK2) : \
nullptr)
#undef digitalPinToPCMSKbit
#define digitalPinToPCMSKbit(p) (WITHIN(p, 10, 13) ? ((p) - 6) : \
(p) == 14 || (p) == 51 ? 2 : \
(p) == 15 || (p) == 52 ? 1 : \
(p) == 50 ? 3 : \
(p) == 53 ? 0 : \
WITHIN(p, 62, 69) ? ((p) - 62) : \
0)
#elif defined(__AVR_ATmega164A__) || defined(__AVR_ATmega164P__) || defined(__AVR_ATmega324A__) || \
defined(__AVR_ATmega324P__) || defined(__AVR_ATmega324PA__) || defined(__AVR_ATmega324PB__) || \
defined(__AVR_ATmega644A__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega1284__) || \
defined(__AVR_ATmega1284P__)
#define digitalPinHasPCICR(p) WITHIN(p, 0, NUM_DIGITAL_PINS)
#else
#error "Unsupported AVR variant!"
#endif
// Install Pin change interrupt for a pin. Can be called multiple times.
void pciSetup(const int8_t pin) {
if (digitalPinHasPCICR(pin)) {
SBI(*digitalPinToPCMSK(pin), digitalPinToPCMSKbit(pin)); // enable pin
SBI(PCIFR, digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
SBI(PCICR, digitalPinToPCICRbit(pin)); // enable interrupt for the group
}
}
// Handlers for pin change interrupts
#ifdef PCINT0_vect
ISR(PCINT0_vect) { endstop_ISR(); }
#endif
#ifdef PCINT1_vect
ISR(PCINT1_vect, ISR_ALIASOF(PCINT0_vect));
#endif
#ifdef PCINT2_vect
ISR(PCINT2_vect, ISR_ALIASOF(PCINT0_vect));
#endif
#ifdef PCINT3_vect
ISR(PCINT3_vect, ISR_ALIASOF(PCINT0_vect));
#endif
void setup_endstop_interrupts() {
#define _ATTACH(P) attachInterrupt(digitalPinToInterrupt(P), endstop_ISR, CHANGE)
#if HAS_X_MAX
#if (digitalPinToInterrupt(X_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(X_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(X_MAX_PIN), "X_MAX_PIN is not interrupt-capable");
pciSetup(X_MAX_PIN);
#endif
#endif
#if HAS_X_MIN
#if (digitalPinToInterrupt(X_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(X_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(X_MIN_PIN), "X_MIN_PIN is not interrupt-capable");
pciSetup(X_MIN_PIN);
#endif
#endif
#if HAS_Y_MAX
#if (digitalPinToInterrupt(Y_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Y_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(Y_MAX_PIN), "Y_MAX_PIN is not interrupt-capable");
pciSetup(Y_MAX_PIN);
#endif
#endif
#if HAS_Y_MIN
#if (digitalPinToInterrupt(Y_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Y_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(Y_MIN_PIN), "Y_MIN_PIN is not interrupt-capable");
pciSetup(Y_MIN_PIN);
#endif
#endif
#if HAS_Z_MAX
#if (digitalPinToInterrupt(Z_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(Z_MAX_PIN), "Z_MAX_PIN is not interrupt-capable");
pciSetup(Z_MAX_PIN);
#endif
#endif
#if HAS_Z_MIN
#if (digitalPinToInterrupt(Z_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(Z_MIN_PIN), "Z_MIN_PIN is not interrupt-capable");
pciSetup(Z_MIN_PIN);
#endif
#endif
#if HAS_X2_MAX
#if (digitalPinToInterrupt(X2_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(X2_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(X2_MAX_PIN), "X2_MAX_PIN is not interrupt-capable");
pciSetup(X2_MAX_PIN);
#endif
#endif
#if HAS_X2_MIN
#if (digitalPinToInterrupt(X2_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(X2_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(X2_MIN_PIN), "X2_MIN_PIN is not interrupt-capable");
pciSetup(X2_MIN_PIN);
#endif
#endif
#if HAS_Y2_MAX
#if (digitalPinToInterrupt(Y2_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Y2_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(Y2_MAX_PIN), "Y2_MAX_PIN is not interrupt-capable");
pciSetup(Y2_MAX_PIN);
#endif
#endif
#if HAS_Y2_MIN
