Attempt Coordinate Transform

- Renamed some variables to indicate that they are a list
- Fixed some typos
- Close file after opening
- Attempt implementation of robot to global frame transformation
- Add conditions to skip some point clouds when creating full point cloud
This commit is contained in:
Sravan Balaji
2020-04-22 22:11:05 -04:00
parent 6b4790abc9
commit 87cbdc3c02

View File

@@ -10,16 +10,19 @@ import struct
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from scipy.spatial.transform import Rotation as R
class GTPose:
def __init__(self, time, x, y, z, r, p, h):
self.time = time
self.x = x
self.y = y
self.z = z
self.r = r
self.p = p
self.h = h
class GTPoses:
def __init__(self, time_list, x_list, y_list, z_list, r_list, p_list, h_list):
self.time_list = time_list
self.x_list = x_list
self.y_list = y_list
self.z_list = z_list
self.r_list = r_list
self.p_list = p_list
self.h_list = h_list
self.length = len(time_list)
class PointCloud:
def __init__(self, time):
@@ -27,26 +30,27 @@ class PointCloud:
self.x_list = []
self.y_list = []
self.z_list = []
self.length = 0
def add_point(self, x, y, z):
self.time += time
self.x_list += x
self.y_list += y
self.z_list += z
self.x_list += [x]
self.y_list += [y]
self.z_list += [z]
self.length += 1
def read_gt(file):
gt = np.loadtxt(file, delimeter=",")
gt = np.loadtxt(file, delimiter=",")
time = gt[:, 0]
x = gt[:, 1]
y = gt[:, 2]
z = gt[:, 3]
r = gt[:, 4]
p = gt[:, 5]
h = gt[:, 6]
time_list = list(gt[:, 0])
x_list = gt[:, 1]
y_list = gt[:, 2]
z_list = gt[:, 3]
r_list = gt[:, 4]
p_list = gt[:, 5]
h_list = gt[:, 6]
return GTPose(time, x, y, z, r, p, h)
return GTPoses(time_list, x_list, y_list, z_list, r_list, p_list, h_list)
def convert(x_s, y_s, z_s):
@@ -61,7 +65,7 @@ def convert(x_s, y_s, z_s):
def read_vel(file):
time = os.path.splittext(os.path.basename(file))[0]
time = os.path.splitext(os.path.basename(file))[0]
pc = PointCloud(time)
f_bin = open(file, "rb")
@@ -81,41 +85,82 @@ def read_vel(file):
x, y, z = convert(x, y, z)
pc.add_point(x, y, -z)
f_bin.close()
return pc
def r_to_g_frame(gt, pc):
# TODO: Interpolate gt to find corresponding pose for pc
pc_global = PointCloud(pc.time)
# Interpolate gt to find corresponding pose for pc
t_x = np.interp(x=pc.time, xp=gt.time_list, fp=gt.x_list)
t_y = np.interp(x=pc.time, xp=gt.time_list, fp=gt.y_list)
t_z = np.interp(x=pc.time, xp=gt.time_list, fp=gt.z_list)
R_r = np.interp(x=pc.time, xp=gt.time_list, fp=gt.r_list)
R_p = np.interp(x=pc.time, xp=gt.time_list, fp=gt.p_list)
R_h = np.interp(x=pc.time, xp=gt.time_list, fp=gt.h_list)
# TODO: Transform pc from robot frame to global frame
pass
# Transform pc from robot frame to global frame
r = (R.from_euler('xyz', [R_r, R_p, R_h], degrees=False)).as_matrix()
p = [t_x, t_y, t_z]
n = [r[0,0], r[1,0], r[2,0]]
o = [r[0,1], r[1,1], r[2,1]]
a = [r[0,2], r[1,2], r[2,2]]
T = np.matrix([[n[0], o[0], a[0], p[0]],
[n[1], o[1], a[1], p[1]],
[n[2], o[2], a[2], p[2]],
[0, 0, 0, 1]])
# T = np.matrix([[n[0], n[1], n[2], -np.dot(p, n)],
# [o[0], o[1], o[2], -np.dot(p, o)],
# [a[0], a[1], a[2], -np.dot(p, a)],
# [0, 0, 0, 1]])
for i in range(pc.length):
point_local = np.matrix([[pc.x_list[i]],
[pc.y_list[i]],
[pc.z_list[i]],
[1]])
point_global = T * point_local
pc_global.add_point(point_global[0], point_global[1], point_global[2])
return pc_global
def main(args):
if len(sys.argv) != 2:
print("Expecting 2 arguments: ground truth filepath and data folder")
if len(sys.argv) != 3:
print("Expecting 3 arguments: python point_cloud_vis.py [ground truth filepath] [velodyne sync folder]")
return 1
ground_truth_file = sys.arv[1]
ground_truth_file = sys.argv[1]
data_path = sys.argv[2]
x = []
y = []
z = []
x_list = []
y_list = []
z_list = []
gt = read_gt(ground_truth_file)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
count = -1
for filename in os.listdir(data_path):
pc = read_vel(ground_truth_file, data_path + '/' + filename)
count += 1
if count == 50:
break
elif count % 5 != 0:
continue
pc = read_vel(data_path + '/' + filename)
pc = r_to_g_frame(gt, pc)
x += pc.x_list
y += pc.y_list
z += pc.z_list
x_list += pc.x_list
y_list += pc.y_list
z_list += pc.z_list
ax.scatter(x, y, z, c=z, s=5, linewidths=0)
ax.scatter(x_list, y_list, z_list, c=z_list, s=5, linewidths=0)
plt.show()
return 0