#if (digitalPinToInterrupt(Y2_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Y2_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(Y2_MIN_PIN), "Y2_MIN_PIN is not interrupt-capable");
pciSetup(Y2_MIN_PIN);
#endif
#endif
#if HAS_Z2_MAX
#if (digitalPinToInterrupt(Z2_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z2_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(Z2_MAX_PIN), "Z2_MAX_PIN is not interrupt-capable");
pciSetup(Z2_MAX_PIN);
#endif
#endif
#if HAS_Z2_MIN
#if (digitalPinToInterrupt(Z2_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z2_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(Z2_MIN_PIN), "Z2_MIN_PIN is not interrupt-capable");
pciSetup(Z2_MIN_PIN);
#endif
#endif
#if HAS_Z3_MAX
#if (digitalPinToInterrupt(Z3_MAX_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z3_MAX_PIN);
#else
static_assert(digitalPinHasPCICR(Z3_MAX_PIN), "Z3_MAX_PIN is not interrupt-capable");
pciSetup(Z3_MAX_PIN);
#endif
#endif
#if HAS_Z3_MIN
#if (digitalPinToInterrupt(Z3_MIN_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z3_MIN_PIN);
#else
static_assert(digitalPinHasPCICR(Z3_MIN_PIN), "Z3_MIN_PIN is not interrupt-capable");
pciSetup(Z3_MIN_PIN);
#endif
#endif
#if HAS_Z_MIN_PROBE_PIN
#if (digitalPinToInterrupt(Z_MIN_PROBE_PIN) != NOT_AN_INTERRUPT)
_ATTACH(Z_MIN_PROBE_PIN);
#else
static_assert(digitalPinHasPCICR(Z_MIN_PROBE_PIN), "Z_MIN_PROBE_PIN is not interrupt-capable");
pciSetup(Z_MIN_PROBE_PIN);
#endif
#endif
// If we arrive here without raising an assertion, each pin has either an EXT-interrupt or a PCI.
}

View File

@@ -0,0 +1,282 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef __AVR__
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(FAST_PWM_FAN) || SPINDLE_LASER_PWM
#include "HAL.h"
struct Timer {
volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer
volatile uint16_t* OCRnQ[3]; // max 3 OCR registers per timer
volatile uint16_t* ICRn; // max 1 ICR register per timer
uint8_t n; // the timer number [0->5]
uint8_t q; // the timer output [0->2] (A->C)
};
/**
* get_pwm_timer
* Get the timer information and register of the provided pin.
* Return a Timer struct containing this information.
* Used by set_pwm_frequency, set_pwm_duty
*/
Timer get_pwm_timer(const pin_t pin) {
uint8_t q = 0;
switch (digitalPinToTimer(pin)) {
// Protect reserved timers (TIMER0 & TIMER1)
#ifdef TCCR0A
#if !AVR_AT90USB1286_FAMILY
case TIMER0A:
#endif
case TIMER0B:
#endif
#ifdef TCCR1A
case TIMER1A: case TIMER1B:
#endif
break;
#if defined(TCCR2) || defined(TCCR2A)
#ifdef TCCR2
case TIMER2: {
Timer timer = {
/*TCCRnQ*/ { &TCCR2, nullptr, nullptr },
/*OCRnQ*/ { (uint16_t*)&OCR2, nullptr, nullptr },
/*ICRn*/ nullptr,
/*n, q*/ 2, 0
};
}
#elif defined(TCCR2A)
#if ENABLED(USE_OCR2A_AS_TOP)
case TIMER2A: break; // protect TIMER2A
case TIMER2B: {
Timer timer = {
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, nullptr },
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr },
/*ICRn*/ nullptr,
/*n, q*/ 2, 1
};
return timer;
}
#else
case TIMER2B: ++q;
case TIMER2A: {
Timer timer = {
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, nullptr },
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr },
/*ICRn*/ nullptr,
2, q
};
return timer;
}
#endif
#endif
#endif
#ifdef OCR3C
case TIMER3C: ++q;
case TIMER3B: ++q;
case TIMER3A: {
Timer timer = {
/*TCCRnQ*/ { &TCCR3A, &TCCR3B, &TCCR3C },
/*OCRnQ*/ { &OCR3A, &OCR3B, &OCR3C },
/*ICRn*/ &ICR3,
/*n, q*/ 3, q
};
return timer;
}
#elif defined(OCR3B)
case TIMER3B: ++q;
case TIMER3A: {
Timer timer = {
/*TCCRnQ*/ { &TCCR3A, &TCCR3B, nullptr },
/*OCRnQ*/ { &OCR3A, &OCR3B, nullptr },
/*ICRn*/ &ICR3,
/*n, q*/ 3, q
};
return timer;
}
#endif
#ifdef TCCR4A
case TIMER4C: ++q;
case TIMER4B: ++q;
case TIMER4A: {
Timer timer = {
/*TCCRnQ*/ { &TCCR4A, &TCCR4B, &TCCR4C },
/*OCRnQ*/ { &OCR4A, &OCR4B, &OCR4C },
/*ICRn*/ &ICR4,
/*n, q*/ 4, q
};
return timer;
}
#endif
#ifdef TCCR5A
case TIMER5C: ++q;
case TIMER5B: ++q;
case TIMER5A: {
Timer timer = {
/*TCCRnQ*/ { &TCCR5A, &TCCR5B, &TCCR5C },
/*OCRnQ*/ { &OCR5A, &OCR5B, &OCR5C },
/*ICRn*/ &ICR5,
/*n, q*/ 5, q
};
return timer;
}
#endif
}
Timer timer = {
/*TCCRnQ*/ { nullptr, nullptr, nullptr },
/*OCRnQ*/ { nullptr, nullptr, nullptr },
/*ICRn*/ nullptr,
0, 0
};
return timer;
}
void set_pwm_frequency(const pin_t pin, int f_desired) {
Timer timer = get_pwm_timer(pin);
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
uint16_t size;
if (timer.n == 2) size = 255; else size = 65535;
uint16_t res = 255; // resolution (TOP value)
uint8_t j = 0; // prescaler index
uint8_t wgm = 1; // waveform generation mode
// Calculating the prescaler and resolution to use to achieve closest frequency
if (f_desired != 0) {
int f = (F_CPU) / (2 * 1024 * size) + 1; // Initialize frequency as lowest (non-zero) achievable
uint16_t prescaler[] = { 0, 1, 8, /*TIMER2 ONLY*/32, 64, /*TIMER2 ONLY*/128, 256, 1024 };
// loop over prescaler values
for (uint8_t i = 1; i < 8; i++) {
uint16_t res_temp_fast = 255, res_temp_phase_correct = 255;
if (timer.n == 2) {
// No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP
#if ENABLED(USE_OCR2A_AS_TOP)
const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired);
res_temp_fast = rtf - 1;
res_temp_phase_correct = rtf / 2;
#endif
}
else {
// Skip TIMER2 specific prescalers when not TIMER2
if (i == 3 || i == 5) continue;
const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired);
res_temp_fast = rtf - 1;
res_temp_phase_correct = rtf / 2;
}
LIMIT(res_temp_fast, 1u, size);
LIMIT(res_temp_phase_correct, 1u, size);
// Calculate frequencies of test prescaler and resolution values
const int f_temp_fast = (F_CPU) / (prescaler[i] * (1 + res_temp_fast)),
f_temp_phase_correct = (F_CPU) / (2 * prescaler[i] * res_temp_phase_correct),
f_diff = ABS(f - f_desired),
f_fast_diff = ABS(f_temp_fast - f_desired),
f_phase_diff = ABS(f_temp_phase_correct - f_desired);
// If FAST values are closest to desired f
if (f_fast_diff < f_diff && f_fast_diff <= f_phase_diff) {
// Remember this combination
f = f_temp_fast;
res = res_temp_fast;
j = i;
// Set the Wave Generation Mode to FAST PWM
if (timer.n == 2) {
wgm = (
#if ENABLED(USE_OCR2A_AS_TOP)
WGM2_FAST_PWM_OCR2A
#else
WGM2_FAST_PWM
#endif
);
}
else wgm = WGM_FAST_PWM_ICRn;
}
// If PHASE CORRECT values are closes to desired f
else if (f_phase_diff < f_diff) {
f = f_temp_phase_correct;
res = res_temp_phase_correct;
j = i;
// Set the Wave Generation Mode to PWM PHASE CORRECT
if (timer.n == 2) {
wgm = (
#if ENABLED(USE_OCR2A_AS_TOP)
WGM2_PWM_PC_OCR2A
#else
WGM2_PWM_PC
#endif
);
}
else wgm = WGM_PWM_PC_ICRn;
}
}
}
_SET_WGMnQ(timer.TCCRnQ, wgm);
_SET_CSn(timer.TCCRnQ, j);
if (timer.n == 2) {
#if ENABLED(USE_OCR2A_AS_TOP)
_SET_OCRnQ(timer.OCRnQ, 0, res); // Set OCR2A value (TOP) = res
#endif
}
else
_SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res
}
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
// If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
// Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
if (v == 0)
digitalWrite(pin, invert);
else if (v == v_size)
digitalWrite(pin, !invert);
else {
Timer timer = get_pwm_timer(pin);
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
// Set compare output mode to CLEAR -> SET or SET -> CLEAR (if inverted)
_SET_COMnQ(timer.TCCRnQ, (timer.q
#ifdef TCCR2
+ (timer.q == 2) // COM20 is on bit 4 of TCCR2, thus requires q + 1 in the macro
#endif
), COM_CLEAR_SET + invert
);
uint16_t top;
if (timer.n == 2) { // if TIMER2
top = (
#if ENABLED(USE_OCR2A_AS_TOP)
*timer.OCRnQ[0] // top = OCR2A
#else
255 // top = 0xFF (max)
#endif
);
}
else
top = *timer.ICRn; // top = ICRn
_SET_OCRnQ(timer.OCRnQ, timer.q, v * float(top / v_size)); // Scale 8/16-bit v to top value
}
}
#endif // FAST_PWM_FAN || SPINDLE_LASER_PWM
#endif // __AVR__

View File

@@ -0,0 +1,238 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Fast I/O for extended pins
*/
#ifdef __AVR__
#include "fastio.h"
#ifdef FASTIO_EXT_START
#include "../shared/Marduino.h"
#define _IS_EXT(P) WITHIN(P, FASTIO_EXT_START, FASTIO_EXT_END)
void extDigitalWrite(const int8_t pin, const uint8_t state) {
#define _WCASE(N) case N: WRITE(N, state); break
switch (pin) {
default: digitalWrite(pin, state);
#if _IS_EXT(70)
_WCASE(70);
#endif
#if _IS_EXT(71)
_WCASE(71);
#endif
#if _IS_EXT(72)
_WCASE(72);
#endif
#if _IS_EXT(73)
_WCASE(73);
#endif
#if _IS_EXT(74)
_WCASE(74);
#endif
#if _IS_EXT(75)
_WCASE(75);
#endif
#if _IS_EXT(76)
_WCASE(76);
#endif
#if _IS_EXT(77)
_WCASE(77);
#endif
#if _IS_EXT(78)
_WCASE(78);
#endif
#if _IS_EXT(79)
_WCASE(79);
#endif
#if _IS_EXT(80)
_WCASE(80);
#endif
#if _IS_EXT(81)
_WCASE(81);
#endif
#if _IS_EXT(82)
_WCASE(82);
#endif
#if _IS_EXT(83)
_WCASE(83);
#endif
#if _IS_EXT(84)
_WCASE(84);
#endif
#if _IS_EXT(85)
_WCASE(85);
#endif
#if _IS_EXT(86)
_WCASE(86);
#endif
#if _IS_EXT(87)
_WCASE(87);
#endif
#if _IS_EXT(88)
_WCASE(88);
#endif
#if _IS_EXT(89)
_WCASE(89);
#endif
#if _IS_EXT(90)
_WCASE(90);
#endif
#if _IS_EXT(91)
_WCASE(91);
#endif
#if _IS_EXT(92)
_WCASE(92);
#endif
#if _IS_EXT(93)
_WCASE(93);
#endif
#if _IS_EXT(94)
_WCASE(94);
#endif
#if _IS_EXT(95)
_WCASE(95);
#endif
#if _IS_EXT(96)
_WCASE(96);
#endif
#if _IS_EXT(97)
_WCASE(97);
#endif
#if _IS_EXT(98)
_WCASE(98);
#endif
#if _IS_EXT(99)
_WCASE(99);
#endif
#if _IS_EXT(100)
_WCASE(100);
#endif
}
}
uint8_t extDigitalRead(const int8_t pin) {
#define _RCASE(N) case N: return READ(N)
switch (pin) {
default: return digitalRead(pin);
#if _IS_EXT(70)
_RCASE(70);
#endif
#if _IS_EXT(71)
_RCASE(71);
#endif
#if _IS_EXT(72)
_RCASE(72);
#endif
#if _IS_EXT(73)
_RCASE(73);
#endif
#if _IS_EXT(74)
_RCASE(74);
#endif
#if _IS_EXT(75)
_RCASE(75);
#endif
#if _IS_EXT(76)
_RCASE(76);
#endif
#if _IS_EXT(77)
_RCASE(77);
#endif
#if _IS_EXT(78)
_RCASE(78);
#endif
#if _IS_EXT(79)
_RCASE(79);
#endif
#if _IS_EXT(80)
_RCASE(80);
#endif
#if _IS_EXT(81)
_RCASE(81);
#endif
#if _IS_EXT(82)
_RCASE(82);
#endif
#if _IS_EXT(83)
_RCASE(83);
#endif
#if _IS_EXT(84)
_RCASE(84);
#endif
#if _IS_EXT(85)
_RCASE(85);
#endif
#if _IS_EXT(86)
_RCASE(86);
#endif
#if _IS_EXT(87)
_RCASE(87);
#endif
#if _IS_EXT(88)
_RCASE(88);
#endif
#if _IS_EXT(89)
_RCASE(89);
#endif
#if _IS_EXT(90)
_RCASE(90);
#endif
#if _IS_EXT(91)
_RCASE(91);
#endif
#if _IS_EXT(92)
_RCASE(92);
#endif
#if _IS_EXT(93)
_RCASE(93);
#endif
#if _IS_EXT(94)
_RCASE(94);
#endif
#if _IS_EXT(95)
_RCASE(95);
#endif
#if _IS_EXT(96)
_RCASE(96);
#endif
#if _IS_EXT(97)
_RCASE(97);
#endif
#if _IS_EXT(98)
_RCASE(98);
#endif
#if _IS_EXT(99)
_RCASE(99);
#endif
#if _IS_EXT(100)
_RCASE(100);
#endif
}
}
#endif // FASTIO_EXT_START
#endif // __AVR__

View File

@@ -0,0 +1,356 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* Fast I/O Routines for AVR
* Use direct port manipulation to save scads of processor time.
* Contributed by Triffid_Hunter and modified by Kliment, thinkyhead, Bob-the-Kuhn, et.al.
*/
#include <avr/io.h>
#define AVR_AT90USB1286_FAMILY (defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1286P__) || defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB646P__) || defined(__AVR_AT90USB647__))
#define AVR_ATmega1284_FAMILY (defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__))
#define AVR_ATmega2560_FAMILY (defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__))
#define AVR_ATmega2561_FAMILY (defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__))
#define AVR_ATmega328_FAMILY (defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__))
/**
* Include Ports and Functions
*/
#if AVR_ATmega328_FAMILY
#include "fastio/fastio_168.h"
#elif AVR_ATmega1284_FAMILY
#include "fastio/fastio_644.h"
#elif AVR_ATmega2560_FAMILY
#include "fastio/fastio_1280.h"
#elif AVR_AT90USB1286_FAMILY
#include "fastio/fastio_AT90USB.h"
#elif AVR_ATmega2561_FAMILY
#include "fastio/fastio_1281.h"
#else
#error "No FastIO definition for the selected AVR Board."
#endif
/**
* Magic I/O routines
*
* Now you can simply SET_OUTPUT(PIN); WRITE(PIN, HIGH); WRITE(PIN, LOW);
*
* Why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
*/
#define _READ(IO) TEST(DIO ## IO ## _RPORT, DIO ## IO ## _PIN)
#define _WRITE_NC(IO,V) do{ \
if (V) SBI(DIO ## IO ## _WPORT, DIO ## IO ## _PIN); \
else CBI(DIO ## IO ## _WPORT, DIO ## IO ## _PIN); \
}while(0)
#define _WRITE_C(IO,V) do{ \
uint8_t port_bits = DIO ## IO ## _WPORT; /* Get a mask from the current port bits */ \
if (V) port_bits = ~port_bits; /* For setting bits, invert the mask */ \
DIO ## IO ## _RPORT = port_bits & _BV(DIO ## IO ## _PIN); /* Atomically toggle the output port bits */ \
}while(0)
#define _WRITE(IO,V) do{ if (&(DIO ## IO ## _RPORT) < (uint8_t*)0x100) _WRITE_NC(IO,V); else _WRITE_C(IO,V); }while(0)
#define _TOGGLE(IO) (DIO ## IO ## _RPORT = _BV(DIO ## IO ## _PIN))
#define _SET_INPUT(IO) CBI(DIO ## IO ## _DDR, DIO ## IO ## _PIN)
#define _SET_OUTPUT(IO) SBI(DIO ## IO ## _DDR, DIO ## IO ## _PIN)
#define _IS_INPUT(IO) !TEST(DIO ## IO ## _DDR, DIO ## IO ## _PIN)
#define _IS_OUTPUT(IO) TEST(DIO ## IO ## _DDR, DIO ## IO ## _PIN)
// digitalRead/Write wrappers
#ifdef FASTIO_EXT_START
void extDigitalWrite(const int8_t pin, const uint8_t state);
uint8_t extDigitalRead(const int8_t pin);
#else
#define extDigitalWrite(IO,V) digitalWrite(IO,V)
#define extDigitalRead(IO) digitalRead(IO)
#endif
#define READ(IO) _READ(IO)
#define WRITE(IO,V) _WRITE(IO,V)
#define TOGGLE(IO) _TOGGLE(IO)
#define SET_INPUT(IO) _SET_INPUT(IO)
#define SET_INPUT_PULLUP(IO) do{ _SET_INPUT(IO); _WRITE(IO, HIGH); }while(0)
#define SET_OUTPUT(IO) _SET_OUTPUT(IO)
#define SET_PWM(IO) SET_OUTPUT(IO)
#define IS_INPUT(IO) _IS_INPUT(IO)
#define IS_OUTPUT(IO) _IS_OUTPUT(IO)
#define OUT_WRITE(IO,V) do{ SET_OUTPUT(IO); WRITE(IO,V); }while(0)
/**
* Timer and Interrupt Control
*/
// Waveform Generation Modes
enum WaveGenMode : char {
WGM_NORMAL, // 0
WGM_PWM_PC_8, // 1
WGM_PWM_PC_9, // 2
WGM_PWM_PC_10, // 3
WGM_CTC_OCRnA, // 4 COM OCnx
WGM_FAST_PWM_8, // 5
WGM_FAST_PWM_9, // 6
WGM_FAST_PWM_10, // 7
WGM_PWM_PC_FC_ICRn, // 8
WGM_PWM_PC_FC_OCRnA, // 9 COM OCnA
WGM_PWM_PC_ICRn, // 10
WGM_PWM_PC_OCRnA, // 11 COM OCnA
WGM_CTC_ICRn, // 12 COM OCnx
WGM_reserved, // 13
WGM_FAST_PWM_ICRn, // 14 COM OCnA
WGM_FAST_PWM_OCRnA // 15 COM OCnA
};
// Wavefore Generation Modes (Timer 2 only)
enum WaveGenMode2 : char {
WGM2_NORMAL, // 0
WGM2_PWM_PC, // 1
WGM2_CTC_OCR2A, // 2
WGM2_FAST_PWM, // 3
WGM2_reserved_1, // 4
WGM2_PWM_PC_OCR2A, // 5
WGM2_reserved_2, // 6
WGM2_FAST_PWM_OCR2A, // 7
};
// Compare Modes
enum CompareMode : char {
COM_NORMAL, // 0
COM_TOGGLE, // 1 Non-PWM: OCnx ... Both PWM (WGM 9,11,14,15): OCnA only ... else NORMAL
COM_CLEAR_SET, // 2 Non-PWM: OCnx ... Fast PWM: OCnx/Bottom ... PF-FC: OCnx Up/Down
COM_SET_CLEAR // 3 Non-PWM: OCnx ... Fast PWM: OCnx/Bottom ... PF-FC: OCnx Up/Down
};
// Clock Sources
enum ClockSource : char {
CS_NONE, // 0
CS_PRESCALER_1, // 1
CS_PRESCALER_8, // 2
CS_PRESCALER_64, // 3
CS_PRESCALER_256, // 4
CS_PRESCALER_1024, // 5
CS_EXT_FALLING, // 6
CS_EXT_RISING // 7
};
// Clock Sources (Timer 2 only)
enum ClockSource2 : char {
CS2_NONE, // 0
CS2_PRESCALER_1, // 1
CS2_PRESCALER_8, // 2
CS2_PRESCALER_32, // 3
CS2_PRESCALER_64, // 4
CS2_PRESCALER_128, // 5
CS2_PRESCALER_256, // 6
CS2_PRESCALER_1024 // 7
};
// Get interrupt bits in an orderly way
// Ex: cs = GET_CS(0); coma1 = GET_COM(A,1);
#define GET_WGM(T) (((TCCR##T##A >> WGM##T##0) & 0x3) | ((TCCR##T##B >> WGM##T##2 << 2) & 0xC))
#define GET_CS(T) ((TCCR##T##B >> CS##T##0) & 0x7)
#define GET_COM(T,Q) ((TCCR##T##Q >> COM##T##Q##0) & 0x3)
#define GET_COMA(T) GET_COM(T,A)
#define GET_COMB(T) GET_COM(T,B)
#define GET_COMC(T) GET_COM(T,C)
#define GET_ICNC(T) (!!(TCCR##T##B & _BV(ICNC##T)))
#define GET_ICES(T) (!!(TCCR##T##B & _BV(ICES##T)))
#define GET_FOC(T,Q) (!!(TCCR##T##C & _BV(FOC##T##Q)))
#define GET_FOCA(T) GET_FOC(T,A)
#define GET_FOCB(T) GET_FOC(T,B)
#define GET_FOCC(T) GET_FOC(T,C)
// Set Wave Generation Mode bits
// Ex: SET_WGM(5,CTC_ICRn);
#define _SET_WGM(T,V) do{ \
TCCR##T##A = (TCCR##T##A & ~(0x3 << WGM##T##0)) | (( int(V) & 0x3) << WGM##T##0); \
TCCR##T##B = (TCCR##T##B & ~(0x3 << WGM##T##2)) | (((int(V) >> 2) & 0x3) << WGM##T##2); \
}while(0)
#define SET_WGM(T,V) _SET_WGM(T,WGM_##V)
// Runtime (see set_pwm_frequency):
#define _SET_WGMnQ(TCCRnQ, V) do{ \
*(TCCRnQ)[0] = (*(TCCRnQ)[0] & ~(0x3 << 0)) | (( int(V) & 0x3) << 0); \
*(TCCRnQ)[1] = (*(TCCRnQ)[1] & ~(0x3 << 3)) | (((int(V) >> 2) & 0x3) << 3); \
}while(0)
// Set Clock Select bits
// Ex: SET_CS3(PRESCALER_64);
#define _SET_CS(T,V) (TCCR##T##B = (TCCR##T##B & ~(0x7 << CS##T##0)) | ((int(V) & 0x7) << CS##T##0))
#define _SET_CS0(V) _SET_CS(0,V)
#define _SET_CS1(V) _SET_CS(1,V)
#ifdef TCCR2
#define _SET_CS2(V) (TCCR2 = (TCCR2 & ~(0x7 << CS20)) | (int(V) << CS20))
#else
#define _SET_CS2(V) _SET_CS(2,V)
#endif
#define _SET_CS3(V) _SET_CS(3,V)
#define _SET_CS4(V) _SET_CS(4,V)
#define _SET_CS5(V) _SET_CS(5,V)
#define SET_CS0(V) _SET_CS0(CS_##V)
#define SET_CS1(V) _SET_CS1(CS_##V)
#ifdef TCCR2
#define SET_CS2(V) _SET_CS2(CS2_##V)
#else
#define SET_CS2(V) _SET_CS2(CS_##V)
#endif
#define SET_CS3(V) _SET_CS3(CS_##V)
#define SET_CS4(V) _SET_CS4(CS_##V)
#define SET_CS5(V) _SET_CS5(CS_##V)
#define SET_CS(T,V) SET_CS##T(V)
// Runtime (see set_pwm_frequency)
#define _SET_CSn(TCCRnQ, V) do{ \
(*(TCCRnQ)[1] = (*(TCCRnQ[1]) & ~(0x7 << 0)) | ((int(V) & 0x7) << 0)); \
}while(0)
// Set Compare Mode bits
// Ex: SET_COMS(4,CLEAR_SET,CLEAR_SET,CLEAR_SET);
#define _SET_COM(T,Q,V) (TCCR##T##Q = (TCCR##T##Q & ~(0x3 << COM##T##Q##0)) | (int(V) << COM##T##Q##0))
#define SET_COM(T,Q,V) _SET_COM(T,Q,COM_##V)
#define SET_COMA(T,V) SET_COM(T,A,V)
#define SET_COMB(T,V) SET_COM(T,B,V)
#define SET_COMC(T,V) SET_COM(T,C,V)
#define SET_COMS(T,V1,V2,V3) do{ SET_COMA(T,V1); SET_COMB(T,V2); SET_COMC(T,V3); }while(0)
// Runtime (see set_pwm_duty)
#define _SET_COMnQ(TCCRnQ, Q, V) do{ \
(*(TCCRnQ)[0] = (*(TCCRnQ)[0] & ~(0x3 << (6-2*(Q)))) | (int(V) << (6-2*(Q)))); \
}while(0)
// Set OCRnQ register
// Runtime (see set_pwm_duty):
#define _SET_OCRnQ(OCRnQ, Q, V) do{ \
(*(OCRnQ)[(Q)] = (0x0000) | (int(V) & 0xFFFF)); \
}while(0)
// Set ICRn register (one per timer)
// Runtime (see set_pwm_frequency)
#define _SET_ICRn(ICRn, V) do{ \
(*(ICRn) = (0x0000) | (int(V) & 0xFFFF)); \
}while(0)
// Set Noise Canceler bit
// Ex: SET_ICNC(2,1)
#define SET_ICNC(T,V) (TCCR##T##B = (V) ? TCCR##T##B | _BV(ICNC##T) : TCCR##T##B & ~_BV(ICNC##T))
// Set Input Capture Edge Select bit
// Ex: SET_ICES(5,0)
#define SET_ICES(T,V) (TCCR##T##B = (V) ? TCCR##T##B | _BV(ICES##T) : TCCR##T##B & ~_BV(ICES##T))
// Set Force Output Compare bit
// Ex: SET_FOC(3,A,1)
#define SET_FOC(T,Q,V) (TCCR##T##C = (V) ? TCCR##T##C | _BV(FOC##T##Q) : TCCR##T##C & ~_BV(FOC##T##Q))
#define SET_FOCA(T,V) SET_FOC(T,A,V)
#define SET_FOCB(T,V) SET_FOC(T,B,V)
#define SET_FOCC(T,V) SET_FOC(T,C,V)
#if 0
/**
* PWM availability macros
*/
// Determine which harware PWMs are already in use
#if PIN_EXISTS(CONTROLLER_FAN)
#define PWM_CHK_FAN_B(P) (P == CONTROLLER_FAN_PIN || P == E0_AUTO_FAN_PIN || P == E1_AUTO_FAN_PIN || P == E2_AUTO_FAN_PIN || P == E3_AUTO_FAN_PIN || P == E4_AUTO_FAN_PIN || P == E5_AUTO_FAN_PIN || P == CHAMBER_AUTO_FAN_PIN)
#else
#define PWM_CHK_FAN_B(P) (P == E0_AUTO_FAN_PIN || P == E1_AUTO_FAN_PIN || P == E2_AUTO_FAN_PIN || P == E3_AUTO_FAN_PIN || P == E4_AUTO_FAN_PIN || P == E5_AUTO_FAN_PIN || P == CHAMBER_AUTO_FAN_PIN)
#endif
#if ANY_PIN(FAN, FAN1, FAN2)
#if PIN_EXISTS(FAN2)
#define PWM_CHK_FAN_A(P) (P == FAN0_PIN || P == FAN1_PIN || P == FAN2_PIN)
#elif PIN_EXISTS(FAN1)
#define PWM_CHK_FAN_A(P) (P == FAN0_PIN || P == FAN1_PIN)
#else
#define PWM_CHK_FAN_A(P) (P == FAN0_PIN)
#endif
#else
#define PWM_CHK_FAN_A(P) false
#endif
#if HAS_MOTOR_CURRENT_PWM
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
#define PWM_CHK_MOTOR_CURRENT(P) (P == MOTOR_CURRENT_PWM_E || P == MOTOR_CURRENT_PWM_Z || P == MOTOR_CURRENT_PWM_XY)
#elif PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
#define PWM_CHK_MOTOR_CURRENT(P) (P == MOTOR_CURRENT_PWM_E || P == MOTOR_CURRENT_PWM_Z)
#else
#define PWM_CHK_MOTOR_CURRENT(P) (P == MOTOR_CURRENT_PWM_E)
#endif
#else
#define PWM_CHK_MOTOR_CURRENT(P) false
#endif
#ifdef NUM_SERVOS
#if AVR_ATmega2560_FAMILY
#define PWM_CHK_SERVO(P) (P == 5 || (NUM_SERVOS > 12 && P == 6) || (NUM_SERVOS > 24 && P == 46)) // PWMS 3A, 4A & 5A
#elif AVR_ATmega2561_FAMILY
#define PWM_CHK_SERVO(P) (P == 5) // PWM3A
#elif AVR_ATmega1284_FAMILY
#define PWM_CHK_SERVO(P) false
#elif AVR_AT90USB1286_FAMILY
#define PWM_CHK_SERVO(P) (P == 16) // PWM3A
#elif AVR_ATmega328_FAMILY
#define PWM_CHK_SERVO(P) false
#endif
#else
#define PWM_CHK_SERVO(P) false
#endif
#if ENABLED(BARICUDA)
#if HAS_HEATER_1 && HAS_HEATER_2
#define PWM_CHK_HEATER(P) (P == HEATER_1_PIN || P == HEATER_2_PIN)
#elif HAS_HEATER_1
#define PWM_CHK_HEATER(P) (P == HEATER_1_PIN)
#endif
#else
#define PWM_CHK_HEATER(P) false
#endif
#define PWM_CHK(P) (PWM_CHK_HEATER(P) || PWM_CHK_SERVO(P) || PWM_CHK_MOTOR_CURRENT(P) || PWM_CHK_FAN_A(P) || PWM_CHK_FAN_B(P))
#endif // PWM_CHK is not used in Marlin
// define which hardware PWMs are available for the current CPU
// all timer 1 PWMS deleted from this list because they are never available
#if AVR_ATmega2560_FAMILY
#define PWM_PIN(P) ((P >= 2 && P <= 10) || P == 13 || P == 44 || P == 45 || P == 46)
#elif AVR_ATmega2561_FAMILY
#define PWM_PIN(P) ((P >= 2 && P <= 6) || P == 9)
#elif AVR_ATmega1284_FAMILY
#define PWM_PIN(P) (P == 3 || P == 4 || P == 14 || P == 15)
#elif AVR_AT90USB1286_FAMILY
#define PWM_PIN(P) (P == 0 || P == 1 || P == 14 || P == 15 || P == 16 || P == 24)
#elif AVR_ATmega328_FAMILY
#define PWM_PIN(P) (P == 3 || P == 5 || P == 6 || P == 11)
#else
#error "unknown CPU"
#endif

Some files were not shown because too many files have changed in this diff Show More